
LECTURE 21

(21.0) Flat modules.– Let R be a unital, commutative ring. Recall that last time we
gave the following definition: N ∈ R-mod is flat if −⊗R N is an exact functor. Further, we
showed that N being flat is equivalent to:

(1) For every injective R–linear map f : M1 ↪→ M2, f ⊗ IdN : M1 ⊗ N → M2 ⊗ N is
injective.

(2) For every ideal a ⊂ R, the natural map a⊗N → aN is an isomorphism.

(3) Tork(M,N) = 0, for every k ∈ Z≥1 and M ∈ R-mod.

(4) Tor1(M,N) = 0, for every M ∈ R-mod.

In this lecture, we will prove that flatness is a local property (see §21.R5 for what it means),
and every finitely presented flat module over a local ring is free (see §21.R4 for the definition
of local rings). Sections 21.R1–21.R6 are included as a review of a few key points about
localizations.

(21.1) Flatness is a local property.– Again, let N ∈ R-mod.

Lemma. The following are equivalent.

(1) N is a flat R–module.
(2) Np is a flat Rp–module, for every prime ideal p.
(3) Nm is a flat Rm–module, for every maximal ideal m.

The proof of this lemma is obtained easily by using Corollary 21.R5 (exactness is a local
property) and the fact that the operation of inverting elements from a multiplicatively closed
set distributes over ⊗ (Proposition 21.R2).

(21.2) Finitely presented modules.– Recall that a module M ∈ R-mod is said to
be finitely generated if there exists a finite set of element {m1, . . . ,mp} ⊂ M such that
M = Rm1 + · · ·+Rmp (just a sum, not a direct sum). In other words, we have a surjective
R–linear map from a free module of finite rank F = Rp to M .

Definition. An R–module M is said to be finitely presented, if there exist two free modules
of finite rank F1, F0 and an R–linear map F1

r−→ F0 such that M = CoKer(r). Meaning, we
have an exact sequence (called finite presentation of M)

F1
r−→ F0

π−→M → 0.

This signifies that (i) M is finitely generated, so that we have a surjective R–linear map
F0 → M from a finite rank free module, and (ii) K = Ker(π) - the module of relations
among generators of M - is also finitely generated. Thus, M can be given a presentation by
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a finite set of generators and a finite set of relations.

Lemma. Let M be a finitely presented module. Then for every short exact sequence

0→ K
f−→ E

g−→M → 0

such that E is finitely generated, we have that K is also finitely generated.

Remark. This lemma is true without finitely presented hypothesis for Noetherian rings.
However, if the ring is not Noetherian, for instance, let k be a field and R = k[xi : i ∈ I] for
an infinite set I, we can easily construct a counterexample, if finitely presented hypothesis
is omitted. Take M = k = R/(xi : i ∈ I), E = R (finitely generated). Then K is generated
by an infinite set of elements {xi : i ∈ I}.

Proof. Let F0, F1 be two free modules of finite rank which give a finite presentation of M :

F1
r−→ F0

π−→M → 0.

Since g : E → M is surjective, and F0 is projective, we get an R–linear map ψ : F0 → E
such that g ◦ψ = π. The composition g ◦ψ ◦ r : F1 →M is zero, since π ◦ r = 0. Thus, ψ ◦ r
factors through the kernel of g, namely K

f−→ E. Let us call it φ:

F1 F0
r // M

π // 0//

0 K// E
f

// Mg
// 0//

φ

��

ψ

��

Therefore, we obtain an isomorphism K/φ(F1)
∼−→ E/ψ(F0), proving that K/φ(F1) is

finitely generated (because E is finitely generated, and a quotient of finitely generated module
is again finitely generated). Note that φ(F1) is again finitely generated since F1 is. Thus the
two ends of the following short exact sequence are finitely generated:

0→ φ(F1) −→ K −→ K/φ(F1)→ 0,

which proves that so must be K. �

(21.3) Flat modules over local rings.– Now assume that (A,m) is a local ring. Let M
be an A–module.

Theorem. If M is a finitely presented module, such that the natural R–linear map m⊗M →
M is injective, then M is free.

More precisely, view M/mM as a finite–dimensional vector space over the field k = A/m.
Given any basis {x1, . . . , xp} of M/mM , and any lifts:

mi ∈M such that under π : M →M/mM, we have π(mi) = xi, ∀ 1 ≤ i ≤ p,

M is freely generated as an A–module by {m1, . . . ,mp}.
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Remark. Note that the hypothesis m ⊗M → M is injective holds, by definition, for flat
modules (see Theorem (20.4)). Thus, we have the statement finitely presented flat modules
are locally free. It turns out that finitely presented, locally free modules are exactly projec-
tive modules. We are not going to prove this, but the reader can consult any textbook on
Commutative algebra for this, for instance D. Eisenbud, Commutative algebra with a view
toward algebraic geometry, Exercise 4.11, page 136.

