
LECTURE 11

(11.0) Left and right exact functors.– Recall that last time we introducted the notion
of an exact sequence, and defined left/right exact functors F : A → B between two abelian

categories A and B. Thus, for every short exact sequence 0→ X
f−→ Y

g−→ Z → 0 in A:

• Covariant case.

Left exact: 0→ F (X)
F (f)−→ F (Y )

F (g)−→ F (Z) is exact.

Right exact: F (X)
F (f)−→ F (Y )

F (g)−→ F (Z)→ 0 is exact.

• Contravariant case.

Left exact: 0→ G(Z)
G(g)−→ G(Y )

G(f)−→ G(X) is exact.

Right exact: G(Z)
G(g)−→ G(Y )

G(f)−→ G(X)→ 0 is exact.

We prove that for any X ∈ A (abelian category), hX and hX are both left exact functors
A → Ab. We saw some examples to demonstrate that they are not necessarily (right) exact.

(11.1) Tensor product I.– The most typical example of a functor which is right exact,
but not necessarily left exact comes from tensor products. In this course, we will mostly be
concerned with tensor product of modules over a commutative ring.

Let A be a unital, commutative ring. Let A-mod be the category of A–modules. It is
an abelian category (see §9.4). Recall that for a commutative ring, we do not distinguish
between left/right modules. Note that the Hom–functors for this category take values in
A-mod again. That is, given M,N ∈ A-mod, HomA(M,N) is naturally an A–module, with
scalar multiplication given by:

f ∈ HomA(M,N), a ∈ A  (a · f)(m) := f(am) = af(m), ∀ m ∈M.

Definition. Let M,N,P be three A–modules. An A–bilinear map f : M ×N → P is a set
map such that (i) for every m ∈M , f(m,−) : N → P is an A–module homomorphism, and
(ii) for every n ∈ N , f(−, n) : M → P is an A–module homomorphism. More explicitly, the
following equations must hold for every a1, a2 ∈ A, m,m1,m2 ∈M and n, n1, n2 ∈ N :

f(a1m1+a2m2, n) = a1f(m1, n)+a2f(m2, n), f(m, a1n1+a2n2) = a1f(m,n1)+a2f(m,n2).

Let us denote the set of all A–bilinear maps M ×N → P by BilinearA(M,N ;P ). This set
also has a structure of an A–module (see Remark below).

Warning. BilinearA(M,N ;P ) 6= HomA(M ×N,P ). Think of the dot product as a typical
example of an R–bilinear map Rn × Rn → R.
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Remark. We have the following equality:

BilinearA(M,N ;P ) = HomA(M,HomA(N,P )).

This makes it clear that the set BilinearA(M,N ;P ) has an A–module structure. Also,
note that for a bilinear f : M × N → P and an A–linear g : P → Q, the composition
g ◦ f : M ×N → Q is again A–bilinear.

BilinearA(M,N ;P )× HomA(P,Q)
◦−→ BilinearA(M,N ;Q).

(11.2) Tensor product II.– Let M,N ∈ A-mod, and consider the following (covariant)
functor:

TM,N : A-mod→ A-mod, P 7→ TM,N(P ) := BilinearA(M,N ;P ).

On morphisms: g : P → Q is mapped to TM,N(g) = g ◦ −.

Definition. If TM,N is representable, the object representing it is denoted by M⊗AN called
the tensor product of M and N (over A). Often, we omit the subscript A, and just write
M ⊗N , if the ring in question is clear from the context.

In more detail, M ⊗A N is an A–module together with an A–bilinear map i : M × N →
M ⊗A N , such that the following universal property holds.

Universal property of tensor product. For every P ∈ A-mod, and an A–bilinear map f :

M × N → P , there exists a unique A–linear map f̃ : M ⊗A N → P making the following
diagram commute:

M ×N M ⊗A N

P

i //

f

$$

f̃

��

(11.3) Construction of tensor product.– Now we give a construction of tensor product,

to make sure that it exists. Let M,N ∈ A-mod. Let T̃ be the free A–module generated over

the set of symbols {t(m,n) : m ∈ M,n ∈ N}. That is, a typical element of T̃ is a finite
linear expression:

T̃ =

 ∑
(m,n)∈M×N

am,nt(m,n) : am,n ∈ A are all zero, except for finitely many

 .

Thus, T̃ is naturally an A–module. It is the direct sum of M ×N many copies of A.

Let K ⊂ T̃ be the A–submodule generated by following elements:
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• t(a1m1 + a2m2, n) − a1t(m1, n) − a2t(m2, n), for every a1, a2 ∈ A, m1,m2 ∈ M and
n ∈ N .

• t(m, a1n1 + a2n2) − a1t(m,n1) − a2t(m,n2), for every a1, a2 ∈ A, m ∈ M and
n1, n2 ∈ N .

Define T := T̃ /K. We have an A–bilinear map i : M × N → T sending (m,n) 7→
t(m,n) + K.

Proposition. T together with the A–bilinear map i : M × N → T satisfies the universal
property of the tensor product of M and N over A. It will be denoted by M ⊗A N , after the
proof is complete.

Proof. Let P ∈ A-mod and let f : M × N → P be an A–bilinear map. Viewing it as a

set map, we get a unique A–linear map F : T̃ → P such that F ◦ i = f . Here, we are using

the same letter to denote the (set) map M × N → T̃ , defined as: i(m,n) = t(m,n). The
A–linear map F is thus given by: F (t(m,n)) = f(m,n).

It remains to show that F : T̃ → P factors through K. That is F (k) = 0 for every k ∈ K.
Note that since F is, by definition, A–linear, it suffices to check F (k) = 0, when k is one of
the generators listed above.

When k = t(a1m1 + a2m2, n)− a1t(m1, n)− a2t(m2, n), we get

F (k) = F (t(a1m1 + a2m2, n))− a1F (t(m1, n))− a2F (t(m2, n))

= f(a1m1 + a2m2, n)− a1f(m1, n)− a2f(m2, n) = 0,

by bilinearity of f . Similarly for the other type of generator of k, we can easily see that

F (k) = 0. Thus, F factors through a unique morphism f̃ : T → P , sending the coset
t(m,n) + K to f(m,n). This proves that T satisfies the universal property written in §11.2
above. �

Remark. The module constructed in the previous section will be denoted by M ⊗A N . We
use the notation m ⊗ n to mean i(m,n), where i : M × N → M ⊗A N is the canonical
bilinear map. Informally speaking, M ⊗A N consists of finite linear expressions of the form
p∑

i=1

mi ⊗ ni, which are manipulated according to the following rules:

• (m1 + m2)⊗ n = m1 ⊗ n + m2 ⊗ n, for every m1,m2 ∈M and n ∈ N .
• m⊗ (n1 + n2) = m⊗ n1 + m⊗ n2, for every m ∈M and n1, n2 ∈ N .
• (am)⊗ n = m⊗ (an), for every m ∈M , n ∈ N and a ∈ A.


