LECTURE 22

(22.0) Review.- Let R be a unital, commutative ring. We defined flat modules as: $N \in R$-mod is said to be flat if $-\otimes N$ is an exact functor. Last time we prove the following two results:

- The following three assertions are equivalence.
$-N$ is flat.
- $N_{\mathfrak{p}}$ is flat for every prime ideal $\mathfrak{p} \subsetneq R$.
- $N_{\mathfrak{m}}$ is flat for every maximal ideal $\mathfrak{m} \subsetneq R$.
- If (A, \mathfrak{m}) is a local ring, and N is a finitely presented flat A-module, then N is free.

Remark. Geometrically, flat morphisms correspond to locally trivial fibrations where dimensions (or number of elements) of fibers does not change. For instance, if X and Y are connected, complex manifolds, and $f: X \rightarrow Y$ is an analytic map, then f being flat implies $f(X) \subset Y$ is open, and for every $y \in f(X), X_{y}=f^{-1}(y)$ has the same dimension (independent of y).
(22.1) Ext, Tor and loose ends.- Recall that we started (since Lecture 13) with an abstract notion of derived functors. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ is an additive functor between two abelian categories.

- If F is left exact (covariant or contravariant), we get a sequence of functors $\left\{R^{k} F\right.$: $\mathcal{A} \rightarrow \mathcal{B}\}_{k \geq 0}$ (same variance as F) called right derived functors of F.
- If F is right exact, we get $\left\{L_{k} F: \mathcal{A} \rightarrow \mathcal{B}\right\}_{k \geq 0}$ called left derived functors of F.

When $\mathcal{A}=\mathcal{B}=R$-mod, and $M, N \in R$-mod, we get the following derived functors.
$\operatorname{Ext}^{k}(M, N)$ can be viewed as $R^{k} \mathrm{~h}_{M}(N)$ or $R^{k} \mathrm{~h}^{N}(M)$. Here, $\mathrm{h}_{M}=\operatorname{Hom}(M,-)$ and $\mathrm{h}^{N}=\operatorname{Hom}(-, N)$ are covariant and contravariant Hom functors. They are both left exact.
$\operatorname{Tor}_{k}(M, N)$ can be viewed as $L_{k} T_{M}(N)$ or $L_{k} T^{N}(M)$. Here, $T_{M}=M \otimes-$ and $T^{N}=-\otimes N$ are both covariant, right exact functors (since \otimes is commutative, $T^{N}=T_{N}$).

We still have to prove that the two ways of defining Ext and Tor give the same result. This is the main theorem of these notes.
(22.2) The case of Ext.- For definiteness, let us start with $R^{k} \mathrm{~h}_{M}(N)$ and show that it is the same as $R^{k} \mathrm{~h}^{N}(M)$. In more detail, we will take the following definition as the starting point, and call the resulting functor $E^{k}(M, N)$.

Given $N \in R$-mod, choose an injective resolution of N :

$$
0 \rightarrow I^{0} \xrightarrow{i^{0}} I^{1} \xrightarrow{i^{1}} I^{2} \xrightarrow{i^{2}} \cdots \quad \text { exact at } I^{k}, \forall k \in \mathbb{Z}_{\geq 1} \text {, and } \operatorname{Ker}\left(i^{0}\right)=N .
$$

Define $E^{k}(M, N)$ as $k^{\text {th }}$ cohomology of the complex $\operatorname{Hom}\left(M, I^{\bullet}\right)$. It is a covariant functor in the variable N.

$$
E^{k}(M, N)=H^{k}\left(\operatorname{Hom}\left(M, I^{\bullet}\right)\right)
$$

Recall the following properties of $E^{k}(M, N)$, which will be needed for our proof.
(1) $E^{0}(M, N)=\operatorname{Hom}(M, N)$. This follows from the left exactness of $\operatorname{Hom}(M,-)$.
(2) If N is injective, then $E^{k}(M, N)=0$ for every $k \geq 1, M \in R$-mod. This is true because we can take $0 \rightarrow N \rightarrow 0$ as an injective resolution of N.
(3) For every short exact sequence $0 \rightarrow N_{1} \rightarrow N_{2} \rightarrow N_{3} \rightarrow 0$, we get a connecting homomorphism $E^{k}\left(M, N_{3}\right) \rightarrow E^{k+1}\left(M, N_{1}\right)$, making the following sequence exact:

$$
\cdots \rightarrow E^{k}\left(M, N_{1}\right) \rightarrow E^{k}\left(M, N_{2}\right) \rightarrow E^{k}\left(M, N_{3}\right) \rightarrow E^{k+1}\left(M, N_{1}\right) \rightarrow E^{k+1}\left(M, N_{2}\right) \rightarrow \cdots
$$

Lemma. Assume that $0 \rightarrow N \rightarrow I \rightarrow N^{\prime} \rightarrow 0$ is a short exact sequence of R-modules, where I is injective. Then we have:

$$
E^{k+1}(M, N)=E^{k}\left(M, N^{\prime}\right), \quad \text { for every } k \geq 1
$$

and $E^{1}(M, N)=\operatorname{CoKer}\left(\operatorname{Hom}(M, I) \rightarrow \operatorname{Hom}\left(M, N^{\prime}\right)\right)$.
Proof. The proof follows easily by the long exact sequence in cohomology. Namely,

$$
0 \rightarrow \operatorname{Hom}(M, N) \rightarrow \operatorname{Hom}(M, I) \rightarrow \operatorname{Hom}\left(M, N^{\prime}\right) \rightarrow E^{1}(M, N) \rightarrow E^{1}(M, I)=0
$$

The last term is zero since I is injective. Thus we get:

$$
E^{1}(M, N)=\operatorname{CoKer}\left(\operatorname{Hom}(M, I) \rightarrow \operatorname{Hom}\left(M, N^{\prime}\right)\right)
$$

Now for $k \geq 1$, the following is a part of the long exact sequence:

$$
0=E^{k}(M, I) \rightarrow E^{k}\left(M, N^{\prime}\right) \rightarrow E^{k+1}(M, N) \rightarrow E^{k+1}(M, I)=0
$$

which proves that $E^{k}\left(M, N^{\prime}\right) \cong E^{k+1}(M, N)$.
(22.3) $R^{k} \mathrm{~h}_{M}(N)=R^{k} \mathrm{~h}^{N}(M)$.- Now we are ready to state and prove the desired result. Let P. be a projective resolution of M. That is, we have a chain complex:

$$
\cdots \xrightarrow{p_{2}} P_{2} \xrightarrow{p_{1}} P_{1} \xrightarrow{p_{0}} P_{0} \rightarrow 0,
$$

which is exact at P_{k} for every $k \geq 1$, and $\operatorname{CoKer}\left(p_{0}\right)=M$. In addition to the properties of $E^{k}(M, N)$ listed above, we are going to use the fact that $\operatorname{Hom}(P,-)$ is exact for P a projective R-module.

Theorem. $E^{k}(M, N)=H^{k}\left(\operatorname{Hom}\left(P_{\bullet}, N\right)\right)$.

Proof. The proof is an induction argument on k. For $k=0$, we have

$$
E^{0}(M, N)=\operatorname{Hom}(M, N)=H^{0}\left(\operatorname{Hom}\left(P_{\bullet}, N\right)\right), \text { for every } N \in R-\bmod ,
$$

again by left exactness of Hom functors.
Assume that we know $E^{k}(M, X)=H^{k}\left(\operatorname{Hom}\left(P_{\bullet}, X\right)\right)$ for every $X \in R-\bmod$ and $0 \leq k \leq \ell$, where $\ell \in \mathbb{Z}_{\geq 0}$.

Consider a short exact sequence of R-modules, where I is injective:

$$
0 \rightarrow N \xrightarrow{f} I \xrightarrow{g} N^{\prime} \rightarrow 0 .
$$

Applying $\operatorname{Hom}\left(P_{\bullet},-\right)$ to this short exact sequence, and using the fact that each P_{j} is projective, so $\operatorname{Hom}\left(P_{j},-\right)$ is exact, we get get a short exact sequence of cochain complexes:

$$
0 \rightarrow \operatorname{Hom}\left(P_{\bullet}, N\right) \rightarrow \operatorname{Hom}\left(P_{\bullet}, I\right) \rightarrow \operatorname{Hom}\left(P_{\bullet}, N^{\prime}\right) \rightarrow 0
$$

This gives rise to a long exact sequence in cohomology (see Lecture 15, Theorem 15.1). Now we are ready to carry out the induction step.

Case 1: $\ell=1$. Using $H^{0}\left(\operatorname{Hom}\left(P_{\bullet}\right), X\right)=\operatorname{Hom}(M, X)$, the first part of the long exact sequence in cohomology takes the following form:

$$
0 \rightarrow \operatorname{Hom}(M, N) \rightarrow \operatorname{Hom}(M, I) \rightarrow \operatorname{Hom}\left(M, N^{\prime}\right) \rightarrow H^{1}\left(\operatorname{Hom}\left(P_{\bullet}, N\right)\right) \rightarrow H^{1}\left(\operatorname{Hom}\left(P_{\bullet}, I\right)\right)
$$

The last term is zero, since I is injective, so $\operatorname{Hom}(-, I)$ is exact. This implies that:

$$
H^{1}\left(\operatorname{Hom}\left(P_{\bullet}, N\right)\right)=\operatorname{CoKer}\left(\operatorname{Hom}(M, I) \rightarrow \operatorname{Hom}\left(M, N^{\prime}\right)\right)=E^{1}(M, N)
$$

by Lemma 22.2 above.
Case 2: $\ell>1$. Again we focus on a part of the long exact sequence, and use the fact that I being injective, we have $H^{k}\left(\operatorname{Hom}\left(P_{\bullet}, I\right)\right)=0$ for every $k \geq 1$.

$$
0=H^{\ell}\left(P_{\bullet}, I\right) \rightarrow H^{\ell}\left(P_{\bullet}, N^{\prime}\right) \rightarrow H^{\ell+1}\left(P_{\bullet}, N\right) \rightarrow H^{\ell+1}\left(P_{\bullet}, I\right)=0 .
$$

Thus, we obtain:

$$
H^{\ell+1}\left(P_{\bullet}, N\right)=H^{\ell}\left(P_{\bullet}, N^{\prime}\right)=E^{\ell}\left(M, N^{\prime}\right)=E^{\ell+1}(M, N),
$$

where in the second equality we have used the induction hypothesis, and in the third, Lemma 22.2.
(22.4) The case of Tor.- Exact same argument as in the proof of the theorem above works (details are left as an instructive exercise to the reader) to prove that:

$$
\operatorname{Tor}_{k}(M, N)=H_{k}\left(P_{\bullet}^{M} \otimes N\right)=H_{k}\left(M \otimes P_{\bullet}^{N}\right)
$$

Here, P_{\bullet}^{M} and P_{\bullet}^{N} are projective resolutions of M and N respectively.

In fact, since in the proof of the theorem, we only used the fact that $\operatorname{Hom}(P,-)$ is exact, it allows applies to prove that

$$
\operatorname{Tor}_{k}(M, N)=H_{k}\left(F_{\bullet}^{M} \otimes N\right)
$$

where F_{\bullet}^{M} is a flat resolution of M. Compare this argument with Exercise 11 of Homework 7.

Example. Assume that R is an integral domain, and K is its field of fractions (that is, $\left.K=(R \backslash\{0\})^{-1} R\right)$. The following is a flat resolution of $M=K / R$:

$$
0 \rightarrow R \xrightarrow{j} K \rightarrow 0,
$$

where $j: R \rightarrow K$ is the canonical inclusion. Using this resolution, we can compute $\operatorname{Tor}_{k}(K / R, N)$ for $N \in R-\bmod$ as follows. Tensoring the above complex with N (and using $\left.R \otimes_{R} N=N\right)$ gives:

$$
0 \rightarrow N \xrightarrow{j_{N}} K \otimes_{R} N \rightarrow 0, \quad \text { degrees } 2,1,0,-1 \text { respectively. }
$$

Thus $\operatorname{Tor}_{0}(K / R, N)=N_{K} / j_{N}(N)$ (where $N_{K}=K \otimes_{R} N$ is a K-vector space and $j_{N}(N)$ is its R-submodule).

$$
\operatorname{Tor}_{1}(K / R, N)=\operatorname{Ker}\left(j_{N}\right)=\{n \in N: \exists 0 \neq a \in R \text { such that an }=0\}=N_{\text {tor }}
$$

For instance, take $R=\mathbb{Z}$, so that $K=\mathbb{Q}$. A typical finitely-generated abelian group has the following form:

$$
N=\mathbb{Z}^{\oplus r} \oplus\left(\mathbb{Z} / m_{1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / m_{s} \mathbb{Z}\right)
$$

Then, the computation above gives:

$$
\operatorname{Tor}_{0}(\mathbb{Q} / \mathbb{Z}, N)=(\mathbb{Q} / \mathbb{Z})^{\oplus r}, \quad \operatorname{Tor}_{1}(\mathbb{Q} / \mathbb{Z}, N)=\mathbb{Z} / m_{1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / m_{s} \mathbb{Z}
$$

