
LECTURE 20

(20.0) Review.– Let R be a unital, commutative ring and R-mod the category of R–
modules. Last time we introduced two functors Ext and Tor, whose value on a pair M,N ∈
R-mod is computed as follows:

{ExtkR(M,N)}k≥0:
(1) Choose a projective resolution of M , say PM

• ∈ K• (R-mod). Then:

ExtkR(M,N) = kth cohomology of the cochain complex Hom(PM
• , N).

(2) Choose an injective resolution of N , say I•N ∈ K• (R-mod). Then:

ExtkR(M,N) = kth cohomology of the cochain complex Hom(M, I•N).

The proof of the fact that the two procedures give the same answer is postponed to next
week.

{TorRk (M,N)}k≥0:
(1) Choose a projective resolution of M , say PM

• ∈ K• (R-mod). Then:

TorRk (M,N) = kth homology of the chain complex PM
• ⊗N.

(2) Choose a projective resolution of N , say PN
• ∈ K• (R-mod). Then:

TorRk (M,N) = kth homology of the chain complex M ⊗ PN
• .

Again, we will see next week why these two methods give the same answer1. This will
show that Tork(M,N) = Tork(N,M).

As remarked in the last lecture, we rarely use injective resolutions for computing Ext’s.
A few examples of projective resolutions were given in Homework 6. In this lecture we will
discuss:

• Injective modules over integral domains.

• Flat modules.

(20.1) Injective modules over integral domains.– Recall Baer’s criterion for injectivity
(Lemma 18.1). An R–module Q is injective if, and only if, for every ideal a ⊂ R and an
R–linear map f : a→ Q, there exists q ∈ Q such that f(a) = aq for every a ∈ a.

Let us assume that R is an integral domain.

1Thanks to William Newman and Yousef Qaddura for pointing out that this is not obviously true, as I
erraneously said.
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Definition. An R–module M is said to be torsion free, if for every a ∈ R, the R–linear map
obtained via action of a:

µa : M →M, µa(m) = am, ∀ m ∈M,

is injective. In other words, define:

Mtor := {m ∈M : ∃a ∈ R \ {0}, such that am = 0}.

M is torsion free means Mtor = 0.

M is called divisible if µa is surjective, for every a ∈ R \ {0}.

Lemma. Recall that R is assmed to be an integral domain.

(1) If Q ∈ R-mod is injective, then it is divisible.

(2) If Q ∈ R-mod is divisible and torsion free, then it is injective.

(3) Assuming R is a principal ideal domain (PID), then Q ∈ R-mod is injective if, and
only if it is divisible.

Proof. (1). Assume Q is injective, and let 0 6= a ∈ R. Let µa : R → R be multiplication
by a. Note that this map is injective, since R is an integral domain. Applying Hom(−, Q),

and using the fact that Hom(R,Q)
∼−→ Q, we get a sujective map (since Q is an injective

module): Q
µa−→ Q. Hence µa : Q→ Q is surjective for every a ∈ R \ {0}, proving that Q is

divisible.

(2). Let Q ∈ R-mod be a divisible and torsion free module. Let a ⊂ R be a non–zero
ideal and let f : a→ Q be an R–linear map. We have to exhibit an element q ∈ Q such that
f(a) = aq for every a ∈ a.

Choose a non–zero element x ∈ a. Since µx : Q→ Q is surjective, we can find q ∈ Q such
that µx(q) = f(x), that is, f(x) = xq. Now, for any a ∈ a, we have:

f(ax) = af(x) = axq, and f(xa) = xf(a).

As ax = xa, we conclude that xf(a) = x(aq), or x(f(a) − aq) = 0. Since x 6= 0, and Q is
torsion free, we get f(a) = aq as needed.

(3). Now we are assuming that R is a PID. We have already seen in (1) that if Q is
injective, then it is divisible. Conversely, assume that Q is divisible. Let a ⊂ R be a non–
zero ideal. Since R is a PID, a = (x) for some x 6= 0. Using the fact that µx : Q → Q is
surjective, we can find q ∈ Q such that µx(q) = f(x), that is f(x) = xq. Now for any a ∈ a,
we have a = rx for some r ∈ R. This implies:

f(a) = f(rx) = rf(x) = rxq = aq.

Hence f(a) = aq for every a ∈ a, which implies that Q is injective. �
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Remark. If R is not a PID, there exist modules which are divisible but not injective. For
example, let Q(x) be the field of rational functions in one variable x:

Q(x) =

{
p(x)

q(x)
: p(x), q(x) ∈ Q[x] and q(x) 6= 0

}
.

