
LECTURE 6

(6.0) Overview.– Recall that last time we saw the examples of direct sums and products,
defined as solutions to a representability problem.

Given a category C, an indexing set I and a collection of objects X = {Xi}i∈I , their direct
sum and product are defined via the data of the following natural isomorphisms:

HomC

(
C⊕
i∈I

Xi,−

)
⇒
∏
i∈I

HomC(Xi,−),

HomC

(
−,

C∏
i∈I

Xi

)
⇒
∏
i∈I

HomC(−, Xi).

Today we will discuss a variant of this theme, called direct and inverse limits. In mathe-
matical literature, these are also called injective and projective limits or colimits and limits.
In this course, we will stick with direct and inverse limits.

(6.1) Direct and Inverse family of objects.– Let us assume that we are given a partially
ordered set (I,≤). Recall that this means: I is a set, ≤ is a relation on I (a relation is a
subset of I × I, we write i ≤ j if (i, j) is in the subset). This relation is required to satisfy
the following properties:

(1) i ≤ i for every i ∈ I.
(2) i ≤ j ≤ k implies i ≤ k, for every i, j, k ∈ I.
(3) i ≤ j and j ≤ i implies i = j.

In many textbooks, an additional axiom is imposed on this poset (short for partially or-
dered set).

The poset (I,≤) is right directed (or just directed) if for every i, j ∈ I, there exists a k ∈ I
such that i ≤ k and j ≤ k.

I will not assume this property, by default, and will explicitly mention that we are talking
about a right directed poset, if needed.

Definition. A direct system of objects with respect to (I,≤), valued in a category C, consists
of

• a collection of objects {Xi}i∈I of C, and
• for every i ≤ j, a morphism ψji : Xi → Xj,

such that (i) ψii = IdXi
, and (ii) for every i ≤ j ≤ k we have ψkj ◦ ψji = ψki.

Similarly, an inverse system of objects with respect to (I,≤), valued in a category C,
consists of
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• a collection of objects {Xi}i∈I of C, and
• for every i ≤ j, a morphism ϕij : Xj → Xi,

such that (i) ϕii = IdXi
and (ii) for every i ≤ j ≤ k we have ϕij ◦ ϕjk = ϕik.

(6.2) Direct and inverse systems as functor.– A different way to think about direct
and inverse systems of objects in C, is to define a category I, associated to the poset (I,≤)
as follows. Its objects are elements of I, and for every i, j ∈ I,

HomI(i, j) =

{
Singleton i→ j if i ≤ j,
∅ otherwise.

Composition of morphisms is uniquely given by the partial order, and Idi = i → i is the
only element in HomI(i, i).

Now, we can easily see that

• Objects of the category of covariant functors F(I, C) are direct systems.
• Objects of the category of contravariant functors F(Iop, C) are inverse systems.

The advantage of this viewpoint is that it makes the notion of morphisms between di-
rect/inverse systems obvious (as morphisms in the respective category of functors).

(6.3) Direct limit.– Let X = {(Xi)i∈I , (ψji : Xi → Xj)i≤j} be a direct system of objects
in a category C, with respect to a poset (I,≤). Consider the following (covariant) functor:

hX : C → Sets,

given on objects by:

hX(Y ) = {(Xi
fi−→ Y )i∈I : for every i ≤ j, fj ◦ ψji = fi} ⊂

∏
i∈I

HomC(Xi, Y ).

Definition. If the above functor hX is representable, the object representing it is called the
direct limit of the direct system X. It is denoted by lim−→

(I,≤)
Xi, or just lim

−→
Xi, if the poset is

clear from the context.

To spell out the universal property of direct limits, we use the same ideas as in §4.6.
Namely, X = lim−→

(I,≤)
Xi means the following:

• We are given morphisms ιj : Xj → X for every j ∈ I such that ιk ◦ψkj = ιj for every
j ≤ k.
• For every Y ∈ C and morphisms gj : Xj → Y satisfying gk ◦ψkj = gj for every j ≤ k,

there is a unique morphism g : X → Y such that g ◦ ιj = gj for every j ∈ I.

(6.4) Example of direct limits in Ab.– In practice, direct limit is obtained as a “quo-
tient” of direct sum. Let us consider the example of the category of abelian groups Ab. The
following lemma holds with the same proof in the category R-mod.

Lemma. Direct limits exist in the category of abelian groups.
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Proof. Let (I,≤) be an arbitrary poset and let X be a direct system of abelian groups:
{Gi}i∈I together with morphisms ψji : Gi → Gj, for every i ≤ j. As before, we assume that
(i) ψii = IdGi

and (ii) for every i ≤ j ≤ k, we have ψkj ◦ψji = ψki. We begin by constructing
an abelian group G, together with canonical morphisms ιj : Gj → G. We will then show
that it satisfies the universal property of the direct limit.

Consider G̃ =
⊕
i∈I

Gi. Recall that G̃ comes together with canonical morphisms ι̃j : Gj →

G̃, given by (ι̃j(x))k = δjkx.

Let N be the subgroup of G̃ generated by the following set of elements:

N = 〈ι̃j(x)− ι̃k(ψkj(x)) : ∀ j ≤ k〉 .

Define: G = G̃/N , let π : G̃ → G be the natural projection map. For each j ∈ I, we have
canonical morphisms ιj : Gj → G given as the composition ιj = π ◦ ι̃j.

First thing we have to check is: for every j ≤ k: ιk ◦ ψkj = ιj. This is almost by definition
of N , since for every x ∈ Gj:

ι̃k(ψkj(x))− ι̃j(x) ∈ N ⇒ π(ι̃k(ψkj(x))− ι̃j(x)) = 0.

Hence ιk(ψkj(x)) = ιj(x).

Now assume that we are given an abelian group H, together with morphisms fj : Gj → H
satisfying the commutativity relations: fk ◦ ψkj = fj for every j ≤ k. Forgetting these
relations for a moment, by the universal property of direct sum, we get a unique morphism

f̃ : G̃ → H such that, for every j ∈ I, f̃ ◦ ι̃j = fj. Now, all we have to show is that this

morphism f̃ factors through G = G̃/N :

G̃ H

G

π

����

f̃ //::

That is, N ⊂ Ker(f̃). To see this, take a typical generator ι̃j(x) − ι̃k(ψkj(x)) of N (here
j ≤ k). We have:

f̃ (ι̃j(x)− ι̃k(ψkj(x))) = fj(x)− fk(ψkj(x)) = 0,

since f̃ ◦ ι̃j = fj and fj = fk ◦ ψkj. Also, for every j ∈ I: f ◦ ιj = f ◦ π ◦ ι̃j = f̃ ◦ ι̃j = fj, as
we wanted.

The uniqueness of f is a direct consequence of that of f̃ , and is left as a very easy
exercise. �
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(6.5) Example: germs of holomorphic functions.– In the theory of functions of a com-
plex variable, one encounters the following definition.

Definition. Let z ∈ C. Germs of holomorphic functions near z, denoted by Oz, is the set
of equivalence classes of pairs (f, U), where U is an open set containing z, and f : U → C is
a holomorphic function, under the following equivalence relation:

(f, U) ∼ (g, V ) if there exists an open set W ⊂ U ∩ V such that f |W ≡ g|W .

Oz is in fact more than just a set, it is a commutative algebra over C. It is even easy to
see that it is local 1, with the unique maximal ideal given by:

mz = {[(f, U)] : f(z) = 0}.
This example is generalized to what is known as stalks of a sheaf near a point (see the

next section). We can view the ring of germs of holomorphic functions near z ∈ C, as a
direct limit of an appropriate direct system of commutative algebras over C.

Consider a poset IzC whose elements are open sets in C which contain z, and the partial
order is given by reverse inclusion:

U ≤ V means V ⊂ U.

For U ∈ IzC, let O(U) be the ring of all holomorphic functions f : U → C. For every U ≤ V ,
the corresponding ring homomorphism ρUV : O(U)→ O(V ) is merely restriction of functions
from the domain U to V .

It is easy to see that {(O(U))U∈IzC , (ρ
U
V )U≤U} is a direct system of commutative algebras

over C. I leave it for you to convince yourself that:

Oz = lim−→
(IzC,≤)

O(U) often written as lim−→
z∈U
O(U).

(6.6) Example: presheaves.– 2 The example of the previous section is generalized to arbi-
trary topological spaces, as follows. Let X be a topological space. A presheaf of commutative
rings F on X is the data of:

• a commutative ring F(U) for every open set U ⊂ X, and
• a unital ring homomorphism, called restriction map, ρUV : F(U) → F(V ), for every
V ⊂ U .

This data is subject to the following axioms: (i) ρUU = IdF(U), and (ii) for every W ⊂ V ⊂ U ,
we have ρVW ◦ ρUV = ρUW .

Thus, it is clear that a presheaf is nothing but a direct system, valued in an appropriate
category (in the definition above, CommRings) with respect to the following poset IX . The
elements of IX are open sets in X, and the partial order is the reverse inclusion, as in the

1A commutative ring A is said to be local, if it has a unique maximal ideal, or, equivalently, the set of all
non–invertible elements of A form an ideal.

2First defined by French mathematician Jean Leray (1906-1998) during his time as a prisnor of war
(1940-1945) in Edelbach, Austria.
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previous paragraph.

Analogous to the ring of germs of holomorphic functions, we can consider a point x ∈ X,
and restrict our poset IxX to consist of only those open sets which contain x. The direct limit
of the direct system {(F(U))U∈IxX , (ρ

U
V )U≤V } is called stalks of the presheaf F at x ∈ X:

Fx := lim−→
x∈U
F(U).

(6.7) Inverse limit.– Now let X = {(Xi)i∈I , (ϕij : Xj → Xi)i≤j} be an inverse system of
objects in a category C, with respect to a poset (I,≤). Consider the following (contravariant)
functor:

hX : C → Sets,

given on objects by:

hX(Y ) = {(Y fi−→ Xi)i∈I : for every i ≤ j, ϕij ◦ fj = fi} ⊂
∏
i∈I

HomC(Y,Xi).

Definition. If the above functor hX is representable, the object representing it is called the
inverse limit of the inverse system X. It is denoted by lim←−

(I,≤)
Xi, or just lim

←−
Xi, if the poset is

clear from the context.

Again, X = lim←−
(I,≤)

Xi means the following:

• We are given morphisms pj : X → Xj for every j ∈ I such that ϕjk ◦ pk = pj for
every j ≤ k.
• For every Y ∈ C and morphisms fj : Y → Xj satisfying ϕjk ◦ fk = fj for every j ≤ k,

there is a unique morphism f : Y → X such that pj ◦ f = fj for every j ∈ I.


