
LECTURE 10

(10.0) Abelian categories and additive functors.– Recall that we defined abelian cat-
egories as categories satisfying five axioms (A1)–(A3) (for being additive), and (AB1) (AB2)
(see §8.1 and §9.4). Let A and B be two abelian (or additive) categories, and F : A → B
be a functor. We say F is additive if for every X, Y ∈ A, the following map is a group
homomorphism:

HomA(X, Y )
F−→ HomB(F (X), F (Y )).

As an example, the covariant and contravariant Hom functors are additive.

(10.1) Some properties of additive functors.– Given an additive functor F : A → B
between two abelian categories, we have the following.

Proposition.

(1) F (0A) ∼= 0B.

(2) For every X1, X2 ∈ A, F (X1 ⊕X2) ∼= F (X1)⊕ F (X2).

(3) If X
f−→ Y

g−→ Z are two morphisms in A, such that g◦f = 0, then F (g)◦F (f) = 0.

Proof. (1). We remark that the trivial object of an additive category, say C of C, is uniquely
determined by the condition: IdC = 0 ∈ EndC(C). This is clearly necessary, and to see suf-
ficiency, we have that for any D ∈ C and a : C → D, a = a ◦ IdC = a ◦ 0 = 0. Hence
HomC(C,D) = {0}. Similarly, HomC(D,C) = {0}.

Now the proof of (1) is clear, since F (Id0A) = IdF (0A) by definition of a functor, and
F (0) = 0 since it is a group homomorphism on the level of morphisms. Thus IdF (0A) =
F (0) = 0 proving that F (0A) is the trivial object of D.

(3) is again easy, since F (g) ◦ F (f) = F (g ◦ f) = F (0) = 0.

Let us now prove (2). Let i` : X` → X1 ⊕ X2 and p` : X1 ⊕ X2 → X` (` = 1, 2) be
the canonical morphisms of direct sum, and product respectively (recall that the two are
isomorphic by Lemma 8.3).

X1

X2

X1

X2

X1 ⊕X2

i1
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p1

99

i2

99
p2

%%

We have the following equations for these morphisms (see the proof of Lemma 8.3):
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pk ◦ i` = δk` and i1p1 + i2p2 = IdX1⊕X2

Here, recall that δk` = 0 if k 6= `, and = IdX`
if k = `. We claim that these equations

determine the direct sum = direct product of two objects.

Claim. Let X ∈ A, and assume that there are morphisms f` : X` → X, g` : X → X`

(` = 1, 2) such that:

gk ◦ f` = δk`, f1g2 + f2g2 = IdX ,

then X ∼= X1 ⊕X2.

Given the claim, (3) follows since these equations clearly hold for F (i`) : F (X1) →
F (X1 ⊕X2) and F (p`) : F (X1 ⊕X2)→ F (X`), (` = 1, 2).

Proof of the claim. We have to show that for any pair of morphisms {a` : X` → Y }`=1,2,
there is a unique a : X → Y such that a` = a ◦ f`. To see existence, set a = a1g1 + a2g2.

Then, a ◦ f` =
∑
k=1,2

akgkf` =
∑

akδk` = a`.

To see uniqueness, if a and ã are two such morphisms, then:

a = a ◦ IdX = a(f1g1 + f2g2) = a1g1 + a2g2 = ãf1g1 + ãf2g2 = ã ◦ IdX = ã.

�

(10.2) Exact sequences.– LetA be an abelian category. Consider the following morphisms
in A.

X1
f−→ X2

g−→ X3

We say that this sequence is exact at X2 if g ◦ f = 0 and Ker(g) = Im(f).

Remark. Note that requiring g ◦ f = 0 is essential to sensibly ask for Ker(g) to be “same”
as Im(f). Meaning, g ◦ f = 0 implies, by the defining property of the kernel, that f factors
through the kernel of g:

Ker(g) X2
i // X3

g //
&&

=0

X1

f

OO

=0

::

f

dd

Similarly, as we saw in the proof of Lemma 9.1, f also factors through

X1 Im(f) X2
f̃

//
j

// $$

f
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Thus, strictly speaking we are asking for an isomorphism Im(f) → Ker(g) which makes
the following diagram commute:

Im(f)

Ker(g)

X2
∼=

OO
i

''

j

77

However, it has become a routine practice to write “ Im(f) = Ker(g)” and we will continue
to write it this way, the precise meaning assumed to be understood.

(10.3) Complexes, short exact sequences.– A complex valued in an abelian category
A, is a sequence of morphisms:

· · ·Xk
fk−→ Xk+1

fk+1−→ Xk+2
fk+2−→ · · ·

such that fk+1 ◦ fk = 0 for every k ∈ Z. We say that this complex is acyclic if it is exact
at Xk for every k, that is, Im(fk) = Ker(fk+1). We will use the terms exact sequence and
acyclic complex to mean the same thing.

