
LECTURE 19

(19.0) Definition of Ext and Tor.– Let R be a unital commutative ring, and R-mod be
the category of R–modules. Given M,N ∈ R-mod, recall that we have the following functors
(see Theorems 10.4 and 12.5).

• hN = HomR(−, N) : R-mod→ R-mod. It is a left exact, contravariant functor.

• hM = HomR(M,−) : R-mod→ R-mod. It is a left exact, covariant functor.

• TN = − ⊗R N : R-mod → R-mod. It is a right exact, covariant functor. Note that
since M ⊗R N ∼= N ⊗RM , −⊗R N is naturally isomorphic to N ⊗R −.

Recall that given a functor between two abelian categories F : A → B, its derived functors
are constructed as follows.

• Left exact, covariant case. Given A ∈ A, choose an injective resolution I•A ∈ K• (A).
Then:

RkF (A) := kth cohomology of the cochain complex F (I•A).

• Left exact, contravariant case. Given A ∈ A, choose a projective resolution PA
• ∈

K• (A). Then:

RkF (A) := kth cohomology of the cochain complex F (PA
• ).

• Right exact, covariant case. Given A ∈ A, choose a projective resolution PA
• ∈

K• (A). Then:

LkF (A) := kth homology of the chain complex F (PA
• ).

(similarly for right exact, contravariant case - but we are not going to consider it,
so it is omitted here)

Remarks. (1) According to Theorem 17.3 and its corollary, injective and projective res-
olutions are unique up to homotopy. This, combined with the fact that Hk is the
same for two homotopic morphisms (Proposition 14.3) implies that derived functors
do not depend on the choice of a resolution.

(2) Derived functors are additive. To see this, let us assume F is left exact and covariant
(to fix ideas). We can realize RkF as a composition of additive functors, if we replace
K• (A) by its homotopy version, denoted here by K• (A)h.

The objects of K• (A)h are same as those of K• (A) (namely cochain complexes),
but the morphisms are changed to:

HomK•(A)h(C•, D•) = HomK•(A)(C
•, D•)/Hom0

K•(A)(C
•, D•),
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where Hom0
K•(A)(C

•, D•) is the subgroup of null–homotopic morphisms (see §14.3).
By Proposition 14.3, we get that K• (A)h is an additive category, and by Theorem
17.3, M 7→ I•M (choice of an injective resolution) is an additive functor I : A →
K• (A)h. Thus, RkF : A → B is the following composition of additive functors,
hence additive:

A I−→ K• (A)h
F−→ K• (B)h

Hk

−→ B.

Check: an additive functor F : A → B applied term-by-term to cochain complexes
F : K• (A)→ K• (B) sends null–homotopic morphisms to null–homotopic morphisms.

Thus we obtain sequences of additive functors {RkhN}, {RkhM} and {LkTN}, from R-mod
to itself (here k ∈ Z≥0), whose definitions and properties are the main theme of this lecture.

(19.1) Ext functors.– The abstract construction of derived functors, for the case of hN and
hM can be rewritten as follows.

Definition. Given M,N ∈ R-mod, RkhN(M) is defined as follows.

• Choose a projective resolution of M :

· · · d2−→ P2
d1−→ P1

d0−→ P0 → 0.

• Apply HomR(−, N) to get a complex:

0→ HomR(P0, N)
d0−→ HomR(P1, N)

d1−→ HomR(P2, N)
d2−→ · · ·

where dj = − ◦ dj.
• Take cohomology: RkhN(M) = Ker(dk)/ Im(dk−1)

Similarly, RkhM(N) is defined as follows.

• Choose an injective resolution of N :

0→ I0
f0−→ I1

f1−→ I2
f2−→ · · ·

• Apply HomR(M,−) to get a complex:

0→ HomR(M, I0)
d0−→ HomR(M, I1)

d1−→ HomR(M, I2)
d2−→ · · ·

where dj = f j ◦ −.

• Take cohomology: RkhM(N) = Ker(dk)/ Im(dk−1)

It will be shown next week that RkhN(M) ∼= RkhM(N) . For now, we are going to assume

this, and define:

ExtkR(M,N) := RkhN(M) = RkhM(N)

Theorem. Let N ∈ R-mod. Then we have additive, contravariant functors:

ExtkR(−, N) : R-mod→ R-mod, k ∈ Z≥0.
This sequence of functors has the following properties:

(1) Ext0R(−, N) = HomR(−, N).
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(2) For a projective P ∈ R-mod, ExtkR(P,N) = 0, for every k ≥ 1.

(3) Given a short exact sequence 0 → M1 → M2 → M3 → 0, there exist connecting
morphisms δk : ExtkR(M1, N) → Extk+1

R (M3, N), such that the following sequence is
exact:

0 Hom(M3, N)// Hom(M2, N)// Hom(M1, N)// //

δ0

Ext1(M3, N)// Ext1(M2, N)// Ext1(M1, N)// //

δ1

Ext2(M3, N)// Ext2(M2, N)// Ext2(M1, N)// · · ·
(4) Given two short exact sequences and morphisms making each square in the following

diagram commute:

0 M1
// M2

// M3
// 0//

0 M ′
1

// M ′
2

// M ′
3

// 0//
�� �� ��

we get the following commutative diagram, for each k ≥ 0:

Extk(M1, N) Extk+1(M3, N)

Extk(M ′
1, N) Extk+1(M ′

3, N)

OO OO
//

//

Exercise. Write the statement of the analogous theorem for Extk(M,−) functors.

(19.2) Tor functors.– Let us again write in detail the construction of left derived functors
of a right exact, covariant functor, in the case of TN = −⊗R N .

Definition. Given M,N ∈ R-mod, the R–module TorRk (M,N) is defined as follows.

• Choose a projective resolution of M :

· · · f2−→ P2
f1−→ P1

f0−→ P0 → 0.

• Tensor with N to get a (chain) complex:

· · · d2−→ P2 ⊗N
d1−→ P1 ⊗N

d0−→ P0 ⊗N → 0,

where dj = fj ⊗ IdN .
• Take its kth homology:

TorRk (M,N) := Ker(dk−1)/ Im(dk)
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Note that we may as well take a projective resolution of N and tensor (on the left) with
M . The answer will be the same since ⊗ is commutative.

Theorem. Let N ∈ R-mod. Then we have a sequence of additive, covariant functors:

TorRk (−, N) : R-mod→ R-mod, k ∈ Z≥0.

(1) TorR0 (−, N) = −⊗R N .

(2) If P is projective, then TorRk (P,N) = 0, for every k ≥ 1.

(3) For every short exact sequence 0→ M1 → M2 → M3 → 0, we have connecting mor-
phisms δk : Tork+1(M3, N) → Tork(M1, N), for every k ≥ 0, such that the following
sequence is exact:

· · · Tor2(M1, N)// Tor2(M2, N)// Tor2(M3, N)// //

δ1

Tor1(M1, N)// Tor1(M2, N)// Tor1(M3, N)// //

δ0

M1 ⊗N// M2 ⊗N// M3 ⊗N// 0//

(4) Given two short exact sequences and morphisms making each square in the following
diagram commute:

0 M1
// M2

// M3
// 0//

0 M ′
1

// M ′
2

// M ′
3

// 0//
�� �� ��

we get the following commutative diagram, for each k ≥ 0:

Tork+1(M3, N) Tork(M1, N)

Tork+1(M
′
3, N) Tork(M

′
1, N)

�� ��

//

//

(19.3) Examples of Ext.–
I. Let us take R = Z, M = Z/mZ and N = Z. We compute ExtkZ(M,N) using the two
methods:

(1) Projective resolution of M : 0 → Z µm−→ Z → 0, where µm is multiplication by m.

Applying Hom(−, N) turns it into (using Hom(Z,Z) = Z) 0→ Z µm−→ Z→ 0, whose
cohomology gives us:

Ext0(Z/mZ,Z) = {0}, Ext1(Z/mZ,Z) = Z/mZ,
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and Extk(M,N) = 0 for k ≥ 2.

(2) Injective resolution of N : 0 → Q π−→ Q/Z → 0, where π is the natural surjection.
Apply Hom(M,−) and use the fact that Hom(Z/mZ,Q) = {0} to get (the terms are
in degrees −1, 0, 1, 2 respectively):

0→ 0→ Hom(Z/mZ,Q/Z)→ 0.

Its cohomology gives exactly the same answer as before.

Remark. As we will see next week, the notation Ext stands for extensions and the relation
can be seen in the previous example. Namely, for every α ∈ Z, we have a short exact
sequence:

0→ Z i−→Mα
p−→ Z/mZ→ 0,

where Mα is the abelian group generated by two elements, e1, e2, subject to a relation:
me2 = αe1. The morphisms i and p are given by: i(1) = e1 and p(e1) = 0, p(e2) = 1. It

turns out that we can find an isomorphism Mα
∼−→ Mβ which commutes with the maps i

and p, if and only if α ≡ β (mod m).

In general, a short exact sequence 0→ A→ B → C → 0 is also called an extension of C
by A. Thus, there are m (up to isomorphism) extensions of Z/mZ by Z, which is reflected
in the fact that Ext1(Z/mZ,Z) = Z/mZ.

II. R = Z, M = Z/mZ, N = Z/nZ. Taking the projective resolution of M as above, and
applying Hom(−, N), we get the following complex:

0→ Z/nZ µm−→ Z/nZ→ 0.

Now we can write down the cohomology of this complex as:

Ext0(M,N) = {x ∈ Z/nZ : mx is divisible by n}
Note that this is same as Hom(Z/mZ,Z/nZ) as expected. Check: there are gcd(m,n) many
elements in this hom set.

Ext1(M,N) = Z/(m,n) = Z/ gcd(m,n)Z.
(19.4) Example of Tor.– The notation Tor stands for torsion and is explained by the
following example. Let R be an integral domain, and let a ∈ R be a non–zero element. Let
M = R/(a) and N ∈ R-mod arbitrary. We begin by writing down a projective resolution of

M : 0→ R
µa−→ R→ 0. Tensoring with N , and remembering R⊗R N ∼= N , we get

0→ N
µa−→ N → 0, in degrees 2, 1, 0,−1.

Thus, we get:

Tor0(M,N) = N/aN = (R/(a))⊗R N, Tor1(M,N) = {x ∈ N : ax = 0}.
Now we can clearly see Tor1(R/(a), N) consists of elements which are a–torsion (meaning
n ∈ N so that an = 0). This explains the name torsion modules for Tor’s.


