
LECTURE 0

(0.0) Overview of the course.– This course is divided into three components: Category
theory, Homological algebra and Galois theory.

Category theory. In this part, we will go over the basic definitions of categories, functors,
natural transformation of functors etc. This formalism emerged around 1945, from the works
of algebraic topologists, most notably Eilenberg and MacLane. The purpose of this part is
to familiarise ourselves with this language, which is extensively used in many areas of math-
ematics. It will also feature prominantly in the second part of the course.

Homological algebra. The main object of study for this part will be the category of R–
modules, where R is a (unital) commutative ring. We will go over the abstract definition
of derived functors and introduce Ext and Tor functors as derived of Hom and ⊗. Many
interesting cohomology theories in mathematics can be viewed as Ext functors on an appro-
priate category. Tor functors play a crucial role in intersection theory (you can look up Serre
intersection multiplicity formula for details).

Galois theory. This part of the course is not related to the other two. It also have a very
extensive history, which we will go over when we start this topic. The central characters of
this story are fields and their extensions.

In this lecture, we will define categories and functors, and go over several examples of these.

(0.1) Categories.– A category C consists of the following data:

• A class Ob(C), called objects of C.
• For any two objects X, Y ∈ Ob(C), a set HomC(X, Y ), called morphisms from X to
Y .
• For X, Y, Z ∈ Ob(C), a map:

HomC(X, Y )× HomC(Y, Z)→ HomC(X,Z)

called composition of morphisms. The composition is denoted, as usual, by (f, g) 7→
g ◦ f .
• For every object X ∈ Ob(C), a distinguished morphism IdX ∈ HomC(X,X), called
the identity morphism.

This data is subject to the following two axioms.

(1) Composition is associative. That is, for everyX, Y, Z,W ∈ Ob(C), and f ∈ HomC(X, Y ),
g ∈ HomC(Y, Z) and h ∈ HomC(Z,W ), we have:

(h ◦ g) ◦ f = h ◦ (g ◦ f).
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(2) Identity morphisms are neutral with respect to composition. That is, for every X, Y ∈
Ob(C) and f ∈ HomC(X, Y ), we have:

f ◦ IdX = f = IdY ◦f.
(0.2) Examples.–

(1) Sets. The objects of this category are sets: that is, X ∈ Ob(Sets) just means that
X is a set. For any two sets X, Y , HomSets(X, Y ) consists of usual set maps X → Y .
IdX : X → X is the usual identity map, and composition of morphisms is defined in
the natural way: (g ◦ f)(x) = g(f(x)).

(2) Similar to the previous example, we have the following categories, familiar from your
previous algebra course.
• The category of groups, Gps, whose objects are groups and morphisms are group

homomorphisms.
• The category of abelian groups, Ab.
• The category of rings, Rings.
• The category of commutative rings, CommRings.
• For a ring R, we have the category of (left) R–modules, denoted by R−mod.

Often, we will denote by mod−R, the category of right R–modules.
• For a field K, let VectK denote the category of K–vector spaces. Its objects are

vector spaces over K, and morphisms are K–linear maps.
(3) Let Top denote the category of topological spaces. Its objects are topological spaces

and morphisms are continuous maps.

Thus, many (if not all) structures in mathematics form a category. For instance, one has
the category of differentiable manifolds, algebraic varieties etc.

(0.3) Notation.– We will often write X ∈ C instead of X ∈ Ob(C), to mean that X is an

object of a category C. Morphisms are often written as f : X → Y , or X
f−→ Y , to mean

that f ∈ HomC(X, Y ).

(0.4) Injective and surjective morphisms.– Let C be a category and f : X → Y be a
morphism between two objects X, Y of C. We say f is injective (or monomorphism) if, for
every Z ∈ C, the following map of sets is one-to-one:

HomC(Z,X)→ HomC(Z, Y ), h 7→ f ◦ h.
In other words, f is injective if it can be cancelled from the right. That is, f ◦h1 = f ◦h2 ⇒
h1 = h2.

Similarly, we say that f is surjective (or, epimorphism) if, for every Z ∈ C, the following
map of sets is one-to-one:

HomC(Y, Z)→ HomC(X,Z), g 7→ g ◦ f.
In other words, f is surjective if it can be cancelled from the left. That is, g1 ◦ f = g2 ◦ f ⇒
g1 = g2.



LECTURE 0 3

If f is both injective and surjective, then we say that f is a bijection.

Remark. In order not to cause any confusion, we will agree to use the terms injective,
surjective, bijective in accordance with what is defined above. Many categories we will
encounter will have objects which are sets together with some additional structure (see
Examples (0.2)). For a morphism f : X → Y in such a category, the corresponding purely
set–theoretical notions will be called one-to-one, onto and both. It is important to keep this
distinction in mind, as the following example illustrates.

Example. Consider the category Rings of unital rings (morphisms are also assumed to be
unital). Let f : Z→ Q be the natural inclusion of the ring of integers into the field of rational
numbers. Set–theoretically, this morphism is one-to-one, but not onto. However, category–
theoretically, f is a bijection. To see this, we observe that f is clearly injective (prove this
for yourself: one-to-one implies injective). To prove surjectivity, let g1, g2 : Q → R be two
morphisms such that g1 ◦f = g2 ◦f . We have to prove that g1 = g2. Since their restriction to
Z ⊂ Q is the same, and gi(1/n) = gi(n)−1 (i = 1, 2), for every n ∈ Z6=0, we get the following,
for every a/b ∈ Q:

g1(a/b) = g1(a)g1(b)
−1 = g2(a)g2(b)

−1 = g2(a/b).

(0.5) Left and right inverses.– Again, let f : X → Y be a morphism in a category C. We
say that f admits a left inverse, if there exists r : Y → X, such that r ◦ f = IdX . Usually,
this morphism r is called a retraction.

Similarly, f is said to admit a right inverse, if there exists s : Y → X such that f ◦s = IdY .
This morphism s is often called a section.

If f admits both a left and a right inverse, then we say that f is an isomorphism.

Lemma. Let C be a category and f : X → Y a morphism in C.
(1) Assume that there exists g : Y → Y ′ such that g ◦ f is injective. Then f is injective.
(2) If f admits a left inverse, then it is injective.
(3) Assume that there exists h : X ′ → X such that f◦h is surjective. Then f is surjective.
(4) If f admits a right inverse, then it is surjective.

Proof. (1). Let Z ∈ C and let h1, h2 : Z → X be two morphisms, such that f ◦h1 = f ◦h2.
In order to prove that f is injective, we have to show that h1 = h2. Using associativity of
the composition map, we get:

(g ◦ f) ◦ h1 = g ◦ (f ◦ h1) = g ◦ (f ◦ h2) = (g ◦ f) ◦ h2.
Since g ◦ f is assumed to be injective, this implies that h1 = h2, by definition of an injective
morphism.

(2). Let r : Y → X be the left inverse of f . In (1), take Y ′ = X and g = r, so that
g ◦ f = IdX is injective. Hence, by (1) above, we get that f is injective.

(3) and (4) are proved in exactly the same way.
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(0.6) Remark I.– Left (and right) inverses need not be unique. For instance, let K be a
field, and consider the linear map f : K2 → K given by f(a, b) = a + b. This map admits
many sections, for instance s1 : K → K2 given by s1(x) = (x, 0), and s2 : K → K2 given by
s2(x) = (0, x) both satisfy f ◦ s1 = f ◦ s2 = IdK .

However, if both left and right inverses exist, then they are unique and equal to each
other. You must have seen a proof of this statement for groups, which proceeds as follows.
Let f : X → Y be a morphism which admits both left and right inverses. Let r : Y → X be
such that r◦f = IdX . Assume there are two sections s1, s2 : Y → X such that f ◦s1 = f ◦s2.
Then (this is the same argument as the one given in the proof of Lemma (0.5)):

s1 = IdX ◦s1 = (r ◦ f) ◦ s1 = r ◦ (f ◦ s1) = r ◦ (f ◦ s2) = (r ◦ f) ◦ s2 = IdX ◦s2 = s2.

This proves the uniqueness of right inverse. Similar argument shows the uniqueness of left
inverse. Finally, if r is the left inverse and s is the right iverse of f , then:

r = r ◦ IdY = r ◦ f ◦ s = IdX ◦s = s.

(0.7) Remark II.– Lemma (0.5) implies that every isomorphism is a bijection. The con-
verse is not true, as Example (0.4) above demonstrates. Here is another example.

Let F(Ab) denote the category of filtered abelian groups. That is,

• An object of F(Ab) is a descending chain:

F• = (F0 ⊃ F1 ⊃ · · · ), where Fi is an abelian group ∀i ∈ Z≥0.

• A morphism f• : F• → G• is a homomorphism of abelian groups f0 : F0 → G0 such
that f0(Fi) ⊂ Gi for every i ≥ 0.

Consider the following two objects of this category:

A• = (Z ⊃ 0 · · · ), and B• = (Z ⊃ 2Z ⊃ 0 ⊃ · · · ).
Let i : A• → B• be identity on A0 = B0 = Z. Then i is a bijection (prove this!). However,
it does not admit either left or right inverse, since HomF(Ab)(B•, A•) = {0}.

(0.8) Functors.– Let C and D be two categories. A covariant functor F : C → D is the
following assignment:

• For every object X ∈ C, we have F (X) ∈ D.
• For every morphism f : X → Y in C, we have F (f) : F (X)→ F (Y ) in D.

This assignment is required to satisfy two conditions:

(1) For every X ∈ C, F (IdX) = IdF (X).
(2) For every X, Y, Z ∈ C and f : X → Y , g : Y → Z, we have:

F (g ◦ f) = F (g) ◦ F (f).

A contravariant functor G : C → D differs from a covariant one, in only that it reverses
the arrows of morphisms. In more detail, G is the following assignment:

• For every object X ∈ C, we have G(X) ∈ D.
• For every morphism f : X → Y in C, we have G(f) : G(Y )→ G(X) in D.
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This assignment is similarly assumed to satisfy: G(IdX) = IdG(X) and G(g ◦ f) =
G(f) ◦G(g).

(0.9) Example I: Forgetful functor.– Let C be any one of the categories given in Ex-
amples (0.2). Then we have F : C → Sets which sends each object to the underlying set
(forgetting any additional structure). Such functors are often called forgetful functors. These
functors are covariant.

(0.10) Example II: Hom functors.– Let C be an arbitrary category. Let X ∈ C. We can
define two functors hX and hX from C to Sets as follows.

• hX : C → Sets. It maps any Y ∈ C to the set HomC(X, Y ). Every morphism
f : Y1 → Y2 in C gives rise to a set map (composition with f), hX(f) : HomC(X, Y1)→
HomC(X, Y2), given by: g 7→ f ◦ g. It is therefore a covariant functor.

• hX : C → Sets. It maps any Y ∈ C to the set HomC(Y,X). Every morphism
f : Y1 → Y2 in C gives rise to a set map (again, composition with f), hX(f) :
HomC(Y2, X) → HomC(Y1, X), given by: g 7→ g ◦ f . It is therefore a contravariant
functor.

These functors are sometimes denoted as hX = HomC(X,−) and hX = HomC(−, X), and
called covariant and contravariant Hom–functors respectively.

A special case of hX is the duality functor on the category VectK of K–vector spaces,
where K is a field. D : VectK → VectK is given by:

D(V ) = V ∗ = HomK(V,K).

Recall that for every K–linear map f : V → W , we have its transpose f ∗ : W ∗ → V ∗ which
agrees with the definition of hK(f) given above.

(Note: in VectK , the set of morphisms HomK(V,W ) has an additional structure of a
K–vector space. That is why the Hom–functors defined above take value in VectK , not just
in Sets).

(0.11) Example III. Fundamental group.–1 Let Top∗ be the category of pointed topo-
logical spaces. That is, an object of this category is a pair (X, x0), where X is a topological
space and x0 ∈ X. A morphism in this category (X, x0) → (Y, y0) is a continuous map
f : X → Y such that f(x0) = y0.

Recall that π1(X, x0) is defined as the group of loops (up to homotopy) in X based at x0.
The assigment (X, x0) 7→ π1(X, x0) is a covariant functor Top∗ → Gps.

1Optional


