
LECTURE 7

(7.0) Review.– Recall that last time we defined direct and inverse limits. Given a poset
(I,≤), a direct (resp. inverse) system, valued in a category C can be quickly defined as an
object of the functor category F(I, C) (resp. F(Iop, C)). Here, I is the category defined using
the poset (I,≤) as in §6.2.

Thus, given a direct system {(Xi), (ψji : Xi → Xj)}, its direct limit is the unique object
representing the following covariant functor C → Sets:

Y 7→ {(fi : Xi → Y ) : fj ◦ ψji = fi for every i ≤ j}.
Similary, for an inverse system {(Xi), (ϕij : Xj → Xi)}, its inverse limit is the unique

object representing the following contravariant functor C → Sets:

Y 7→ {(gi : Y → Xi) : ϕij ◦ gj = gi for every i ≤ j}.
Last time we saw some examples of the direct limit. Today, we will see another such

example where the right directedness hypothesis is imposed on the poset (I,≤). Then, we
will go over some examples of the inverse limit.

(7.1) Example involving right directed posets.– Assume that (I,≤) is a right directed
poset. Recall that this means that for every i, j ∈ I, there exists k ∈ I such that i ≤ k and
j ≤ k.

Let CommRings be the category of unital, commutative rings, where the morphisms are
assumed to be unital as well. Let {(Ai)i∈I , (ψji : Ai → Aj)i≤j} be a direct system, valued in
CommRings.

Theorem. The direct limit A = lim−→
(I,≤)

Ai exists in the category CommRings. Moreover, if

each Ai is an integral domain 1 (resp. a field) then so is A.

Compare this result with Example V of §5.4. The statement would be obviously false if
the right directedness is not assumed, for instance, for a discrete poset (i.e, any two distinct
elements are non-comparable).

Proof. We will construct A, as a set, by imposing an equivalence relation on the disjoint
union of A′is. Namely,

A :=

(⊔
i∈I

Ai

)
/ ∼ , where

a ∈ Ai and b ∈ Aj are equivalent iff there exists k, i ≤ k and j ≤ k, such that ψki(a) = ψkj(b)
in Ak. I am going to leave it for you to check that this is indeed an equivalence relation.

1Recall that a commutative ring A is an integral domain if ab = 0 implies either a = 0 or b = 0.
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We first have to give A a structure of a ring, then check that it is unital and commutative.
The canonical maps Ai → A are the natural inclusion followed by the natural surjection,
i.e, a ∈ Ai goes to the equivalence class containing a. We will have to make sure that these
are (unital) ring homomorphisms, and that they satisfy the universal property of direct limits.

So, given two elements α, β ∈ A, choose representatives a ∈ α, b ∈ β. Let i, j ∈ I be such
that a ∈ Ai and b ∈ Aj. Pick k ∈ I such that i ≤ k and j ≤ k, and define the sum and
product as follows:

α + β := Equivalence class of ψki(a) + ψkj(b).

α · β := Equivalence class of ψki(a)ψkj(b) ∈ Ak.
We now prove that these operations are well–defined. Let us show it for the product (the

proof for the sum is exactly the same - replace multiplication by addition in the following
argument).

Assume that we pick some representatives other than a, b, say a′ ∈ Ai′ and b′ ∈ Aj′ from
α and β respectively, and take k′ ≥ i′, j′ to get an element ψk′i′(a

′)ψk′j′(b
′) in Ak′ . We have

to show that this element belongs to the same equivalence class as ψki(a)ψkj(b). See the
picture below:

a ∈ Ai

b ∈ Aj

Ak 3 ψki(a)ψkj(b)

ψki

��

ψkj

BB

Ai′ 3 a′

Aj′ 3 b′

ψk′i′(a
′)ψk′j′(b

′) ∈ Ak′

ψk′i′

||

ψk′j′

bb
?∼

Since a ∼ a′, there exists an element i′′ ≥ i, i′ for which ψi′′i(a) = ψi′′i′(a
′) (similarly for

b ∼ b′, we denote such an index by j′′). Let us choose an index ` ∈ I larger than any index
from the finite set {i′′, j′′, k, k′} (exists by the right–directedness hypothesis). It suffices to
prove the following:

Claim. ψ`k(ψki(a)ψkj(b)) = ψ`k′(ψk′i′(a
′)ψk′j′(b

′)).

Proof of the claim. We have the following computation, using the transitivity property of
ψ morphisms, and the fact that these are homomorphisms of rings:

ψ`k(ψki(a)ψkj(b)) = ψ`i(a)ψ`j(b) = ψ`i′′(ψi′′i(a))ψ`j′′(ψj′′j(b))

= ψ`i′′(ψi′′i′(a
′))ψ`j′′(ψj′′j′(b

′)) = ψ`i′(a
′)ψ`j′(b

′)

= ψ`k′(ψk′i′(a
′))ψ`k′(ψk′j′(b

′)) = ψ`k′(ψk′i′(a
′)ψk′j′(b

′)).

Thus the claim is established.
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The role of 0 ∈ A is played by the equivalence class containing 0 ∈ Ai (for any i ∈ I), and
that of 1 ∈ A by the class containing 1 ∈ Ai (again, for any i ∈ I). It remains to check that
A is indeed a unital, commutative ring. The following observation follows immediately from
the right–directedness assumption:

Observation. For a finite number of equivalence classes, {α1, . . . , αn}, there exists k ∈ I
and representatives a1 ∈ α1, . . . , an ∈ αn such that a1, . . . , an ∈ Ak.

Since axioms for A to be a unital, commutative ring only involve finitely many elements,
and they hold for Ak, they will continue to hold for A. For instance, let us write down how
the proof of associativity will proceed. Let α, β, γ be three elements of A. Pick representa-
tives a, b, c from these equivalence classes, which all belong to the same Ak (for some k ∈ I).
Since in Ak, (ab)c = a(bc), it follows that (αβ)γ = α(βγ).

Same argument as above goes into showing that, if each Ai is an integral domain (resp. a
field), then so is A.

Finally, let us assume that B ∈ CommRings, and we are given morphisms fi : Ai → B,
for every i ∈ I, satisfying fj ◦ψji = fi for every i ≤ j. Consider the unique (set) map we get

f̃ :
⊔
i∈I

Ai → B, whose restriction to Ai is fi.

If a ∈ Ai and b ∈ Aj are equivalent, i.e, there exists k ≥ i, j such that ψki(a) = ψkj(b), then

fi(a) = fk(ψki(a)) = fk(ψkj(b)) = fj(b). Hence, f̃ factors through the equivalence relation to
give f : A→ B. It is obvious (left as an easy exercise) to see that f is a ring homomorphism,
and is the unique one which makes the following diagram commute, for every i ≤ j:

Ai A

B

//

f

��

fi

��

where, recall that Ai → A is given by the following composition Ai ⊂
⊔
j∈I

Aj � A. �

(7.2) Example of inverse limit of groups.– Now, let us focus on inverse limits. As
direct limits are contructed, in practice, as “quotients” of direct sums, inverse limits will be
constructed as “subobjects” of direct product. The following lemma illustrates this point.
We are not assuming any directedness hypothesis here.

Lemma. Inverse limits exist in the category of groups.

Proof. Let (I,≤) be a poset, and consider an inverse system of groups:

{(Gi)i∈I ; (ϕij : Gj → Gi)i≤j}

Recall that this means: (i) ϕii = IdGi
(∀i ∈ I), and (ii) ϕijϕjk = ϕik (∀i ≤ j ≤ k).
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Consider G̃ =
∏
i∈I

Gi together with canonical projections p̃i : G̃ → Gi. Let G be the

following subset of G̃:

G = {(xi ∈ Gi)i∈I : ϕij(xj) = xi for every i ≤ j}.

Note that G is a subgroup of G̃. This is because, if ei ∈ Gi is the neutral element, then
e = (ei)i∈I is in G which is neutral with respect to componentwise multiplication. Moreover
if (xi)i∈I and (yi)i∈I are two elements of G, then (x−1i yi)i∈I is also in G, because:

for every i ≤ j, ϕij(x
−1
j yj) = ϕij(xj)

−1ϕij(yj) = x−1i yi.

Now let pi : G → Gi be the restriction of p̃i to G ⊂ G̃. We have: ϕij ◦ pj = pi, for every
i ≤ j, because, once evaluated on a tuple (xk)k∈I , this becomes ϕij(xj) = xi. This holds by
definition of G.

Finally, let H be another group, and let gi : H → Gi be group homomorphisms, for which

ϕij◦gj = gi. Thus we get a unique group homomorphism g̃ : H → G̃, given by x 7→ (gi(x))i∈I .
All we need to check is that Im(g) ⊂ G. That is, for every i ≤ j, ϕij(gj(x)) = gi(x). As it
was assumed for the group homomorphisms (gi)i∈I , we are done. �

Remark. The same proof goes over to prove that inverse limits exist in the category of
rings, abelian groups, modules over a ring, vector spaces and so on.

(7.3) A concrete example.– Consider I = N with its natural (total) order. For each
n ∈ N, let An = C[x]/(xn+1), an object of the category CommRings. For m < n, we take
the following ring homomorphism:

ϕmn : C[x]/(xn+1)→ C[x]/(xm+1),
n∑
i=0

aix
i 7→

m∑
j=0

ajx
j.

I am going to leave it as an exercise for you to prove the following (the limit is taken in the
category CommRings):

lim←−
n∈N

C[x]/(xn+1) = C[[x]],

the ring of formal power series in a variable x.

(7.4) Completion of a ring with respect to an ideal.– Another application of inverse
limits is to define completion of a ring with respect to an ideal. This generalizes the example
presented in the previous paragraph, where the ring under consideration was C[x] and the
ideal was (x) ⊂ C[x].

So, let A ∈ CommRings, and let a ⊂ A be an ideal. Recall that this means a is an
abelian subgroup of A (under addition), and for every x ∈ A, y ∈ a, we have xy ∈ a.

Consider the following inverse system in CommRings, with respect to I = N.

An = A/an+1, πmn : An → Am, ∀ m ≤ n.
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Here, πmn is the natural projection.

The completion of A with respect to the ideal a is defined as the inverse limit of this inverse
system of rings.

Â := lim←−
n∈N

A/an+1.

Note that there are natural ring homomorphisms A→ An, for every n ∈ N, which give rise

to a ring homomorphism (by the universal property of inverse limits) A→ Â. For instance,
in the set up of the previous paragraph, this is just the usual inclusion of polynomials into
power series C[x] ⊂ C[[x]].

For instance, let us take A = Z and a = (p), for a prime number p ∈ Z≥2. The resulting

inverse limit is denoted by Ẑp, and is called the ring of p–adic integers:

Ẑp := lim←−
n∈N

Z/(pn+1).


