
LECTURE 1

(1.0) Last lecture.– Recall that in the previous lecture we defined categories. We went over
the definition of injective and surjective morphisms in an abstract category, and highlighted
how these notions differ from the usual set–theoretic 1-1 and onto maps. We ended the last
lecture with the definition of covariant and contravariant functors, and saw a few examples.

In today’s lecture, we will study natural transformations of functors. This will allow us to
understand when two categories are equivalent.

(1.1) Some comments.– Functors can be composed, just like functions. Thus, if F : C → D
and G : D → E are two functors, then we get G ◦ F : C → E . With respect to composition,
the variance of functors behaves as parity:

Covariant ◦ Covariant = Covariant, Covariant ◦ Contravariant = Contravariant

Contravariant ◦ Covariant = Contravariant, Contravariant ◦ Contravariant = Covariant

Opposite category. Often to fix ideas, people agree to talk only about covariant functors.
This is achieved by introducing (artificially) the opposite of a category, by reversing the
direction of the morphisms. More explicitly, if C is a category, we can define a new category,
denoted by Cop, whose objects are same as the objects of C, and

HomCop(X, Y ) := HomC(Y,X)

Thus contravariant functors from C to D are same as covariant functors from Cop to D.

If nothing is specified, a functor is assumed to be covariant.

(1.2) Faithful and full functors.– Let C and D be two categories and let F : C → D be
a functor. Recall that, for every X, Y ∈ C, F defines a set map

HomC(X, Y )
FX,Y−→ HomD(F (X), F (Y )),

given by f 7→ F (f). We say that F is faithful, if FX,Y is 1-1 map. Similarly, we say F is full,
if FX,Y is onto.

Example. Consider the forgetful functor F : Gps → Sets. Since, for any two groups G
and H, FG,H is the natural inclusion of HomGps(G,H) ⊂ HomSets(G,H), we see that F is
faithful. It is clearly not full.

Let Top be the category of topological space, where morphisms are continuous maps.
Let HTop denote the category whose objects are topological spaces, and morphisms are
continuous maps up to homotopy. (Recall that, two contiuous maps f, g : X → Y are said

to be homotopic, if there exists f̃ : X × [0, 1] → Y × [0, 1] such that f̃(x, 0) = f(x) and

f̃(x, 1) = g(x)). The natural functor Top→ HTop is not faithful, but full.
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(1.3) Natural transformations.– Let C and D be two categories, and let F,G : C → D
be two functors.

A natural transformation from F to G, denoted by η, assigns to each X ∈ C, a morphism
ηX : F (X)→ G(X) in D.

X ∈ C  ηX ∈ HomD(F (X), G(X)).

This assignment is required to satisfy the following property: for any morphism f : X → Y
in C, the following diagram commutes:

F (X) G(X)

F (Y ) G(Y )

F (f)

��

G(f)

��

ηX //

ηY
//

We say that η is a natural isomorphism if for every X ∈ C, the morphism ηX is an
isomorphism is D.

Remarks.

(1) If both F and G are contravariant, then the last diagram needs to be modified, by
flipping the direction of the vertical arrows. We do not have a notion of natural
transformation between a covariant and a contravariant functor.

(2) In many category theory text, a natural transformation is depicted by a double arrow,
as follows.

C D
##
;;

F

G

η

��

(1.4) Example of the double-dual.– Let K be a field, and VectK be the category of K–
vector spaces. Let D : VectK → VectK be the functor of taking the dual twice: D(V ) = V ∗∗.
(Recall that V ∗ = HomK(V,K)).

Recall (from Algebra I) that, for every V ∈ VectK , there is a natural K–linear map, which
we are going to denote by ηV , from V to V ∗∗. This map, evaluated on a vector v ∈ V , is
given by:

ηV (v)(ξ) = ξ(v) for every ξ ∈ V ∗.

Proposition. η is a natural transformation from the identity functor Id : VectK → VectK
to the double-duality functor D.

Proof. Assume that we are given a K–linear map f : V → W . Recall that, it induces
f ∗∗ : V ∗∗ → W ∗∗, which is given as follows. If ψ ∈ V ∗∗ and ξ ∈ W ∗, then

f ∗∗(ψ) : ξ 7→ ψ(f ∗(ξ))

(Recall that f ∗(ξ) ∈ V ∗ is given by v 7→ ξ(f(v)).)
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We need to prove that the following diagram commutes:

V V ∗∗

W W ∗∗

ηV //

ηW
//

f

��

f∗∗

��

So, let v ∈ V , and let us unfold the definitions to see explicitly what ηW (f(v)) and
f ∗∗(ηV (v)) are, as elements of W ∗∗, that is, linear forms on W ∗. We will evaluate both of
them on a typical element φ ∈ W ∗, and see that we get the same element of K.

