LECTURE 2

(2.0) Review.- So far we have defined: categories, functors, bijections and isomorphisms, faithful and full functors, natural transformation (and isomorphism) of functors and what it means for a functor to be an equivalence of categories. We stated the following theorem (see Theorem (1.6)):

Theorem. $F: \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence of categories if, and only if:
(1) F is faithful and full. That is, for every $X, Y \in \mathcal{C}$ the set map $F_{X, Y}: \operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow$ $\operatorname{Hom}_{\mathcal{D}}(F(X), F(Y))$ is a bijection.
(2) For every $Y \in \mathcal{D}$, there exists $X \in \mathcal{C}$ and an isomorphism $\beta_{Y}: Y \xrightarrow{\sim} F(X)$ in \mathcal{D}. This condition is often stated: F is essentially surjective, or dense.

We proved the forward implication of this theorem in $\S 1.8$. Let us start by proving the converse.
(2.1) Proof of Theorem 1.6: reverse implication.- Assume that F is faithful, full and essentially surjective. In order to prove the reverse implication of the theorem, we need to construct a functor $G: \mathcal{D} \rightarrow \mathcal{C}$, and two natural isomorphisms

$$
\phi: \operatorname{Id}_{\mathcal{C}} \Rightarrow G \circ F \quad \text { and } \quad \psi: \mathrm{Id}_{\mathcal{D}} \Rightarrow F \circ G
$$

For every $Y \in \mathcal{D}$, choose $\bar{Y} \in \mathcal{C}$ and an isomorphism (exists by essential surjectivity of F) $\beta_{Y}: Y \xrightarrow{\sim} F(\bar{Y})$. Note that this allows us to define a set bijection

$$
\operatorname{Ad}(\beta): \operatorname{Hom}_{\mathcal{D}}\left(Y_{1}, Y_{2}\right) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{D}}\left(F\left(\overline{Y_{1}}\right), F\left(\overline{Y_{2}}\right)\right)
$$

given by $g \mapsto \beta_{Y_{2}} \circ g \circ \beta_{Y_{1}}^{-1}$.
Define the functor $G: \mathcal{D} \rightarrow \mathcal{C}$ on objects as: $G(Y)=\bar{Y}$. For morphisms, $G: \operatorname{Hom}_{\mathcal{D}}\left(Y_{1}, Y_{2}\right) \rightarrow$ $\operatorname{Hom}_{\mathcal{C}}\left(\overline{Y_{1}}, \overline{Y_{2}}\right)$ is defined to be $F^{-1} \circ \operatorname{Ad}(\beta)$:

Here, we are using that F sets up a bijection between $\operatorname{Hom}_{\mathcal{C}}\left(\overline{Y_{1}}, \overline{Y_{2}}\right)$, and $\operatorname{Hom}_{\mathcal{D}}\left(F\left(\overline{Y_{1}}\right), F\left(\overline{Y_{2}}\right)\right)$, and F^{-1} denotes its inverse. It is easy to see that it is a functor: $G\left(\operatorname{Id}_{Y}\right)=\operatorname{Id}_{\bar{Y}}$, and $G\left(g_{1} \circ g_{2}\right)=G\left(g_{1}\right) \circ G\left(g_{2}\right)$.

Constructon of ϕ. For every $X \in \mathcal{C}, \phi_{X}$ is defined to be $F^{-1}\left(\beta_{F(X)}\right)$. That is, the inverse image of $\beta_{F(X)} \in \operatorname{Hom}_{\mathcal{D}}(F(X), F(\overline{F(X)}))$ under the bijection defined by F :

$$
F: \operatorname{Hom}_{\mathcal{C}}(X, \overline{F(X)}) \xrightarrow[1]{\sim} \operatorname{Hom}_{\mathcal{D}}(F(X), F(\overline{F(X)}))
$$

We have to show that for every morphism $f: X_{1} \rightarrow X_{2}$ in \mathcal{C}, the following diagram commutes:

By definition,

$$
G(F(f))=F^{-1}\left(\beta_{F\left(X_{2}\right)} \circ F(f) \circ \beta_{F\left(X_{1}\right)}^{-1}\right)=\phi_{X_{2}} \circ f \circ \phi_{X_{1}}^{-1},
$$

as required.
The construction of ψ is similar, and is left as an exercise.

(2.2) Remarks.-

1. Functors and natural transformations can also be "composed" in the following sense. Let $F_{1}, F_{2}: \mathcal{C} \rightarrow \mathcal{D}$ be two functors, $G: \mathcal{D} \rightarrow \mathcal{E}$ another, and η be a natural transformation from F_{1} to F_{2}.

Then, we get a natural transformation $G(\eta): G \circ F_{1} \Rightarrow G \circ F_{2}$, defined by:

$$
X \in \mathcal{C} \quad \rightsquigarrow \quad G\left(\eta_{X}\right): G\left(F_{1}(X)\right) \rightarrow G\left(F_{2}(X)\right) .
$$

Similarly, if $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G_{1}, G_{2}: \mathcal{D} \rightarrow \mathcal{E}$ are functors and μ is a natural transformation from G_{1} to G_{2}, we get a natural transformation μ_{F} from $G_{1} \circ F$ to $G_{2} \circ F$ by:

$$
X \in \mathcal{C} \quad \rightsquigarrow \quad \mu_{F(X)}: G_{1}(F(X)) \rightarrow G_{2}(F(X)) .
$$

2. (Product categories and functors of "several variables"). Given two categories \mathcal{C}_{1} and \mathcal{C}_{2}, we can define the product category $\mathcal{C}_{1} \times \mathcal{C}_{2}$ as follows:

- Objects of $\mathcal{C}_{1} \times \mathcal{C}_{2}$ are pairs $\left(X_{1}, X_{2}\right)$ where $X_{1} \in \mathcal{C}_{1}$ and $X_{2} \in \mathcal{C}_{2}$.
- For $\left(X_{1}, X_{2}\right)$ and $\left(Y_{1}, Y_{2}\right)$ two objects in $\mathcal{C}_{1} \times \mathcal{C}_{2}$, the set of morphisms is defined by:

$$
\operatorname{Hom}_{\mathcal{C}_{1} \times \mathcal{C}_{2}}\left(\left(X_{1}, X_{2}\right),\left(Y_{1}, Y_{2}\right)\right):=\operatorname{Hom}_{\mathcal{C}_{1}}\left(X_{1}, Y_{1}\right) \times \operatorname{Hom}_{\mathcal{C}_{2}}\left(X_{2}, Y_{2}\right)
$$

The composition is defined component-wise, and $\operatorname{Id}_{\left(X_{1}, X_{2}\right)}=\left(\operatorname{Id}_{X_{1}}, \operatorname{Id}_{X_{2}}\right)$.
A functor $\mathcal{C}_{1} \times \mathcal{C}_{2} \rightarrow \mathcal{D}$ can then be thought of as a functor of 2 variables.
(2.3) Example.- Let K be a field and consider the category Vect $_{K}$ of K-vector spaces. Consider the following two functors.

- $F_{1}=(-)^{*} \otimes-: \operatorname{Vect}_{K} \times \operatorname{Vect}_{K} \rightarrow \operatorname{Vect}_{K}$. That is, $F_{1}(V, W)=V^{*} \otimes W$.
- $F_{2}=\operatorname{Hom}_{K}(-,-): \operatorname{Vect}_{K} \times \operatorname{Vect}_{K} \rightarrow \operatorname{Vect}_{K}$. That is, $F_{2}(V, W)=\operatorname{Hom}_{K}(V, W)$.

Note that these functors are "mixed", that is, covariant in the second variable and contravariant in the first.

Recall (from Algebra I), for any two $V, W \in \operatorname{Vect}_{K}$, we have a natural K-linear map:

$$
\eta_{V, W}: V^{*} \otimes W \rightarrow \operatorname{Hom}_{K}(V, W)
$$

given by: $\eta_{V, W}(\xi \otimes w): v \mapsto \xi(v) \cdot w$, for every $\xi \in V^{*}, v \in V$ and $w \in W$. (Verify that this is a natural transformation).

Recall (also from Algebra I) that, if we restrict F_{1} and F_{2} to $\operatorname{Vect}_{K}^{f d} \times \operatorname{Vect}_{K}$, then η is a natural isomorphism.
(2.4) Adjoint functors.- Let \mathcal{C} and \mathcal{D} be two categories, and let there be given two functors $\mathcal{C} \underset{F_{2}}{\stackrel{F_{1}}{\rightleftarrows}} \mathcal{D}$. We say that $\left(F_{1}, F_{2}\right)$ is a pair of adjoint functors (or, F_{1} is left adjoint of F_{2}, or, F_{2} is right adjoint of F_{1}), if, for every $X \in \mathcal{C}$ and $Y \in \mathcal{D}$, we are given bijections which are natural in X and Y :

$$
\beta_{X, Y}: \operatorname{Hom}_{\mathcal{C}}\left(X, F_{2}(Y)\right) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{D}}\left(F_{1}(X), Y\right) .
$$

Note that naturality in X and Y means the following: for every morphism $f: X \rightarrow X^{\prime}$ in \mathcal{C} and $g: Y^{\prime} \rightarrow Y$ in \mathcal{D}, the following diagram commutes:

$$
\begin{aligned}
F_{2}(g) \circ \alpha \circ \underset{\uparrow}{f} \in \operatorname{Hom}_{\mathcal{C}}\left(X, F_{2}(Y)\right) \longrightarrow \operatorname{som}_{\mathcal{D}}\left(F_{\uparrow}(X), Y\right) \ni g \circ \gamma \circ F_{1}(f) \\
\underset{\alpha}{\alpha} \in \operatorname{Hom}_{\mathcal{C}}\left(X^{\prime}, F_{2}\left(Y^{\prime}\right)\right) \xrightarrow[\beta_{X^{\prime}, Y^{\prime}}]{\longrightarrow} \operatorname{Hom}_{\mathcal{D}}\left(F_{1}\left(X^{\prime}\right), Y^{\prime}\right) \ni \bar{\gamma}
\end{aligned}
$$

In other words, β is a natural isomorphism between the following two functors from $\mathcal{C} \times$ $\mathcal{D} \rightarrow$ Sets:

Remark. Adjointness of functors is a generalization of equivalence (see $\S 2.6$ below), and plays an important role in many areas of mathematics. In representation theory, induction and restriction functors form an adjoint pair. In topology and algebraic geometry pull-back and push-forward functors form an adjoint pair.
(2.5) Example I. Left adjoint to the forgetful functor.- Let $F:$ Gps \rightarrow Sets be the forgetful functor. Let Free : Sets \rightarrow Gps be the functor which sends a set X to the free group generated by X, denoted here by $\operatorname{Free}(X)$.

Recall that the free group is defined by a universal property, which states that, for any group $H, \operatorname{Hom}_{\text {Sets }}(X, H)$ is same as $\operatorname{Hom}_{\text {Gps }}(\operatorname{Free}(X), H)$. That is, for every $X \in \operatorname{Sets}$ and $H \in \mathbf{G p s}$, we have bijections:

$$
\operatorname{Hom}_{\text {Sets }}(X, F(H)) \xrightarrow{\sim} \operatorname{Hom}_{\text {Gps }}(\operatorname{Free}(X), H)
$$

You should verify that these bijections are natural in X and H. Thus, we conclude that (Free, F) forms an adjoint pair.
(2.6) Example II. Equivalence to adjointness.- Assume that $F: \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence of categories. Thus, we have $G: \mathcal{D} \rightarrow \mathcal{C}$ and natural isomorphism $\phi: \operatorname{Id}_{\mathcal{C}} \Rightarrow G \circ F$ and $\psi: \mathrm{Id}_{\mathcal{D}} \Rightarrow F \circ G$.

Lemma. (F, G) and (G, F) are both adjoint pairs.
Proof. Let us prove this lemma for the pair (F, G) (proof for (G, F) is entirely analoguous and omitted here). For every $X \in \mathcal{C}$ and $Y \in \mathcal{D}$, we need to construct natural bijections $\beta_{X, Y}: \operatorname{Hom}_{\mathcal{C}}(X, G(Y)) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{D}}(F(X), Y)$. This is done by employing the natural isomorphism $\psi_{Y}: Y \xrightarrow{\sim} F(G(Y))$. For any morphism $h: X \rightarrow G(Y)$ in \mathcal{C}, define

$$
\beta_{X, Y}(h):=\psi_{Y}^{-1} \circ F(h) \in \operatorname{Hom}_{\mathcal{D}}(F(X), Y) .
$$

Now we prove that our definition is natural in X and Y. See $\S 2.4$ for what it means, and the diagram whose commutativity we need to check.

Thus, given $f: X \rightarrow X^{\prime}$ in \mathcal{C}, and $g: Y^{\prime} \rightarrow Y$ in \mathcal{D}, we have to verify the following the following equation for every $\alpha \in \operatorname{Hom}_{\mathcal{C}}\left(X^{\prime}, G\left(Y^{\prime}\right)\right)$:

$$
\beta_{X, Y}(G(g) \circ \alpha \circ f)=g \circ \beta_{X^{\prime}, Y^{\prime}}(\alpha) \circ F(f) .
$$

Using our definition of β, the left-hand side of this equation becomes:

$$
\text { L.H.S. }=\psi_{Y}^{-1} \circ F(G(g)) \circ F(\alpha) \circ F(f) .
$$

And the right-hand side becomes:

$$
\text { R.H.S. }=g \circ \psi_{Y^{\prime}}^{-1} \circ F(\alpha) \circ F(f) .
$$

Note that by naturality of ψ, we have

$$
\psi_{Y} \circ g=F(G(g)) \circ \psi_{Y^{\prime}}
$$

which proves that the left and the right-hand sides are equal, as claimed.
(2.7) Example III: Induction and restriction functors.- Let G be a group and $H<G$ be a subgroup. Let us define the category G-Sets as follows:

- An object of this category is a set together with a G-action.

Recall that this means: an object is a pair (X, α), where X is a set and $\alpha: G \times X \rightarrow X$ is a set map satisfying two conditions:
(1) $\alpha(e, x)=x$, for every $x \in X$. Here, $e \in G$ is the identity element of G.
(2) $\alpha(g h, x)=\alpha(g, \alpha(h, x))$ for every $g, h \in G$ and $x \in X$.

As is customary, we will suppress α from the notation and simply write $g \cdot x=$ $\alpha(g, x)$.

- A morphism is a set map which commutes with G-action. More explicitly, a G morphism from X_{1} to X_{2} is a set map $f: X_{1} \rightarrow X_{2}$ such that $f(g \cdot x)=g \cdot f(x)$ for every $g \in G$ and $x \in X$.
Since $H<G$, we get a functor, called restriction (from G to H) functor:

$$
\operatorname{Res}_{\mathrm{H}}^{\mathrm{G}}: G \text {-Sets } \rightarrow H \text {-Sets. }
$$

This functor admits a left adjoint, called induction functor. It is defined as follows. Let Y be a set with an H-action. As a set $\operatorname{Ind}_{H}^{G}(Y)$ is defined as the set of equivalence classes in $G \times Y$, modulo the following equivalence relation:

$$
(g h, y) \sim(g, h \cdot y) \text { for every } g, h \in G \text { and } y \in Y
$$

This set has a natural G-action given by left-multiplication on the first component. It is also denoted by $G \times_{H} Y$ in the literature.

Exercise. Verify that $\operatorname{Ind}_{H}^{G}: H$-Sets $\rightarrow G$-Sets is a functor, and $\left(\operatorname{Ind}_{H}^{G}, \operatorname{Res}_{H}^{G}\right)$ forms an adjoint pair.

