
LECTURE 18

(18.0) Theorem of the day.– This lecture is aimed at studying injective modules over R.
For simplicity, we will assume that R is a unital commutative ring. Recall the definition of
an injective module from Theorem 16.4. For today, the property that is going to play the
central role is the following.

An R–module M is injective if, and only if for every R–module B, a submodule A ⊂ B,

and an R–linear map f : A→M , there exists f̃ : B →M such that f̃ |A = f .
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We will show today that

R-mod has enough injectives

Recall this means that every module embeds into some injective module. Our proof goes
through a few steps:

(Step 1) Obtain a more working criterion for checking something is injective (Baer’s criterion
in §18.1).

(Step 2) Q/Z is an injective cogenerator in Ab (see §18.2 and §18.3 for what it means).

(Step 3) If Q ∈ Ab is an injective cogenerator, then IQ = HomZ(R,Q) ∈ R-mod is an injec-
tive cogenerator (Proposition 18.3).

(Step 4) Given an injective cogenerator I ∈ R-mod, every M embeds into
∏

ϕ∈HomR(M,I)

I, the

latter being injective (Theorem 18.4).

Thus, using the results from Lecture 17, we have the following theorem.

Theorem. For every M ∈ R-mod, there exists a unique (up to homotopy) injective resolu-
tion I•M ∈ K• (R-mod) of M . This assignment M 7→ I•M is “functorial up to homotopy”.
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By the last statment, we mean that for every morphism M → N , we have a unique (up
to homotopy) lift I•M → I•N .

(18.1) Baer’s criterion for injectivity.– The following lemma gives a more manage-
able condition to verify that a module is injective. Recall that an ideal a ⊂ R is a subgroup
(under addition) such that ra ∈ a, ∀r ∈ R, a ∈ a. In other words, a ⊂ R is an R–submodule.

Lemma. An R–module M is injective if, and only if for every ideal a ⊂ R and an R–linear

map f : a→M , there exists an R–linear f̃ : R→M such that f̃ |a = f .

Remark. Since HomR(R,M)
∼−→ M via ξ 7→ ξ(1), the condition of the lemma above can

be equivalently written as follows.

Given an ideal a ⊂ R and an R–linear f : a→M , there exists m ∈M such that f(a) = am
for every a ∈ a.

Proof. Since an ideal a ⊂ R is same as an R–submodule of R, the condition stated in the
lemma above is clearly necessary. We will now show that it is also sufficient.

So, let B be an R–module, and A ⊂ B be a submodule. Assume we are given an R–linear
map f : A→M . Consider the following partially ordered set of R–submodules of B:

P = {(A1, f1) : A ⊂ A1 ⊂ B submodule, f1 : A1 →M and f1|A = f}.
The partial order on P is by inclusion. Namely (A1, f1) ≤ (A2, f2) means A1 ⊂ A2 and

f2|A1 = f1. Moreover (A, f) ∈ P , so it is non–empty.

Claim. Every chain in P has a supremum.

Let us assume this claim for now and proceed with the proof of the lemma. The claim

allows us to apply Zorn’s lemma and conclude the existence of a maximal (Ã, f̃) ∈ P . Now

we show that Ã = B.

Assume on the contrary that Ã ( B. Let x ∈ B \ Ã. Define a = {r ∈ R : rx ∈ Ã} ⊂ R.
It is a routine exercise (left to the reader) to verify that a is an ideal. Consider the R–linear
map g : a→M given by

g : a→M, g(a) := f̃(ax).

This map is R–linear: for every r1, r2 ∈ R and a1, a2 ∈ a, we have

g(r1a1 + r2a2) = f̃((r1a1 + r2a2)x) = f̃(r1(a1x)) + f̃(r2(a2x))

= r1f̃(a1x) + r2f̃(a2x) = r1g(a1) + r2g(a2).

Now by the hypothesis of the lemma (see the remark after the statement), there exists

m ∈ M such that g(r) = f̃(rx) = rm for every r ∈ a. Consider C = Ã + Rx ⊂ M and let
h : C →M be given by:

h(a) = f̃(a), ∀a ∈ Ã and h(rx) = rm, ∀r ∈ R.
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h is well–defined. Note that every element of C can be written as a + rx for some a ∈ Ã
and r ∈ R, though this expression need not be unique (that is, the sum Ã + Rx need not
be direct). In order to make sure that the formula of h is unambiguous, we need to verify

that if rx = a ∈ Ã for some r ∈ R, then the two ways to apply h are the same. That is,

f̃(a) = rm. This is true, because rx ∈ Ã implies r ∈ a and by definition of m ∈M , we have

f̃(rx) = g(r) = rm.

Hence (C, h) ∈ P is strictly larger than Ã, contradicting its maximality. The lemma fol-
lows, modulo the claim, which we prove now.

Proof of the claim. Consider a chain in P

(A1, f1) ≤ (A2, f2) ≤ · · ·

and define A′ =
⋃
j≥1

Aj. It is easy to see that A′ ⊂ B is a submodule. Define f ′ : A′ →M as

follows:

For a ∈ A′ choose j such that a ∈ Aj. f ′(a) := fj(a).

Note that this is well–defined, since if a ∈ Ak and assuming without loss of generality that
j ≤ k, then fk(a) = fj(a) by definition of ≤ on P . This (A′, f ′) ∈ P is the required supre-
mum and we are done.

It is worth noting that (A′, f ′) is exactly the direct limit:

A′ = lim−→
j≥1

Aj and f ′ = lim−→
j≥1

fj.

�

(18.2) Examples.– Let us use Baer’s criterion to prove that Q ∈ Ab is an injective abelian
group. We have to show that any map from an ideal in Z to Q extends to one Z → Q.
Recall that ideals in Z are {(n) = nZ}n≥0. Assume that n > 0 (the case of the zero ideal is
always trivial and hence needs no further consideration). Let f : (n) → Q be an arbitrary

group homomorphism. Now f(n) = x ∈ Q. Since we can divide by n, define f̃ : Z → Q by

f̃(1) =
x

n
. It is easy to see that f̃ |(n) = f and we are done.

Another very important example of an injective abelian group is Q/Z.

Lemma. Q/Z ∈ Ab is an injective abelian group. Moreover, for any abelian group A ∈ Ab
and 0 6= a ∈ A, there exists a group homomorphism ψ : A→ Q/Z such that ψ(a) 6= 0.

Remark. Note that the second assertion of the lemma is false for Q. For instance, take A =
Z/NZ where N ≥ 2 is an arbitrary integer. There are no non–zero group homomorphisms
from Z/NZ → Q since Q has no torsion element. By contrast, every element of Q/Z is
torsion, and for every N ∈ Z≥2 there are N–torsion elements in Q/Z, which is what we need
to prove this lemma.
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Proof. We leave the proof of injectivity of Q/Z to the reader (it is exactly the same as the
one for Q given above). Let us prove the second statement. Let A ∈ Ab and 0 6= a ∈ A.
Take the subgroup generated by a, A1 ⊂ A. We have two options (depending on whether
there exists N ∈ Z≥2 such that Na = 0 or not):

A1
∼= Z, or A1

∼= Z/NZ.
In the first case, we can send a ∈ A1 to any non–zero element to get f : A1 → Q/Z, which
then extends to ψ : A→ Q/Z, since the latter is injective. Then ψ(a) = f(a) 6= 0.

In the second case, let f(a) := 1
N
∈ Q/Z. This is a group homomorphism and its extension

ψ : A→ Q/Z satisfies the requirement of the lemma. �

(18.3) Injective cogenerators.– An R–module E is said to be a cogenerator if for every
M ∈ R-mod and 0 6= m ∈M , there exists an R–linear map ψ : M → E such that ψ(m) 6= 0.

Lemma 18.2 says that Q/Z ∈ Ab is an injective cogenerator in the category Ab = Z-mod.
Now we will prove that we can use it to construct an injective cogenerator in R-mod, for
any R.

Proposition. Injective cogenerators exist in R-mod. More precisely, let Q ∈ Ab be any
injective cogenerator in Ab. Define an R–module IQ as:

IQ := HomZ(R,Q), r ∈ R, ξ ∈ IQ  (r · ξ)(x) := ξ(rx).

Then IQ is an injective cogenerator in R-mod.

Proof. We need to prove two things: (i) IQ is an injective R–module, and (ii) IQ is a co-
generator.

IQ is injective. Recall that we need to show that for any injective R–linear map i : A ↪→ B,
the induced homomorphism on Hom’s:

− ◦ i : HomR(B, IQ)→ HomR(A, IQ) is surjective.

Now we use Problem 11 of Homework 6, to conclude that

β : HomR(M, IQ) = HomR(M,HomZ(R,Q))
∼−→ HomZ(M ⊗R R,Q) = HomZ(M,Q).

Explicitly, this isomorphism sends η : M → HomZ(R,Q) to β(η) : M → Q given by
β(η)(m) = η(m)(1). Thus, − ◦ i becomes (note: i : A ↪→ B is R–linear implies that it is
Z–linear).

− ◦ i : HomZ(B,Q)→ HomZ(A,Q),

which is known to be surjective since Q ∈ Ab is injective.

IQ is a cogenerator. Now let M ∈ R-mod and 0 6= m ∈ M be a non–zero element. We are
looking for an R–linear homomorphism f : M → IQ such that f(m) 6= 0. Again we use the
isomorphism β given above. Let g : M → Q be a group homomorphism such that g(m) 6= 0
(exists since Q is a cogenerator). Let f : M → IQ be such that β(f) = g. Then,

f(m) : R→ Q is such that f(m)(1) = g(m) 6= 0.
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Hence f(m) is a non–zero element of IQ = HomZ(R,Q). �

(18.4) Enough injectives.– Now we can prove the main theorem of today’s lecture.

Theorem. There are enough injective in R-mod.

Remark. Recall that this meant that given any M ∈ R-mod, there exists an injective
module IM ∈ R-mod together with an injective R–linear map ψ : M ↪→ IM .

Proof. Let us choose an injective cogenerator I in R-mod. These exist by Proposition 18.3
above. Recall by Problem 7 of Homework 6, direct product of injective modules is injective.
Consider the following direct product:

IM :=
∏

ϕ∈HomR(M,I)

I(ϕ), where, I(ϕ) = I, ∀ ϕ ∈ HomR(R, I).

This module is injective, being direct product of injectives. Note that there every I(ϕ)

comes with a natural R–linear map ϕ : M → I = I(ϕ). Thus we get

ψ : M → IM , given by ψ(m) = (ϕ(m))ϕ ∈ IM .
We need to show that this map is injective. Here we need to use the fact that I is a
cogenerator. Meaning, given non–zero element m ∈ M , there exists some ϕ : M → I such
that ϕ(m) 6= 0. Thus ϕth component of ψ(m) is non–zero, proving that ψ(m) 6= 0. �


