LECTURE 19

(19.0) Definition of Ext and Tor.- Let R be a unital commutative ring, and R-mod be the category of R-modules. Given $M, N \in R$-mod, recall that we have the following functors (see Theorems 10.4 and 12.5).

- $\mathrm{h}^{N}=\operatorname{Hom}_{R}(-, N): R$-mod $\rightarrow R$-mod. It is a left exact, contravariant functor.
- $\mathrm{h}_{M}=\operatorname{Hom}_{R}(M,-): R-\bmod \rightarrow R$-mod. It is a left exact, covariant functor.
- $T_{N}=-\otimes_{R} N: R$-mod $\rightarrow R$-mod. It is a right exact, covariant functor. Note that since $M \otimes_{R} N \cong N \otimes_{R} M,-\otimes_{R} N$ is naturally isomorphic to $N \otimes_{R}-$.

Recall that given a functor between two abelian categories $F: \mathcal{A} \rightarrow \mathcal{B}$, its derived functors are constructed as follows.

- Left exact, covariant case. Given $A \in \mathcal{A}$, choose an injective resolution $I_{A}^{\bullet} \in \mathbb{K}^{\bullet}(\mathcal{A})$. Then:

$$
R^{k} F(A):=k^{\text {th }} \text { cohomology of the cochain complex } F\left(I_{A}^{\bullet}\right) .
$$

- Left exact, contravariant case. Given $A \in \mathcal{A}$, choose a projective resolution $P_{\bullet}^{A} \in$ $\mathbb{K}_{\bullet}(\mathcal{A})$. Then:

$$
R^{k} F(A):=k^{\mathrm{th}} \text { cohomology of the cochain complex } F\left(P_{\bullet}^{A}\right)
$$

- Right exact, covariant case. Given $A \in \mathcal{A}$, choose a projective resolution $P_{\bullet}^{A} \in$ $\mathbb{K}_{\bullet}(\mathcal{A})$. Then:

$$
L_{k} F(A):=k^{\text {th }} \text { homology of the chain complex } F\left(P_{\bullet}^{A}\right) .
$$

(similarly for right exact, contravariant case - but we are not going to consider it, so it is omitted here)

Remarks. (1) According to Theorem 17.3 and its corollary, injective and projective resolutions are unique up to homotopy. This, combined with the fact that H^{k} is the same for two homotopic morphisms (Proposition 14.3) implies that derived functors do not depend on the choice of a resolution.
(2) Derived functors are additive. To see this, let us assume F is left exact and covariant (to fix ideas). We can realize $R^{k} F$ as a composition of additive functors, if we replace $\mathbb{K}^{\bullet}(\mathcal{A})$ by its homotopy version, denoted here by $\mathbb{K}^{\bullet}(\mathcal{A})_{h}$.

The objects of $\mathbb{K}^{\bullet}(\mathcal{A})_{h}$ are same as those of $\mathbb{K}^{\bullet}(\mathcal{A})$ (namely cochain complexes), but the morphisms are changed to:

$$
\operatorname{Hom}_{\mathbb{K} \bullet(\mathcal{A})_{h}}\left(C^{\bullet}, D^{\bullet}\right)=\operatorname{Hom}_{\mathbb{K}} \bullet(\mathcal{A})\left(C^{\bullet}, D^{\bullet}\right) / \operatorname{Hom}_{\mathbb{K} \bullet(\mathcal{A})}^{0}\left(C^{\bullet}, D^{\bullet}\right),
$$

where $\operatorname{Hom}_{\mathbb{K}}^{0} \cdot(\mathcal{A})\left(C^{\bullet}, D^{\bullet}\right)$ is the subgroup of null-homotopic morphisms (see $\S 14.3$). By Proposition 14.3 , we get that $\mathbb{K}^{\bullet}(\mathcal{A})_{h}$ is an additive category, and by Theorem 17.3, $M \mapsto I_{M}^{\bullet}$ (choice of an injective resolution) is an additive functor $\mathbb{I}: \mathcal{A} \rightarrow$ $\mathbb{K}^{\bullet}(\mathcal{A})_{h}$. Thus, $R^{k} F: \mathcal{A} \rightarrow \mathcal{B}$ is the following composition of additive functors, hence additive:

$$
\mathcal{A} \xrightarrow{\mathbb{I}} \mathbb{K}^{\bullet}(\mathcal{A})_{h} \xrightarrow{F} \mathbb{K}^{\bullet}(\mathcal{B})_{h} \xrightarrow{H^{k}} \mathcal{B} .
$$

Check: an additive functor $F: \mathcal{A} \rightarrow \mathcal{B}$ applied term-by-term to cochain complexes $F: \mathbb{K}^{\bullet}(\mathcal{A}) \rightarrow \mathbb{K}^{\bullet}(\mathcal{B})$ sends null-homotopic morphisms to null-homotopic morphisms.

Thus we obtain sequences of additive functors $\left\{R^{k} \mathrm{~h}^{N}\right\},\left\{R^{k} \mathrm{~h}_{M}\right\}$ and $\left\{L_{k} T_{N}\right\}$, from R-mod to itself (here $k \in \mathbb{Z}_{\geq 0}$), whose definitions and properties are the main theme of this lecture.
(19.1) Ext functors.- The abstract construction of derived functors, for the case of h^{N} and h_{M} can be rewritten as follows.
Definition. Given $M, N \in R$-mod, $R^{k} \mathrm{~h}^{N}(M)$ is defined as follows.

- Choose a projective resolution of M :

$$
\cdots \xrightarrow{d_{2}} P_{2} \xrightarrow{d_{1}} P_{1} \xrightarrow{d_{0}} P_{0} \rightarrow 0 .
$$

- Apply $\operatorname{Hom}_{R}(-, N)$ to get a complex:

$$
0 \rightarrow \operatorname{Hom}_{R}\left(P_{0}, N\right) \xrightarrow{d^{0}} \operatorname{Hom}_{R}\left(P_{1}, N\right) \xrightarrow{d^{1}} \operatorname{Hom}_{R}\left(P_{2}, N\right) \xrightarrow{d^{2}} \cdots
$$

where $d^{j}=-\circ d_{j}$.

- Take cohomology: $R^{k} \mathrm{~h}^{N}(M)=\operatorname{Ker}\left(d^{k}\right) / \operatorname{Im}\left(d^{k-1}\right)$

Similarly, $R^{k} \mathrm{~h}_{M}(N)$ is defined as follows.

- Choose an injective resolution of N :

$$
0 \rightarrow I^{0} \xrightarrow{f^{0}} I^{1} \xrightarrow{f^{1}} I^{2} \xrightarrow{f^{2}} \cdots
$$

- Apply $\operatorname{Hom}_{R}(M,-)$ to get a complex:

$$
0 \rightarrow \operatorname{Hom}_{R}\left(M, I^{0}\right) \xrightarrow{d^{0}} \operatorname{Hom}_{R}\left(M, I^{1}\right) \xrightarrow{d^{1}} \operatorname{Hom}_{R}\left(M, I^{2}\right) \xrightarrow{d^{2}} \cdots
$$

where $d^{j}=f^{j} \circ-$.

- Take cohomology: $R^{k} \mathrm{~h}_{M}(N)=\operatorname{Ker}\left(d^{k}\right) / \operatorname{Im}\left(d^{k-1}\right)$

It will be shown next week that $R^{k} \mathrm{~h}^{N}(M) \cong R^{k} \mathrm{~h}_{M}(N)$. For now, we are going to assume this, and define:

$$
\operatorname{Ext}_{R}^{k}(M, N):=R^{k} \mathrm{~h}^{N}(M)=R^{k} \mathrm{~h}_{M}(N)
$$

Theorem. Let $N \in R$-mod. Then we have additive, contravariant functors:

$$
\operatorname{Ext}_{R}^{k}(-, N): R-\bmod \rightarrow R-\bmod , \quad k \in \mathbb{Z}_{\geq 0}
$$

This sequence of functors has the following properties:
(1) $\operatorname{Ext}_{R}^{0}(-, N)=\operatorname{Hom}_{R}(-, N)$.
(2) For a projective $P \in R$-mod, $\operatorname{Ext}_{R}^{k}(P, N)=0$, for every $k \geq 1$.
(3) Given a short exact sequence $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$, there exist connecting morphisms $\delta^{k}: \operatorname{Ext}_{R}^{k}\left(M_{1}, N\right) \rightarrow \operatorname{Ext}_{R}^{k+1}\left(M_{3}, N\right)$, such that the following sequence is exact:

$$
0 \longrightarrow \operatorname{Hom}\left(M_{3}, N\right) \longrightarrow \operatorname{Hom}\left(M_{2}, N\right) \longrightarrow \operatorname{Hom}\left(M_{1}, N\right) \longrightarrow
$$

(4) Given two short exact sequences and morphisms making each square in the following diagram commute:

we get the following commutative diagram, for each $k \geq 0$:

Exercise. Write the statement of the analogous theorem for $\operatorname{Ext}^{k}(M,-)$ functors.
(19.2) Tor functors.- Let us again write in detail the construction of left derived functors of a right exact, covariant functor, in the case of $T_{N}=-\otimes_{R} N$.

Definition. Given $M, N \in R$-mod, the $R-\operatorname{module} \operatorname{Tor}_{k}^{R}(M, N)$ is defined as follows.

- Choose a projective resolution of M :

$$
\cdots \xrightarrow{f_{2}} P_{2} \xrightarrow{f_{1}} P_{1} \xrightarrow{f_{0}} P_{0} \rightarrow 0 .
$$

- Tensor with N to get a (chain) complex:

$$
\cdots \xrightarrow{d_{2}} P_{2} \otimes N \xrightarrow{d_{1}} P_{1} \otimes N \xrightarrow{d_{0}} P_{0} \otimes N \rightarrow 0,
$$

where $d_{j}=f_{j} \otimes \operatorname{Id}_{N}$.

- Take its $k^{\text {th }}$ homology:

$$
\operatorname{Tor}_{k}^{R}(M, N):=\operatorname{Ker}\left(d_{k-1}\right) / \operatorname{Im}\left(d_{k}\right)
$$

Note that we may as well take a projective resolution of N and tensor (on the left) with M. The answer will be the same since \otimes is commutative.

Theorem. Let $N \in R$-mod. Then we have a sequence of additive, covariant functors:

$$
\operatorname{Tor}_{k}^{R}(-, N): R-\bmod \rightarrow R-\bmod , \quad k \in \mathbb{Z}_{\geq 0}
$$

(1) $\operatorname{Tor}_{0}^{R}(-, N)=-\otimes_{R} N$.
(2) If P is projective, then $\operatorname{Tor}_{k}^{R}(P, N)=0$, for every $k \geq 1$.
(3) For every short exact sequence $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$, we have connecting morphisms $\delta_{k}: \operatorname{Tor}_{k+1}\left(M_{3}, N\right) \rightarrow \operatorname{Tor}_{k}\left(M_{1}, N\right)$, for every $k \geq 0$, such that the following sequence is exact:

and $\operatorname{Ext}^{k}(M, N)=0$ for $k \geq 2$.
(2) Injective resolution of $N: 0 \rightarrow \mathbb{Q} \xrightarrow{\pi} \mathbb{Q} / \mathbb{Z} \rightarrow 0$, where π is the natural surjection. Apply $\operatorname{Hom}(M,-)$ and use the fact that $\operatorname{Hom}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Q})=\{0\}$ to get (the terms are in degrees $-1,0,1,2$ respectively):

$$
0 \rightarrow 0 \rightarrow \operatorname{Hom}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Q} / \mathbb{Z}) \rightarrow 0
$$

Its cohomology gives exactly the same answer as before.
Remark. As we will see next week, the notation Ext stands for extensions and the relation can be seen in the previous example. Namely, for every $\alpha \in \mathbb{Z}$, we have a short exact sequence:

$$
0 \rightarrow \mathbb{Z} \xrightarrow{i} M_{\alpha} \xrightarrow{p} \mathbb{Z} / m \mathbb{Z} \rightarrow 0,
$$

where M_{α} is the abelian group generated by two elements, e_{1}, e_{2}, subject to a relation: $m e_{2}=\alpha e_{1}$. The morphisms i and p are given by: $i(1)=e_{1}$ and $p\left(e_{1}\right)=0, p\left(e_{2}\right)=\overline{1}$. It turns out that we can find an isomorphism $M_{\alpha} \xrightarrow{\sim} M_{\beta}$ which commutes with the maps i and p, if and only if $\alpha \equiv \beta(\bmod m)$.

In general, a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is also called an extension of C by A. Thus, there are m (up to isomorphism) extensions of $\mathbb{Z} / m \mathbb{Z}$ by \mathbb{Z}, which is reflected in the fact that $\operatorname{Ext}^{1}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z})=\mathbb{Z} / m \mathbb{Z}$.
II. $R=\mathbb{Z}, M=\mathbb{Z} / m \mathbb{Z}, N=\mathbb{Z} / n \mathbb{Z}$. Taking the projective resolution of M as above, and applying $\operatorname{Hom}(-, N)$, we get the following complex:

$$
0 \rightarrow \mathbb{Z} / n \mathbb{Z} \xrightarrow{\mu_{m}} \mathbb{Z} / n \mathbb{Z} \rightarrow 0
$$

Now we can write down the cohomology of this complex as:

$$
\operatorname{Ext}^{0}(M, N)=\{x \in \mathbb{Z} / n \mathbb{Z}: m x \text { is divisible by } n\}
$$

Note that this is same as $\operatorname{Hom}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z})$ as expected. Check: there are $\operatorname{gcd}(m, n)$ many elements in this hom set.

$$
\operatorname{Ext}^{1}(M, N)=\mathbb{Z} /(m, n)=\mathbb{Z} / \operatorname{gcd}(m, n) \mathbb{Z}
$$

(19.4) Example of Tor.- The notation Tor stands for torsion and is explained by the following example. Let R be an integral domain, and let $a \in R$ be a non-zero element. Let $M=R /(a)$ and $N \in R$-mod arbitrary. We begin by writing down a projective resolution of $M: 0 \rightarrow R \xrightarrow{\mu_{a}} R \rightarrow 0$. Tensoring with N, and remembering $R \otimes_{R} N \cong N$, we get

$$
0 \rightarrow N \xrightarrow{\mu_{a}} N \rightarrow 0, \quad \text { in degrees } 2,1,0,-1
$$

Thus, we get:

$$
\operatorname{Tor}_{0}(M, N)=N / a N=(R /(a)) \otimes_{R} N, \quad \operatorname{Tor}_{1}(M, N)=\{x \in N: a x=0\}
$$

Now we can clearly see $\operatorname{Tor}_{1}(R /(a), N)$ consists of elements which are a-torsion (meaning $n \in N$ so that $a n=0$). This explains the name torsion modules for Tor's.

