LECTURE 12

(12.0) Tensor products.- Recall that last time we defined and constructed the tensor product of two modules M and N over a commutative ring A, denoted by $M \otimes_{A} N$. Abstractly, it is the unique A-module which comes together with an A-bilinear map $i: M \times N \rightarrow M \otimes{ }_{A} N$, satisfying a universal property:

For every $P \in A$-mod, and an A-bilinear map $f: M \times N \rightarrow P$, there exists a unique A-linear map $\tilde{f}: M \otimes_{A} N \rightarrow P$ making the following diagram commute:

In less words, $M \otimes_{A} N$ is defined by:

$$
\operatorname{Hom}_{A}\left(M \otimes_{A} N, P\right) \xrightarrow{\sim} \operatorname{Bilinear}_{A}(M, N ; P) .
$$

Concretely, $M \otimes_{A} N$ consists of finite linear expressions of the form $\sum_{i=1}^{p} m_{i} \otimes n_{i}$, which are manipulated according to the following rules:

- $\left(m_{1}+m_{2}\right) \otimes n=m_{1} \otimes n+m_{2} \otimes n$, for every $m_{1}, m_{2} \in M$ and $n \in N$.
- $m \otimes\left(n_{1}+n_{2}\right)=m \otimes n_{1}+m \otimes n_{2}$, for every $m \in M$ and $n_{1}, n_{2} \in N$.
- $(a m) \otimes n=m \otimes(a n)$, for every $m \in M, n \in N$ and $a \in A$.

Now we will see some examples, and functorial properties of tensor products.
(12.1) Elementary properties of tensor product.- We will always use the universal property of tensor product to prove its properties.

Proposition.

(1) For every $M, N \in A$-mod, $M \otimes_{A} N \cong N \otimes_{A} M$.
(2) $A \otimes_{A} N \cong N$ for every $N \in A$-mod.
(3) If $\mathfrak{a} \subset A$ is an ideal of A, then

$$
A / \mathfrak{a} \otimes_{A} N \cong N / \mathfrak{a} N
$$

Proof. (1). Consider the flip map $\sigma: M \times N \rightarrow N \times M$. Let $i: M \times N \rightarrow M \otimes_{A} N$ and $j: N \times M \rightarrow N \otimes_{A} M$ be the canonical A-bilinear maps. It is clear that $j \circ \sigma: M \times N \rightarrow$ $N \otimes_{A} M$ is A-bilinear, hence gives rise to an A-linear map $f: M \otimes_{A} N \rightarrow N \otimes_{A} M$ given by: $f(m \otimes n)=n \otimes m$. Similarly, using $i \circ \sigma^{-1}: N \times M \rightarrow M \otimes_{A} N$, we conclude that there is a unique A-linear map $g: N \otimes_{A} M \rightarrow M \otimes_{A} N$, given by $g(n \otimes m)=m \otimes n$. Clearly f and g are inverse to each other, hence $M \otimes_{A} N \cong N \otimes_{A} M$.
(2). Note that if $f: A \times N \rightarrow P$ is any A-bilinear map, then we get an A-linear map $\bar{f}: N \rightarrow P$ as $\bar{f}(n)=f(1, n)$. The bilinear map f is uniquely determined by \bar{f}, since $f(a, n)=a f(1, n)=a \bar{f}(n)=\bar{f}(a n)$. Hence,

$$
\operatorname{Bilinear}_{A}(A, N ; P) \xrightarrow{\sim} \operatorname{Hom}_{A}(N, P), \quad f \mapsto \bar{f}
$$

So, N satisfies the universal property of $A \otimes_{A} N$.
(3). The argument is same as the one for (2). Given a bilinear map $f: A / \mathfrak{a} \times N \rightarrow P$, we use it to define $\bar{f}: N \rightarrow P$ as $\bar{f}(n)=f(1+\mathfrak{a}, n)$. It remains to be shown that \bar{f} factors through the submodule

$$
\mathfrak{a} N=\{a n: a \in \mathfrak{a}, n \in N\} \subset N .
$$

That is, $\bar{f}(a n)=0$ for every $a \in \mathfrak{a}$ and $n \in N$. This is true because (we are using $\bar{x}=x+\mathfrak{a} \in A / \mathfrak{a}):$

$$
\bar{f}(a n)=f(\overline{1}, a n)=a f(\overline{1}, n)=f(\bar{a}, n)=f(0, n)=0 .
$$

Denoting by the same symbol, the resulting A-linear map $\bar{f}: N / \mathfrak{a} N \rightarrow P$, we obtain the isomorphism (same argument as before, hence omitted):

$$
\operatorname{Bilinear}_{A}(A / \mathfrak{a}, N ; P) \xrightarrow{\sim} \operatorname{Hom}_{A}(N / \mathfrak{a} N, P), \quad f \mapsto \bar{f}
$$

which proves (3).
(12.2) Examples.- The following examples of tensor product follow immediately from Proposition 12.1.
I. Let $m, n \in \mathbb{Z}_{>2}$. Then $(\mathbb{Z} / m \mathbb{Z}) \otimes_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z}) \cong \mathbb{Z} / \operatorname{gcd}(m, n) \mathbb{Z}$. This is because we use (3) of the proposition above, and:

$$
(\mathbb{Z} / n \mathbb{Z}) / m(\mathbb{Z} / n \mathbb{Z}) \cong \mathbb{Z} /(m, n)=\mathbb{Z} / \operatorname{gcd}(m, n) \mathbb{Z}
$$

Here (m, n) is the ideal of \mathbb{Z} generated by m and n, which is same as $\operatorname{gcd}(m, n) \mathbb{Z}$ by Euclidean algorithm.
II. Let K be a field and consider the commutative ring $K[x, y]$. Let $K[x]$ be viewed as an A-module via $K[x] \cong K[x, y] /(y)$ (similarly $K[y]$). Then:

$$
K[x] \otimes_{K[x, y]} K[y] \cong K=K[x, y] /(x, y) .
$$

III. If $A=K$ is a field, $M, N \in A$-mod are K-vector spaces. Let $\left\{m_{i}\right\}_{i \in I}$ and $\left\{n_{j}\right\}_{j \in J}$ be bases of M and N resp. Then $M \otimes_{K} N$ is the vector space with basis $\left\{m_{i} \otimes n_{j}\right\}_{(i, j) \in I \times J}$.
(12.3) Functorial properties of tensor product.- Again, let A be a unital commutative ring.

Lemma. Given A-linear morphisms $M \xrightarrow{f} M^{\prime}$ and $N \xrightarrow{g} N^{\prime}$, there is a unique A-linear map $f \otimes g: M \otimes N \rightarrow M^{\prime} \otimes N^{\prime}$ such that $(f \otimes g)(m \otimes n)=f(m) \otimes g(n)$.

Moreover, if $M^{\prime} \xrightarrow{f^{\prime}} M^{\prime \prime}$ and $N^{\prime} \xrightarrow{g^{\prime}} N^{\prime \prime}$ are two more morphisms, then:

$$
\left(f^{\prime} \otimes g^{\prime}\right) \circ(f \otimes g)=\left(f^{\prime} \circ f\right) \otimes\left(g^{\prime} \circ g\right)
$$

The proof is left as an exercise. All you have to do is apply the universal property to the composition:

$$
M \times N \xrightarrow{(f, g)} M^{\prime} \times N^{\prime} \xrightarrow{i^{\prime}} M^{\prime} \otimes N^{\prime}
$$

where i^{\prime} is the canonical bilinear map $M^{\prime} \times N^{\prime} \rightarrow M^{\prime} \otimes N^{\prime}$.
Using this lemma, we are able to view tensoring with a fixed module as a functor. Let $N \in A-\bmod$ be fixed.

Corollary. We have an additive functor $-\otimes N: A-\bmod \rightarrow A$-mod.
Proof. This functor maps $M \in A-\bmod$ to $M \otimes N$, and a morphism $f: M \rightarrow M^{\prime}$ is mapped to $f \otimes \operatorname{Id}_{N}$. By the lemma above, it is clear that $\operatorname{Id}_{M} \otimes \operatorname{Id}_{N}=\operatorname{Id}_{M \otimes N}$, and that $(g \circ f) \otimes \operatorname{Id}_{N}=\left(g \otimes \operatorname{Id}_{N}\right) \circ\left(f \otimes \operatorname{Id}_{N}\right)$, proving that $-\otimes N$ is a functor.

To prove that it is additive, we need to show that

$$
-\otimes \operatorname{Id}_{N}: \operatorname{Hom}_{A}\left(M_{1}, M_{2}\right) \rightarrow \operatorname{Hom}_{A}\left(M_{1} \otimes N, M_{2} \otimes N\right)
$$

is a group homomorphism. It is clear by the lemma that $0 \otimes \operatorname{Id}_{N}=0$. Now let $f, g: M_{1} \rightarrow M_{2}$. Then for every $m \in M$ and $n \in N$, we have:

$$
\begin{gathered}
\left(\left(f_{1}+f_{2}\right) \otimes \operatorname{Id}_{N}\right)(m \otimes n)=\left(f_{1}(m)+f_{2}(m)\right) \otimes n, \\
\left(\left(f_{1} \otimes \operatorname{Id}_{N}\right)+\left(f_{2} \otimes \operatorname{Id}_{N}\right)\right)(m \otimes n)=f_{1}(m) \otimes n+f_{2}(m) \otimes n
\end{gathered}
$$

which are equal. Hence $\left(f_{1}+f_{2}\right) \otimes \operatorname{Id}_{N}=\left(f_{1} \otimes \operatorname{Id}_{N}\right)+\left(f_{2} \otimes \operatorname{Id}_{N}\right)$.
(12.4) Tensor-Hom adjointness.- The way we defined the tensor product, the following isomorphism is clear:

$$
\operatorname{Hom}_{A}(M \otimes N, P) \xrightarrow{\sim} \operatorname{Bilinear}_{A}(M, N ; P)=\operatorname{Hom}_{A}\left(M, \operatorname{Hom}_{A}(N, P)\right) .
$$

Let us keep $N \in A$-mod fixed, and denote the inverse of this bijection by $\beta_{M, P}$ (to be consistent with our conventions). Note that for any $\xi: M \rightarrow \operatorname{Hom}_{A}(N, P), \beta_{M, P}(\xi)$ is given by:

$$
\beta_{M, P}(\xi): m \otimes n \mapsto \xi(m)(n) .
$$

Proposition. $\beta_{M, P}$ is natural in M and P. Hence, we have a pair of adjoint functors $\left(-\otimes N, \operatorname{Hom}_{A}(N,-)\right)$.

Proof. We only need to check that given any two morphisms $M \xrightarrow{f} M^{\prime}$ and $P^{\prime} \xrightarrow{g} P$ the following diagram commutes:

So, let $\xi: M^{\prime} \rightarrow \operatorname{Hom}\left(N, P^{\prime}\right)$ be given. Following it through the composition $\beta_{M, P} \circ L$ and evaluating on $m \otimes n$ gives:

$$
\beta_{M, P}(L(\xi))(m \otimes n)=L(\xi)(m)(n)=g(\xi(f(m))(n)) .
$$

Similarly, $R \circ \beta_{M^{\prime}, P^{\prime}}$ sends ξ to the morphism which evaluated on $m \otimes n$ yields:

$$
R\left(\beta_{M^{\prime}, P^{\prime}}(\xi)\right)(m \otimes n)=g\left(\beta_{M^{\prime}, P^{\prime}}(\xi)(f(m) \otimes n)\right)=g(\xi(f(m))(n))
$$

This finishes the proof of naturality of β.
(12.5) Exactness of tensor functor.- The following simple example shows that tensor is not left exact.

Example. Consider the short exat sequence of abelian groups (\mathbb{Z}-modules):

$$
0 \rightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0 .
$$

Tensoring with $-\otimes \mathbb{Z} / 2 \mathbb{Z}$ yields (recall $A \otimes_{A} N \cong N$):

$$
0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \xrightarrow{0} \mathbb{Z} / 2 \mathbb{Z} \xrightarrow{\mathrm{Id}} \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0
$$

which is not exact at the first $\mathbb{Z} / 2 \mathbb{Z}$. Basically, tensoring could turn an injective morphism to zero morphism, which is the reason it is not left exact.

Theorem. For any $N \in A-\bmod ,-\otimes_{A} N: A-\bmod \rightarrow A-\bmod$ is right exact.
Proof. We need to prove that given an exact sequence $0 \rightarrow M_{1} \xrightarrow{f} M_{2} \xrightarrow{g} M_{3} \rightarrow 0$ of A-modules, the following sequence is also exact:

$$
M_{1} \otimes N \xrightarrow{f \otimes \mathrm{Id}} M_{2} \otimes N \xrightarrow{g \otimes \mathrm{Id}} M_{3} \otimes N \longrightarrow 0
$$

$g \otimes \mathrm{Id}$ is surjective. This is clear since each simple tensor $m_{3} \otimes n \in M_{3} \otimes N$ is of the form $g\left(m_{2}\right) \otimes n=(g \otimes \mathrm{Id})\left(m_{2} \otimes n\right)$ for some $m_{2} \in M_{2}$, since g is assumed to be surjective. Hence, $m_{3} \otimes n \in \operatorname{Im}(g \otimes \mathrm{Id})$. As $M_{3} \otimes N$ is generated as an A-module by such element we conclude that $g \otimes \mathrm{Id}$ is surjective.
$\operatorname{Im}(f \otimes \mathrm{Id}) \subset \operatorname{Ker}(g \otimes \mathrm{Id})$. This is again clear, since by Lemma $12.3,(g \otimes \mathrm{Id}) \circ(f \otimes \mathrm{Id})=$ $(g \circ f) \otimes \mathrm{Id}=0$.

It remains to show that $\operatorname{Ker}(g \otimes \mathrm{Id})=\operatorname{Im}(f \otimes \mathrm{Id})$. For this, note that $g \otimes \mathrm{Id}$ gives rise to a well-defined A-linear map $M_{2} \otimes N / \operatorname{Im}(f \otimes \mathrm{Id}) \rightarrow M_{3} \otimes N$, by the previous part, which we will denote by \widetilde{g}. We are going to construct an A-linear map $\widetilde{h}: M_{3} \otimes N \rightarrow M_{2} \otimes N / \operatorname{Im}(f \otimes \operatorname{Id})$ and show that \widetilde{g} and h are inverse to each other.

Consider $h: M_{3} \times N \rightarrow M_{2} \otimes N / \operatorname{Im}(f \otimes \mathrm{Id})$ given by

$$
h\left(m_{3}, n\right)=m_{2} \otimes n(\bmod \operatorname{Im}(f \otimes \mathrm{Id}))
$$

where $m_{2} \in M_{2}$ is chosen so that $g\left(m_{2}\right)=m_{3}$. Note that a different choice m_{2}^{\prime} will differ from m_{2} by an element of $\operatorname{Ker}(g)=\operatorname{Im}(f)$, so modulo $\operatorname{Im}(f \otimes \operatorname{Id}), m_{2} \otimes n \equiv m_{2}^{\prime} \otimes n$. This
proves that h is well-defined.
It is left to the reader to check that h is A-bilinear, and hence gives rise to $\widetilde{h}: M_{3} \otimes N \rightarrow$ $M_{2} \otimes N / \operatorname{Im}(f \otimes \mathrm{Id})$. By their definition, one can easily verify that \widetilde{g} and \widetilde{h} are inverse to each other. Hence, \widetilde{g} sets up an isomorphism

$$
\widetilde{g}: M_{2} \otimes N / \operatorname{Im}(f \otimes \mathrm{Id}) \xrightarrow{\sim} M_{3} \otimes N,
$$

proving that $\operatorname{Im}(f \otimes \mathrm{Id})$ is indeed the kernel of $g \otimes \mathrm{Id}$.
(12.6) A more hands-off proof.- Let \mathcal{A} and \mathcal{B} be two abelian categories, and assume that we have a pair of adjoint functors $(F, G): \mathcal{A} \underset{G}{\stackrel{F}{\rightleftarrows}} \mathcal{B}$.
Exercise. Prove that F is right exact, and G is left exact.
Thus, Theorem 12.5 can be obtained from "Tensor-Hom adjointness" Proposition 12.4.

