
LECTURE 9

(9.0) Additive categories.– Recall that in the last lecture we defined additive categories.
An additive category A is a category where: (A1) Hom sets have a structure of an abelian
group such that the composition map is Z–bilinear, (A2) trivial object 0A exists, and (A3)
finite direct sums and products exist.

We proved that finite direct sums and products end up being isomorphic naturally. We
defined kernel and cokernel of a morphism f : X → Y in A. Let us copy the diagrams
showing the universal property of kernels and cokernels from the last lecture:

Ker(f) X
i // Y

f //
&&

=0

Z

∀g

OO

=0

::

∃! g

dd

Figure 1. Kernel of a morphism

CoKer(f)X Y
f // π //

&&

=0

Z

∀h

��

=0

$$

∃! h

zz

Figure 2. Cokernel of a morphism

(9.1) Image and coimage of a morphism.– Let f : X → Y be a morphism in an additive
category A.

Definition. The image of f , denoted by Im(f), is defined as the kernel of the cokernel.
Namely, if (C, π : Y → C) is the cokernel of f , then Im(f) is defined to be the kernel of π.

Similarly, coimage of f , denoted by CoIm(f), is the cokernel of the kernel. That is, if
(K, i : K → X) is the kernel of f , then CoIm(f) is the kernel of i. We will unfold these
definitions in the proof of the lemma below.
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2 LECTURE 9

Lemma. Let f : X → Y be a morphism in an additive category A. Assuming that the
relevant kernels and cokernels exist, we have a commutative diagram:

X Y

CoIm(f) Im(f)

f //

p

��

j

OO

f

//

The morphism j is injective and p is surjective.

Proof. Let (K, i : K → X) be the kernel and (C, π : Y → C) be the cokernel of f . Now
Im(f), being the kernel of π fits in a diagram similar to the one in Figure 1. We draw it for
the test morphism f : X → Y for which we know that π ◦ f = 0.

Im(f) Y
j // C

π //
&&

=0

X

f

OO

=0

::

∃! f̃

dd

Thus, we conclude that there is a unique morphism f̃ : X → Im(f) such that f = j ◦ f̃ .
Moreover, j being the canonical morphism for a kernel is injective (see Prop. 8.5 (i)).

X Y

Im(f)

f //

f̃

$$

j

OO

Claim. Ker(f) = Ker(f̃).
Proof of the claim. This is true in general that composing a morphism, on the left, by an
injective morphism does not change its kernel. We will show that (K, i : K → X) (kernel of

f) satisfies the universal property of the Ker(f̃).

• f̃ ◦ i = 0. This is because j ◦ (f̃ ◦ i) = (j ◦ f̃) ◦ i = f ◦ i = 0, and j is injective.

• If there is a morphism g : Z → X such that f̃ ◦ g = 0, then g = i ◦ g for a unique

g : Z → K. Again, this is because 0 = j ◦ (f̃ ◦ g) = f ◦ g and the assertion follows by
the definition of Ker(f).

Now we focus on the coimage of f̃ , which is defined as the cokernel of the kernel Ker(f̃) =

Ker(f)
i−→ X. Thus it follows that CoIm(f) = CoIm f̃ . We fit it in a defining picture, akin
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to the one given in Figure 2, applied to f̃ .

CoIm(f)K X
i // p //

&&

=0

Im(f)

f̃

��

=0

$$
∃! f

zz

Again, p is surjective, being the canonical homomorphism of a cokernel (Prop. 8.5 (i)). This
completes the diagram stated in the lemma, and finished the proof. �

(9.2) Remarks.–

1. Note that we have not said anything about f being bijective in the statement of the lemma
above. It is true assuming the kernels and cokernels of all morphisms exist in A. I am not go-
ing to prove it here, since it will just break the flow and introduce unnecessary complications.

2. If f was bijective to begin with, then Ker(f) and CoKer(f) are both 0A (see Prop. 8.5
(ii)), and hence CoIm(f) = X and Im(f) = Y , so f = f .

(9.3) Additive functors.– Let A and B be two additive categories, and F : A → B be
a functor. We say that F is an additive functor if for every A1, A2 ∈ A, the resulting map
F : HomA(A1, A2)→ HomB(F (A1), F (A2)) is a group homomorphism.

In the context of additive (or abelian, as defined below) categories, we only speak of ad-
ditive functors, and often forget the adjective additive.

Example. Note that for an additive category A, the contravariant and covariant hom func-
tors hX , hX take values in the category of abelian groups.

hX , hX : A → Ab.

The axiom of composition being bilinear (i.e, it distributes over addition/subtraction of mor-
phisms) is same as saying that these functors are additive.

(9.4) Abelian categories.– An additive category A is abelian if the following two condi-
tions hold (i.e, in addition to the axioms (A1)–(A3) of additive categories - see §8.1):

(AB1) Kernels and cokernels exist for every morphism in A.

(AB2) For every morphism f : X → Y , the morphism f : CoIm(f) → Im(f) is an isomor-
phism.
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Thus the first isomorphism theorem for abelian groups, or more generally R–modules, is
an axiom for abelian categories. Note that, if f is a bijection, then f = f is always an
isomorphism in abelian categories.

Recall that in the category of filtered abelian groups (see §0.7) there are bijections which
are not isomorphisms. This is one of the standard examples of an additive category which
is not abelian.

Example. Let R be a unital (not necessarily commutative) ring, and let A = R-mod be the
category of left R–modules. We showed (in §8.2) that this category is additive. This is also
a prototypical example of an abelian category:

Axiom (AB1). Given an R–linear map f : M → N , between two (left) R–modules, M and
N , we define its kernel and cokernel as usual:

Ker(f) := {m ∈M : f(m) = 0} ⊂M, N � CoKer(f) := N/{f(m) : m ∈M}.
It is easy to verify that these satisfy their respective universal properties. Moreover,

M � CoIm(f) = M/Ker(f), Im(f) = {f(m) : m ∈M} ⊂ N.

Axiom (AB2). Verifying this axiom is same as proving the first isomorphism theorem for
R–modules. Namely,

f : M/Ker(f)→ Im(f), m+ Ker(f) 7→ f(m),

is an isomorphism. That this map is well–defined is the easy check omitted above. Let us
prove that it is invertible, hence an isomorphism. Define g : Im(f)→M/Ker(f) as follows.
For x ∈ Im(f), choose m ∈M such that f(m) = x. Then g(x) := m+ Ker(f).

Well–defined. If x = f(m) = f(m′), then m −m′ ∈ Ker(f), hence g(x) = m + Ker(f) =
m′ + Ker(f).
g is R–linear. Left as an easy exercise.

Now, for x = f(m) ∈ Im(f), f(g(x)) = f(m + Ker(f)) = f(m) = x. So, f ◦ g = IdIm(f).
Similarly for m + Ker(f) ∈ M/Ker(f), g(f(m)) = m + Ker(f) by definition, so g ◦ f =
IdM/Ker(f). Hence f and g are isomorphisms.

Remark. These axioms were formulated in Grothendieck’s Tôhoku paper (1957) Sur quelques
points d’algèbre homologique.

(9.5) Another family of examples.– Given an arbitrary category C and an additive (resp.
abelian) category A, the categories of functors F(C,A) and F(Cop,A) get a structure of an
additve (resp. abelian) category. This assertion is analoguous to the fact that set of maps
to an algebraic structure, inhert that structure by pointwise operations.

For instance, if F,G ∈ F(C,A) are two functors, and ξ, η : F ⇒ G are two natural trans-
formations, then, ξ+η : F ⇒ G is given by (ξ+η)X = ξX +ηX , where the addition is carried
out in HomA(F (X), G(X)). Similarly (−ξ)X = −ξX for every X ∈ C. Since composition of
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natural transformations is also pointwise, it is easy to see that it is bilinear with respect to
the given abelian group structure on the set of natural transformations, i.e, HomF(C,A)(F,G).

The role of trivial functor is played by 0 : C → A which sends every object to 0A and
every morphism to the only morphism in EndA(0A).

Direct sum of two functors F,G : C → A is also defined pointwise: (F ⊕ G)(X) =
F (X)⊕G(X). Thus, if A is additive, so is F(C,A).

Exercise. Assume that A is abelian. Construct kernel (resp. cokernel) of η : F ⇒ G and
verify that it satisfies the respective universal property. (Hint: Ker(η) : C → A sends X ∈ C
to Ker(ηX : F (X)→ G(X)) ∈ A).

Proposition. Axiom (AB2) holds in F(C,A). Hence, F(C,A) is an abelian category.

Proof. Let η : F ⇒ G be a morphism in the functor category F(C,A). By the exercise
given above, we have:

• π : F ⇒ CoIm(η) sends each object X ∈ C to πX : F (X) � CoIm(ηX).
• ι : Im(η)⇒ G sends X ∈ C to ιX : Im(ηX) ↪→ G(X).
• η : CoIm(η)→ Im(η) evaluated on X ∈ C is (η)X = ηX : CoIm(ηX)→ Im(ηX).

Hence, for every X ∈ C, (η)X = ηX is an isomorphism in A, by (AB2) for A. We know
that taking pointwise inverse µX = (ηX)−1 : Im(ηX) → CoIm(ηX) gives rise to another
natural transformation, which is the inverse of η. Therefore (AB2) holds. �


