
LECTURE 17

(17.0) Injective and projective objects.– Recall that in the last lecture we defined in-
jective and projective objects in A = R-mod. Our definition was phrased for any abelian
category, and is given as follows.

Injective objects. An object Q ∈ A is called an injective object, if it satisfies (one of the)
following equivalent conditions.

• For any injective morphism f : Q ↪→ Q̃ in A, there exists Q′ ∈ A and an isomorphism

g : Q⊕Q′ ∼−→ Q̃ such that g ◦ i = f . Here, i : Q ↪→ Q⊕Q′ is the natural inclusion.

• For any injective morphism f : A→ B, and an arbitrary morphism g : A→ Q, there
exists a lift g̃ : B → Q such that g̃ ◦ f = g.

• Hom(−, Q) is exact.

• Every short exact sequence 0→ Q→ Y → Z → 0 splits.

Projective objects. An object P ∈ A is called a projective object, if it satisfies (one of the)
following equivalent conditions.

• For any surjective morphism f : P̃ � P in A, there exists P ′ ∈ A and an isomor-

phism g : P̃
∼−→ P × P ′ such that π ◦ g = f . Here, π : P × P ′ → P is the natural

surjection.

• For any surjective morphism f : B → C, and an arbitrary morphism g : P → C,
there exists a lift g̃ : P → B such that f ◦ g̃ = g.

• Hom(P,−) is exact.

• Every short exact sequence 0→ X → Y → P → 0 splits.

Today we are going to discuss injective and project resolutions.

(17.1) Resolutions.– Let M ∈ A.

Definition. An injective resolution of M is a cochain complex in K• (A),

Q• : 0→ Q0 d0−→ Q1 d1−→ Q2 d2−→ · · · ,
which is exact at each Qn (n ≥ 1), and Ker(d0) ∼= M . Here, Q−` = 0 for every ` ≥ 1.
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A projective resolution of M is a chain complex in K• (A),

P• : · · · d2−→ P2
d1−→ P1

d0−→ P0 → 0,

which is exact at each Pn (n ≥ 1), and CoKer(d0) ∼= M . Here P−` = 0 for every ` ≥ 1.

The existence of such resolutions is a technical requirement imposed on the category in
question.

(17.2) Enough injectives/projectives.– Let C be an arbitrary abelian category. We say
that C has enough injectives (resp. enough projectives) if for every X ∈ C, there exists an
injective morphism X ↪→ Q (resp. surjective morphism P � X) where Q is injective (resp.
P is projective).

Building injective resolutions. If C has enough injectives, then for every X ∈ C, an injective
resolution Q• of X can be constructed as follows.

• Start from an injective morphism f : X ↪→ Q0, where Q0 is injective.

• Let π0 : Q0 � X0 = CoKer(f) = Q0/X. Find an injective morphism f 0 : Q0/X ↪→
Q1 to an injective object Q1. Define d0 = f 0 ◦ π0.

• Repeat the previous step indefinitely...

X Q0� � f // Q1d0 //

Q0/X

π0

�� �� 1�
f0

CC Q2d1 //

Q1/ Im(d0)

π1

�� �� 1�
f1

CC · · ·

• Q• := 0 → Q0 d0−→ Q1 d1−→ Q2 → · · · It is clear from its construction that the
complex is exact at each spot, except Ker(d0) = X.

Building projective resolutions. This construction is entirely analogous to the one given
above. Namely,

• Start from a surjection from a projective object f : P0 � X.

• Let i0 : K0 = Ker(f) ↪→ P0. Find a surjection from a projective object f0 : P1 � K0.
Define d0 = i0 ◦ f0 : P1 → P0.

• Repeat.
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P0 X
f // //P1

d0 //

K0

f0

�� �� 1�
i0

CCP2
d1 //

K1

f1

�� �� 1�
i1

CC· · ·

• P• := · · · → P2
d1−→ P1

d0−→ P0 → 0. Again, this is an exact (chain) complex at
each spot, except CoKer(d0) = X.

We record these constructions as a proposition.

Proposition. Assuming an abelian category C has enough injectives (resp. projectives), ev-
ery X ∈ C admits an injective (resp. projective) resolution.

Remarks.

(1) Injective/projective resolutions are not unique, but only up to homotopy, as we will
prove below.

(2) In practice, projective resolutions are easier to work with, than injective ones.

(3) We will have to prove later that A = R-mod has enough injectives and projectives.
The projective case is easy, but it will take some work to show that there are enough
injective R–modules.

(17.3) Uniqueness (up to homotopy) of resolutions.– Let M,N ∈ A and let I• and
J• be injective resolutions of M and N respectively. Recall that this means the following
two sequences are exact:

0 M// I0
i // I1

d0I // I2
d1I // · · ·

d2I //

0 N// J0
j // J1

d0J // J2
d1J // · · ·

d2J //

Theorem. Given a morphism f : M → N , there exists a lift f • : I• → J•. That is, there
are morphisms {fn : In → Jn}n≥0 such that all the squares in the following diagram are
commutative:



4 LECTURE 17

0 M// I0
i // I1

d0I // I2
d1I // · · ·

d2I //

0 N// J0
j

// J1
d0J

// J2
d1J

// · · ·
d2J

//

f

��

f0

��

f1

��

f2

��

Moreover, if f • and g• are two lifts of f , then f • is homotopic to g•.

We will prove this theorem in the next two sections. For now, we record its important
consequence.

Corollary. Injective resolutions are unique up to homotopy.

Proof. Let M ∈ A, and let I• and J• be two injective resolutions. Take M = N and
f = IdM in the previous theorem, to get α : I• → J• and β : J• → I•. Then α ◦β : J• → J•

and β ◦α : I• → I• are both lifts of IdM : M →M . But so are identity morphisms IdJ• and
IdI• . By uniqueness part of the theorem, we conclude that α ◦ β ∼ IdJ• and β ◦ α ∼ IdI• .
Hence I• and J• are isomorphic (up to homotopy). �

(17.4) Proof of Theorem 17.3: existence of lifts.– We begin by constructing f 0 : I0 →
J0. For this we need to use the fact that i is an injective morphism and J0 is an injective
object:

M I0
i //

J0

j◦f

��

0 //

∃f0

zz

Assume that we have constructed {f ` : I` → J `}0≤`≤n. Let us construct fn+1. For this, we
use the induced morphism at the level of cokernels:

In−1 In In/ Im(dn−1I )//
dn−1
I //

Jn−1 Jn Jn/ Im(dn−1J )//

fn

��

dn−1
J

//

fn−1

��

fn

��

As Im(dn−1I ) = Ker(dnI ), we get an injective morphism dnI : In/ Im(dn−1I ) ↪→ In+1 coming

from dn. Similarly we have a morphism, since Im(dn−1J ) ⊂ Ker(dnJ):

dnJ : Jn/ Im(dn−1J )→ Jn+1.
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Now we can use the fact that Jn+1 is injective, to get fn+1 as:

In/ Im(dn−1I ) In+1
dn //

Jn+1

dnJ◦fn

��

0 //

∃fn+1

zz

Remark. Note that in the proof above, we only used the following assumptions:

• 0→M → I0 → I1 → · · · is exact. We did not use the hypothesis that I` is injective
(` ≥ 0).

• 0 → N → J0 → J1 → · · · is a complex, where each J ` is injective. We did not use
exactness of this complex.

(17.5) Uniqueness of lift.– Note that it suffices to show that if f • : I• → J• is a lift of

the zero morphism M
0−→ N , then f • is null–homotopic. That is, there exists {sn : In →

Jn−1}n≥0 (with s0 = 0 since J−1 = 0), such that

fn = dn−1J ◦ sn + sn+1 ◦ dnI : In → Jn, ∀ n ≥ 0.

Let us begin by exhibiting how s1 : I1 → J0 shows up. For this, we notice that from the
commutative diagram

M

N

0

��

I0
i //

J0
j

//

f0

��

we get that M ⊂ Ker(f 0). Thus, f 0 factors through f 0 : I0/M → J0. Moreover, M =

Im(i) = Ker(d0I) gives an injective morphism d0I : I0/M ↪→ I1. Now we are in the position

to use the fact that J0 is injective to get s1 : I1 → J0 as follows.

I0/M I1
d0I //

J0

f0

��

0 //

∃s1

zz

It is easy to see that we get f 0 = s1 ◦ d0I so that we have built the required homotopy up to
I1:

0 I0 I1//
d0I //

0 J0//

s0=0

��

s1

��

f0

��
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Assuming we have successfully built homotopies {s0, . . . , sn}, where n ≥ 1. We proceed
with the construction of sn+1. For this, we have to focus on the following part of the picture:

In−1 In In+1
dn−1
I //

dnI //

Jn−2 Jn−1 Jn
dn−2
J

//
dn−1
J

//

sn−1

��

fn−1

��

sn

��

fn

��

Define g = fn − dn−1J ◦ sn : In → Jn. The following calculation shows that g ◦ dn−1I = 0:

g ◦ dn−1I = fndn−1I − dn−1J sndn−1I = dn−1J (fn−1 − sndn−1I ) = dn−1J dn−2J sn−1 = 0.

Here, we have used the following facts:

• f • is a morphism of complexes, so fndn−1I = dn−1J fn−1.

• fn−1 = dn−2J sn−1 + sndn−1I .

• dn−1J dn−2J = 0.

Thus, we conclude that Im(dn−1I ) = Ker(dnI ) ⊂ Ker(g). This allows us to factor g through
g : In/Ker(dn) → Jn. Again we rely on injectivity of In+1 in the following diagram to get

sn+1:

0 In/Ker(dn) In+1//
dnI //

Jn

sn+1

zz

g

��


