
LECTURE 22

(22.0) Review.– Let R be a unital, commutative ring. We defined flat modules as:
N ∈ R-mod is said to be flat if − ⊗ N is an exact functor. Last time we prove the fol-
lowing two results:

• The following three assertions are equivalence.
– N is flat.
– Np is flat for every prime ideal p ( R.
– Nm is flat for every maximal ideal m ( R.

• If (A,m) is a local ring, and N is a finitely presented flat A–module, then N is free.

Remark. Geometrically, flat morphisms correspond to locally trivial fibrations where di-
mensions (or number of elements) of fibers does not change. For instance, if X and Y are
connected, complex manifolds, and f : X → Y is an analytic map, then f being flat implies
f(X) ⊂ Y is open, and for every y ∈ f(X), Xy = f−1(y) has the same dimension (indepen-
dent of y).

(22.1) Ext, Tor and loose ends.– Recall that we started (since Lecture 13) with an
abstract notion of derived functors. Let F : A → B is an additive functor between two
abelian categories.

• If F is left exact (covariant or contravariant), we get a sequence of functors {RkF :
A → B}k≥0 (same variance as F ) called right derived functors of F .

• If F is right exact, we get {LkF : A → B}k≥0 called left derived functors of F .

When A = B = R-mod, and M,N ∈ R-mod, we get the following derived functors.

Extk(M,N) can be viewed as RkhM(N) or RkhN(M). Here, hM = Hom(M,−) and
hN = Hom(−, N) are covariant and contravariant Hom functors. They are both left ex-
act.

Tork(M,N) can be viewed as LkTM(N) or LkT
N(M). Here, TM = M⊗− and TN = −⊗N

are both covariant, right exact functors (since ⊗ is commutative, TN = TN).

We still have to prove that the two ways of defining Ext and Tor give the same result.
This is the main theorem of these notes.

(22.2) The case of Ext.– For definiteness, let us start with RkhM(N) and show that it is
the same as RkhN(M). In more detail, we will take the following definition as the starting
point, and call the resulting functor Ek(M,N).
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Given N ∈ R-mod, choose an injective resolution of N :

0→ I0
i0−→ I1

i1−→ I2
i2−→ · · · exact at Ik, ∀k ∈ Z≥1, and Ker(i0) = N.

Define Ek(M,N) as kth cohomology of the complex Hom(M, I•). It is a covariant functor
in the variable N .

Ek(M,N) = Hk(Hom(M, I•))

Recall the following properties of Ek(M,N), which will be needed for our proof.

(1) E0(M,N) = Hom(M,N). This follows from the left exactness of Hom(M,−).

(2) If N is injective, then Ek(M,N) = 0 for every k ≥ 1, M ∈ R-mod. This is true
because we can take 0→ N → 0 as an injective resolution of N .

(3) For every short exact sequence 0 → N1 → N2 → N3 → 0, we get a connecting
homomorphism Ek(M,N3)→ Ek+1(M,N1), making the following sequence exact:

· · · → Ek(M,N1)→ Ek(M,N2)→ Ek(M,N3)→ Ek+1(M,N1)→ Ek+1(M,N2)→ · · ·

Lemma. Assume that 0 → N → I → N ′ → 0 is a short exact sequence of R–modules,
where I is injective. Then we have:

Ek+1(M,N) = Ek(M,N ′), for every k ≥ 1,

and E1(M,N) = CoKer(Hom(M, I)→ Hom(M,N ′)).

Proof. The proof follows easily by the long exact sequence in cohomology. Namely,

0→ Hom(M,N)→ Hom(M, I)→ Hom(M,N ′)→ E1(M,N)→ E1(M, I) = 0.

The last term is zero since I is injective. Thus we get:

E1(M,N) = CoKer(Hom(M, I)→ Hom(M,N ′)).

Now for k ≥ 1, the following is a part of the long exact sequence:

0 = Ek(M, I)→ Ek(M,N ′)→ Ek+1(M,N)→ Ek+1(M, I) = 0,

which proves that Ek(M,N ′) ∼= Ek+1(M,N). �

(22.3) RkhM(N) = RkhN(M).– Now we are ready to state and prove the desired result. Let
P• be a projective resolution of M . That is, we have a chain complex:

· · · p2−→ P2
p1−→ P1

p0−→ P0 → 0,

which is exact at Pk for every k ≥ 1, and CoKer(p0) = M . In addition to the properties
of Ek(M,N) listed above, we are going to use the fact that Hom(P,−) is exact for P a
projective R–module.

Theorem. Ek(M,N) = Hk(Hom(P•, N)).
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Proof. The proof is an induction argument on k. For k = 0, we have

E0(M,N) = Hom(M,N) = H0(Hom(P•, N)), for every N ∈ R-mod,

again by left exactness of Hom functors.

Assume that we know Ek(M,X) = Hk(Hom(P•, X)) for every X ∈ R-mod and 0 ≤ k ≤ `,
where ` ∈ Z≥0.

Consider a short exact sequence of R–modules, where I is injective:

0→ N
f−→ I

g−→ N ′ → 0.

Applying Hom(P•,−) to this short exact sequence, and using the fact that each Pj is
projective, so Hom(Pj,−) is exact, we get get a short exact sequence of cochain complexes:

0→ Hom(P•, N)→ Hom(P•, I)→ Hom(P•, N
′)→ 0.

This gives rise to a long exact sequence in cohomology (see Lecture 15, Theorem 15.1).
Now we are ready to carry out the induction step.

Case 1: ` = 1. Using H0(Hom(P•), X) = Hom(M,X), the first part of the long exact
sequence in cohomology takes the following form:

0→ Hom(M,N)→ Hom(M, I)→ Hom(M,N ′)→ H1(Hom(P•, N))→ H1(Hom(P•, I)).

The last term is zero, since I is injective, so Hom(−, I) is exact. This implies that:

H1(Hom(P•, N)) = CoKer(Hom(M, I)→ Hom(M,N ′)) = E1(M,N),

by Lemma 22.2 above.

Case 2: ` > 1. Again we focus on a part of the long exact sequence, and use the fact that I
being injective, we have Hk(Hom(P•, I)) = 0 for every k ≥ 1.

0 = H`(P•, I)→ H`(P•, N
′)→ H`+1(P•, N)→ H`+1(P•, I) = 0.

Thus, we obtain:

H`+1(P•, N) = H`(P•, N
′) = E`(M,N ′) = E`+1(M,N),

where in the second equality we have used the induction hypothesis, and in the third, Lemma
22.2. �

(22.4) The case of Tor.– Exact same argument as in the proof of the theorem above works
(details are left as an instructive exercise to the reader) to prove that:

Tork(M,N) = Hk(PM
• ⊗N) = Hk(M ⊗ PN

• )

Here, PM
• and PN

• are projective resolutions of M and N respectively.
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In fact, since in the proof of the theorem, we only used the fact that Hom(P,−) is exact,
it allows applies to prove that

Tork(M,N) = Hk(FM
• ⊗N)

where FM
• is a flat resolution of M . Compare this argument with Exercise 11 of Homework 7.

Example. Assume that R is an integral domain, and K is its field of fractions (that is,
K = (R \ {0})−1R). The following is a flat resolution of M = K/R:

0→ R
j−→ K → 0,

where j : R → K is the canonical inclusion. Using this resolution, we can compute
Tork(K/R,N) for N ∈ R-mod as follows. Tensoring the above complex with N (and using
R⊗R N = N) gives:

0→ N
jN−→ K ⊗R N → 0, degrees 2, 1, 0,−1 respectively.

Thus Tor0(K/R,N) = NK/jN(N) (where NK = K ⊗R N is a K–vector space and jN(N)
is its R–submodule).

Tor1(K/R,N) = Ker(jN) = {n ∈ N : ∃ 0 6= a ∈ R such that an = 0} = Ntor.

For instance, take R = Z, so that K = Q. A typical finitely–generated abelian group has
the following form:

N = Z⊕r ⊕ (Z/m1Z⊕ · · · ⊕ Z/msZ) .

Then, the computation above gives:

Tor0(Q/Z, N) = (Q/Z)⊕r, Tor1(Q/Z, N) = Z/m1Z⊕ · · · ⊕ Z/msZ.


