
LECTURE 12

(12.0) Tensor products.– Recall that last time we defined and constructed the tensor prod-
uct of two modules M and N over a commutative ring A, denoted by M⊗AN . Abstractly, it
is the unique A–module which comes together with an A–bilinear map i : M×N →M⊗AN ,
satisfying a universal property:

For every P ∈ A-mod, and an A–bilinear map f : M × N → P , there exists a unique

A–linear map f̃ : M ⊗A N → P making the following diagram commute:

M ×N M ⊗A N

P

i //

f

$$

f̃

��

In less words, M ⊗A N is defined by:

HomA(M ⊗A N,P )
∼−→ BilinearA(M,N ;P ).

Concretely, M ⊗AN consists of finite linear expressions of the form

p∑
i=1

mi⊗ni, which are

manipulated according to the following rules:

• (m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n, for every m1,m2 ∈M and n ∈ N .
• m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2, for every m ∈M and n1, n2 ∈ N .
• (am)⊗ n = m⊗ (an), for every m ∈M , n ∈ N and a ∈ A.

Now we will see some examples, and functorial properties of tensor products.

(12.1) Elementary properties of tensor product.– We will always use the universal
property of tensor product to prove its properties.

Proposition.

(1) For every M,N ∈ A-mod, M ⊗A N ∼= N ⊗AM .
(2) A⊗A N ∼= N for every N ∈ A-mod.
(3) If a ⊂ A is an ideal of A, then

A/a⊗A N ∼= N/aN.

Proof. (1). Consider the flip map σ : M ×N → N ×M . Let i : M ×N → M ⊗A N and
j : N ×M → N ⊗AM be the canonical A–bilinear maps. It is clear that j ◦ σ : M ×N →
N ⊗A M is A–bilinear, hence gives rise to an A–linear map f : M ⊗A N → N ⊗A M given
by: f(m⊗n) = n⊗m. Similarly, using i ◦ σ−1 : N ×M →M ⊗AN , we conclude that there
is a unique A–linear map g : N ⊗A M → M ⊗A N , given by g(n ⊗m) = m ⊗ n. Clearly f
and g are inverse to each other, hence M ⊗A N ∼= N ⊗AM .
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(2). Note that if f : A × N → P is any A–bilinear map, then we get an A–linear map
f : N → P as f(n) = f(1, n). The bilinear map f is uniquely determined by f , since
f(a, n) = af(1, n) = af(n) = f(an). Hence,

BilinearA(A,N ;P )
∼−→ HomA(N,P ), f 7→ f.

So, N satisfies the universal property of A⊗A N .

(3). The argument is same as the one for (2). Given a bilinear map f : A/a × N → P ,
we use it to define f : N → P as f(n) = f(1 + a, n). It remains to be shown that f factors
through the submodule

aN = {an : a ∈ a, n ∈ N} ⊂ N.

That is, f(an) = 0 for every a ∈ a and n ∈ N . This is true because (we are using
x = x+ a ∈ A/a):

f(an) = f(1, an) = af(1, n) = f(a, n) = f(0, n) = 0.

Denoting by the same symbol, the resulting A–linear map f : N/aN → P , we obtain the
isomorphism (same argument as before, hence omitted):

BilinearA(A/a, N ;P )
∼−→ HomA(N/aN,P ), f 7→ f,

which proves (3). �

(12.2) Examples.– The following examples of tensor product follow immediately from
Proposition 12.1.

I. Let m,n ∈ Z≥2. Then (Z/mZ) ⊗Z (Z/nZ) ∼= Z/ gcd(m,n)Z. This is because we use (3)
of the proposition above, and:

(Z/nZ)/m(Z/nZ) ∼= Z/(m,n) = Z/ gcd(m,n)Z.

Here (m,n) is the ideal of Z generated by m and n, which is same as gcd(m,n)Z by Euclidean
algorithm.

II. Let K be a field and consider the commutative ring K[x, y]. Let K[x] be viewed as an
A–module via K[x] ∼= K[x, y]/(y) (similarly K[y]). Then:

K[x]⊗K[x,y] K[y] ∼= K = K[x, y]/(x, y).

III. If A = K is a field, M,N ∈ A-mod are K–vector spaces. Let {mi}i∈I and {nj}j∈J be
bases of M and N resp. Then M ⊗K N is the vector space with basis {mi ⊗ nj}(i,j)∈I×J .

(12.3) Functorial properties of tensor product.– Again, let A be a unital commutative
ring.

Lemma. Given A–linear morphisms M
f−→ M ′ and N

g−→ N ′, there is a unique A–linear
map f ⊗ g : M ⊗N →M ′ ⊗N ′ such that (f ⊗ g)(m⊗ n) = f(m)⊗ g(n).

Moreover, if M ′ f ′−→M ′′ and N ′
g′−→ N ′′ are two more morphisms, then:

(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g).
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The proof is left as an exercise. All you have to do is apply the universal property to the
composition:

M ×N M ′ ×N ′ M ′ ⊗N ′
(f,g)

// i′ //

where i′ is the canonical bilinear map M ′ ×N ′ →M ′ ⊗N ′.

Using this lemma, we are able to view tensoring with a fixed module as a functor. Let
N ∈ A-mod be fixed.

Corollary. We have an additive functor −⊗N : A-mod→ A-mod.

Proof. This functor maps M ∈ A-mod to M ⊗ N , and a morphism f : M → M ′ is
mapped to f ⊗ IdN . By the lemma above, it is clear that IdM ⊗ IdN = IdM⊗N , and that
(g ◦ f)⊗ IdN = (g ⊗ IdN) ◦ (f ⊗ IdN), proving that −⊗N is a functor.

To prove that it is additive, we need to show that

−⊗ IdN : HomA(M1,M2)→ HomA(M1 ⊗N,M2 ⊗N)

is a group homomorphism. It is clear by the lemma that 0⊗IdN = 0. Now let f, g : M1 →M2.
Then for every m ∈M and n ∈ N , we have:

((f1 + f2)⊗ IdN) (m⊗ n) = (f1(m) + f2(m))⊗ n,

((f1 ⊗ IdN) + (f2 ⊗ IdN)) (m⊗ n) = f1(m)⊗ n+ f2(m)⊗ n.
which are equal. Hence (f1 + f2)⊗ IdN = (f1 ⊗ IdN) + (f2 ⊗ IdN). �

(12.4) Tensor-Hom adjointness.– The way we defined the tensor product, the following
isomorphism is clear:

HomA(M ⊗N,P )
∼−→ BilinearA(M,N ;P ) = HomA(M,HomA(N,P )).

Let us keep N ∈ A-mod fixed, and denote the inverse of this bijection by βM,P (to be
consistent with our conventions). Note that for any ξ : M → HomA(N,P ), βM,P (ξ) is given
by:

βM,P (ξ) : m⊗ n 7→ ξ(m)(n).

Proposition. βM,P is natural in M and P . Hence, we have a pair of adjoint functors
(−⊗N,HomA(N,−)).

Proof. We only need to check that given any two morphisms M
f−→M ′ and P ′

g−→ P the
following diagram commutes:

HomA(M,HomA(N,P )) HomA(M ⊗N,P )

HomA(M ′,HomA(N,P ′)) HomA(M ′ ⊗N,P ′)

βM,P //

βM′,P ′
//

L

OO

R

OO
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So, let ξ : M ′ → Hom(N,P ′) be given. Following it through the composition βM,P ◦ L and
evaluating on m⊗ n gives:

βM,P (L(ξ))(m⊗ n) = L(ξ)(m)(n) = g(ξ(f(m))(n)).

Similarly, R ◦ βM ′,P ′ sends ξ to the morphism which evaluated on m⊗ n yields:

R(βM ′,P ′(ξ))(m⊗ n) = g(βM ′,P ′(ξ)(f(m)⊗ n)) = g(ξ(f(m))(n)).

This finishes the proof of naturality of β. �

(12.5) Exactness of tensor functor.– The following simple example shows that tensor is
not left exact.

Example. Consider the short exat sequence of abelian groups (Z–modules):

0→ Z ·2−→ Z π−→ Z/2Z→ 0.

Tensoring with −⊗ Z/2Z yields (recall A⊗A N ∼= N):

0→ Z/2Z 0−→ Z/2Z Id−→ Z/2Z→ 0

which is not exact at the first Z/2Z. Basically, tensoring could turn an injective morphism
to zero morphism, which is the reason it is not left exact.

Theorem. For any N ∈ A-mod, −⊗A N : A-mod→ A-mod is right exact.

Proof. We need to prove that given an exact sequence 0 → M1
f−→ M2

g−→ M3 → 0 of
A–modules, the following sequence is also exact:

M1 ⊗N M2 ⊗N M3 ⊗N 0
f⊗Id // g⊗Id // //

g ⊗ Id is surjective. This is clear since each simple tensor m3 ⊗ n ∈ M3 ⊗N is of the form
g(m2)⊗n = (g⊗ Id)(m2⊗n) for some m2 ∈M2, since g is assumed to be surjective. Hence,
m3⊗n ∈ Im(g⊗ Id). As M3⊗N is generated as an A–module by such element we conclude
that g ⊗ Id is surjective.

Im(f ⊗ Id) ⊂ Ker(g ⊗ Id). This is again clear, since by Lemma 12.3, (g ⊗ Id) ◦ (f ⊗ Id) =
(g ◦ f)⊗ Id = 0.

It remains to show that Ker(g⊗ Id) = Im(f ⊗ Id). For this, note that g⊗ Id gives rise to a
well–defined A–linear map M2⊗N/ Im(f⊗Id)→M3⊗N , by the previous part, which we will

denote by g̃. We are going to construct an A–linear map h̃ : M3⊗N →M2⊗N/ Im(f ⊗ Id)
and show that g̃ and h are inverse to each other.

Consider h : M3 ×N →M2 ⊗N/ Im(f ⊗ Id) given by

h(m3, n) = m2 ⊗ n (mod Im(f ⊗ Id)),

where m2 ∈ M2 is chosen so that g(m2) = m3. Note that a different choice m′2 will differ
from m2 by an element of Ker(g) = Im(f), so modulo Im(f ⊗ Id), m2 ⊗ n ≡ m′2 ⊗ n. This
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proves that h is well–defined.

It is left to the reader to check that h is A–bilinear, and hence gives rise to h̃ : M3⊗N →
M2 ⊗ N/ Im(f ⊗ Id). By their definition, one can easily verify that g̃ and h̃ are inverse to
each other. Hence, g̃ sets up an isomorphism

g̃ : M2 ⊗N/ Im(f ⊗ Id)
∼−→M3 ⊗N,

proving that Im(f ⊗ Id) is indeed the kernel of g ⊗ Id. �

(12.6) A more hands-off proof.– Let A and B be two abelian categories, and assume

that we have a pair of adjoint functors (F,G): A B
F //

G
oo .

Exercise. Prove that F is right exact, and G is left exact.

Thus, Theorem 12.5 can be obtained from “Tensor-Hom adjointness” Proposition 12.4.


