LECTURE 3

(3.0) Review.- Recall that last time we defined adjoint functors. Given two categories \mathcal{C} and \mathcal{D} and two functors

we say $\left(F_{1}, F_{2}, \beta\right)$ (or, just $\left(F_{1}, F_{2}\right)$) is an adjoint pair, if for every $X \in \mathcal{C}$ and $Y \in \mathcal{D}$, we are given bijections:

$$
\beta_{X, Y}: \operatorname{Hom}_{\mathcal{C}}\left(X, F_{2}(Y)\right) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{D}}\left(F_{1}(X), Y\right)
$$

which are natural in X and Y.
Naturality means the following. Given a morphism $f: X \rightarrow X^{\prime}$ in \mathcal{C} and $g: Y^{\prime} \rightarrow Y$ in \mathcal{D}, the following equation must hold (both sides are in $\operatorname{Hom}_{\mathcal{D}}\left(F_{1}(X), Y\right)$):

$$
\begin{equation*}
\beta_{X, Y}\left(F_{2}(g) \circ \alpha \circ f\right)=g \circ \beta_{X^{\prime}, Y^{\prime}}(\alpha) \circ F_{1}(f), \forall \alpha \in \operatorname{Hom}_{\mathcal{C}}\left(X^{\prime}, F_{2}\left(Y^{\prime}\right)\right) . \tag{1}
\end{equation*}
$$

(see the commutative diagram on page 3 of Lecture 2).
Today we will discuss another way to define an adjoint pair, using the unit and counit of adjunction.
(3.1) Unit and counit of adjunction.- The first part of the following lemma was stated as Problem 12 in Homework 1.

Lemma. Let $\left(F_{1}, F_{2}, \beta\right)$ be an adjoint pair of functors. Then there are natural transformations of functors:

$$
\varepsilon: F_{1} \circ F_{2} \Rightarrow \operatorname{Id}_{\mathcal{D}} \quad \text { and } \quad \eta: \operatorname{Id}_{\mathcal{C}} \Rightarrow F_{2} \circ F_{1}
$$

called the counit and unit of adjunction respectively. Furthermore, the following compositions of natural transformations are both identity:

Recall the definition of "composition" of functors and natural transformations from §2.2 (1). For instance, $F_{1}(\eta)$ sends each object $X \in \mathcal{C}$ to the morphism $F_{1}\left(\eta_{X}\right): F_{1}(X) \rightarrow$ $F_{1} F_{2} F_{1}(X)$.

Proof. We begin by constructing the natural transformations ε and η. For an object $Y \in \mathcal{D}$, define $\varepsilon_{Y}: F_{1}\left(F_{2}(Y)\right) \rightarrow Y$ as $\beta_{F_{2}(Y), Y}\left(\operatorname{Id}_{F_{2}(Y)}\right)$. That is, the image of $\operatorname{Id}_{F_{2}(Y)}$ under the given bijection:

$$
\beta_{F_{2}(Y), Y}: \operatorname{Hom}_{\mathcal{C}}\left(F_{2}(Y), F_{2}(Y)\right) \rightarrow \operatorname{Hom}_{\mathcal{D}}\left(F_{1}\left(F_{2}(Y)\right), Y\right) .
$$

Similarly, given an object $X \in \mathcal{C}$, define $\eta_{X}: X \rightarrow F_{2}\left(F_{1}(X)\right)$ as $\beta_{X, F_{1}(X)}^{-1}\left(\operatorname{Id}_{F_{1}(X)}\right)$.
We need to prove that ε and η thus defined are in fact natural transformations. I highly recommend to try to prove it for yourself (i.e, using equation (1), prove the required one for ε and η), before reading the proof given below. We will only prove the naturality of η, leaving the same for ε as an exercise.

Naturality of η. Assume we are given a morphism $a: X_{1} \rightarrow X_{2}$. We need to prove the commuatitivity of the following diagram:

or, in equations: $\eta_{X_{2}} \circ a=F_{2}\left(F_{1}(a)\right) \circ \eta_{X_{1}}$, for every $a \in \operatorname{Hom}_{\mathcal{C}}\left(X_{1}, X_{2}\right)$. We begin by considering the following two diagrams, which commute by naturality of β :

computing the image of $\eta_{X_{2}} \in \operatorname{Hom}_{\mathcal{C}}\left(X_{2}, F_{2}\left(F_{1}\left(X_{2}\right)\right)\right.$), we get

$$
\begin{equation*}
\beta_{X_{1}, F_{1}\left(X_{1}\right)}\left(\eta_{X_{2}} \circ a\right)=F_{1}(a) . \tag{2}
\end{equation*}
$$

Note that this equation is obtained from (1) upon substituting: $X=X_{1}, X^{\prime}=X_{2}, f=a$, $Y=Y^{\prime}=F_{1}\left(X_{2}\right), g=\operatorname{Id}_{F_{1}\left(X_{2}\right)}$ and $\alpha=\eta_{X_{2}}$.

The second diagram is as follows:

following the element $\eta_{X_{1}} \in \operatorname{Hom}_{\mathcal{C}}\left(X_{1}, F_{2}\left(F_{1}\left(X_{1}\right)\right)\right)$, we get:

$$
\begin{equation*}
\beta_{X_{1}, F_{1}\left(X_{2}\right)}\left(F_{2}\left(F_{1}(a)\right) \circ \eta_{X_{1}}\right)=F_{1}(a) . \tag{3}
\end{equation*}
$$

Comparing (2) and (3), and using the fact that $\beta_{X_{1}, F_{1}\left(X_{2}\right)}$ is a bijection, we get the desired equation $\eta_{X_{2}} \circ a=F_{2}\left(F_{1}(a)\right) \circ \eta_{X_{1}}$.

Let us now prove that the following composition of natural transformations is identity:

$$
F_{1} \Longrightarrow F_{1}(\eta) \Longrightarrow F_{1} F_{2} F_{1} \xlongequal{\varepsilon_{F_{1}}} F_{1}
$$

That is, given an object $X \in \mathcal{C}$, we have to show that $\varepsilon_{F_{1}(X)} \circ F_{1}\left(\eta_{X}\right)=\operatorname{Id}_{F_{1}(X)}$. For this, we consider the following diagram:

Following the identity morphism $\operatorname{Id}_{F_{2} F_{1}(X)} \in \operatorname{Hom}_{\mathcal{C}}\left(F_{2} F_{1}(X), F_{2} F_{1}(X)\right)$ in two ways, gives us the following equation:

$$
\beta_{X, F_{1}(X)}\left(\eta_{X}\right)=\beta_{F_{2} F_{1}(X), F_{1}(X)}\left(\operatorname{Id}_{F_{2} F_{1}(X)}\right) \circ F_{1}\left(\eta_{X}\right)
$$

Note that the left-hand side is $\operatorname{Id}_{F_{1}(X)}$ by definition of η_{X}, and the right-hand side is $\varepsilon_{F_{1}(X)} \circ$ $F_{1}\left(\eta_{X}\right)$ by definition of ε.
(3.2) Examples.- Let us consider the example of the adjoint pair:

where F is the forgetful functor and Free sends a set X to the free group generated by X.
The counit of this adjunction $\varepsilon:$ Free $\circ F \Rightarrow \operatorname{Id}_{\mathbf{G p s}}$ is the following group homomorphism, for any group G :

$$
\varepsilon_{G}: \operatorname{Free}(G) \rightarrow G
$$

Here $\operatorname{Free}(G)$ is the free group on letters $\left\{x_{g}: g \in G\right\}$, and ε_{G} is the unique group homomorphism extending $\varepsilon\left(x_{g}\right)=g$ for every $g \in G$.

Similarly, the unit $\eta: \operatorname{Id}_{\text {sets }} \Rightarrow F \circ$ Free is the following set map, for a given set X :

$$
\eta_{X}: X \rightarrow \operatorname{Free}(X)
$$

which sends each $x \in X$ to the corresponding generator of the free group Free (X).
(3.3) Converse of Lemma (3.1).- The converse of the construction given above also holds. That is, assume we are given:
(1) A pair of functors $F_{1}: \mathcal{C} \rightarrow \mathcal{D}$ and $F_{2}: \mathcal{D} \rightarrow \mathcal{C}$.
(2) Two natural transformations $\eta: \operatorname{Id}_{\mathcal{C}} \Rightarrow F_{2} F_{1}$ and $\varepsilon: F_{1} F_{2} \Rightarrow \mathcal{D}$.

Further, we assume that the following two compositions of natural transformations are identity:

We can use this data to define $\beta_{X, Y}$ by the following diagram:

Lemma. $\left(F_{1}, F_{2}\right)$ forms an adjoint pair, with β defined as above.
Proof. The diagram given above realizes β as a composition of natural transformations of functors from $\mathcal{C} \times \mathcal{D}$ to Sets:

- F_{1} viewed as a natural transformation from $\operatorname{Hom}_{\mathcal{C}}\left(-, F_{2}(-)\right)$ to $\operatorname{Hom}_{\mathcal{D}}\left(F_{1}(-), F_{1} F_{2}(-)\right)$.
- $\varepsilon \circ-$ viewed as natural transformation from $\operatorname{Hom}_{\mathcal{D}}\left(F_{1}(-), F_{1} F_{2}(-)\right)$ to $\operatorname{Hom}_{\mathcal{D}}\left(F_{1}(-),-\right)$.

Hence β is a natural transformation. Now we prove that $\beta_{X, Y}$ is a bijection for every $X \in \mathcal{C}$ and $Y \in \mathcal{D}$. Recall that $\beta_{X, Y}(f)=\varepsilon_{Y} \circ F_{1}(f)$, for every $f: X \rightarrow F_{2}(Y)$.

Let us construct another natural map in the reverse direction: $\gamma_{X, Y}: \operatorname{Hom}_{\mathcal{D}}\left(F_{1}(X), Y\right) \rightarrow$ $\operatorname{Hom}_{\mathcal{C}}\left(X, F_{2}(Y)\right)$ given by: $\gamma_{X, Y}(g)=F_{2}(g) \circ \eta_{X}$. We now claim that $\beta_{X, Y}$ and $\gamma_{X, Y}$ are inverse to each other.
$\beta_{X, Y} \circ \gamma_{X, Y}=$ Id. Given a morphism $g \in \operatorname{Hom}_{\mathcal{D}}\left(F_{1}(X), Y\right)$, we have:

$$
\beta_{X, Y}\left(\gamma_{X, Y}(g)\right)=\beta_{X, Y}\left(F_{2}(g) \circ \eta_{X}\right)=\varepsilon_{Y} \circ F_{1}\left(F_{2}(g) \circ \eta_{X}\right)=\varepsilon_{Y} \circ F_{1} F_{2}(g) \circ F_{1}\left(\eta_{X}\right)
$$

Note that, by naturality of ε, we have $\varepsilon_{Y} \circ F_{1} F_{2}(g)=g \circ \varepsilon_{F_{1}(X)}$. This implies:

$$
\beta_{X, Y}\left(\gamma_{X, Y}(g)\right)=\varepsilon_{Y} \circ F_{1} F_{2}(g) \circ F_{1}\left(\eta_{X}\right)=g \circ \varepsilon_{F_{1}(X)} \circ F_{1}\left(\eta_{X}\right)=g \circ \operatorname{Id}_{F_{1}(X)}=g .
$$

Here, we have used the fact that $F_{1} \Rightarrow F_{1} F_{2} F_{1} \Rightarrow F_{1}$ is the identity natural transformation, i.e, for every $X \in \mathcal{C}, \varepsilon_{F_{1}(X)} \circ F_{1}\left(\eta_{X}\right)=\operatorname{Id}_{F_{1}(X)}$.
$\gamma_{X, Y} \circ \beta_{X, Y}=\operatorname{Id}$. Similarly, for every $f \in \operatorname{Hom}_{\mathcal{C}}\left(X, F_{2}(Y)\right)$, we can carry out the same calculation, using naturality of η and identity of $F_{2} \Rightarrow F_{2} F_{1} F_{2} \Rightarrow F_{2}$, i.e, $F_{2}\left(\varepsilon_{Y}\right) \circ \eta_{F_{2}(Y)}=\operatorname{Id}_{F_{2}(Y)}$.

$$
\begin{aligned}
\gamma_{X, Y}\left(\beta_{X, Y}(f)\right) & =F_{2}\left(\varepsilon_{Y} \circ F_{1}(f)\right) \circ \eta_{X}=F_{2}\left(\varepsilon_{Y}\right) \circ F_{2} F_{1}(f) \circ \eta_{X} \\
& =F_{2}\left(\varepsilon_{Y}\right) \circ \eta_{F_{2}(Y)} \circ f=\operatorname{Id}_{F_{2}(Y)} \circ f=f .
\end{aligned}
$$

