LECTURE 20

(20.0) Review. – Let R be a unital, commutative ring and R-mod the category of R-modules. Last time we introduced two functors Ext and Tor, whose value on a pair $M, N \in R$ -mod is computed as follows:

 ${\operatorname{Ext}}^k_R(M,N)\}_{k\geq 0}$:

(1) Choose a projective resolution of M, say $P^M_{\bullet} \in \mathbb{K}_{\bullet}$ (*R*-mod). Then:

 $\operatorname{Ext}_{R}^{k}(M, N) = k^{\operatorname{th}}$ cohomology of the cochain complex $\operatorname{Hom}(P_{\bullet}^{M}, N)$.

(2) Choose an injective resolution of N, say $I_N^{\bullet} \in \mathbb{K}^{\bullet}$ (R-mod). Then:

 $\operatorname{Ext}_{R}^{k}(M, N) = k^{\operatorname{th}}$ cohomology of the cochain complex $\operatorname{Hom}(M, I_{N}^{\bullet})$.

The proof of the fact that the two procedures give the same answer is postponed to next week.

 ${\operatorname{Tor}_k^R(M,N)}_{k>0}$:

(1) Choose a projective resolution of M, say $P^M_{\bullet} \in \mathbb{K}_{\bullet}$ (*R*-mod). Then:

 $\operatorname{Tor}_{k}^{R}(M, N) = k^{\operatorname{th}}$ homology of the chain complex $P_{\bullet}^{M} \otimes N$.

(2) Choose a projective resolution of N, say $P^N_{\bullet} \in \mathbb{K}_{\bullet}$ (R-mod). Then:

 $\operatorname{Tor}_{k}^{R}(M, N) = k^{\operatorname{th}}$ homology of the chain complex $M \otimes P_{\bullet}^{N}$.

Again, we will see next week why these two methods give the same answer¹. This will show that $\operatorname{Tor}_k(M, N) = \operatorname{Tor}_k(N, M)$.

As remarked in the last lecture, we rarely use injective resolutions for computing Ext's. A few examples of projective resolutions were given in Homework 6. In this lecture we will discuss:

- Injective modules over integral domains.
- Flat modules.

(20.1) Injective modules over integral domains. – Recall Baer's criterion for injectivity (Lemma 18.1). An *R*-module *Q* is injective if, and only if, for every ideal $\mathfrak{a} \subset R$ and an *R*-linear map $f : \mathfrak{a} \to Q$, there exists $q \in Q$ such that f(a) = aq for every $a \in \mathfrak{a}$.

Let us assume that R is an integral domain.

¹Thanks to William Newman and Yousef Qaddura for pointing out that this is not *obviously* true, as I erraneously said.

Definition. An *R*-module *M* is said to be *torsion free*, if for every $a \in R$, the *R*-linear map obtained via action of *a*:

$$\mu_a: M \to M, \qquad \mu_a(m) = am, \ \forall \ m \in M,$$

is injective. In other words, define:

$$M_{\text{tor}} := \{ m \in M : \exists a \in R \setminus \{0\}, \text{ such that } am = 0 \}.$$

M is torsion free means $M_{\rm tor} = 0$.

M is called *divisible* if μ_a is surjective, for every $a \in R \setminus \{0\}$.

Lemma. Recall that R is assmed to be an integral domain.

- (1) If $Q \in R$ -mod is injective, then it is divisible.
- (2) If $Q \in R$ -mod is divisible and torsion free, then it is injective.
- (3) Assuming R is a principal ideal domain (PID), then $Q \in R$ -mod is injective if, and only if it is divisible.

PROOF. (1). Assume Q is injective, and let $0 \neq a \in R$. Let $\mu_a : R \to R$ be multiplication by a. Note that this map is injective, since R is an integral domain. Applying $\operatorname{Hom}(-,Q)$, and using the fact that $\operatorname{Hom}(R,Q) \xrightarrow{\sim} Q$, we get a sujective map (since Q is an injective module): $Q \xrightarrow{\mu_a} Q$. Hence $\mu_a : Q \to Q$ is surjective for every $a \in R \setminus \{0\}$, proving that Q is divisible.

(2). Let $Q \in R$ -mod be a divisible and torsion free module. Let $\mathfrak{a} \subset R$ be a non-zero ideal and let $f : \mathfrak{a} \to Q$ be an R-linear map. We have to exhibit an element $q \in Q$ such that f(a) = aq for every $a \in \mathfrak{a}$.

Choose a non-zero element $x \in \mathfrak{a}$. Since $\mu_x : Q \to Q$ is surjective, we can find $q \in Q$ such that $\mu_x(q) = f(x)$, that is, f(x) = xq. Now, for any $a \in \mathfrak{a}$, we have:

$$f(ax) = af(x) = axq$$
, and $f(xa) = xf(a)$.

As ax = xa, we conclude that xf(a) = x(aq), or x(f(a) - aq) = 0. Since $x \neq 0$, and Q is torsion free, we get f(a) = aq as needed.

(3). Now we are assuming that R is a PID. We have already seen in (1) that if Q is injective, then it is divisible. Conversely, assume that Q is divisible. Let $\mathfrak{a} \subset R$ be a non-zero ideal. Since R is a PID, $\mathfrak{a} = (x)$ for some $x \neq 0$. Using the fact that $\mu_x : Q \to Q$ is surjective, we can find $q \in Q$ such that $\mu_x(q) = f(x)$, that is f(x) = xq. Now for any $a \in \mathfrak{a}$, we have a = rx for some $r \in R$. This implies:

$$f(a) = f(rx) = rf(x) = rxq = aq.$$

Hence f(a) = aq for every $a \in \mathfrak{a}$, which implies that Q is injective.

Remark. If R is not a PID, there exist modules which are divisible but not injective. For example, let $\mathbb{Q}(x)$ be the field of rational functions in one variable x:

$$\mathbb{Q}(x) = \left\{ \frac{p(x)}{q(x)} : p(x), q(x) \in \mathbb{Q}[x] \text{ and } q(x) \neq 0 \right\}.$$

Consider $M = \mathbb{Q}(x)/\mathbb{Z}[x]$ as a module over $R = \mathbb{Z}[x]$. This module is divisible, but not injective (Exercise).

(20.2) Flat modules.— An *R*-module *N* is said to be *flat* if $-\otimes_R N$ is an exact functor. Recall that $-\otimes N$ is always right exact (Theorem 12.5). Thus, *N* is flat if and only if for every injective morphism $f: M_1 \hookrightarrow M_2$, the morphism $f \otimes \operatorname{Id}_N : M_1 \otimes N \to M_2 \otimes N$ is again injective.

Flat modules play the same role for \otimes as projectives and injectives do for Hom. To be more precise, we have the following properties (easy to prove - left as an exercise):

- $P \in R$ -mod is projective $\iff \operatorname{Ext}^1(P, N) = 0$ for every $N \in R$ -mod $\iff \operatorname{Ext}^k(P, N) = 0$ for every $k \in \mathbb{Z}_{>1}, N \in R$ -mod.
- $Q \in R$ -mod is injective $\iff \operatorname{Ext}^1(M, Q) = 0$ for every $M \in R$ -mod $\iff \operatorname{Ext}^k(M, Q) = 0$ for every $k \in \mathbb{Z}_{>1}, M \in R$ -mod.

For Tor functors, we have the analogous assertion:

Lemma. Let $F \in R$ -mod. Then the following are equivalent.

- (1) F is flat.
- (2) $\operatorname{Tor}_k(M, F) = 0$ for every $k \in \mathbb{Z}_{>1}$ and $M \in R$ -mod.
- (3) $\operatorname{Tor}_1(M, F) = 0$ for every $M \in R$ -mod.

PROOF. (1) \Rightarrow (2). Assume F is flat. Let $M \in R$ -mod and let P_{\bullet} be a projective resolution of M. Since $-\otimes F$ is an exact functor, we get an exact sequence:

$$\cdots \longrightarrow P_2 \otimes F \longrightarrow P_1 \otimes F \longrightarrow P_0 \otimes F \longrightarrow M \otimes F \to 0.$$

This shows that $\operatorname{Tor}_0(M, F) = M \otimes F$ (as is always the case), and $\operatorname{Tor}_k(M, F) = 0$ for every $k \ge 1$.

 $(2) \Rightarrow (3)$ is obvious.

 $(3) \Rightarrow (1)$. For this, we use the long exact sequence for Tor functors. Given an injective morphism $f: M_1 \hookrightarrow M_2$, we have to show that $f \otimes \mathrm{Id}_N : M_1 \otimes N \to M_2 \otimes N$ is still injective. Consider the short exact sequence

$$0 \to M_1 \xrightarrow{f} M_2 \xrightarrow{p} M_3 = M_2/M_1 \to 0.$$

Applying $-\otimes F$ to it, we get an exact sequence:

$$\operatorname{Tor}_1(M_3, F) \to M_1 \otimes N \xrightarrow{f \otimes \operatorname{Id}_N} M_2 \otimes N \to M_3 \otimes N \to 0.$$

Since $\text{Tor}_1(M_3, F) = 0$ by our hypothesis, we get that $f \otimes \text{Id}_N$ is injective.

(20.3) Some examples of flat modules.–

I. Every free module is flat. More generally, every projective module is flat.

The statement is clear for R viewed as an R-module, since $M \otimes_R R = M$. The following lemma proves that every free module is flat. Since every projective module is a summand of a free module (i.e, if P is projective, then there exists P' such that $P \oplus P'$ is free - see Problem 2 of Homework 6), we get flatness of a projective module using this lemma again (see also Problem 8 of Homework 6):

Lemma. Let J be a non-empty set and let $\{N_j\}_{j \in J}$ be a set of R-modules. Set $N = \bigoplus_{j \in J} N_j$.

Then N is flat if, and only if, N_j is flat for every $j \in J$.

PROOF. Let $0 \to M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3 \to 0$ be a short exact sequence of *R*-modules. Since \otimes distributes over \oplus , tensoring with *N* gives:

The maps in the bottom sequence are $\bigoplus_{j \in J} (f \otimes \mathrm{Id}_{N_j})$ and $\bigoplus_{j \in J} (g \otimes \mathrm{Id}_{N_j})$. Therefore, it is exact if and only if for each j,

$$0 \to M_1 \otimes N_j \to M_2 \otimes N_j \to M_3 \otimes N_j \to 0$$

is, proving the lemma.

II. Rings of fractions².

Assume $S \subset R$ is a multiplicatively closed set (meaning, $1 \in S$, $0 \notin S$ and $a, b \in S \Rightarrow ab \in S$). Let $S^{-1}R$ denote the ring of fractions obtained from R by formally inverting elements of S. Then, $S^{-1}R$ is a flat R-module. The proof of this fact uses two things (hopefully known to the reader, otherwise review these properties - we will give a quick proof in the next lecture): (i) $S^{-1}R \otimes_R M = S^{-1}M$ and (ii) for every short exact sequence $0 \to M_1 \to M_2 \to M_3 \to 0$ of R-modules, the resulting sequence:

$$0 \to S^{-1}M_1 \to S^{-1}M_2 \to S^{-1}M_3 \to 0$$

is exact.

Remark. $S^{-1}R$ is rarely free. For instance, \mathbb{Q} is the total ring of fractions of \mathbb{Z} , hence it is flat, but we know that it is not free. More generally, $S^{-1}R$ is free if, and only if $S \subset R \setminus \{0\}$ consists of invertible elements, that is $S^{-1}R = R$.

(20.4) Analogue of Baer's criterion.-

²Please review rings and modules of fractions to understand this very important class of examples of flat modules. We will quickly review these in the next lecture.

Theorem. Let $N \in R$ -mod. Then N is flat if, and only if, for every ideal $\mathfrak{a} \subset R$, the natural R-linear map:

$$\mathfrak{a} \otimes_R N \to \mathfrak{a} N, \qquad a \otimes n \mapsto an,$$

is an isomorphism.

The proof of this theorem relies on the following lemma.

Lemma. Let $N \in R$ -mod. Let $\{F_j\}_{j \in J}$ be a non-empty set of R-modules. Assume that for every $j \in J$, F_j has the property:

(P) For every
$$\iota_j : K_j \hookrightarrow F_j$$
, $\iota_j \otimes \mathrm{Id}_N : K_j \otimes N \to F_j \otimes N$ is injective.

Then $F = \bigoplus_{j \in J} F_j$ also satisfies this property.

Let us assume this lemma for now and finish the proof of the theorem. PROOF. (\Rightarrow). Consider the short exact sequence of *R*-modules: $\mathfrak{a} \subset R \twoheadrightarrow R/\mathfrak{a}$. Assuming *N* is flat, we get another short exact sequence

$$0 \to \mathfrak{a} \otimes_R N \longrightarrow R \otimes_R N \longrightarrow (R/\mathfrak{a}) \otimes_R N \to 0.$$

Using the fact that $R \otimes_R N = N$ and $(R/\mathfrak{a}) \otimes_R N = N/\mathfrak{a}N$, we get:

It is easy to see that the leftmost vertical map has to be an isomorphism (both $\mathfrak{a} \otimes N$ and $\mathfrak{a} N$ are the kernel of $N \to N/\mathfrak{a} N$).

 (\Leftarrow) . Let $f: M_1 \hookrightarrow M_2$ be an injective morphism of *R*-modules. We want to prove that $f \otimes \mathrm{Id}_N$ is also injective. By our hypothesis, *R* (viewed as an *R*-module) has property (P) from the lemma above. Using the lemma, we know that every free module has property (P).

Let $\pi : F \to M_2$ be a surjective *R*-linear map from a free module *F*. Let $F_1 := \pi^{-1}(M_1) \subset F$, $K = \operatorname{Ker}(\pi) \subset F$ and $\pi_1 = \pi|_{F_1} : F_1 \to M_1$ (again surjective). Note that $K = \pi^{-1}(\{0\}) \subset F_1$ hence $\operatorname{Ker}(\pi_1) = K$.

Here f and j are injective maps. Tensoring this diagram with N, using the fact that tensor is right exact, and that F has property (P), we get the following diagram with exact rows:

Note that (again by property (P) of F) the middle vertical map $j \otimes \text{Id}$ is injective. Now the injectivity of $f \otimes \text{Id}$ follows from the snake lemma (or an easy diagram chase).

(20.5) Proof of Lemma (20.4).– We begin by proving this lemma for the case of two modules F_1, F_2 . So $F = F_1 \oplus F_2$. Let $K \subset F$ and set $K_1 := F_1 \cap K \subset F_1$, and $K_2 = p_2(K) \subset F_2$ (here $p_2 : F \to F_2$ is the natural projection). We get the following commutative diagram with exact rows:

Tensoring with N gives the following commutative diagram (note that the bottom exact row is split, so it remains exact after applying $-\otimes N$):

Since the leftmost and rightmost vertical maps are injective, by property (P) of F_1 and F_2 , so must be the middle vertical map, proving (P) for F.

By an induction argument, the lemma follows when $|J| < \infty$. If J is arbitrary, we argue by contradiction as follows. Assume that there exists $\iota : K \hookrightarrow F$ such that $\iota \otimes \mathrm{Id}_N : K \otimes N \to F \otimes N$ is not injective. That means, there exists a non-zero element

$$K \otimes N \ni \sum_{i=1}^{r} k_i \otimes n_i \mapsto 0.$$

Now we can restrict our attention to a finite subset $J_0 \subset J$. Let $p_{\ell} : F = \bigoplus_{j \in J} F_j \to F_{\ell}$ be the natural map (induced from $\delta_{\ell j} : F_j \to F_{\ell}$).

$$J_0 := \{\ell \in J : p_\ell(k_i) \neq 0, \text{ for some } 1 \le i \le r\}.$$

It is easy to see that J_0 is a finite set. For each $\ell \in J_0$, take $K_\ell \subset F_\ell$ to be the submodule generated by $\{p_\ell(k_i) : 1 \leq i \leq r\}$. The relation given above contradicts the fact that the lemma holds for finite indexing sets.