
LECTURE 15

(15.0) Complexes and related functors.– Recall that in the last lecture, we narrowed
our attention to the abelian category A = R-mod, where R is a unital ring.

• We defined the category of complexes K• (A), and verified that it is an abelian cate-
gory.

• For each n ∈ Z, we constructed three functors:

Zn,Bn, Hn : K• (A)→ A.

Note that for each X• ∈ K• (A), we get a short exact sequence:

0→ Bn(X•)→ Zn(X•)→ Hn(X•)→ 0.

For later use in these notes, we notice that Hn(X•) can also be defined as follows. Since
for every n ∈ Z, Bn(X•) ⊂ Ker(dn), the differential dn gives rise to a morphism

dn : Xn/Bn(X•)→ Zn+1(X•).

Hn(X•) = Ker
(
dn : Xn/Bn(X•)→ Zn+1(X•)

)
,(1)

Hn+1(X•) = CoKer
(
dn : Xn/Bn(X•)→ Zn+1(X•)

)
.(2)

(15.1) Theorem of the day.– The main result we are going to prove today is the following
theorem.

Theorem. Let C1, C2, C3 be three complexes 1 in K• (A) and assume that we are given a
short exact sequence:

0→ C•1
α•−→ C•2

β•−→ C•3 → 0.

Then, there exists a morphism δn : Hn(C3)→ Hn+1(C1) with the following properties.

Long exact sequence. The following sequence is exact.

· · ·Hn(C1) Hn(C2)
Hn(α)

// Hn(C3)
Hn(β)

// //

δn

Hn+1(C1)// Hn+1(C2)
Hn+1(α)

// Hn+1(C3)
Hn+1(β)

// · · ·

Naturality. If there are two short exact sequences with morphisms forming commutative
squares:

1I am omitting the • in the superscript for easy of typing and reading.
1
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0 C1
// C2

α1 // C3

β1 // 0//

0 D1
// D2

α2 // D3

β2 // 0//

f1

��

f2

��

f3

��

then the following diagram commutes:

Hn(C3) Hn+1(C1)

Hn(D3) Hn+1(D1)

δnC //

δnD

//

Hn(f3)

��

Hn+1(f1)

��

The proof of this theorem relies on the famous “Snake lemma”.

(15.2) Snake lemma.– Assume we are given the following commutative diagram of mor-
phisms between left R–modules, where the rows are assumed to be exact (at the middle
term).

M1 M2
u // M3

v //

N1 N2
u′ // N3

v′ //

f

��

g

��

h

��

Using Lemma 14.1, we obtain the following commutative diagram. Note that we are not
saying anything about the exactness of the first and last rows.

Ker(f)

M1

i

��

Ker(g)

M2
u //

j

��

Ker(h)

M3
v //

k

��

N1

CoKer(f)

p

��

N2
u′ //

CoKer(g)

q

��

N3
v′ //

CoKer(h)

r

��

f

��

g

��

h

��

u1 // v1 //

u2
//

v2
//

Here i, j, k are canonical inclusions, and p, q, r are canonical projections. The maps u1, v1
and u2, v2 are uniquely defined by the universal properties of kernels and cokernels.
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Lemma.

(1) If u is injective, then u1 is injective. Similarly, if v′ is surjective, then v2 is surjective.

(2) v1◦u1 = 0. If u′ is injective, then the first row Ker(f)
u1−→ Ker(g)

v1−→ Ker(h) is exact.

(3) v2◦u2 = 0. If v is surjective, then the last row CoKer(f)
u2−→ CoKer(g)

v2−→ CoKer(h)
is exact.

(4) Assume u′ is injective and v is surjective. Then, there exists a unique morphism
δ : Ker(h)→ CoKer(f) making the following sequence exact:

Ker(f)
u1−→ Ker(g)

v1−→ Ker(h)
δ−→ CoKer(f)

u2−→ CoKer(g)
v2−→ CoKer(h).

In all the textbooks featuring this lemma, the following diagram appears to justify the
name snake.

Ker(f)

M1

i

��

Ker(g)

M2
u //

j

��

Ker(h)

M3
v // 0//

k

��

N10 //

CoKer(f)

p

��

N2
u′ //

CoKer(g)

q

��

N3
v′ //

CoKer(h)

r

��

f

��

g

��

h

��

u1 // v1 //

u2
//

v2
//

//

//

Proof. (1): u injective⇒ u1 injective. This is clear since u1 is merely the restriction of u.
In more detail, if x ∈ Ker(u1), then u(i(x)) = 0. But both u and i are injective, so x = 0.
Another argument that avoids picking an element of Ker(u1) is as follows. j ◦ u1 = u ◦ i. As
u and i are both injective, so is u ◦ i and hence j ◦ u1. As j is injective, we conclude that so
is u1. The proof for v′, v2 is similar.

(2). Since k ◦ (v1 ◦ u1) = v ◦ u ◦ i = 0, and k is injective, we get that v1 ◦ u1 = 0. Now
assume that u′ is injective. We want to show Ker(v1) = Im(u1). Let x ∈ Ker(v1). Then
v(j(x)) = k(v1(x)) = 0, so j(x) ∈ Ker(v) = Im(u). Choose m1 ∈ M1 so that u(m1) = j(x).
We only need to check that m1 ∈ Ker(f) to conclude that x ∈ Im(u1). This is where we use
the hypothesis that u′ is injective. Since u′(f(m1)) = g(u(m1)) = g(j(x)) = 0, we conclude
that f(m1) = 0.

Proof of (3) is absolutely analogous to that of (2) and hence is omitted here.

(4). Definition of δ. This is a standard “diagram chase” way to construct the connecting
morphism. Let x ∈ Ker(h).
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(Step 1) Let m3 = k(x). As v is surjective, we can choose m2 ∈M2 such that k(x) = v(m2).

(Step 2) Let n2 = g(m2). Since v′(n2) = v′(g(m2)) = h(v(m2)) = h(k(x)) = 0, by exactness
at N2, and injectivity of u′, there is a unique n1 ∈ N2 such that n2 = u′(n1).

Define δ(x) = p(n1) . Now we need to show a couple of things.

(i) Well–defined. In Step 1, we made a choice, relying on the fact that v is surjective. Assume
we choose a different m′2 ∈ M2, and let n′1, n

′
2 be the elements corresponding to this choice

in the second step. Now v(m2 −m′2) = 0. Then m2 −m′2 = u(m) for some m ∈ M1. We
get that g(m2 −m′2) = u′(f(m)). By injectivity of u′, we conclude that n1 − n′1 = f(m) and
hence p(n1) = p(n′1) + p(f(m)) = p(n′1).

(ii) δ is R–linear. Let r, r′ ∈ R, x, x′ ∈ Ker(h). We need to prove that δ(rx+ r′x′) = rδ(x)+
r′δ(x′). In the recipe for defining δ, let m2,m

′
2 be the elements chosen at Step 1 for defining

δ(x) and δ(x′) respectively. Note that v(rm2 + r′m′2) = rv(m2) + rv(m′2) = k(rx + r′x′),
meaning we can take m′′2 = rm2 + r′m′2 in order to define δ(rx+ r′x′). The second step goes
through and we get the desired result.

(iii) δ ◦ v1 = 0. If x = v1(u) for some y ∈ Ker(g), then we can take m2 = j(y) in Step 1.
This is clear since v(j(y)) = k(v1(y)) = k(x). This means n2 = g(m2) = g(j(y)) = 0, giving
n1 = 0 and hence δ(x) = 0.

(iv) Ker(δ) ⊂ Im(v1). Assume x ∈ Ker(h) is such that δ(x) = 0. Keeping the same
notations as in the two steps above, this means p(n1) = 0. As p is the cokernel of f , this
means n1 = f(m) for some m ∈M1. Consider m2 − u(m) ∈M2.

g(m2 − u(m)) = g(m2)− u′(f(m)) = n2 − u′(n1) = n2 − n2 = 0.

So there is y ∈ Ker(g) such that j(y) = m2 − u(m). We claim that x = v1(y). To see this,
apply k to x− v1(y) to get (using v ◦ u = 0):

k(x− v1(y)) = k(x)− v(j(y)) = m3 − v(m2 − u(m)) = m3 −m3 = 0.

Since k is injective, x = v1(y).

(v) The exactness at Ker(h)
δ−→ CoKer(f)

u2−→ CoKer(g) is proved similarly. The details
are left to the reader. �

(15.3) Remarks.–
I. There is a proof of the lemma above that works in any abelian category. I did not give
that proof, which would have eliminated the need for checking that δ is well–defined and
R–linear, at the price of losing the clarity of “diagram chase”. If you want to think about
that “free of elements” proof, the following tricks from S. MacLane, Categories for working
mathematicians should help you.
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• Replace each x ∈ M with X
x−→ M . This very conveniently replaces an expression

f(x) by f ◦ x for any morphism f : M →M ′.

• Choosing an element from the preimage of n ∈ N under a surjective map M � N ,
gets replaced by taking “pull–back” diagram (see Problem 3 of Mid Term 1):

M N// //

X

��

M ×N X //

��

II. The following summarizes how we defined δ.

Ker(h) M3
� � // M2

∗
oooo N2

// N1
? _

∗∗
oo CoKer(f)// //

**

δ

• At ∗ we had to use the surjectivity of v and make a choice. We showed that this
choice is immaterial at the end.

• At ∗∗ we had to prove, using exactness at N2 and injectivity of u′, that the element
placed at N2 comes from a unique one from N1.

(15.4) Proof of Theorem 15.1.– Recall that we have three complexes C1, C2, C3 in K• (A)

and a short exact sequence 0→ C1
α−→ C2

β−→ C3 → 0. Let us fix n ∈ Z.

(i) Apply Snake lemma (1) and (2) with substitutions: M` = Cn+1
` and N` = Cn+2

` , (` =
1, 2, 3) to get the following exact sequence:

0→ Zn+1(C1)→ Zn+1(C2)→ Zn+1(C3).

Remark. Note that this prove that Zn is left exact.

(ii) Again apply the Snake lemma with M` = Cn−1
` and N` = Cn

` , (` = 1, 2, 3), to get the
following exact sequence:

Cn
1 /Bn(C1)→ Cn

2 /Bn(C2)→ Cn
3 /Bn(C3)→ 0.

(iii) Now consider the commutative diagram formed by taking the two exact sequences from
the previous part, and use equations (1) and (2) to get:
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Hn(C1)

Cn
1 /Bn(C1)

��

Hn(C2)

Cn
2 /Bn(C2)//

��

Hn(C3)

Cn
3 /Bn(C3)// 0//

��

Zn+1(C1)0 //

Hn+1(C1)
��

Zn+1(C2)//

Hn+1(C2)
��

Zn+1(C3)//

Hn+1(C3)
��

�� �� ��

Hn(α)
//

Hn(β)
//

Hn+1(α)

//
Hn+1(β)

//

//

//

This finishes the proof of the first part of Theorem 15.1. For the second part (i.e, natu-
rality of δ), we use the diagram that summarized its construction (see §15.3, II above).

Hn(C3) Cn
3 /Bn(C3)

� � // Cn
2 /Bn(C2)oooo Zn+1(C2)// Zn+1(C1)? _oo Hn+1(C1)// //

**

δnC

Hn(D3) Dn
3/Bn(E3)

� � // Dn
2/Bn(D2)oooo Zn+1(D2)// Zn+1(D1)? _oo Hn+1(D1)// //

44

δnD

�� �� �� ���� ��

Now each square in the picture above commutes by Lemma 14.1, hence so does the out-
ermost one. The naturality of δ follows.


