LECTURE 17

(17.0) Injective and projective objects. – Recall that in the last lecture we defined injective and projective objects in $\mathcal{A} = R$ -mod. Our definition was phrased for any abelian category, and is given as follows.

Injective objects. An object $Q \in \mathcal{A}$ is called an injective object, if it satisfies (one of the) following equivalent conditions.

- For any injective morphism $f: Q \hookrightarrow \widetilde{Q}$ in \mathcal{A} , there exists $Q' \in \mathcal{A}$ and an isomorphism $g: Q \oplus Q' \xrightarrow{\sim} \widetilde{Q}$ such that $g \circ i = f$. Here, $i: Q \hookrightarrow Q \oplus Q'$ is the natural inclusion.
- For any injective morphism $f: A \to B$, and an arbitrary morphism $g: A \to Q$, there exists a lift $\tilde{g}: B \to Q$ such that $\tilde{g} \circ f = g$.
- $\operatorname{Hom}(-, Q)$ is exact.
- Every short exact sequence $0 \to Q \to Y \to Z \to 0$ splits.

Projective objects. An object $P \in \mathcal{A}$ is called a projective object, if it satisfies (one of the) following equivalent conditions.

- For any surjective morphism $f: \tilde{P} \to P$ in \mathcal{A} , there exists $P' \in \mathcal{A}$ and an isomorphism $g: \tilde{P} \xrightarrow{\sim} P \times P'$ such that $\pi \circ g = f$. Here, $\pi: P \times P' \to P$ is the natural surjection.
- For any surjective morphism $f: B \to C$, and an arbitrary morphism $g: P \to C$, there exists a lift $\tilde{g}: P \to B$ such that $f \circ \tilde{g} = g$.
- $\operatorname{Hom}(P, -)$ is exact.
- Every short exact sequence $0 \to X \to Y \to P \to 0$ splits.

Today we are going to discuss injective and project *resolutions*.

(17.1) Resolutions. – Let $M \in \mathcal{A}$.

Definition. An *injective resolution* of M is a *cochain* complex in $\mathbb{K}^{\bullet}(\mathcal{A})$,

$$Q^{\bullet} : \qquad 0 \to Q^0 \xrightarrow{d^0} Q^1 \xrightarrow{d^1} Q^2 \xrightarrow{d^2} \cdots$$

which is exact at each Q^n $(n \ge 1)$, and $\operatorname{Ker}(d^0) \cong M$. Here, $Q^{-\ell} = 0$ for every $\ell \ge 1$.

A projective resolution of M is a chain complex in $\mathbb{K}_{\bullet}(\mathcal{A})$,

$$P_{\bullet} : \cdots \xrightarrow{d_2} P_2 \xrightarrow{d_1} P_1 \xrightarrow{d_0} P_0 \to 0,$$

which is exact at each P_n $(n \ge 1)$, and $\operatorname{CoKer}(d_0) \cong M$. Here $P_{-\ell} = 0$ for every $\ell \ge 1$.

The existence of such resolutions is a technical requirement imposed on the category in question.

(17.2) Enough injectives/projectives.— Let C be an arbitrary abelian category. We say that C has enough injectives (resp. enough projectives) if for every $X \in C$, there exists an injective morphism $X \hookrightarrow Q$ (resp. surjective morphism $P \twoheadrightarrow X$) where Q is injective (resp. P is projective).

Building injective resolutions. If \mathcal{C} has enough injectives, then for every $X \in \mathcal{C}$, an injective resolution Q^{\bullet} of X can be constructed as follows.

- Start from an injective morphism $f: X \hookrightarrow Q^0$, where Q^0 is injective.
- Let $\pi^0 : Q^0 \to X^0 = \operatorname{CoKer}(f) = Q^0/X$. Find an injective morphism $f^0 : Q^0/X \hookrightarrow Q^1$ to an injective object Q^1 . Define $d^0 = f^0 \circ \pi^0$.
- Repeat the previous step indefinitely...

• $Q^{\bullet} := 0 \to Q^0 \xrightarrow{d^0} Q^1 \xrightarrow{d^1} Q^2 \to \cdots$ It is clear from its construction that the complex is exact at each spot, except $\operatorname{Ker}(d^0) = X$.

Building projective resolutions. This construction is entirely analogous to the one given above. Namely,

- Start from a surjection from a projective object $f: P_0 \rightarrow X$.
- Let $i_0: K_0 = \text{Ker}(f) \hookrightarrow P_0$. Find a surjection from a projective object $f_0: P_1 \twoheadrightarrow K_0$. Define $d_0 = i_0 \circ f_0: P_1 \to P_0$.
- Repeat.

• $P_{\bullet} := \cdots \rightarrow P_2 \xrightarrow{d_1} P_1 \xrightarrow{d_0} P_0 \rightarrow 0$. Again, this is an exact (chain) complex at each spot, except $\operatorname{CoKer}(d_0) = X$.

We record these constructions as a proposition.

Proposition. Assuming an abelian category C has enough injectives (resp. projectives), every $X \in C$ admits an injective (resp. projective) resolution.

Remarks.

- (1) Injective/projective resolutions are not unique, but only up to homotopy, as we will prove below.
- (2) In practice, projective resolutions are easier to work with, than injective ones.
- (3) We will have to prove later that $\mathcal{A} = R$ -mod has enough injectives and projectives. The projective case is easy, but it will take some work to show that there are enough injective R-modules.

(17.3) Uniqueness (up to homotopy) of resolutions. – Let $M, N \in \mathcal{A}$ and let I^{\bullet} and J^{\bullet} be injective resolutions of M and N respectively. Recall that this means the following two sequences are exact:

Theorem. Given a morphism $f : M \to N$, there exists a lift $f^{\bullet} : I^{\bullet} \to J^{\bullet}$. That is, there are morphisms $\{f^n : I^n \to J^n\}_{n\geq 0}$ such that all the squares in the following diagram are commutative:

Moreover, if f^{\bullet} and g^{\bullet} are two lifts of f, then f^{\bullet} is homotopic to g^{\bullet} .

We will prove this theorem in the next two sections. For now, we record its important consequence.

Corollary. Injective resolutions are unique up to homotopy.

PROOF. Let $M \in \mathcal{A}$, and let I^{\bullet} and J^{\bullet} be two injective resolutions. Take M = N and $f = \mathrm{Id}_M$ in the previous theorem, to get $\alpha : I^{\bullet} \to J^{\bullet}$ and $\beta : J^{\bullet} \to I^{\bullet}$. Then $\alpha \circ \beta : J^{\bullet} \to J^{\bullet}$ and $\beta \circ \alpha : I^{\bullet} \to I^{\bullet}$ are both lifts of $\mathrm{Id}_M : M \to M$. But so are identity morphisms $\mathrm{Id}_{J^{\bullet}}$ and $\mathrm{Id}_{I^{\bullet}}$. By uniqueness part of the theorem, we conclude that $\alpha \circ \beta \sim \mathrm{Id}_{J^{\bullet}}$ and $\beta \circ \alpha \sim \mathrm{Id}_{I^{\bullet}}$. Hence I^{\bullet} and J^{\bullet} are isomorphic (up to homotopy).

(17.4) Proof of Theorem 17.3: existence of lifts. – We begin by constructing $f^0: I^0 \rightarrow J^0$. For this we need to use the fact that *i* is an injective morphism and J^0 is an injective object:

Assume that we have constructed $\{f^{\ell} : I^{\ell} \to J^{\ell}\}_{0 \leq \ell \leq n}$. Let us construct f^{n+1} . For this, we use the induced morphism at the level of cokernels:

As $\operatorname{Im}(d_I^{n-1}) = \operatorname{Ker}(d_I^n)$, we get an injective morphism $\underline{d}_I^n : I^n / \operatorname{Im}(d_I^{n-1}) \hookrightarrow I^{n+1}$ coming from d^n . Similarly we have a morphism, since $\operatorname{Im}(d_I^{n-1}) \subset \operatorname{Ker}(d_I^n)$:

$$\underline{d_J^n}:J^n/\operatorname{Im}(d_J^{n-1})\to J^{n+1}$$

Now we can use the fact that J^{n+1} is injective, to get f^{n+1} as:

Remark. Note that in the proof above, we only used the following assumptions:

- $0 \to M \to I^0 \to I^1 \to \cdots$ is exact. We did not use the hypothesis that I^{ℓ} is injective $(\ell \ge 0)$.
- $0 \to N \to J^0 \to J^1 \to \cdots$ is a complex, where each J^{ℓ} is injective. We did not use exactness of this complex.

(17.5) Uniqueness of lift. Note that it suffices to show that if $f^{\bullet}: I^{\bullet} \to J^{\bullet}$ is a lift of the zero morphism $M \xrightarrow{0} N$, then f^{\bullet} is null-homotopic. That is, there exists $\{s^n: I^n \to J^{n-1}\}_{n\geq 0}$ (with $s^0 = 0$ since $J^{-1} = 0$), such that

$$f^n = d_J^{n-1} \circ s^n + s^{n+1} \circ d_I^n : I^n \to J^n, \ \forall \ n \ge 0.$$

Let us begin by exhibiting how $s^1:I^1\to J^0$ shows up. For this, we notice that from the commutative diagram

we get that $M \subset \text{Ker}(f^0)$. Thus, f^0 factors through $\underline{f}^0 : I^0/M \to J^0$. Moreover, $M = \text{Im}(i) = \text{Ker}(d_I^0)$ gives an injective morphism $\underline{d}_I^0 : I^0/M \to I^1$. Now we are in the position to use the fact that J^0 is injective to get $s^1 : \overline{I^1} \to J^0$ as follows.

It is easy to see that we get $f^0 = s^1 \circ d_I^0$ so that we have built the required homotopy up to I^1 :

Assuming we have successfully built homotopies $\{s^0, \ldots, s^n\}$, where $n \ge 1$. We proceed with the construction of s^{n+1} . For this, we have to focus on the following part of the picture:

Define $g = f^n - d_J^{n-1} \circ s^n : I^n \to J^n$. The following calculation shows that $g \circ d_I^{n-1} = 0$: $g \circ d_I^{n-1} = f^n d_I^{n-1} - d_J^{n-1} s^n d_I^{n-1} = d_J^{n-1} (f^{n-1} - s^n d_I^{n-1}) = d_J^{n-1} d_J^{n-2} s^{n-1} = 0.$

Here, we have used the following facts:

- f^{\bullet} is a morphism of complexes, so $f^n d_I^{n-1} = d_J^{n-1} f^{n-1}$.
- $f^{n-1} = d_J^{n-2} s^{n-1} + s^n d_J^{n-1}$.

•
$$d_J^{n-1} d_J^{n-2} = 0.$$

Thus, we conclude that $\operatorname{Im}(d_I^{n-1}) = \operatorname{Ker}(d_I^n) \subset \operatorname{Ker}(g)$. This allows us to factor g through $\underline{g}: I^n / \operatorname{Ker}(d^n) \to J^n$. Again we rely on injectivity of I^{n+1} in the following diagram to get s^{n+1} :