Consider M = Q(x)/Z[x] as a module over R = Z[x]. This module is divisible, but not
injective (Exercise).

(20.2) Flat modules.– An R–module N is said to be flat if − ⊗R N is an exact functor.
Recall that − ⊗ N is always right exact (Theorem 12.5). Thus, N is flat if and only if for
every injective morphism f : M1 ↪→M2, the morphism f ⊗ IdN : M1⊗N →M2⊗N is again
injective.

Flat modules play the same role for ⊗ as projectives and injectives do for Hom. To be
more precise, we have the following properties (easy to prove - left as an exercise):

• P ∈ R-mod is projective ⇐⇒ Ext1(P,N) = 0 for every N ∈ R-mod ⇐⇒
Extk(P,N) = 0 for every k ∈ Z≥1, N ∈ R-mod.

• Q ∈ R-mod is injective ⇐⇒ Ext1(M,Q) = 0 for every M ∈ R-mod ⇐⇒
Extk(M,Q) = 0 for every k ∈ Z≥1, M ∈ R-mod.

For Tor functors, we have the analogous assertion:

Lemma. Let F ∈ R-mod. Then the following are equivalent.

(1) F is flat.
(2) Tork(M,F ) = 0 for every k ∈ Z≥1 and M ∈ R-mod.
(3) Tor1(M,F ) = 0 for every M ∈ R-mod.

Proof. (1)⇒(2). Assume F is flat. Let M ∈ R-mod and let P• be a projective resolution
of M . Since −⊗ F is an exact functor, we get an exact sequence:

· · · −→ P2 ⊗ F −→ P1 ⊗ F −→ P0 ⊗ F −→M ⊗ F → 0.

This shows that Tor0(M,F ) = M ⊗F (as is always the case), and Tork(M,F ) = 0 for every
k ≥ 1.

(2)⇒(3) is obvious.

(3)⇒(1). For this, we use the long exact sequence for Tor functors. Given an injective
morphism f : M1 ↪→M2, we have to show that f ⊗ IdN : M1⊗N →M2⊗N is still injective.
Consider the short exact sequence

0→M1
f−→M2

p−→M3 = M2/M1 → 0.

Applying −⊗ F to it, we get an exact sequence:

Tor1(M3, F )→M1 ⊗N
f⊗IdN−→ M2 ⊗N →M3 ⊗N → 0.

Since Tor1(M3, F ) = 0 by our hypothesis, we get that f ⊗ IdN is injective. �
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(20.3) Some examples of flat modules.–
I. Every free module is flat. More generally, every projective module is flat.

The statement is clear for R viewed as an R–module, since M ⊗R R = M . The following
lemma proves that every free module is flat. Since every projective module is a summand
of a free module (i.e, if P is projective, then there exists P ′ such that P ⊕ P ′ is free - see
Problem 2 of Homework 6), we get flatness of a projective module using this lemma again
(see also Problem 8 of Homework 6):

Lemma. Let J be a non–empty set and let {Nj}j∈J be a set of R–modules. Set N =
⊕
j∈J

Nj.

Then N is flat if, and only if, Nj is flat for every j ∈ J .

Proof. Let 0 → M1
f−→ M2

g−→ M3 → 0 be a short exact sequence of R–modules. Since
⊗ distributes over ⊕, tensoring with N gives:

0 M1 ⊗N M2 ⊗N M3 ⊗N 0// // // //

0
⊕

j∈JM1 ⊗Nj

⊕
j∈JM2 ⊗Nj

⊕
j∈JM3 ⊗Nj 0// // // //

The maps in the bottom sequence are ⊕j∈J(f ⊗ IdNj
) and ⊕j∈J(g ⊗ IdNj

). Therefore, it
is exact if and only if for each j,

0→M1 ⊗Nj →M2 ⊗Nj →M3 ⊗Nj → 0

is, proving the lemma. �

II. Rings of fractions2.
Assume S ⊂ R is a multiplicatively closed set (meaning, 1 ∈ S, 0 6∈ S and a, b ∈ S ⇒ ab ∈

S). Let S−1R denote the ring of fractions obtained from R by formally inverting elements of
S. Then, S−1R is a flat R–module. The proof of this fact uses two things (hopefully known to
the reader, otherwise review these properties - we will give a quick proof in the next lecture):
(i) S−1R ⊗RM = S−1M and (ii) for every short exact sequence 0→ M1 → M2 → M3 → 0
of R–modules, the resulting sequence:

0→ S−1M1 → S−1M2 → S−1M3 → 0

is exact.