By definition of ηW , we have ηW (f(v)) : φ 7→ φ(f(v)). Similarly, from the definition of f ∗∗

and ηV written above, we get:

f ∗∗(ηV (v)) : φ 7→ (ηV (v))((f ∗(φ))) = (f ∗(φ))(v) = φ(f(v)).

Hence, ηW (f(v)) = f ∗∗(ηV (v)) ∈ W ∗∗, for every v ∈ V , which is exactly what we wanted to
show. �

Remark. This η : Id⇒ D is not a natural isomorphism. However, if we restrict to VectfdK ,
the category of finite–dimensional K–vector spaces, then it is.

(1.5) Example of Hom–functors.– Recall (Example (0.10) of Lecture 0, page 5) that given
a category C and an object X ∈ C, we have two functors hX = HomC(X,−) (covariant) and
hX = HomC(−, X) (contravariant) from C to Sets.

Every morphism f : X → Y in C gives rise to a natural transformation, denoted by hf ,
from the functor hY to hX as follows.

Z ∈ C  hf,Z = − ◦ f : hY (Z) = HomC(Y, Z)→ HomC(X,Z) = hX(Z).

Exercise: Prove that hf is a natural transformation of functors.

Similarly, f defines a natural transformation hf : hX ⇒ hY .

(1.6) Equivalence of categories.– A functor F : C → D is said to be an equivalence of
categories if there is a functor G : D → C and natural isomorphisms of functors

φ : IdC ⇒ G ◦ F and ψ : IdD ⇒ F ◦G.

Remark. The notion of equivalence is weaker than requiring that both compositions G ◦F
and F ◦G are the identity functors (see Example (1.7) below).

Theorem. A functor F : C → D is an equivalence of categories if, and only if, F is faithful,
full and the following condition holds:

For every Y ∈ D, there exists some X ∈ C such that F (X) and Y are isomorphic in D
(in this case, we say that F is essentially surjective or dense).
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The forward implication of this theorem is proved in (1.8) below. The converse will be
proved in the next lecture.

(1.7) Example.– Let K be a field and let us define a category MatK as follows. Objects
of MatK are non–negative integers. For n,m ∈ Z≥0, we define

HomMatK (n,m) := Matm×n(K) m× n matrices with entries from K.

Composition of morphisms in this category is the usual matrix multiplication and the
identity matrix plays the role of the identity morphism.

Let F : MatK → VectfdK be the functor which sends n to Kn. On morphisms, F sends
an m× n matrix to the linear map it defines Kn → Km.

Theorem (1.6) then implies that F is an equivalence of categories.

(1.8) Proof of Theorem (1.7): forward implication.– Assume that F : C → D is an
equivalence of categories. That is, we have G : D → C and natural isomorphisms of functors
φ : IdC ⇒ G ◦ F and ψ : IdD ⇒ F ◦G.

F is essentially surjective. This is clear since for any Y ∈ D, we are given an isomorphism
ψY : Y

∼→ F (G(Y )).

F is faithful. For X1, X2 ∈ C, we have isomorphisms φi : Xi
∼→ G(F (Xi)). Consider the

following composition of set maps (it sends f ∈ HomC(X1, X2) to G(F (f))).

HomC(X1, X2)→ HomD(F (X1), F (X2))→ HomC(G(F (X1)), G(F (X2))).

Since φ is a natural transformation of functors, for any f ∈ HomC(X1, X2), the following
diagram commutes:

X1 G(F (X1))

X2 G(F (X2))

f

��

G(F (f))

��

φ1 //

φ2

//

That is, G(F (f)) = φ2 ◦ f ◦ φ−11 (recall both φ1 and φ2 are isomorphisms). Hence, the
composition of the set maps written above f 7→ G(F (f)) is a bijection (with inverse given
by g 7→ φ−12 ◦ g ◦ φ1). This implies that f 7→ F (f) is injective, that is, F is faithful.

F is full. The proof of this part is similar to the one given above. Again X1, X2 ∈ C, and
we use the isomorphisms (i = 1, 2):

φi : Xi
∼−→ G(F (Xi)) and ψi : F (Xi)

∼−→ F (G(F (Xi)))

We aim to show that that the following composition of set maps is a bijection.
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HomD(F (X1), F (X2)) HomC(G(F (X1)), G(F (X2)))

HomC(X1, X2)HomD(F (X1), F (X2))

//

��
oo

��

where,

• The two horizontal arrows are obtained from the functors G and F .

• The right vertical arrow is the inverse of the bijection considered in the proof of
faithfulness. That is, g 7→ φ−12 ◦ g ◦ φ1.

You should check that the composition (depicted by the dotted arrow in the diagram
above) is given by:

g 7→ F (φ2)
−1 ◦ ψ2 ◦ g ◦ ψ−11 ◦ F (φ1)

and hence is a bijection. Thus, the bottom horizontal arrow f 7→ F (f) in the diagram above
must be onto. This proves that F is full.


