
LECTURE 2

(2.0) Review.– So far we have defined: categories, functors, bijections and isomorphisms,
faithful and full functors, natural transformation (and isomorphism) of functors and what
it means for a functor to be an equivalence of categories. We stated the following theorem
(see Theorem (1.6)):

Theorem. F : C → D is an equivalence of categories if, and only if:

(1) F is faithful and full. That is, for every X, Y ∈ C the set map FX,Y : HomC(X, Y )→
HomD(F (X), F (Y )) is a bijection.

(2) For every Y ∈ D, there exists X ∈ C and an isomorphism βY : Y
∼−→ F (X) in D.

This condition is often stated: F is essentially surjective, or dense.

We proved the forward implication of this theorem in §1.8. Let us start by proving the
converse.

(2.1) Proof of Theorem 1.6: reverse implication.– Assume that F is faithful, full and
essentially surjective. In order to prove the reverse implication of the theorem, we need to
construct a functor G : D → C, and two natural isomorphisms

φ : IdC ⇒ G ◦ F and ψ : IdD ⇒ F ◦G.
For every Y ∈ D, choose Y ∈ C and an isomorphism (exists by essential surjectivity of F )

βY : Y
∼−→ F (Y ). Note that this allows us to define a set bijection

Ad(β) : HomD(Y1, Y2)
∼−→ HomD(F (Y1), F (Y2))

given by g 7→ βY2 ◦ g ◦ β−1Y1 ..

Define the functorG : D → C on objects as: G(Y ) = Y . For morphisms, G : HomD(Y1, Y2)→
HomC(Y1, Y2) is defined to be F−1 ◦ Ad(β):

HomD(Y1, Y2) HomD(F (Y1), F (Y2))

HomC(Y1, Y2)

Ad(β)
//

F

��

G

44

Here, we are using that F sets up a bijection between HomC(Y1, Y2), and HomD(F (Y1), F (Y2)),
and F−1 denotes its inverse. It is easy to see that it is a functor: G(IdY ) = IdY , and
G(g1 ◦ g2) = G(g1) ◦G(g2).

Constructon of φ. For every X ∈ C, φX is defined to be F−1(βF (X)). That is, the inverse

image of βF (X) ∈ HomD(F (X), F (F (X))) under the bijection defined by F :

F : HomC(X,F (X))
∼−→ HomD(F (X), F (F (X))).
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We have to show that for every morphism f : X1 → X2 in C, the following diagram
commutes:

X1 G(F (X1))

X2 G(F (X2))

f

��

G(F (f))

��

φX1 //

φX2

//

By definition,

G(F (f)) = F−1
(
βF (X2) ◦ F (f) ◦ β−1F (X1)

)
= φX2 ◦ f ◦ φ−1X1

,

as required.

The construction of ψ is similar, and is left as an exercise.

(2.2) Remarks.–

1. Functors and natural transformations can also be “composed” in the following sense. Let
F1, F2 : C → D be two functors, G : D → E another, and η be a natural transformation from
F1 to F2.

C D E

F1

F2

��
??η

��

G //

Then, we get a natural transformation G(η) : G ◦ F1 ⇒ G ◦ F2, defined by:

X ∈ C  G(ηX) : G(F1(X))→ G(F2(X)).

Similarly, if F : C → D and G1, G2 : D → E are functors and µ is a natural transformation
from G1 to G2, we get a natural transformation µF from G1 ◦ F to G2 ◦ F by:

X ∈ C  µF (X) : G1(F (X))→ G2(F (X)).

2. (Product categories and functors of “several variables”). Given two categories C1 and C2,
we can define the product category C1 × C2 as follows:

• Objects of C1 × C2 are pairs (X1, X2) where X1 ∈ C1 and X2 ∈ C2.

• For (X1, X2) and (Y1, Y2) two objects in C1 × C2, the set of morphisms is defined by:

HomC1×C2((X1, X2), (Y1, Y2)) := HomC1(X1, Y1)× HomC2(X2, Y2).

The composition is defined component–wise, and Id(X1,X2) = (IdX1 , IdX2).

A functor C1 × C2 → D can then be thought of as a functor of 2 variables.

(2.3) Example.– Let K be a field and consider the category VectK of K–vector spaces.
Consider the following two functors.
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• F1 = (−)∗ ⊗− : VectK ×VectK → VectK . That is, F1(V,W ) = V ∗ ⊗W .

• F2 = HomK(−,−) : VectK ×VectK → VectK . That is, F2(V,W ) = HomK(V,W ).

Note that these functors are “mixed”, that is, covariant in the second variable and con-
travariant in the first.

Recall (from Algebra I), for any two V,W ∈ VectK , we have a natural K–linear map:

ηV,W : V ∗ ⊗W → HomK(V,W ),

given by: ηV,W (ξ ⊗ w) : v 7→ ξ(v) · w, for every ξ ∈ V ∗, v ∈ V and w ∈ W . (Verify that this
is a natural transformation).

Recall (also from Algebra I) that, if we restrict F1 and F2 to VectfdK ×VectK , then η is
a natural isomorphism.

(2.4) Adjoint functors.– Let C andD be two categories, and let there be given two functors

C D
F1 //

F2

oo . We say that (F1, F2) is a pair of adjoint functors (or, F1 is left adjoint of F2,

or, F2 is right adjoint of F1), if, for every X ∈ C and Y ∈ D, we are given bijections which
are natural in X and Y :

βX,Y : HomC(X,F2(Y ))
∼−→ HomD(F1(X), Y ).

Note that naturality in X and Y means the following: for every morphism f : X → X ′ in
C and g : Y ′ → Y in D, the following diagram commutes:

HomC(X,F2(Y )) HomD(F1(X), Y )

HomC(X
′, F2(Y

′)) HomD(F1(X
′), Y ′)

βX,Y //

βX′,Y ′
//

OO OO

α ∈

F2(g) ◦ α ◦ f ∈

_

OO

3 γ

3 g ◦ γ ◦ F1(f)

_

OO

In other words, β is a natural isomorphism between the following two functors from C ×
D → Sets:

C × D

C × C

D ×D

Sets

IdC ×F2

::

F1×IdD
$$

HomC(−,−)

$$

HomD(−,−)

::β

��

Remark. Adjointness of functors is a generalization of equivalence (see §2.6 below), and
plays an important role in many areas of mathematics. In representation theory, induction
and restriction functors form an adjoint pair. In topology and algebraic geometry pull–back
and push–forward functors form an adjoint pair.
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(2.5) Example I. Left adjoint to the forgetful functor.– Let F : Gps→ Sets be the
forgetful functor. Let Free : Sets → Gps be the functor which sends a set X to the free
group generated by X, denoted here by Free(X).

Recall that the free group is defined by a universal property, which states that, for any
group H, HomSets(X,H) is same as HomGps(Free(X), H). That is, for every X ∈ Sets and
H ∈ Gps, we have bijections:

HomSets(X,F (H))
∼−→ HomGps(Free(X), H).

You should verify that these bijections are natural in X and H. Thus, we conclude that
(Free, F ) forms an adjoint pair.

(2.6) Example II. Equivalence to adjointness.– Assume that F : C → D is an equiv-
alence of categories. Thus, we have G : D → C and natural isomorphism φ : IdC ⇒ G ◦ F
and ψ : IdD ⇒ F ◦G.

Lemma. (F,G) and (G,F ) are both adjoint pairs.

Proof. Let us prove this lemma for the pair (F,G) (proof for (G,F ) is entirely analoguous
and omitted here). For every X ∈ C and Y ∈ D, we need to construct natural bijec-

tions βX,Y : HomC(X,G(Y ))
∼−→ HomD(F (X), Y ). This is done by employing the natural

isomorphism ψY : Y
∼−→ F (G(Y )). For any morphism h : X → G(Y ) in C, define

βX,Y (h) := ψ−1Y ◦ F (h) ∈ HomD(F (X), Y ).

Now we prove that our definition is natural in X and Y . See §2.4 for what it means, and
the diagram whose commutativity we need to check.

Thus, given f : X → X ′ in C, and g : Y ′ → Y in D, we have to verify the following the
following equation for every α ∈ HomC(X

′, G(Y ′)):

βX,Y (G(g) ◦ α ◦ f) = g ◦ βX′,Y ′(α) ◦ F (f).

Using our definition of β, the left–hand side of this equation becomes:

L.H.S. = ψ−1Y ◦ F (G(g)) ◦ F (α) ◦ F (f).

And the right–hand side becomes:

R.H.S. = g ◦ ψ−1Y ′ ◦ F (α) ◦ F (f).

Note that by naturality of ψ, we have

ψY ◦ g = F (G(g)) ◦ ψY ′ ,

which proves that the left and the right–hand sides are equal, as claimed. �

(2.7) Example III: Induction and restriction functors.– Let G be a group and H < G
be a subgroup. Let us define the category G-Sets as follows:

• An object of this category is a set together with a G–action.
Recall that this means: an object is a pair (X,α), where X is a set and α : G×X → X
is a set map satisfying two conditions:
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(1) α(e, x) = x, for every x ∈ X. Here, e ∈ G is the identity element of G.
(2) α(gh, x) = α(g, α(h, x)) for every g, h ∈ G and x ∈ X.

As is customary, we will suppress α from the notation and simply write g · x =
α(g, x).

• A morphism is a set map which commutes with G–action. More explicitly, a G–
morphism from X1 to X2 is a set map f : X1 → X2 such that f(g · x) = g · f(x) for
every g ∈ G and x ∈ X.

Since H < G, we get a functor, called restriction (from G to H) functor:

ResGH : G-Sets→ H-Sets.

This functor admits a left adjoint, called induction functor. It is defined as follows. Let Y
be a set with an H–action. As a set IndGH(Y ) is defined as the set of equivalence classes in
G× Y , modulo the following equivalence relation:

(gh, y) ∼ (g, h · y) for every g, h ∈ G and y ∈ Y.
This set has a natural G–action given by left–multiplication on the first component. It is
also denoted by G×H Y in the literature.

Exercise. Verify that IndGH : H-Sets → G-Sets is a functor, and (IndGH ,ResGH) forms an
adjoint pair.


