LECTURE 19

(19.0) Definition of Ext and Tor.– Let R be a unital commutative ring, and R-mod be the category of R–modules. Given $M, N \in R$ -mod, recall that we have the following functors (see Theorems 10.4 and 12.5).

- $h^N = \operatorname{Hom}_R(-, N) : R \operatorname{-mod} \to R \operatorname{-mod}$. It is a left exact, contravariant functor.
- $h_M = \operatorname{Hom}_R(M, -) : R \operatorname{-mod} \to R \operatorname{-mod}$. It is a left exact, covariant functor.
- $T_N = \otimes_R N : R \text{-mod} \to R \text{-mod}$. It is a right exact, covariant functor. Note that since $M \otimes_R N \cong N \otimes_R M$, $\otimes_R N$ is naturally isomorphic to $N \otimes_R -$.

Recall that given a functor between two abelian categories $F : \mathcal{A} \to \mathcal{B}$, its derived functors are constructed as follows.

• Left exact, covariant case. Given $A \in \mathcal{A}$, choose an injective resolution $I_A^{\bullet} \in \mathbb{K}^{\bullet}(\mathcal{A})$. Then:

 $R^k F(A) := k^{\text{th}}$ cohomology of the cochain complex $F(I_A^{\bullet})$.

• Left exact, contravariant case. Given $A \in \mathcal{A}$, choose a projective resolution $P_{\bullet}^A \in \mathbb{K}_{\bullet}(\mathcal{A})$. Then:

 $R^k F(A) := k^{\text{th}}$ cohomology of the cochain complex $F(P^A)$.

• Right exact, covariant case. Given $A \in \mathcal{A}$, choose a projective resolution $P_{\bullet}^A \in \mathbb{K}_{\bullet}(\mathcal{A})$. Then:

 $L_k F(A) := k^{\text{th}}$ homology of the chain complex $F(P_{\bullet}^A)$.

(similarly for right exact, contravariant case - but we are not going to consider it, so it is omitted here)

- **Remarks.** (1) According to Theorem 17.3 and its corollary, injective and projective resolutions are unique up to homotopy. This, combined with the fact that H^k is the same for two homotopic morphisms (Proposition 14.3) implies that derived functors do not depend on the choice of a resolution.
 - (2) Derived functors are additive. To see this, let us assume F is left exact and covariant (to fix ideas). We can realize $R^k F$ as a composition of additive functors, if we replace $\mathbb{K}^{\bullet}(\mathcal{A})$ by its homotopy version, denoted here by $\mathbb{K}^{\bullet}(\mathcal{A})_{h}$.

The objects of $\mathbb{K}^{\bullet}(\mathcal{A})_h$ are same as those of $\mathbb{K}^{\bullet}(\mathcal{A})$ (namely cochain complexes), but the morphisms are changed to:

$$\operatorname{Hom}_{\mathbb{K}^{\bullet}(\mathcal{A})_{h}}(C^{\bullet}, D^{\bullet}) = \operatorname{Hom}_{\mathbb{K}^{\bullet}(\mathcal{A})}(C^{\bullet}, D^{\bullet}) / \operatorname{Hom}^{0}_{\mathbb{K}^{\bullet}(\mathcal{A})}(C^{\bullet}, D^{\bullet}),$$

LECTURE 19

where $\operatorname{Hom}^{0}_{\mathbb{K}^{\bullet}(\mathcal{A})}(C^{\bullet}, D^{\bullet})$ is the subgroup of null-homotopic morphisms (see §14.3). By Proposition 14.3, we get that $\mathbb{K}^{\bullet}(\mathcal{A})_{h}$ is an additive category, and by Theorem 17.3, $M \mapsto I_M^{\bullet}$ (choice of an injective resolution) is an additive functor $\mathbb{I} : \mathcal{A} \to$ $\mathbb{K}^{\bullet}(\mathcal{A})_{h}$. Thus, $R^{k}F: \mathcal{A} \to \mathcal{B}$ is the following composition of additive functors, hence additive:

$$\mathcal{A} \stackrel{\mathbb{I}}{\longrightarrow} \mathbb{K}^{\bullet} \left(\mathcal{A} \right)_{h} \stackrel{F}{\longrightarrow} \mathbb{K}^{\bullet} \left(\mathcal{B} \right)_{h} \stackrel{H^{k}}{\longrightarrow} \mathcal{B}.$$

Check: an additive functor $F : \mathcal{A} \to \mathcal{B}$ applied term-by-term to cochain complexes $F: \mathbb{K}^{\bullet}(\mathcal{A}) \to \mathbb{K}^{\bullet}(\mathcal{B})$ sends null-homotopic morphisms to null-homotopic morphisms.

Thus we obtain sequences of additive functors $\{R^k h^N\}, \{R^k h_M\}$ and $\{L_k T_N\}$, from *R*-mod to itself (here $k \in \mathbb{Z}_{\geq 0}$), whose definitions and properties are the main theme of this lecture.

(19.1) Ext functors. – The abstract construction of derived functors, for the case of h^N and h_M can be rewritten as follows.

Definition. Given $M, N \in R$ -mod, $R^k h^N(M)$ is defined as follows.

• Choose a projective resolution of M:

$$\cdots \xrightarrow{d_2} P_2 \xrightarrow{d_1} P_1 \xrightarrow{d_0} P_0 \to 0.$$

• Apply $\operatorname{Hom}_{R}(-, N)$ to get a complex:

$$0 \to \operatorname{Hom}_{R}(P_{0}, N) \xrightarrow{d^{0}} \operatorname{Hom}_{R}(P_{1}, N) \xrightarrow{d^{1}} \operatorname{Hom}_{R}(P_{2}, N) \xrightarrow{d^{2}} \cdots$$

where $d^j = - \circ d_j$.

• Take cohomology: $R^k h^N(M) = \operatorname{Ker}(d^k) / \operatorname{Im}(d^{k-1})$

Similarly, $R^k h_M(N)$ is defined as follows.

• Choose an injective resolution of N:

$$0 \to I^0 \xrightarrow{f^0} I^1 \xrightarrow{f^1} I^2 \xrightarrow{f^2} \cdots$$

• Apply $\operatorname{Hom}_{R}(M, -)$ to get a complex:

$$0 \to \operatorname{Hom}_R(M, I^0) \xrightarrow{d^0} \operatorname{Hom}_R(M, I^1) \xrightarrow{d^1} \operatorname{Hom}_R(M, I^2) \xrightarrow{d^2} \cdots$$

where $d^j = f^j \circ -$.

where $d^{j} = f^{j} \circ -$. • Take cohomology: $R^{k}h_{M}(N) = \operatorname{Ker}(d^{k})/\operatorname{Im}(d^{k-1})$

It will be shown next week that $|R^k \mathbf{h}^N(M) \cong R^k \mathbf{h}_M(N)|$. For now, we are going to assume this, and define:

$$\operatorname{Ext}_{R}^{k}(M,N) := R^{k} \mathsf{h}^{N}(M) = R^{k} \mathsf{h}_{M}(N)$$

Theorem. Let $N \in R$ -mod. Then we have additive, contravariant functors:

$$\operatorname{Ext}_{R}^{k}(-, N) : R \operatorname{-mod} \to R \operatorname{-mod}, \qquad k \in \mathbb{Z}_{\geq 0}.$$

This sequence of functors has the following properties:

(1) $\operatorname{Ext}_{R}^{0}(-, N) = \operatorname{Hom}_{R}(-, N).$

LECTURE 19

- (2) For a projective $P \in R$ -mod, $\operatorname{Ext}_{R}^{k}(P, N) = 0$, for every $k \geq 1$.
- (3) Given a short exact sequence $0 \to M_1 \to M_2 \to M_3 \to 0$, there exist connecting morphisms $\delta^k : \operatorname{Ext}_R^k(M_1, N) \to \operatorname{Ext}_R^{k+1}(M_3, N)$, such that the following sequence is exact:

(4) Given two short exact sequences and morphisms making each square in the following diagram commute:

we get the following commutative diagram, for each $k \ge 0$:

Exercise. Write the statement of the analogous theorem for $\operatorname{Ext}^{k}(M, -)$ functors.

(19.2) Tor functors. – Let us again write in detail the construction of left derived functors of a right exact, covariant functor, in the case of $T_N = - \bigotimes_R N$.

Definition. Given $M, N \in R$ -mod, the *R*-module $\operatorname{Tor}_{k}^{R}(M, N)$ is defined as follows.

• Choose a projective resolution of M:

$$\cdots \xrightarrow{f_2} P_2 \xrightarrow{f_1} P_1 \xrightarrow{f_0} P_0 \to 0.$$

• Tensor with N to get a (chain) complex:

$$\cdots \xrightarrow{d_2} P_2 \otimes N \xrightarrow{d_1} P_1 \otimes N \xrightarrow{d_0} P_0 \otimes N \to 0,$$

where $d_j = f_j \otimes \mathrm{Id}_N$.

• Take its k^{th} homology:

$$\operatorname{Tor}_k^R(M,N) := \operatorname{Ker}(d_{k-1}) / \operatorname{Im}(d_k)$$

Note that we may as well take a projective resolution of N and tensor (on the left) with M. The answer will be the same since \otimes is commutative.

Theorem. Let $N \in R$ -mod. Then we have a sequence of additive, covariant functors: $\operatorname{Tor}_{k}^{R}(-, N) : R \operatorname{-mod} \to R \operatorname{-mod}, \qquad k \in \mathbb{Z}_{\geq 0}.$

(1)
$$\operatorname{Tor}_{0}^{R}(-, N) = - \otimes_{R} N$$

- (2) If P is projective, then $\operatorname{Tor}_{k}^{R}(P, N) = 0$, for every $k \geq 1$.
- (3) For every short exact sequence $0 \to M_1 \to M_2 \to M_3 \to 0$, we have connecting morphisms δ_k : $\operatorname{Tor}_{k+1}(M_3, N) \to \operatorname{Tor}_k(M_1, N)$, for every $k \ge 0$, such that the following sequence is exact:

(4) Given two short exact sequences and morphisms making each square in the following diagram commute:

we get the following commutative diagram, for each $k \geq 0$:

(19.3) Examples of Ext.-

I. Let us take $R = \mathbb{Z}$, $M = \mathbb{Z}/m\mathbb{Z}$ and $N = \mathbb{Z}$. We compute $\operatorname{Ext}^{k}_{\mathbb{Z}}(M, N)$ using the two methods:

(1) Projective resolution of $M: 0 \to \mathbb{Z} \xrightarrow{\mu_m} \mathbb{Z} \to 0$, where μ_m is multiplication by m. Applying Hom(-, N) turns it into (using Hom $(\mathbb{Z}, \mathbb{Z}) = \mathbb{Z}) 0 \to \mathbb{Z} \xrightarrow{\mu_m} \mathbb{Z} \to 0$, whose cohomology gives us:

$$\operatorname{Ext}^{0}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}) = \{0\}, \qquad \operatorname{Ext}^{1}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}) = \mathbb{Z}/m\mathbb{Z},$$

and $\operatorname{Ext}^k(M, N) = 0$ for $k \ge 2$.

(2) Injective resolution of $N: 0 \to \mathbb{Q} \xrightarrow{\pi} \mathbb{Q}/\mathbb{Z} \to 0$, where π is the natural surjection. Apply $\operatorname{Hom}(M, -)$ and use the fact that $\operatorname{Hom}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Q}) = \{0\}$ to get (the terms are in degrees -1, 0, 1, 2 respectively):

$$0 \to 0 \to \operatorname{Hom}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Q}/\mathbb{Z}) \to 0.$$

Its cohomology gives exactly the same answer as before.

Remark. As we will see next week, the notation Ext stands for *extensions* and the relation can be seen in the previous example. Namely, for every $\alpha \in \mathbb{Z}$, we have a short exact sequence:

$$0 \to \mathbb{Z} \xrightarrow{i} M_{\alpha} \xrightarrow{p} \mathbb{Z}/m\mathbb{Z} \to 0,$$

where M_{α} is the abelian group generated by two elements, e_1, e_2 , subject to a relation: $me_2 = \alpha e_1$. The morphisms *i* and *p* are given by: $i(1) = e_1$ and $p(e_1) = 0, p(e_2) = \overline{1}$. It turns out that we can find an isomorphism $M_{\alpha} \xrightarrow{\sim} M_{\beta}$ which commutes with the maps *i* and *p*, if and only if $\alpha \equiv \beta \pmod{m}$.

In general, a short exact sequence $0 \to A \to B \to C \to 0$ is also called an extension of C by A. Thus, there are m (up to isomorphism) extensions of $\mathbb{Z}/m\mathbb{Z}$ by \mathbb{Z} , which is reflected in the fact that $\text{Ext}^1(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}) = \mathbb{Z}/m\mathbb{Z}$.

II. $R = \mathbb{Z}$, $M = \mathbb{Z}/m\mathbb{Z}$, $N = \mathbb{Z}/n\mathbb{Z}$. Taking the projective resolution of M as above, and applying Hom(-, N), we get the following complex:

$$0 \to \mathbb{Z}/n\mathbb{Z} \xrightarrow{\mu_m} \mathbb{Z}/n\mathbb{Z} \to 0.$$

Now we can write down the cohomology of this complex as:

 $\operatorname{Ext}^{0}(M, N) = \{ x \in \mathbb{Z}/n\mathbb{Z} : mx \text{ is divisible by } n \}$

Note that this is same as $\operatorname{Hom}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z})$ as expected. Check: there are $\operatorname{gcd}(m,n)$ many elements in this hom set.

$$\operatorname{Ext}^{1}(M, N) = \mathbb{Z}/(m, n) = \mathbb{Z}/\operatorname{gcd}(m, n)\mathbb{Z}.$$

(19.4) Example of Tor.– The notation Tor stands for *torsion* and is explained by the following example. Let R be an integral domain, and let $a \in R$ be a non–zero element. Let M = R/(a) and $N \in R$ -mod arbitrary. We begin by writing down a projective resolution of $M: 0 \to R \xrightarrow{\mu_a} R \to 0$. Tensoring with N, and remembering $R \otimes_R N \cong N$, we get

$$0 \to N \xrightarrow{\mu_a} N \to 0$$
, in degrees 2, 1, 0, -1

Thus, we get:

$$\operatorname{Tor}_0(M, N) = N/aN = (R/(a)) \otimes_R N, \quad \operatorname{Tor}_1(M, N) = \{x \in N : ax = 0\}.$$

Now we can clearly see $\text{Tor}_1(R/(a), N)$ consists of elements which are *a*-torsion (meaning $n \in N$ so that an = 0). This explains the name torsion modules for Tor's.