
LECTURE 14

(14.0) Category of complexes.– Let R be a ring and let A = R-mod be the abelian
category of left R–modules. All the constructions and results of these notes work for any
abelian category. However, to keep things concrete (i.e, so that we talk about “elements” of
an object), we are going to narrow our attention to A = R-mod.

Definition. The category of cochain complexes over A, denoted by K• (A), consists of
following objects.

(C•, d•) : · · · d
n−1

−→ Cn dn−→ Cn+1 dn+1

−→ · · ·
where,

• Cn ∈ A for every n ∈ Z.

• dn+1 ◦ dn = 0 for every n ∈ Z.

Morphisms from an object (C•, d•C) to (D•, d•D) consist of {fn : Cn → Dn}n∈Z such that
dnD ◦ fn = fn+1 ◦ dnC .

Remarks.

(1) The terminology is again borrowed from algebraic topology. For chain complexes, we
put numbers in the subscript and they decrease from left to right. Their category is
often denoted by K• (A). There is no conceptual difference between the two setting
- merely notational.

(2) In some texts, it is assumed that cochain complexes are indexed by Z≥0 (i.e, they are
bounded from left). When we get to injective resolutions, this will be the case, but
for now our cochains are unbounded on both sides.

(3) Abuse of notation. The morphisms dn in the definition are called differentials. It is
customary to drop the superscripts and write d ◦ d = 0, if the index of the domain is
implicitly clear. Similarly, we just say “let X• be a complex”, instead of (X•, d•X) to
save some space.

(14.1) Category K• (A) continued.–

Proposition. The category K• (A) is abelian.

This proposition is proved using an argument similar to the one in §9.5. We merely record
some of the observations made there, in the context of K• (A).
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For two complexes X• and Y • in K• (A), the set of homomorphisms

HomK•(A)(X
•, Y •) ⊂

∏
n∈Z

HomA(Xn, Y n),

is defined by the condition dnY ◦ αn = αn+1 ◦ dnX . So, it is naturally a subgroup.

For a morphism α• : X• → Y •, we define its kernel, image etc. component–wise. For
instance, K• = Ker(α•) is the following complex.

• Kn = Ker(αn : Xn → Y n).

• By the commutativity of the following diagram, the differential of X• restricts to K•:

Kn Xn Y n// αn
//

Kn+1 Xn+1 Y n+1// αn+1
//

dnX

��

dnY

����

This type of argument was implicitly used in §9.6, but let us record it as a lemma
for future use:

Lemma. Let C be an abelian category, and assume that we have a commutative
diagram in C:

A1 A2
a //

B1 B2
b

//

f

��

g

��

Then, we get a morphism f ′ : Ker(a) → Ker(b) and a morphism g′ : CoKer(a) →
CoKer(b) making the following diagram commute.

Ker(a) A1 A2 CoKer(a)// //a //

Ker(b) B1 B2 CoKer(b)// //

f ′

��

g′

��

b
//

f

��

g

��

Proof. Let us see how f ′ arises. Consider the composition

Ker(a)→ A1
f−→ B1

b−→ B2.

This composition is zero, since it is same as the following, since b ◦ f = g ◦ a, which
is zero by definition of the kernel.

Ker(a)→ A1
a−→ A2

g−→ B2.

Hence, by the definition of Ker(b), the composition Ker(a) → A1 → B1 factors
through Ker(b) giving rise to f ′ : Ker(a) → Ker(b) making the left square in the
diagram above commute. Same argument works for the cokernels. �
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Direct sum of two complexes X• and Y • is also defined term-wise: (X•⊕ Y •)n := Xn⊕ Y n,
with differential (dnX , d

n
Y ).

(14.2) Cocycles, coboundaries and cohomology.– Given a complex X• in K• (A), and
an integer n ∈ Z, we define:

Zn(X•) := Ker(dn : Xn → Xn+1) n–cocyles.

Bn(X•) := Im(dn−1 : Xn−1 → Xn) n–coboundaries.

Note that since d ◦ d = 0, we have: Bn(X•) ⊂ Zn(X•). The nth cohomology of X• is then
defined as the quotient:

Hn(X•) = Zn(X•)/Bn(X•) = Ker(dn)/ Im(dn−1)

Proposition. For every n ∈ Z, Zn,Bn, Hn are additive, covariant functors K• (A)→ A.

Proof. Let us first see it for the functor of cocycles. We know how to define it on objects.
For a morphism α• : X• → Y •, we have the following commutative diagram (here n ∈ Z is
fixed).

Zn(X•) Xn Xn+1// dn //

Zn(Y •) Y n Y n+1// dn //

αn

��

αn+1

����

This follows from the lemma in §14.1 above. The argument using elements of Xn goes as
follows, to show that αn restricts to a morphism Zn(X•)→ Zn(Y •). Let x ∈ Zn(X•), that
is, dn(x) = 0. Thus, dn(αn(x)) = αn+1(dn(x)) = 0 proving that αn(x) ∈ Zn(Y •).

This allows us to define Zn(α•) as the restriction of αn to n–cocyles, which we continue
to denote by αn. This description makes it clear that:

Zn(IdX•) = IdZn(X•), Zn(β• ◦ α•) = Zn(β•) ◦ α•.

That is, Zn is a functor. It is also easily verified that it is additive on morphisms, since it
is merely a restriction of the domain of the morphisms, which respects addition.

The same argument as before works for Bn. Namely, we have the following diagram that
defines Bn(α•) as the restriction of αn to Im(dn−1X ) ⊂ Xn.
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Xn−1 Im(dn−1X ) Xn
dn−1
X // //

Y n−1 Im(dn−1Y ) Y n
dn−1
Y // //

αn

��

αn−1

�� ��

(apply Lemma 14.1 twice, first to get a map from CoKer dn−1X → CoKer dn−1Y , and then
with A1 = Xn → A2 = CoKer dn−1X , B1 = Y n → B2 = CoKer(dn−1Y ).)

Finally Hn(α•) is defined via the following diagram, where the rows are short exact se-
quences (by definition).

0 Bn(X•) Zn(X•) Hn(X•) 0// i1 // p1 // //

0 Bn(Y •) Zn(Y •) Hn(Y •) 0//
i2

//
p2

// //

αn

��

αn

�� ��

This assertion again follows from the lemma in §14.1 above. A direct argument with “el-
ements” is given here, to see clearly how the definition of the dashed arrow works.

For x ∈ Hn(X•), choose x̃ ∈ Zn(X•) such that p1(x̃) = x. Let ỹ = αn(x̃) and map
x 7→ p2(ỹ) ∈ Hn(Y •). To see that it is well–defined, if we chose another x̃′, then p1(x̃−x̃′) = 0
implying that x̃ = x̃′ + i1(b) for some b ∈ Bn(X•). Thus, ỹ = ỹ′ + i2(α

n(b)). As p2 ◦ i2 = 0,
we get that p2(ỹ) = p2(ỹ

′). Note that we didn’t need i1 and i2 to be injective here.

Remark. With the “concrete proof”, it remains to show that the resulting map is R–linear,
which is left to the reader. With the “hands–off proof”, we lose a bit of clarity, but the gain
is that we don’t have to check anything. �

Exercise. Show that Zn is left exact.

(14.3) Null–homotopic morphisms.– Let α• : X• → Y • be a morphism of two complexes.
We say α• is null–homotopic if there exists morphisms sn : Xn → Y n−1 such that

α = ds+ sd (with appropriate superscripts - see the diagram below)

Xn Xn+1

Y n−1 Y n

dnX //

dn−1
Y

//

sn

��
sn+1

��

αn

��
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As usual, two morphisms α•, β• : X• → Y • are said to be homotopic if α• − β• is null–
homotopic. In symbols, we write α• ∼ β• to mean α• and β• are homotopic.

Proposition. The set of null–homotopic morphisms Hom0(X•, Y •) ⊂ Hom(X•, Y •) is a
subgroup. Moreover,

(1) α• ∈ Hom0(X•, Y •) implies that Hn(α•) = 0 for every n ∈ Z.

(2) For every α• ∈ Hom0(X•, Y •) and β• ∈ Hom(Y •, Z•), γ• ∈ Hom(W •, X•), we have

β• ◦ α• ∈ Hom0(X•, Z•) and α• ◦ γ• ∈ Hom0(W •, Y •)

(often said in words as “null–homotopic morphisms form an ideal”).

Proof. (I am going to drop the superscripts for the easy of reading).

Null–homotopic morphisms form a subgroup. Clearly zero morphism is null–homotopic.
Assume that α, α′ ∼ 0 are two null–homotopic morphisms. That is, we have rn, sn : Xn →
Y n−1 (for every n ∈ Z) such that α = dr + rd and α′ = ds+ sd. Then:

α− α′ = d(r − s) + (r − s)d ,
proving that it is also null–homotopic.

α ∼ 0 ⇒ Hn(α) = 0. Fix n ∈ Z and consider the commutative diagram sketched above
in the definition of null–homotopic morphisms. That is, αn = dn−1sn + sn+1dn. Now, if
x ∈ Ker(dnX), then αn(x) = dn−1(sn(x)) ∈ Im(dn−1Y ), proving that at the level of cohomology,
we get Hn(α) = 0.

Null–homotopic morphisms form an ideal. Let α : X → Y be null–homotopic, with homo-
topy s so that α = ds+ sd. Let β : Y → Z be arbitrary. We have

β ◦ α = βds+ βsd = dβs+ βsd = dr + rd ,

where rn = βn−1 ◦ sn : Xn → Zn−1. In the equalities above, we have used the fact that β
being a morphism, commutes with d. Hence βα ∼ 0 with homotopy β ◦ s. �


