
LECTURE 16

(16.0) Road to derived functors.– Recall from Lecture 13, our objective is to follow the
path sketched below to get to derived functors. For definiteness, F : C → D is a left exact,
covariant functor between two abelian categories C and D.

C K• (C)
∗

//

K• (D)

F

��
DHn
//

77

RnF
• Here F : K• (C) → K• (D) is applied to a complex, term-by-term, and also to the

differentials.(
· · ·Xn dn−→ Xn+1 dn+1

−→ · · ·
)

7→
(
· · ·F (Xn)

F (dn)−→ F (Xn+1)
F (dn+1)−→ · · ·

)
Similarly, on morphisms F is applied term-by-term.

• We studied {Hn}n∈Z functors in the last two lectures. They give rise to long exact
sequences, and do not distinguish between morphisms homotopic to each other.

• ∗ is not going to be a functor. This is the step where we will have to construct
resolutions by special objects - injective, projective, free or flat (the meaning of these
words will be explained, don’t worry). We will also have to prove that the choice of
a resolution in this construction becomes immaterial after Hn is applied - namely,
resolutions are unique up to homotopy. Proofs of these assertions are the focus of
this and the next lecture.

As before, A = R-mod is the category of left R–modules. The definitions and results of
this lecture work for any abelian category A, and will be stated and proved in that generality.
However, for the purposes of this course, you may as well assume that we are talking about
modules over R.

(16.1) Injective and projective objects.–

Definition. An object Q ∈ A is said to be injective if, for every injective morphism
f : Q → X, there exists Q′, and an isomorphism g : Q ⊕ Q′ ∼−→ X such that g ◦ ιQ = f ,
where ιQ : Q→ Q⊕Q′ is the canonical inclusion.
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Similarly, an object P ∈ A is said to be projective if, for every surjective morphism
f : Y → P , there exists P ′, and an isomorphism g : Y

∼−→ P × P ′ such that πP ◦ g = f ,
where πP : P × P ′ → P is the canonical surjection.

Recall (Lecture 8, Lemma 8.3) that finite direct sums and direct products are naturally
isomorphic in any additive category. The following characterization of direct sum/product
of two objects was used in Lecture 10 (see Claim on page 2). We record here as a lemma for
future use, its proof is given in Lecture 10 (page 2).

Lemma. Let X,X1, X2 be three objects in A. Then X ∼= X1 ⊕X2 if, and only if, we have
morphisms f` : X` → X and g` : X → X` (` = 1, 2) such that:

gk ◦ f` = δk,`, k, ` ∈ {1, 2}, IdX = f1 ◦ g1 + f2 ◦ g2.

(16.2) Idempotents.– The following result is going to be crucial in obtaining different
characterizations of injective and projective objects.

Lemma. Let X ∈ A and let p ∈ EndA(X) be such that p ◦ p = p (such a morphism is called

an idempotent or projection). Then Ker(p)⊕ Im(p)
∼−→ X.

Proof. Let q ∈ EndA(X) be defined as IdX −p. Then: q2 = (1− p)(1− p) = 1− 2p+ p2 =
1− p = q. Moreover, pq = p(1− p) = p− p2 = 0, and qp = (1− p)p = p− p2 = 0. That is,
we have:

q ◦ q = q, and p ◦ q = 0 = q ◦ p.
Claim. Im(q) = Ker(p) and Ker(q) = Im(p).

Let us assume this for now, and see how the lemma follows. Let us denote by X1 =

Ker(p)
i−→ X the canonical inclusion. Moreover, X

q−→ X1 = Im(q) is the natural surjection
which factors q = i ◦ q. Similarly,

X2 = Ker(q)
j−→ X

p−→ X2 = Im(p).

From the properties of p, q listed above, it is easy to see that this 4-tuple of morphisms
satisfies the equations listed in Lemma 16.1 above, hence identifies X as a direct sum (or
product) of X1 and X2.

Proof of the claim. Let us prove this in a more categorical framework. Consider the
following diagram:

X Im(q)
q // X

i // X
p //%%

q
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The composition p ◦ i ◦ q = p ◦ q = 0. As q is surjective, we conclude that p ◦ i = 0. Now

to prove that Im(q)
i−→ X is the kernel of p, we have to show that for every morphism

z : Z → X such that p◦z = 0, z = i◦z for a unique z (uniqueness is clear since i is injective,
we only have to check it exists).

X Im(q)
q // X

i // X
p //%%

q

Z

z

OO

0

::

∃z

dd

Since p ◦ z = 0 we get z = z − p ◦ z = (1− p) ◦ z = q ◦ z. Hence z = i ◦ (q ◦ z) = i ◦ z as
we wanted. The proof of Im(p) = Ker(q) is analogous and therefore omitted. �

(16.3) Pull–backs and push–forwards.– (See Homework 5, Problems 3 and 4). Recall
that pull–back diagram is summarized as:

M1 Nu1
//

M2

u2

��

//

Given

M1 Nu1
//

M2

u2

��

M1 ×N M2

π1

��

π2 //

Definition

Concretely M1×N M2 is defined as the kernel of M1×M2 → N , with π1 and π1 being the
following two compositions:

M1 ×N M2 ↪→M1 ×M2 →M1, and M1 ×N M2 ↪→M1 ×M2 →M2.

Similarly, the following diagram defines push–forward:

L M2
v2 //

M1

v1

��

//

Given

L M2
v2 //

M1

v1

��
M1 ⊕LM2

ι1 //

ι2

��

Definition

Again, concretely M1 ⊕L M2 is the cokernel of L → M1 ⊕M2, with morphisms ι1 and ι2
given as compositions of natural inclusions and surjections:

M1 →M1 ⊕M2 �M1 ⊕LM2, and M2 →M1 ⊕M2 �M1 ⊕LM2.
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The proof of the following proposition is left as part of the homework.

Proposition.

(1) If u1 is surjective, then so is π2.

(2) If v2 is injective, then so is ι1.

(16.4) Characterizations of injective and projective objects.– Now we are ready to
state and prove various different ways injective and projective objects can be defined.

Theorem.

• Let Q ∈ A. Then the following conditions on Q are equivalent.
(1) Q is injective.
(2) For any injective morphism f : A ↪→ B, and arbitrary g : A→ Q, there exists a

lift g̃ : B → Q such that g̃ ◦ f = g.

A B
f //

Q

g

��

0 //

∃g̃

zz

(3) HomA(−, Q) is exact.
• Let P ∈ A. Then the following conditions on P are equivalent.

(1) P is projective.
(2) For any surjective morphism f : B � C, and arbitrary g : P → C, there exists

a lift g̃ : P → B such that f ◦ g̃ = g.

B C
f //

P

g

��
0//

∃g̃

zz

(3) HomA(P,−) is exact.

We will prove this theorem for injective objects only. The proof for projective objects is
absolutely analogous and is left to the reader.

(16.5) Proof of Theorem 16.4: injective case.– Let Q ∈ A.

(1) ⇒ (2). Assume that Q is injective, and we have the diagram:

A B
f //

Q

g

��

0 //
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Let Q̃ = Q ⊕A B be the push–forward (see §16.3 above). As claimed in Proposition

16.3 (2), the natural map Q → Q̃ is injective. By definition, we have an object Q′ and an

isomorphism Q⊕Q′ ∼−→ Q̃.

A B
f //

Q

g

��

0 //

0 // Q⊕Q′ = Q̃
i
//

g

��

Define g̃ = p ◦ g. Here p : Q⊕Q′ = Q×Q′ → Q is the natural surjection. Thus,

g = p ◦ i ◦ g = p ◦ g ◦ f = g̃ ◦ f,
as claimed.

(2) ⇒ (3). Now we assume (2), and prove that Hom(−, Q) is exact. Since Hom functors are
always left exact, we only need to show that it is right exact. That is, given a short exact
sequence:

0→ A
f−→ B → C → 0 ,

the natural map Hom(B,Q)→ Hom(A,Q) is surjective. That is, any morphism g : A→ Q
lifts to a morphism g̃ : B → Q. This is exact what condition (2) says, and we are done.
Note that this argument in fact shows that (2) and (3) are equivalent.

(3) ⇒ (1). Assume that Q ∈ A is such that Hom(−, Q) is exact. Let f : Q → X be an

injective morphism. We need to prove that there exists Q′ and an isomorphism h : Q⊕Q′ ∼−→
X such that h ◦ i = f , where i : Q→ Q⊕Q′ is the natural inclusion.

We use (3) to conclude that − ◦ f : Hom(X,Q) → Hom(Q,Q) is a surjective map. Let
g : X → Q be a morphism so that g ◦ f = IdQ. Let p : X → X be the composition p = f ◦ g.
Then p◦p = f ◦g◦f ◦g = f ◦g = p. Using Lemma 16.2 we conclude that X ∼= Ker(p)⊕Im(p).
Note that Im(p) = Im(f ◦g) ∼= Q, since g is surjective and f is injective. Hence Q is injective.

(16.6) Remarks.–
I. The following is a defining property whose proof follows along the lines of Theorem 16.4
above. It is left as an exercise.

Proposition. M ∈ A is injective (resp. projective) if, and only if every short exact sequence
0→M → Y → Z → 0 (resp. 0→ X → Y →M → 0) splits1.

II. We have not yet proved whether injective/projective objects exist. The standard exam-
ples of these, which can be easily verified using Theorem 16.4 (we will go over these in more
detail next week), are following. (i) Q ∈ Z-mod = Ab is an injective Z–module. (ii) For any
indexing set I, let R(I) be direct sum of I–many copies of R (viewed as a left module over
itself). Then R(I) ∈ R-mod is projective (it is in fact free). (iii) Over a field, every module
is both injective and projective.

1See Homework 5, Problem 8 for what it means.


