LECTURE 11

(11.0) Left and right exact functors.— Recall that last time we introducted the notion
of an exact sequence, and defined left /right exact functors F' : A — B between two abelian

categories A and B. Thus, for every short exact sequence 0 — X Ly 472 50 A

e Covariant case.

Left exact: 0— F(X) ity F(Y) ) F(Z) is exact.

Right exact: F(X) s F(Y) s} F(Z) — 0 is exact.

o Contravariant case.

Left exact: 0— G(Z) “9) G(Y) o) G(X) is exact.

Right exact: G(2) &t} G(Y) “n G(X) — 0 is exact.
We prove that for any X € A (abelian category), h* and hx are both left exact functors
A — Ab. We saw some examples to demonstrate that they are not necessarily (right) exact.

(11.1) Tensor product I.— The most typical example of a functor which is right exact,
but not necessarily left exact comes from tensor products. In this course, we will mostly be
concerned with tensor product of modules over a commutative ring.

Let A be a unital, commutative ring. Let A-mod be the category of A-modules. It is
an abelian category (see §9.4). Recall that for a commutative ring, we do not distinguish
between left/right modules. Note that the Hom—functors for this category take values in
A-mod again. That is, given M, N € A-mod, Hom 4 (M, N) is naturally an A-module, with
scalar multiplication given by:

f € Homa(M,N),a € A ~ (a- f)(m):= f(am) =af(m), ¥ m e M.

Definition. Let M, N, P be three A—modules. An A-bilinear map f: M x N — P is a set
map such that (i) for every m € M, f(m,—): N — P is an A-module homomorphism, and
(ii) for every n € N, f(—,n) : M — P is an A-module homomorphism. More explicitly, the
following equations must hold for every a;,as € A, m, my,my € M and n,ny,ny € N:

flaymi+asma, n) = ay f(my,n)+asf(ms,n), f(m,aini+asns) = ay f(m,ny)+as f(m,ns).

Let us denote the set of all A-bilinear maps M x N — P by Bilinear4(M, N; P). This set
also has a structure of an A-module (see Remark below).

Warning. Bilinears(M, N; P) # Homu(M x N, P). Think of the dot product as a typical
example of an R-bilinear map R"” x R” — R.
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Remark. We have the following equality:
Bilinear o(M, N; P) = Hom4 (M, Homy4 (N, P)).

This makes it clear that the set Bilinears(M, N; P) has an A-module structure. Also,
note that for a bilinear f : M x N — P and an A-linear g : P — @, the composition
gof: M x N — (@ is again A-bilinear.

Bilinear 4 (M, N; P) x Hom4(P, Q) — Bilinear (M, N; Q).

(11.2) Tensor product II.— Let M, N € A-mod, and consider the following (covariant)
functor:

Ty N+ A-mod — A-mod, P — Ty n(P) := Bilinear (M, N; P).
On morphisms: ¢ : P — @ is mapped to Ty n(g) = go —.

Definition. If T}, y is representable, the object representing it is denoted by M ® 4 N called
the tensor product of M and N (over A). Often, we omit the subscript A, and just write
M ® N, if the ring in question is clear from the context.

In more detail, M ® 4 N is an A-module together with an A-bilinear map ¢ : M x N —
M ®4 N, such that the following universal property holds.

Universal property of tensor product. For every P € A-mod, and an A-bilinear map f :
M x N — P, there exists a unique A-linear map f : M ® 4 N — P making the following
diagram commute:

i

M x N

M & 4 N

f

(11.3) Construction of tensor product.— Now we give a construction of tensor product,
to make sure that it exists. Let M, N € A-mod. Let T be the free A-module generated over
the set of symbols {t(m,n) : m € M,n € N}. That is, a typical clement of T is a finite
linear expression:

T = Z Amat(m,n) : apy, € A are all zero, except for finitely many
(mn)eEM XN

Thus, T is naturally an A-module. It is the direct sum of M x N many copies of A.

Let K C T be the A-submodule generated by following elements:
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o t(aymy + agmag,n) — a;t(my,n) — ast(ma,n), for every ay,as € A, my,my € M and
neN.

o t(m,ainy + agng) — art(m,ny) — ast(m,ny), for every aj,ap € A, m € M and
niy,ng € N.

Define T := T/K. We have an A-bilinear map i : M x N — T sending (m,n)
t(m,n)+ K.

Proposition. T together with the A-bilinear map i : M x N — T satisfies the universal
property of the tensor product of M and N over A. It will be denoted by M ® 4 N, after the
proof is complete.

PROOF. Let P € A-mod and let f : M x N — P be an A-bilinear map. Viewing it as a
set map, we get a unique A-linear map F' : TP such that F'oi = f. Here, we are using
the same letter to denote the (set) map M x N — T, defined as: i(m,n) = t(m,n). The
A-linear map F' is thus given by: F(t(m,n)) = f(m,n).

It remains to show that F': T — P factors through K. That is F (k) =0 for every k € K.
Note that since F' is, by definition, A-linear, it suffices to check F(k) = 0, when k is one of
the generators listed above.

When k = t(aymy 4+ agma, n) — a1t(my,n) — ast(ms, n), we get

F(k) = F(t(aymy + agma,n)) — a1 F(t(mq,n)) — asF(t(mg,n))
= f(armi + agma,n) — ay f(mi,n) — asf(ma,n) =0,
by bilinearity of f. Similarly for the other type of generator of k, we can easily see that
F(k) = 0. Thus, F factors through a unique morphism f : 7" — P, sending the coset

t(m,n) + K to f(m,n). This proves that T satisfies the universal property written in §11.2
above. 0

Remark. The module constructed in the previous section will be denoted by M ®4 N. We
use the notation m ® n to mean i(m,n), where i : M x N — M ®4 N is the canonical

bilinear map. Informally speaking, M ®4 N consists of finite linear expressions of the form
p

Z m; ® n;, which are manipulated according to the following rules:

i=1
e (my +my) ®n =my ®n+ my ®n, for every my, mg € M and n € N.
e m® (ng +ng) =m®n; +m® ny, for every m € M and nq,ny € N.
e (am)®@n=m® (an), for every m € M, n € N and a € A.