Proof. We begin by showing that M is generated by {m1, . . . ,mp}. Let M ′ ⊂ M be the
submodule generated by this set, and let K = M/M ′ (finitely generated, being a quotient of
one). By our hypothesis mK = K, which by Nakayama’s lemma (see Lemma 20.R6 below)
means that K = 0.

Now we show that there are no relations among {mi}pi=1. Define the R–linear map π :
F = Rp → M given by ei 7→ mi. Since M is finitely presented, Lemma (21.2) implies
that the kernel L = Ker(π) is again finitely generated. Tensoring the short exact sequence

0→ L
i−→ F

π−→M → 0 with m, and using the fact that tensor is right exact, we get:

m⊗ L m⊗ F m⊗M

L F M

0//

0 // 0//

// //

// //�� �� ��

where the vertical maps are coming from the natural action a⊗ x 7→ ax, for every a ∈ m
and x in the module under consideration.

Snake lemma applies, and we get an exact sequence, using the hypothesis that Ker(m ⊗
M →M) = 0.

0→ L/mL −→ F/mF −→M/mM.

Note that both F/mF and M/mM are p–dimensional vector spaces over k = A/m, with basis
ei 7→ xi. Hence the last morphism is an isomorphism, proving that L/mL = 0. Nakayama’s

lemma applies since L is finitely generated, and we get L = 0. In conclusion, F
∼−→M and

therefore M is free. �

(21.R1) Rings and modules of fractions.– Let R be a unital, commutative ring and let
S ⊂ R. Recall that S is said to be multiplicatively closed if (i) 0 6∈ S, (ii) 1 ∈ S, and (iii)
a, b ∈ S ⇒ ab ∈ S.

Ring of fractions. S−1R is defined, as a set: S−1R := S × R/ ∼, where (s1, r1) ∼ (s2, r2) if
there exists t ∈ S such that t(s2r1 − s1r2) = 0. It is a routine exercise to show that ∼ is an
equivalence relation, and the following operations give a structure of a unital commutative
ring on the set S−1R. As usual, we write a typical element of S−1R as a fraction r

s
.

• r1
s1

+
r2
s2

=
s2r1 + s1r2

s1s2
.

• r1
s1
· r2
s2

=
r1r2
s1s2

.
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Let jS : R→ S−1R denote the ring homomorphism r 7→ r
1
.

Module of fractions. Analogously, given an R–module M , we define S−1M , as a set: S ×
M/ ∼, where (s1,m1) ∼ (s2,m2) if there exists t ∈ S such that t(s1m2 − s2m1) = 0. Again,

the fraction
m

s
represents the equivalence class of the pair (s,m). The following operations

give a structure of an S−1R–module on the set S−1M :

• (Abelian group structure).
m1

s1
+
m2

s2
=
s2m1 + s1m2

s1s2
.

• (Action of S−1R).
r

s
· m
t

=
rm

st
.

For an R–linear map f : M → N , we get an S−1R–linear map, again denoted by f ,

f : S−1M → S−1N, f
(m
s

)
=
f(m)

s
.

In conclusion, we have a functor S−1(−) : R-mod→ S−1R-mod. Morever, the ring homo-
morphim jS : R→ S−1R allows us to view an S−1R–module as an R–module.

(21.R2) Basic properties of S−1(−).– The following list of properties follow easily from
definitions.

Proposition. (1) For every M ∈ R-mod, S−1R⊗RM = S−1M .

(2) S−1(−) : R-mod→ S−1R-mod is an exact functor. Namely, for every exact sequence
0 → M ′ → M → M ′′ → 0, the resulting sequence of S−1R–modules (or R–modules
via jS):

0→ S−1M ′ → S−1M → S−1M ′′ → 0,

is exact.

(3) For every M,N ∈ R-mod, we have:

(S−1M)⊗S−1R (S−1N) = S−1(M ⊗R N) = (S−1M)⊗R N.

Properties (1) and (2) imply that S−1R, viewed as an R–module, is flat.

(21.R3) Localization.– Recall the definitions of prime and maximal ideals.

Definition. An ideal p ( R is said to be prime, if ab ∈ p implies a ∈ p, or b ∈ p. Alternately,
R/p is an integral domain. The contrapositive of the definition gives that p ( R is a prime
ideal if, and only if R \ p is multiplicatively closed.

An ideal m ( R is said to be maximal, if it is maximal with respect to inclusion. That is, for
any ideal a, m ⊂ a ⊂ R means either a = m, or a = R. In other words, R/m has no non–zero
ideals, and hence is a field. This is the quickest way to see that every maximal ideal is prime.

It is a Zorn’s lemma style proof that shows that given any proper ideal a ( R, there is
some maximal ideal m containing a. In particular, maximal ideals (and hence prime ideals)
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exist.

Note: I am always assuming that prime and maximal ideals are proper.

Given a prime ideal p of R, the ring of fractions obtained by taking S = R \ p, is denoted
by Rp, and is called localization of R at p. More explicitly, elements of Rp are of the form r

s
where r ∈ R and s 6∈ p. The terminology comes from the notion of local rings, as we recall
below.

(21.R4) Local rings.– A ring A is said to be local if it has only one maximal ideal m ( A.
Often we say that (A,m) is a local ring, to indicate the unique maximal ideal. One way to
show that m ( A is the only maximal ideal in A, is to prove that A \m = A×, the group of
invertible elements of A.

Lemma. Let R be a unital commutative ring, and let p ( R be a prime ideal. Then the ring
of fractions A = Rp is a local ring, with unique maximal ideal pRp.

Proof. The proof relies on the following bijection, which describes ideals in a ring of frac-
tions S−1R: {

Proper ideals in S−1R
}
↔ {Ideal a ( R such that S ∩ a = ∅} .

This bijection takes an ideal a ⊂ R and sends it to S−1a = {a
s

: a ∈ a, s ∈ S} ⊂ S−1R.

Now we specialize to our case, when S = R \ p. Thus,

A = S−1R, m = S−1p = {p
s

: p ∈ p, s ∈ S} ( A.

We claim that m is a maximal ideal of A. If x ∈ A \ m, then x = r
s
, where r, s 6∈ p. But

then s
r

is also in A and is inverse of x. This proves that every element outside of m is a unit,
hence m is the maximal ideal. �

(20.R5) Exactness is a local property.– In commutative algebra, a property of modules
over R is called a local property if its verification on M ∈ R-mod is equivalent to that on
Mp ∈ Rp-mod for every prime ideal (resp. for every maximal ideal). For instance, the fol-
lowing lemma says that being 0 is a local property.

Lemma. Let M ∈ R-mod. Then the following conditions are equivalent.

(1) M = 0.
(2) Mp = 0 for every prime ideal p ( R.
(3) Mm = 0 for every maximal ideal m ( R.

Proof. (1)⇒(2)⇒(3) are obvious implications. To show (3)⇒(2), assume that Mm = 0 for
every maximal ideal m ( R. For the sake of a contradiction, let us assume that M 6= 0, and
let m ∈M . Then

Ann(m) := {r ∈ R : rm = 0} ⊂ R,
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is a proper ideal, since 1 6∈ Ann(m). So it must be contained in some maximal ideal, say
m ⊃ Ann(m). We claim that m

1
∈ Mm is a non–zero element, contradicting the fact that

Mm = 0. To see this, if m
1

= 0, there must exist some s ∈ R \ m such that sm = 0 (by
definition of the equivalence relation). But that means s ∈ Ann(m) ⊂ m, and s 6∈ m, which
is a contradiction. �

This same argument shows that the property of a short sequence to be exact is also local.
That is,

Corollary. Let M ′,M,M ′′ be three R–modules. Then the following are equivalent for a pair

of morphisms M ′ f−→M and M
g−→M ′′.

(1) 0→M ′ →M →M ′′ → 0 is exact.
(2) 0→M ′

p →Mp →M ′′
p → 0 is exact, for every prime ideal p.

(3) 0→M ′
m →Mm →M ′′

m → 0 is exact, for every maximal ideal m.

(21.R6) Nakayama’s lemma.– Assume that (A,m) is a local ring and K ∈ A-mod is a
finitely–generated A–module. The following result is absolutely fundamental in the theory
of local rings.

Lemma. If K = mK then K = 0.

Proof. Let {x1, . . . , xp} ⊂ K be a finite set of generators of K. By our hypothesis, there
exists elements aij ∈ m, 1 ≤ i, j ≤ p, such that

xi =

p∑
j=1

aijxj, ∀ 1 ≤ i ≤ p.

Thus, the element D = Det(Id−(aij)) ∈ A annihilates all x′is (Cayley–Hamilton theorem),
proving that D ·x = 0 for every x ∈ K. But D 6∈ m, so it must be a unit. This implies x = 0
for every x ∈ K, as claimed. �


