
LECTURE 4

(4.0) Goal of this lecture.– This lecture is devoted to proving Yoneda embedding the-
orem. This theorem allows us to define representable functors, and pose the question of
representability which is equivalent to defining a mathematical object via its universal prop-
erty.

(4.1) Categories of functors.– Let C and D be two categories. We define two categories
F(C,D) and F(Cop,D) as follows.

F(C,D). Objects of this category are all covariant functors C → D. Given two objects F,G
in this category, morphisms are natural transformations from F to G:

HomF(C,D)(F,G) := {η : F ⇒ G a natural transformation}.
IdF is the identity natural transformation, and composition of natural transformation is
defined pointwise: for η : F ⇒ G and µ : G⇒ H, we have µ ◦ η : F ⇒ H given by:

X ∈ C  F (X)
µX◦ηX−→ H(X).

It is straightforward to verify that this is a category.

Similarly, F(Cop,D) is the category whose objects are all contravariant functors C → D,
with morphisms being natural transformations as above.

(4.2) Yoneda embedding.– Given a category C, and an object X ∈ C, recall the construc-
tion of hX ∈ F(C,D) and hX ∈ F(Cop,D) from §0.10. That is, for every Y ∈ C:

hX(Y ) = HomC(X, Y ) and hX(Y ) = HomC(Y,X).

For every morphism g : Y1 → Y2 in C, we have hX(g) = g ◦ − and hX(g) = − ◦ g.

Similarly, given a morphism f : X1 → X2, we defined natural transformations hf : hX2 ⇒
hX1 and hf : hX1 ⇒ hX2 in §1.5, as follows:

Y ∈ C  
hf,Y = − ◦ f : HomC(X2, Y )→ HomC(X1, Y )

hfY = f ◦ − : HomC(Y,X1)→ HomC(Y,X2)

The fact that hf and hf are natural transformations was left as an exercise in §1.5. Let us
prove it here for hf .

Lemma. hf is a natural transformation. Moreover, we have

(1) hIdX = IdhX . Here both sides are natural transformations hX ⇒ hX .

(2) hf
′◦f = hf

′ ◦ hf , for any two morphisms f : X → X ′ and f ′ : X ′ → X ′′. Again, both
sides of the claimed equation are natural transformations hX ⇒ hX

′′
.
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Proof. Let us begin by proving that hf is a natural transformation. That is, given any
g : Y1 → Y2, we need to prove the commutativity of the following diagram (recall that hX is
contravariant):

hX1(Y2) hX2(Y2)

hX1(Y1) hX2(Y1)

hfY2 //

hfY1

//

hX1 (g)

��

hX2 (g)

��

So, given a morphism α ∈ hX1(Y2) = Hom(Y2, X1), we can compute the two compositions:

(hX2(g) ◦ hfY2)(α) = hX2(g)(f ◦ α) = (f ◦ α) ◦ g
(hfY1 ◦ h

X1(g))(α) = hfY1(α ◦ g) = f ◦ (α ◦ g)

The two morphisms on the right–hand sides above are equal, by associativity of composition.

Proof of (1). The natural transformation hIdX , on an arbitrary object Y ∈ C gives rise to
the following set map:

hIdXY : Hom(Y,X)→ Hom(Y,X) g 7→ IdX ◦g = g.

Hence, hIdX is equal to IdhX .

Proof of (2). Given f : X → X ′ and f ′ : X ′ → X ′′, let us compute hf
′◦f
Y : hX(Y ) →

hX
′′
(Y ). By definition, it is given by: Hom(Y,X) 3 g 7→ (f ′ ◦ f) ◦ g = f ′ ◦ (f ◦ g). The last

composition is equal to (hf
′ ◦ hf )(g), and the claimed identity follows. �

The statement of this lemma can be summarized as follows.

Corollary. We have a covariant functor h• : C → F(Cop,Sets):

X ∈ C  hX ∈ F(Cop,Sets)

f : X1 → X2  hf : hX1 ⇒ hX2

Similarly, there is a contravariant functor h• : C → F(C,Sets).

(4.3) Embedding theorem.– The functors h• and h• are often called Yoneda embeddings.
We state and prove below why the are embeddings.

Theorem. Let C be a category. Then the functors h• and h• are faithful and full.

Proof. Let us prove this theorem for h• : C → F(Cop,Sets). Recall that, by definition of
faithful and full, what we need to prove that the following map of sets is a bijection:

HomC(X1, X2)→ HomF(Cop,Sets)(h
X1 , hX2), f 7→ hf .

We will prove a more general statement below, which implies this. Namely, let F ∈
F(Cop,Sets).
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Claim. For any X ∈ C, we have a bijection between F (X) and HomF(Cop,Sets)(h
X , F ), given

by:

F (X) 3 a 7→ η(a) : hX ⇒ F,

where, η(a)Y : Hom(Y,X) → F (Y ) sends a morphism g : Y → X, to F (g)(a). (Recall that
F is contravariant, so F (g) : F (X)→ F (Y )).

You should check it for yourself that the theorem follows from this claim, by taking X = X1

and F = hX2 (it is almost trivial, the only small thing you need to verify is that η(f) defined
here for f ∈ hX2(X1) = Hom(X1, X2) is same as hf given in §4.2 above).

Proof of the Claim. We will construct a map of sets µ : HomF(Cop,Sets)(h
X , F )→ F (X) and

prove that µ ◦ η = IdF (X) and η ◦ µ = IdHomF(Cop,Sets)(hX ,F ).

So, given a natural transformation ξ : hX ⇒ F , evaluate it on X ∈ C, ξX : HomC(X,X)→
F (X), and define:

µ(ξ) := ξX(IdX) ∈ F (X).

µ ◦ η is identity. Given a ∈ F (X), let us compute µ(η(a)). By definition, it is given by:

µ(η(a)) = η(a)X(IdX) = F (IdX)(a) = IdF (X)(a) = a.

η ◦ µ is identity. Now, given a natural transformation ξ : hX ⇒ F , consider the natural
transformation η(µ(ξ)) : hX ⇒ F . Evaluating on an object Y ∈ C, we obtain:

η(µ(ξ))Y : HomC(Y,X)→ F (Y ),

sends a morphism g : Y → X, to F (g)(µ(ξ)). By definition of µ, we have:

F (g)(µ(ξ)) = F (g)(ξX(IdX)).

By naturality of ξ, we have F (g) ◦ ξX = ξY ◦ hX(g) (see the commutative diagram below)

hX(X) hX(Y )

F (X) F (Y )

hX(g)
//

F (g)
//

ξX

��

ξY

��

Therefore, we obtain (using the fact that hX(g) = − ◦ g):

η(µ(ξ))Y (g) = F (g)(ξX(IdX)) = ξY (hX(g)(IdX)) = ξY (g).

Hence, η(µ(ξ)) = ξ for every ξ ∈ HomF(Cop,Sets)(h
X , F ), and the claim follows. �

(4.4) Consequence of Theorem (4.3).– Yoneda embedding theorem realizes C as a sub-
category of F(Cop,Sets). The following is a direct corollary of this theorem:
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Corollary. Let X1, X2 ∈ C and assume that there is a natural isomorphism of functor
η : hX1 ⇒ hX2. Then, there is a unique isomorphism f : X1 → X2 such that η = hf .

Similarly, if there is a natural isomorphism of functors ξ : hX1 ⇒ hX2, then there is a
unique isomorphism f : X2 → X1 such that hf = ξ.

Proof. By Theorem (4.3), we know that η = hf for a unique morphism f : X1 → X2 in
C. Similarly, if µ : hX2 ⇒ hX1 is the inverse of η in F(Cop,Sets) category, then µ = hg for
a unique morphism g : X2 → X1. Now IdhX1 = µ ◦ η = hg◦f , by Lemma (4.2) part (2),
and IdhX1 = hIdX1 by Lemma (4.2) part (1). Hence, hg◦f = hIdX1 , and by Theorem (4.3),
this implies g ◦ f = IdX1 . Similarly we can show that f ◦ g = IdX2 , proving that f is an
isomorphism. �

(4.5) Representable functors.– Yoneda embedding is in general not an equivalence of
categories (it is faithful and full, but not essentially surjective in general). This prompts the
following definition.

Definition. Let F ∈ F(Cop,Sets) be an arbitrary contravariant functor. We say that F
is representable if there exists a pair (X, ιX), where X ∈ C and ιX : hX ⇒ F is a natural
isomorphism. By a little abuse of terminology, we say that F is represented by X (omitting
ιX), or that X represents F .

Similarly, if G is a covariant functor C → Sets, we say it is representable if there exists a
pair (X, ιX), where X ∈ C and ιX : hX ⇒ G is a natural isomorphism.

As a consequence of Yoneda embedding theorem, we know that if a functor F is repre-
sented by an object X, then X is unique, up to a unique isomorphism.

Proof. Assume that F is a contravariant functor, represented by two pairs (X, ιX) and
(X ′, ιX

′
). Then, by composing (ιX

′
)−1 ◦ ιX , we obtain a natural isomorphism hX ⇒ hX

′
.

By Corollary (4.4), there is a unique isomorphism f : X → X ′ such that this natural
isomorphism is of the form hf . �

Remark. Almost every mathematical object defined via a universal property is a solution to
a particular representability problem. In several areas of mathematics (especially algebraic
geometry) we often first define a functor and then pose the problem of whether it is repre-
sentable or not. For instance, moduli spaces, Hilbert scheme of points, classifying space of a
group, Deligne–Mumford stacks and so on, are defined in this fashion.

(4.6) Unfolding the definitions.– Again, let C be a category and let F ∈ F(Cop,Sets).
Assume that F is representable, by a pair (X, ιX). Thus, ιX : hX ⇒ F is a natural isomor-
phism. This gives us two pieces of data (note: this is how universal properties are stated):

(1) pX = (ιX)X(IdX) ∈ F (X). That is, there is a distinguished element pX of F (X).

(2) For every Y ∈ C, we get a bijection (ιX)Y : HomC(Y,X) → F (Y ). Thus, every
element b ∈ F (Y ) comes from a morphism g : Y → X. Moreover, by naturality of
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ιX we have the following commutative diagram:

hX(X) F (X)

hX(Y ) F (Y )

(ιX)X //

(ιX)Y

//

hX(g)

��

F (g)

��

Following the identity morphism IdX ∈ hX(X) in two ways, we obtain F (g)(pX) =
(ιX)Y (g) = b.

In other words, given any b ∈ F (Y ), there exists a unique morphism g : Y → X
such that F (g)(pX) = b.

(4.7) Some examples.–
I. Consider the category of groups Gps and fix a set X. Define a functor F : Gps→ Sets
by F (G) = HomSets(X,G). This is a covariant functor (since for a group homomorphism
f : G1 → G2, we get a map of sets f ◦ − : F (G1) → F (G2)). This functor is representable,
and the object representing is the free group on the set X. You should convince yourself
that the universal property of the free group, which you must have encountered before, is
same as the two items we unfolded in the previous section.

II. Consider again the category of groups. Fix two groups G1 and G2 and define the functor
F : Gps→ Sets given by:

F (H) = HomGps(H,G1)× HomGps(H,G2).

This is a contravariant functor, which is again representable. It is represented by the direct
product G1 × G2. Again, you should work it out for yourself what universal property the
previous statement implies for G1 × G2. For fun, think of which functor is represented by
the semi-direct product.

III.1 Let HTop∗ be the category whose objects are topological spaces with a fixed base
point, and morphisms are base point preserving continuous maps, up to homotopy. The
fundamental group π1 : HTop∗ → Gps is a covariant, representable functor, represented by
the object (S1, 1).

IV.2 Consider the category HToppc, whose objects are Hausdorff, paracompact spaces, and
morphisms are continuous maps (again up to homotopy). Let n ∈ Z≥1 and consider the
functor:

X 7→ {rank n vector bundles on X}/isomorphisms

This is a contravariant functor HToppc → Sets. It is a (very) non–trivial theorem to prove,
that this functor is representable. In fact, proving this theorem amounts to constructing a
paracompact topological space, called Grassmannian denoted by Gr(n,∞). In a way, that
this space represents the functor given above is its definition.

1Optional
2Optional. Read more about it in J. Milnor and J. Stasheff, Characteristic classes, Theorem 5.6.