Remark. S−1R is rarely free. For instance, Q is the total ring of fractions of Z, hence it is
flat, but we know that it is not free. More generally, S−1R is free if, and only if S ⊂ R \ {0}
consists of invertible elements, that is S−1R = R.

(20.4) Analogue of Baer’s criterion.–

2Please review rings and modules of fractions to understand this very important class of examples of flat
modules. We will quickly review these in the next lecture.
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Theorem. Let N ∈ R-mod. Then N is flat if, and only if, for every ideal a ⊂ R, the natural
R–linear map:

a⊗R N → aN, a⊗ n 7→ an,

is an isomorphism.

The proof of this theorem relies on the following lemma.

Lemma. Let N ∈ R-mod. Let {Fj}j∈J be a non–empty set of R–modules. Assume that for
every j ∈ J , Fj has the property:

(P) For every ιj : Kj ↪→ Fj, ιj ⊗ IdN : Kj ⊗N → Fj ⊗N is injective.

Then F =
⊕
j∈J

Fj also satisfies this property.

Let us assume this lemma for now and finish the proof of the theorem.
Proof. (⇒). Consider the short exact sequence of R–modules: a ⊂ R � R/a. Assuming
N is flat, we get another short exact sequence

0→ a⊗R N −→ R⊗R N −→ (R/a)⊗R N → 0.

Using the fact that R⊗R N = N and (R/a)⊗R N = N/aN , we get:

0 a⊗N R⊗N (R/a)⊗N 0// // // //

0 aN N N/aN 0// // // //��

It is easy to see that the leftmost vertical map has to be an isomorphism (both a ⊗N and
aN are the kernel of N → N/aN).

(⇐). Let f : M1 ↪→ M2 be an injective morphism of R–modules. We want to prove that
f ⊗ IdN is also injective. By our hypothesis, R (viewed as an R–module) has property (P)
from the lemma above. Using the lemma, we know that every free module has property (P).

Let π : F �M2 be a surjective R–linear map from a free module F . Let F1 := π−1(M1) ⊂
F , K = Ker(π) ⊂ F and π1 = π|F1 : F1 →M1 (again surjective). Note that K = π−1({0}) ⊂
F1 hence Ker(π1) = K.

0 K F1 M1 0// i1 // π1 // //

0 K F M2 0//
i

//
π

// //

j

��

f

��



6 LECTURE 20

Here f and j are injective maps. Tensoring this diagram with N , using the fact that tensor
is right exact, and that F has property (P), we get the following diagram with exact rows:

K ⊗N F1 ⊗N M1 ⊗N 0// // //

0 K ⊗N F ⊗N M2 ⊗N 0// // // //

j⊗Id

��

f⊗Id

��

Note that (again by property (P) of F ) the middle vertical map j ⊗ Id is injective. Now the
injectivity of f ⊗ Id follows from the snake lemma (or an easy diagram chase). �

(20.5) Proof of Lemma (20.4).– We begin by proving this lemma for the case of two
modules F1, F2. So F = F1⊕F2. Let K ⊂ F and set K1 := F1∩K ⊂ F1, and K2 = p2(K) ⊂
F2 (here p2 : F → F2 is the natural projection). We get the following commutative diagram
with exact rows:

0 K1 K K2 0// // // //

0 F1 F F2 0// // // //�� �� ��

Tensoring with N gives the following commutative diagram (note that the bottom exact row
is split, so it remains exact after applying −⊗N):

K1 ⊗N K ⊗N K2 ⊗N 0// // //

0 F1 ⊗N F ⊗N F2 ⊗N 0// // // //�� �� ��

Since the leftmost and rightmost vertical maps are injective, by property (P) of F1 and F2,
so must be the middle vertical map, proving (P) for F .

By an induction argument, the lemma follows when |J | <∞. If J is arbitrary, we argue by
contradiction as follows. Assume that there exists ι : K ↪→ F such that ι⊗ IdN : K ⊗N →
F ⊗N is not injective. That means, there exists a non–zero element

K ⊗N 3
r∑
i=1

ki ⊗ ni 7→ 0.

Now we can restrict our attention to a finite subset J0 ⊂ J . Let p` : F = ⊕j∈JFj → F` be
the natural map (induced from δ`j : Fj → F`).

J0 := {` ∈ J : p`(ki) 6= 0, for some 1 ≤ i ≤ r}.
It is easy to see that J0 is a finite set. For each ` ∈ J0, take K` ⊂ F` to be the submodule
generated by {p`(ki) : 1 ≤ i ≤ r}. The relation given above contradicts the fact that the
lemma holds for finite indexing sets.