A short exact sequence is a sequence:

0→ X
f−→ Y

g−→ Z → 0 ,

which is exact at X, Y and Z. In more detail:

• f is injective,
• g is surjective, and
• Im(f) = Ker(g).

Note that a short exact sequence equivalently means that (X, f : X → Y ) is the kernel of
g and (Y, g : Y → Z) is the cokernel of f .

Example. Let R be an integral domain (i.e, R is a unital, commutative ring without zero–
divisors), and a ∈ R. The following is a short exact sequence of R–modules:

0→ R
µa−→ R→ R/(a)→ 0.

Here, µa : R→ R is multiplication by a, (a) ⊂ R is the ideal generated by a, and R→ R/(a)
is the canonical surjection.

Example. Let R = K[x, y] where K is a field. Consider the natural projection π : R →
K ∼= R[x, y]/(x, y). Let R2 = R ⊕ R, with elements e1 = (1, 0) and e2 = (0, 1). Prove that
the following is an exact sequence of R–modules:

0→ R
f−→ R2 g−→ R

π−→ K → 0 ,

where,

• f sends 1 7→ ye1 − xe2,
• g sends e1 7→ x and e2 7→ y.
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(10.4) Left and right exact functors.– Now let F : A → B be an additive, covariant
functor (resp. G : A → B an additive contravariant functor). By Proposition 10.1 (3) above,
F (and G) send complexes valued in A to those valued in B.

Definition. We say F is left exact, if for every short exact sequence in A:

0→ X
f−→ Y

g−→ Z → 0,

the following is a short exact sequence in B:

0→ F (X)
F (f)−→ F (Y )

F (g)−→ F (Z).

F is said to be right exact, if for every short exact sequence in A as above, we have the
following short exact sequence in B:

F (X)
F (f)−→ F (Y )

F (g)−→ F (Z)→ 0.

These notions for the contravariant functor G take the following form:

Left exactness: 0→ G(Z)
G(g)−→ G(Y )

G(f)−→ G(X) is exact.

Right exactness: G(Z)
G(g)−→ G(Y )

G(f)−→ G(X)→ 0 is exact.

Functors that are both left and right exact are simply called exact.

Theorem. Let A be an abelian category and X ∈ A an object. The contravariant and
covariant Hom functors:

hX , hX : A → Ab,

are both left exact.

Proof. Let us prove this theorem for the contravariant Hom functor hX . Namely, we have

to show that, if 0→ A
f−→ B

g−→ C → 0 is a short exact sequence in A, then the following
is an exact sequence of abelian groups:

0→ Hom(C,X)
−◦g−→ Hom(B,X)

−◦f−→ Hom(A,X).

Step 1: hX(g) = − ◦ g is injective.
Proof. Let c : C → X be such that hX(g)(c) = c ◦ g = 0. Since g is surjective, this means

that c = 0, hence hX(g) is injective.

Step 2: hX(f) ◦ hX(g) = 0.
Proof. Given c : C → X,

(
hX(f) ◦ hX(g)

)
(c) = c ◦ g ◦ f = 0, since g ◦ f = 0.

Final Step: Ker(hX(f)) = Im(hX(g)).
Proof. The last step already showed that Im(hX(g)) ⊂ Ker(hX(f)). Now we prove the

converse. Let b : B → X be such that hX(f)(b) = b ◦ f = 0. Since g is the cokernel of f , we
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have the following diagram:

CA B
f // g //

X

b

��

=0

$$

∃! b

zz

which shows that b = b ◦ g ∈ Im(hX(g)), as we wanted. �

(10.5) Example of Hom functors.– It is well–known that Hom functors are not right
exact. Let us see the standard examples to demonstrate this fact. Consider the following
short exact sequence in Ab:

0→ Z µ2−→ Z p−→ Z/2Z→ 0,

where µ2(a) = 2a is multiplication by 2.

Apply the covariant functor hZ/2Z = Hom(Z/2Z,−) to get

0→ Hom(Z/2Z,Z)→ Hom(Z/2Z,Z)→ Hom(Z/2Z,Z/2Z)→ 0.

Note that there are no non–zero group homomorphisms from Z/2Z to Z, and Hom(Z/2Z,Z/2Z) ∼=
Z/2Z. Hence Hom(Z/2Z,Z) = {0}, and the above sequence simplifies to:

0→ 0→ 0→ Z/2Z→ 0,

which is clearly not exact at Z/2Z.

In the contravariant case, let us apply hZ = Hom(−,Z) to the same short exact sequence.
We get:

0→ Hom(Z/2Z,Z)→ Hom(Z,Z)
−◦µ2−→ Hom(Z,Z)→ 0.

Again, the sequence simplifies to

0→ 0→ Z ·2−→ Z→ 0,

and the last map is clearly not surjective.


