LECTURE 14

(14.0) Category of complexes. – Let R be a ring and let $\mathcal{A} = R$ -mod be the abelian category of left R-modules. All the constructions and results of these notes work for any *abelian category*. However, to keep things concrete (i.e., so that we talk about "elements" of an object), we are going to narrow our attention to $\mathcal{A} = R$ -mod.

Definition. The category of cochain complexes over \mathcal{A} , denoted by $\mathbb{K}^{\bullet}(\mathcal{A})$, consists of following objects.

$$(C^{\bullet}, d^{\bullet}): \cdots \xrightarrow{d^{n-1}} C^n \xrightarrow{d^n} C^{n+1} \xrightarrow{d^{n+1}} \cdots$$

where,

- $C^n \in \mathcal{A}$ for every $n \in \mathbb{Z}$.
- $d^{n+1} \circ d^n = 0$ for every $n \in \mathbb{Z}$.

Morphisms from an object $(C^{\bullet}, d_C^{\bullet})$ to $(D^{\bullet}, d_D^{\bullet})$ consist of $\{f^n : C^n \to D^n\}_{n \in \mathbb{Z}}$ such that $d_D^n \circ f^n = f^{n+1} \circ d_C^n$.

Remarks.

- (1) The terminology is again borrowed from algebraic topology. For chain complexes, we put numbers in the subscript and they decrease from left to right. Their category is often denoted by $\mathbb{K}_{\bullet}(\mathcal{A})$. There is no conceptual difference between the two setting merely notational.
- (2) In some texts, it is assumed that cochain complexes are indexed by $\mathbb{Z}_{\geq 0}$ (i.e, they are bounded from left). When we get to injective resolutions, this will be the case, but for now our cochains are unbounded on both sides.
- (3) Abuse of notation. The morphisms d^n in the definition are called *differentials*. It is customary to drop the superscripts and write $d \circ d = 0$, if the index of the domain is implicitly clear. Similarly, we just say "let X^{\bullet} be a complex", instead of $(X^{\bullet}, d_X^{\bullet})$ to save some space.

(14.1) Category $\mathbb{K}^{\bullet}(\mathcal{A})$ continued.–

Proposition. The category $\mathbb{K}^{\bullet}(\mathcal{A})$ is abelian.

This proposition is proved using an argument similar to the one in §9.5. We merely record some of the observations made there, in the context of $\mathbb{K}^{\bullet}(\mathcal{A})$.

For two complexes X^{\bullet} and Y^{\bullet} in $\mathbb{K}^{\bullet}(\mathcal{A})$, the set of homomorphisms

$$\operatorname{Hom}_{\mathbb{K}^{\bullet}(\mathcal{A})}(X^{\bullet}, Y^{\bullet}) \subset \prod_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{A}}(X^{n}, Y^{n}).$$

is defined by the condition $d_Y^n \circ \alpha^n = \alpha^{n+1} \circ d_X^n$. So, it is naturally a subgroup.

For a morphism $\alpha^{\bullet} : X^{\bullet} \to Y^{\bullet}$, we define its kernel, image etc. component-wise. For instance, $K^{\bullet} = \text{Ker}(\alpha^{\bullet})$ is the following complex.

- $K^n = \operatorname{Ker}(\alpha^n : X^n \to Y^n).$
- By the commutativity of the following diagram, the differential of X^{\bullet} restricts to K^{\bullet} :

This type of argument was implicitly used in §9.6, but let us record it as a lemma for future use:

Lemma. Let C be an abelian category, and assume that we have a commutative diagram in C:

Then, we get a morphism $f' : \text{Ker}(a) \to \text{Ker}(b)$ and a morphism $g' : \text{CoKer}(a) \to \text{CoKer}(b)$ making the following diagram commute.

PROOF. Let us see how f' arises. Consider the composition

$$\operatorname{Ker}(a) \to A_1 \xrightarrow{f} B_1 \xrightarrow{b} B_2.$$

This composition is zero, since it is same as the following, since $b \circ f = g \circ a$, which is zero by definition of the kernel.

$$\operatorname{Ker}(a) \to A_1 \xrightarrow{a} A_2 \xrightarrow{g} B_2.$$

Hence, by the definition of $\operatorname{Ker}(b)$, the composition $\operatorname{Ker}(a) \to A_1 \to B_1$ factors through $\operatorname{Ker}(b)$ giving rise to $f' : \operatorname{Ker}(a) \to \operatorname{Ker}(b)$ making the left square in the diagram above commute. Same argument works for the cokernels.

Direct sum of two complexes X^{\bullet} and Y^{\bullet} is also defined term-wise: $(X^{\bullet} \oplus Y^{\bullet})^n := X^n \oplus Y^n$, with differential (d_X^n, d_Y^n) .

(14.2) Cocycles, coboundaries and cohomology.– Given a complex X^{\bullet} in $\mathbb{K}^{\bullet}(\mathcal{A})$, and an integer $n \in \mathbb{Z}$, we define:

$$\mathcal{Z}^n(X^{\bullet}) := \operatorname{Ker}(d^n : X^n \to X^{n+1}) \qquad n\text{-cocyles.}$$

 $\mathcal{B}^n(X^{\bullet}) := \operatorname{Im}(d^{n-1}: X^{n-1} \to X^n) \qquad n\text{-coboundaries.}$

Note that since $d \circ d = 0$, we have: $\mathcal{B}^n(X^{\bullet}) \subset \mathcal{Z}^n(X^{\bullet})$. The *n*th cohomology of X^{\bullet} is then defined as the quotient:

$$H^n(X^{\bullet}) = \mathcal{Z}^n(X^{\bullet})/\mathcal{B}^n(X^{\bullet}) = \operatorname{Ker}(d^n)/\operatorname{Im}(d^{n-1})$$

Proposition. For every $n \in \mathbb{Z}$, $\mathcal{Z}^n, \mathcal{B}^n, H^n$ are additive, covariant functors $\mathbb{K}^{\bullet}(\mathcal{A}) \to \mathcal{A}$.

PROOF. Let us first see it for the functor of cocycles. We know how to define it on objects. For a morphism $\alpha^{\bullet} : X^{\bullet} \to Y^{\bullet}$, we have the following commutative diagram (here $n \in \mathbb{Z}$ is fixed).

This follows from the lemma in §14.1 above. The argument using elements of X^n goes as follows, to show that α^n restricts to a morphism $\mathcal{Z}^n(X^{\bullet}) \to \mathcal{Z}^n(Y^{\bullet})$. Let $x \in \mathcal{Z}^n(X^{\bullet})$, that is, $d^n(x) = 0$. Thus, $d^n(\alpha^n(x)) = \alpha^{n+1}(d^n(x)) = 0$ proving that $\alpha^n(x) \in \mathcal{Z}^n(Y^{\bullet})$.

This allows us to define $\mathcal{Z}^n(\alpha^{\bullet})$ as the restriction of α^n to *n*-cocyles, which we continue to denote by α^n . This description makes it clear that:

$$\mathcal{Z}^n(\mathrm{Id}_{X^{\bullet}}) = \mathrm{Id}_{\mathcal{Z}^n(X^{\bullet})}, \qquad \mathcal{Z}^n(\beta^{\bullet} \circ \alpha^{\bullet}) = \mathcal{Z}^n(\beta^{\bullet}) \circ \alpha^{\bullet}.$$

That is, \mathcal{Z}^n is a functor. It is also easily verified that it is additive on morphisms, since it is merely a restriction of the domain of the morphisms, which respects addition.

The same argument as before works for \mathcal{B}^n . Namely, we have the following diagram that defines $\mathcal{B}^n(\alpha^{\bullet})$ as the restriction of α^n to $\operatorname{Im}(d_X^{n-1}) \subset X^n$.

(apply Lemma 14.1 twice, first to get a map from $\operatorname{CoKer} d_X^{n-1} \to \operatorname{CoKer} d_Y^{n-1}$, and then with $A_1 = X^n \to A_2 = \operatorname{CoKer} d_X^{n-1}$, $B_1 = Y^n \to B_2 = \operatorname{CoKer} (d_Y^{n-1})$.)

Finally $H^n(\alpha^{\bullet})$ is defined via the following diagram, where the rows are short exact sequences (by definition).

This assertion again follows from the lemma in §14.1 above. A direct argument with "elements" is given here, to see clearly how the definition of the dashed arrow works.

For $x \in H^n(X^{\bullet})$, choose $\widetilde{x} \in \mathbb{Z}^n(X^{\bullet})$ such that $p_1(\widetilde{x}) = x$. Let $\widetilde{y} = \alpha^n(\widetilde{x})$ and map $x \mapsto p_2(\widetilde{y}) \in H^n(Y^{\bullet})$. To see that it is well-defined, if we chose another \widetilde{x}' , then $p_1(\widetilde{x} - \widetilde{x}') = 0$ implying that $\widetilde{x} = \widetilde{x}' + i_1(b)$ for some $b \in \mathcal{B}^n(X^{\bullet})$. Thus, $\widetilde{y} = \widetilde{y}' + i_2(\alpha^n(b))$. As $p_2 \circ i_2 = 0$, we get that $p_2(\widetilde{y}) = p_2(\widetilde{y}')$. Note that we didn't need i_1 and i_2 to be injective here.

Remark. With the "concrete proof", it remains to show that the resulting map is R-linear, which is left to the reader. With the "hands–off proof", we lose a bit of clarity, but the gain is that we don't have to check anything.

Exercise. Show that \mathcal{Z}^n is left exact.

(14.3) Null-homotopic morphisms. – Let $\alpha^{\bullet} : X^{\bullet} \to Y^{\bullet}$ be a morphism of two complexes. We say α^{\bullet} is *null-homotopic* if there exists morphisms $s^n : X^n \to Y^{n-1}$ such that

 $\alpha = ds + sd$ (with appropriate superscripts - see the diagram below)

LECTURE 14

As usual, two morphisms $\alpha^{\bullet}, \beta^{\bullet} : X^{\bullet} \to Y^{\bullet}$ are said to be *homotopic* if $\alpha^{\bullet} - \beta^{\bullet}$ is null-homotopic. In symbols, we write $\alpha^{\bullet} \sim \beta^{\bullet}$ to mean α^{\bullet} and β^{\bullet} are homotopic.

Proposition. The set of null-homotopic morphisms $\operatorname{Hom}^{0}(X^{\bullet}, Y^{\bullet}) \subset \operatorname{Hom}(X^{\bullet}, Y^{\bullet})$ is a subgroup. Moreover,

(1) $\alpha^{\bullet} \in \operatorname{Hom}^{0}(X^{\bullet}, Y^{\bullet})$ implies that $H^{n}(\alpha^{\bullet}) = 0$ for every $n \in \mathbb{Z}$.

(2) For every $\alpha^{\bullet} \in \operatorname{Hom}^{0}(X^{\bullet}, Y^{\bullet})$ and $\beta^{\bullet} \in \operatorname{Hom}(Y^{\bullet}, Z^{\bullet}), \gamma^{\bullet} \in \operatorname{Hom}(W^{\bullet}, X^{\bullet})$, we have $\beta^{\bullet} \circ \alpha^{\bullet} \in \operatorname{Hom}^{0}(X^{\bullet}, Z^{\bullet})$ and $\alpha^{\bullet} \circ \gamma^{\bullet} \in \operatorname{Hom}^{0}(W^{\bullet}, Y^{\bullet})$

(often said in words as "null-homotopic morphisms form an ideal").

PROOF. (I am going to drop the superscripts for the easy of reading).

Null-homotopic morphisms form a subgroup. Clearly zero morphism is null-homotopic. Assume that $\alpha, \alpha' \sim 0$ are two null-homotopic morphisms. That is, we have $r^n, s^n : X^n \to Y^{n-1}$ (for every $n \in \mathbb{Z}$) such that $\alpha = dr + rd$ and $\alpha' = ds + sd$. Then:

$$\alpha - \alpha' = d(r-s) + (r-s)d ,$$

proving that it is also null-homotopic.

 $\alpha \sim 0 \Rightarrow H^n(\alpha) = 0$. Fix $n \in \mathbb{Z}$ and consider the commutative diagram sketched above in the definition of null-homotopic morphisms. That is, $\alpha^n = d^{n-1}s^n + s^{n+1}d^n$. Now, if $x \in \operatorname{Ker}(d_X^n)$, then $\alpha^n(x) = d^{n-1}(s^n(x)) \in \operatorname{Im}(d_Y^{n-1})$, proving that at the level of cohomology, we get $H^n(\alpha) = 0$.

Null-homotopic morphisms form an ideal. Let $\alpha : X \to Y$ be null-homotopic, with homotopy s so that $\alpha = ds + sd$. Let $\beta : Y \to Z$ be arbitrary. We have

$$\beta \circ \alpha = \beta ds + \beta sd = d\beta s + \beta sd = dr + rd$$

where $r^n = \beta^{n-1} \circ s^n : X^n \to Z^{n-1}$. In the equalities above, we have used the fact that β being a morphism, commutes with d. Hence $\beta \alpha \sim 0$ with homotopy $\beta \circ s$.