LECTURE 11

(11.0) Left and right exact functors.- Recall that last time we introducted the notion of an exact sequence, and defined left/right exact functors $F: \mathcal{A} \rightarrow \mathcal{B}$ between two abelian categories \mathcal{A} and \mathcal{B}. Thus, for every short exact sequence $0 \rightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \rightarrow 0$ in \mathcal{A} :

- Covariant case.

$$
\text { Left exact: } \quad 0 \rightarrow F(X) \xrightarrow{F(f)} F(Y) \xrightarrow{F(g)} F(Z) \text { is exact. }
$$

$$
\text { Right exact: } \quad F(X) \xrightarrow{F(f)} F(Y) \xrightarrow{F(g)} F(Z) \rightarrow 0 \text { is exact. }
$$

- Contravariant case.

Left exact: $\quad 0 \rightarrow G(Z) \xrightarrow{G(g)} G(Y) \xrightarrow{G(f)} G(X)$ is exact.
Right exact: $\quad G(Z) \xrightarrow{G(g)} G(Y) \xrightarrow{G(f)} G(X) \rightarrow 0$ is exact.
We prove that for any $X \in \mathcal{A}$ (abelian category), h^{X} and h_{X} are both left exact functors $\mathcal{A} \rightarrow \mathbf{A b}$. We saw some examples to demonstrate that they are not necessarily (right) exact.
(11.1) Tensor product I.- The most typical example of a functor which is right exact, but not necessarily left exact comes from tensor products. In this course, we will mostly be concerned with tensor product of modules over a commutative ring.

Let A be a unital, commutative ring. Let A-mod be the category of A-modules. It is an abelian category (see $\S 9.4$). Recall that for a commutative ring, we do not distinguish between left/right modules. Note that the Hom-functors for this category take values in A-mod again. That is, given $M, N \in A$-mod, $\operatorname{Hom}_{A}(M, N)$ is naturally an A-module, with scalar multiplication given by:

$$
f \in \operatorname{Hom}_{A}(M, N), a \in A \quad \rightsquigarrow \quad(a \cdot f)(m):=f(a m)=a f(m), \forall m \in M .
$$

Definition. Let M, N, P be three A-modules. An A-bilinear map $f: M \times N \rightarrow P$ is a set map such that (i) for every $m \in M, f(m,-): N \rightarrow P$ is an A-module homomorphism, and (ii) for every $n \in N, f(-, n): M \rightarrow P$ is an A-module homomorphism. More explicitly, the following equations must hold for every $a_{1}, a_{2} \in A, m, m_{1}, m_{2} \in M$ and $n, n_{1}, n_{2} \in N$:
$f\left(a_{1} m_{1}+a_{2} m_{2}, n\right)=a_{1} f\left(m_{1}, n\right)+a_{2} f\left(m_{2}, n\right), \quad f\left(m, a_{1} n_{1}+a_{2} n_{2}\right)=a_{1} f\left(m, n_{1}\right)+a_{2} f\left(m, n_{2}\right)$.
Let us denote the set of all A-bilinear maps $M \times N \rightarrow P$ by $\operatorname{Bilinear}_{A}(M, N ; P)$. This set also has a structure of an A-module (see Remark below).

Warning. Bilinear $_{A}(M, N ; P) \neq \operatorname{Hom}_{A}(M \times N, P)$. Think of the dot product as a typical example of an \mathbb{R}-bilinear map $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Remark. We have the following equality:

$$
\operatorname{Bilinear}_{A}(M, N ; P)=\operatorname{Hom}_{A}\left(M, \operatorname{Hom}_{A}(N, P)\right)
$$

This makes it clear that the set $\operatorname{Bilinear}_{A}(M, N ; P)$ has an A-module structure. Also, note that for a bilinear $f: M \times N \rightarrow P$ and an A-linear $g: P \rightarrow Q$, the composition $g \circ f: M \times N \rightarrow Q$ is again A-bilinear.

$$
\operatorname{Bilinear}_{A}(M, N ; P) \times \operatorname{Hom}_{A}(P, Q) \xrightarrow{\circ} \operatorname{Bilinear}_{A}(M, N ; Q) .
$$

(11.2) Tensor product II.- Let $M, N \in A$-mod, and consider the following (covariant) functor:

$$
T_{M, N}: A-\bmod \rightarrow A-\bmod , \quad P \mapsto T_{M, N}(P):=\operatorname{Bilinear}_{A}(M, N ; P)
$$

On morphisms: $g: P \rightarrow Q$ is mapped to $T_{M, N}(g)=g \circ-$.

Definition. If $T_{M, N}$ is representable, the object representing it is denoted by $M \otimes_{A} N$ called the tensor product of M and N (over A). Often, we omit the subscript A, and just write $M \otimes N$, if the ring in question is clear from the context.

In more detail, $M \otimes_{A} N$ is an A-module together with an A-bilinear map $i: M \times N \rightarrow$ $M \otimes_{A} N$, such that the following universal property holds.

Universal property of tensor product. For every $P \in A$-mod, and an A-bilinear map f : $M \times N \rightarrow P$, there exists a unique A-linear map $\tilde{f}: M \otimes_{A} N \rightarrow P$ making the following diagram commute:

(11.3) Construction of tensor product.- Now we give a construction of tensor product, to make sure that it exists. Let $M, N \in A$-mod. Let \widetilde{T} be the free A-module generated over the set of symbols $\{t(m, n): m \in M, n \in N\}$. That is, a typical element of \widetilde{T} is a finite linear expression:

$$
\widetilde{T}=\left\{\sum_{(m, n) \in M \times N} a_{m, n} t(m, n): a_{m, n} \in A \text { are all zero, except for finitely many }\right\}
$$

Thus, \widetilde{T} is naturally an A-module. It is the direct sum of $M \times N$ many copies of A.
Let $K \subset \widetilde{T}$ be the A-submodule generated by following elements:

- $t\left(a_{1} m_{1}+a_{2} m_{2}, n\right)-a_{1} t\left(m_{1}, n\right)-a_{2} t\left(m_{2}, n\right)$, for every $a_{1}, a_{2} \in A, m_{1}, m_{2} \in M$ and $n \in N$.
- $t\left(m, a_{1} n_{1}+a_{2} n_{2}\right)-a_{1} t\left(m, n_{1}\right)-a_{2} t\left(m, n_{2}\right)$, for every $a_{1}, a_{2} \in A, m \in M$ and $n_{1}, n_{2} \in N$.

Define $T:=\widetilde{T} / K$. We have an A-bilinear map $i: M \times N \rightarrow T$ sending $(m, n) \mapsto$ $t(m, n)+K$.

Proposition. T together with the A-bilinear map $i: M \times N \rightarrow T$ satisfies the universal property of the tensor product of M and N over A. It will be denoted by $M \otimes_{A} N$, after the proof is complete.

Proof. Let $P \in A$-mod and let $f: M \times N \rightarrow P$ be an A-bilinear map. Viewing it as a set map, we get a unique A-linear map $F: \widetilde{T} \rightarrow P$ such that $F \circ i=f$. Here, we are using the same letter to denote the (set) map $M \times N \rightarrow \widetilde{T}$, defined as: $i(m, n)=t(m, n)$. The A-linear map F is thus given by: $F(t(m, n))=f(m, n)$.

It remains to show that $F: \widetilde{T} \rightarrow P$ factors through K. That is $F(k)=0$ for every $k \in K$. Note that since F is, by definition, A-linear, it suffices to check $F(k)=0$, when k is one of the generators listed above.

When $k=t\left(a_{1} m_{1}+a_{2} m_{2}, n\right)-a_{1} t\left(m_{1}, n\right)-a_{2} t\left(m_{2}, n\right)$, we get

$$
\begin{aligned}
F(k) & =F\left(t\left(a_{1} m_{1}+a_{2} m_{2}, n\right)\right)-a_{1} F\left(t\left(m_{1}, n\right)\right)-a_{2} F\left(t\left(m_{2}, n\right)\right) \\
& =f\left(a_{1} m_{1}+a_{2} m_{2}, n\right)-a_{1} f\left(m_{1}, n\right)-a_{2} f\left(m_{2}, n\right)=0,
\end{aligned}
$$

by bilinearity of f. Similarly for the other type of generator of k, we can easily see that $F(k)=0$. Thus, F factors through a unique morphism $\widetilde{f}: T \rightarrow P$, sending the coset $t(m, n)+K$ to $f(m, n)$. This proves that T satisfies the universal property written in $\S 11.2$ above.

Remark. The module constructed in the previous section will be denoted by $M \otimes_{A} N$. We use the notation $m \otimes n$ to mean $i(m, n)$, where $i: M \times N \rightarrow M \otimes_{A} N$ is the canonical bilinear map. Informally speaking, $M \otimes_{A} N$ consists of finite linear expressions of the form $\sum_{i=1}^{p} m_{i} \otimes n_{i}$, which are manipulated according to the following rules:

- $\left(m_{1}+m_{2}\right) \otimes n=m_{1} \otimes n+m_{2} \otimes n$, for every $m_{1}, m_{2} \in M$ and $n \in N$.
- $m \otimes\left(n_{1}+n_{2}\right)=m \otimes n_{1}+m \otimes n_{2}$, for every $m \in M$ and $n_{1}, n_{2} \in N$.
- $(a m) \otimes n=m \otimes(a n)$, for every $m \in M, n \in N$ and $a \in A$.

