
LECTURE 8

(8.0) Next topic.– Recall that so far we have been learning the language of category theory.
We saw the meaning of the following terms: categories, functors, natural transformations,
equivalence of categories, adjoint functors, representable functors (after Yoneda’s embedding
theorem), direct sums/products, direct and inverse limits.

Now we are going to focus on categories of more algebraic origin: additive and abelian
categories.

(8.1) Additive categories.– An additive category A is a category satisfying the following
axioms:

(A1) For every X, Y ∈ A, the set of morphisms HomA(X, Y ) has a structure of an abelian
group, such that the composition map is Z–bilinear. That is, for every X, Y, Z ∈ A:

• g◦(a1f1+a2f2) = a1(g◦f1)+a2(g◦f2) for every a1, a2 ∈ Z, f1, f2 ∈ HomA(X, Y )
and g ∈ HomA(Y, Z).
• (a1g1 + a2g2) ◦ f = a1(g1 ◦ f) + a2(g2 ◦ f), for every a1, a2 ∈ Z, f ∈ HomA(X, Y )

and g1, g2 ∈ HomA(Y, Z).

(A2) There exists an object in A, denoted by 0A, such that HomA(0A, X) = {0} =
HomA(X,0A), for every X ∈ A.

(A3) Finite direct sums and products exist in A.

Remarks.

(1) You have seen in the recitations that, in any category C, if there is an object T such
that HomC(T,X) and HomC(X,T ) are singletons, for every X ∈ C, then this object
T is unique up to a unique isomorphism. Thus 0A in the axiom (A2) of an additive
category is uniquely defined, called the trivial (or zero) object of A.

(2) In an additive category A, HomA(X, Y ) is not empty, for any X, Y ∈ A. This is
because it is supposed to be an abelian group and as such must contain the zero
morphism. Hence, for instance, the category of fields is not additive.

(3) In (A3), the finite direct sums and products that are assumed to exist in A end up
being naturally isomorphic. See Lemma (8.3) below.

(8.2) Examples.– Many categories outside of the realm of algebra are not additive. For
instance, category of topological spaces, manifolds etc. Categories of groups, unital rings,
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fields are also not additive.

Most typical example of an additive category is that of left (resp. right) modules over a
unital ring R, which we denoted by R-mod (resp. mod-R). Let us see this in detail.

Recall that an object of R-mod is an abelian group M , together with a left action of R,
which can be written as a (unital) ring homomorphism λM : R → EndZ(M). We often
suppress this λM from our notations, and simply write rm = λM(r)(m).

HomR-mod(M,N) = {f ∈ HomAb(M,N) : f(rm) = rf(m) ∀ r ∈ R,m ∈M}.

(A1): For M,N ∈ R-mod, the set of morphisms HomR(M,N) has a structure of an abelian
group, given explicitly as follows.

• For f1, f2 ∈ HomR(M,N), f1 + f2 ∈ HomR(M,N) is defined as (f1 + f2)(m) =
f1(m) + f2(m), for every m ∈M .
• For f : M → N , (−f) : M → N is defined as (−f)(m) = −f(m), for every m ∈M .
• Zero morphism is the one that maps m 7→ 0, for every m ∈M .

It is easy to see that the composition is bilinear.

(A2): The zero object is the trivial abelian group {0} together with the trivial action of R.

(A3): Given M1,M2 ∈ R-mod, their direct sum is constructed as a cartesian product, with
componentwise R–action: M1 ⊕M2 = {(m1,m2) : mj ∈ Mj j = 1, 2}. For every r ∈ R,
m1 ∈M1 and m2 ∈M2, r(m1,m2) = (rm1, rm2).

(8.3) Direct sums and products.– Let I be an indexing set, A an additive category and

{Xi}i∈I a set of objects from A. Assume that both their direct sum X =
⊕
i∈I

Xi and direct

product X̂ =
∏
i∈I

Xi exist in A. Let us denote the canonical morphisms as:

Xi
fi−→ X, X̂

f i−→ Xi, ∀i ∈ I.

For i, j ∈ I, define a morphism δij : Xj → Xi as: δij =

{
0 i 6= j,
IdXi

i = j.

Lemma. There is a natural morphism α : X → X̂ which makes the following diagram
commute, for every i, j ∈ I.

Xi Xj

X X̂

δji //

α
//

fi

��

f i

OO

Moreover, if I is finite, α is an isomorphism.
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Proof. The morphism α can be obtained by using the universal property of direct sums

and products. Namely, fix i ∈ I, and consider the collection of morphisms {Xi
δji−→ Xj}j∈I .

By the universal property of direct products, we get a unique morphism gi : Xi → X̂ such
that f j ◦ gi = δji for every j ∈ I.

Now take the set of morphisms {Xi
gi−→ X̂}i∈I . By the universal property of direct sums,

we get a unique morphism α : X → X̂ such that α ◦ fi = gi. Combining this equation with
the last one the previous paragraph, we get:

f j ◦ α ◦ fi = f j ◦ gi = δji,

as claimed in the commutative diagram above.

I am going to give naturality of α as a homework problem. Namely, to show that

α :
⊕
i∈I

⇒
∏
i∈I

is a natural transformation of functor AI → A (assuming direct sums

and products over I exist).

Let us see that when |I| <∞, α is an isomorphism. Let β : X̂ → X be given by:

β =
∑
i∈I

fi ◦ f i ∈ HomA(X̂,X).

Note that the sum is taken in the indicated abelian group, and makes sense, since I is finite.

β ◦ α = IdX : Note that, by considering the collection of morphisms {fi : Xi → X}i∈I , and
the universal property of direct sums, we know there to be a unique morphism h : X → X
for which h ◦ fi = fi. Hence, h = IdX . Therefore, it suffices to show that (β ◦α) ◦ fi = fi for
every i ∈ I.

β ◦ α ◦ fi =
∑
j∈I

fj ◦ (f j ◦ α ◦ fi) =
∑
j∈I

fj ◦ δji = fi.

Here, we have used that −◦ fi distributes over addition of morphisms, associativity of com-
position, and that f j ◦ α ◦ fi = δji as shown above.

The proof of α ◦ β = IdX̂ is similar, and is omitted here. �

(8.4) Kernel and cokernel of a morphism.– Recall from §0.4, that a morphism f : X →
Y in an arbitrary category C is said to be injective (resp. surjective) if it can be cancelled
from the left (resp. right). That is f ◦ h1 = f ◦ h2 implies h1 = h2 (resp. g1 ◦ f = g2 ◦ f
implies g1 = g2).

For an additive category A, the definition above can be rewritten as follows. f : X → Y
in A is injective (resp. surjective) if and only if f ◦ h = 0 implies h = 0 (resp. g ◦ f = 0
implies g = 0).
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Definition. Let A be an additive category, and let f : X → Y be a morphism in A. Kernel
of f is a pair (K, i), where K ∈ A and i : K → X, satisfying:

• f ◦ i = 0, and
• for any morphism g : Z → X, such that f ◦ g = 0, there is a unique morphism
g : Z → K such that g = i ◦ g.

Similarly, Cokernel of f is a pair (C, π), where C ∈ A and π : Y → C, satisfying:

• π ◦ f = 0, and
• for any morphism h : Y → Z, such that h ◦ f = 0, there is a unique morphism
h : C → Z such that h = h ◦ π.

If exist, kernel and cokernel of a morphism are unique, up to unique isomorphism. This is
easily seen by rephrasing the definition given above, as representability of a functor. Namely,
given f : X → Y as before, consider the following two functors (contravariant and covariant
respectively):

K(f) : A → Ab, P(f) : A → Ab.

where, on objects:

K(f) : Z 7→
{
Z

g−→ X : f ◦ g = 0
}
, and P(f) : Z 7→

{
Y

h−→ Z : h ◦ f = 0
}
.

On morphisms, these functors act exactly as the contravariant and covariant hom functors
hX , hY . Namely, K(f) : a 7→ − ◦ a, and P(f) : b 7→ b ◦ −.

Exercise. Verify that kernel and cokernel of f (if exist) represent K(f) and P(f) respec-
tively.

This exercise implies the claimed uniqueness. The kernel of f (resp. cokernel of f) is
denoted as usual by Ker(f) (resp. CoKer(f)), often suppressing the morphism i (resp. π)
from the notation.

(8.5) Properties of kernels and cokernels.– The definition given above is often depicted
pictorially as follows. Again, A is an additive category and f : X → Y is morphism.

Ker(f)
i−→ X is the unique object fitting in the following diagram:

Ker(f) X
i // Y

f //
&&

=0

Z

∀g

OO

=0

::

∃! g

dd

Similarly, CoKer(f) fits in the following diagram:
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CoKer(f)X Y
f // π //

&&

=0

Z

∀h

��

=0

$$

∃! h

zz

Proposition. Let A be an additive category, f : X → Y a morphism in A, and assume that
its kernel and cokernel exist.

(1) The morphism i : Ker(f) → X is injective. Similarly, the morphism π : Y →
CoKer(f) is surjective.

(2) f is injective if, and only if (Ker(f), i) is naturally isomorphic to (0A, 0). Here
0 ∈ HomA(0A, X). Similarly, f is surjective if, and only if (CoKer(f), π) is naturally
isomorphic to (0A, 0).

Proof. Let us prove the two assertions for kernel only. The proof for cokernel is similar.

Proof of (1): To show that i is injective, we need to prove that it can be cancelled from the
left. That is, i ◦ a = 0 implies a = 0 (here, a : Z → Ker(f) is an arbitrary morphism in A).
Take g = 0 : Z → X so that f ◦g = 0. Now both a and 0 work as g, hence by its uniqueness,
must be equal.

Proof of (2): Assume that f is injective. Recall that this means f ◦ a = 0 implies a = 0. We
will prove that (0A, 0) satisfies the universal property for being kernel of f . It is clear that
f ◦ 0 = 0. So, let us assume that we are given g : Z → X such that f ◦ g = 0. By injectivity

of f , we get that g = 0, and hence factors uniquely through Z
0−→ 0A

0−→ X.

Conversely, assuming 0 : 0A → X is the kernel of f , we will prove that f is injective.
Again let g : Z → X be such that f ◦ g = 0, and we need to show g = 0. By the universal
property of kernel, g must factor through 0A, that is, g = 0 ◦ g = 0. �


