
LECTURE 24

(24.0) Galois theory: a bit of history.– Our next, and last topic of this course is Galois
theory. While motivated by the problem of “solvability by radicals” of a polynomial equation,
Galois theory has since evolved in a significant way and has become crucial in many areas of
mathematics. A quick look at the historical developments is provided here (see Bourbaki, Al-
gebra, Historical notes to Chapter V: Commutative Fields for a more thorough and fun read).

The following formula has been known since the time of Babylonian mathematics (around
1800 BC).

ax2 + bx+ c = 0 ⇒ x =
−b±

√
b2 − 4ac

2a
.

After the fall of Babylon (539 BC), Greek mathematicians continued to develop techniques
of arithmetic and gave several geometric proofs/interpretations of this formula. Especially
Pythagoras (570-495 BC) and his school developed algorithms for extraction of a square-root.
Their discovery of irrational numbers led philosophers (Plato (428-348 BC) and his academy)
to re-think what it means to be a number. The general consensus of the time being numbers
have to be constructible - via ruler and compass, or more sophisticated tools, for instance
spirals, cycloids. Mathematicians of the time thus concerned themselves with determining
which numbers are constructible, focusing on problems of the type squaring a circle, dou-
bling a cube and so on. This direction is a bit tangential to our story to which we now return.

The first major breakthrough came in the early sixteenth century. Italian mathematician
Scipio del Ferro (1465-1526) succeeded in solving a typical degree 3 polynomial equation. A
simple linear change of variables gets rid of the the x2 term, and for an equation x3 = ax+ b,
his solution was:
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If you would like to derive it for yourself, here is a hint which is very close to how Scipio
del Ferro argued. Find two numbers r, s such that

rs = −
(a

3

)3
, r + s = b.

The trick is that r
1
3 + s

1
3 will be a solution to x3 = ax+ b. These two equations become one

quadratic equation for r, which we know how to solve.

Italian mathematicians of the sixteenth century continued working on such problems.
Especially Gerolamo Cardona (1501-1576) and his student Lodovico de Ferrari (1522-1565)
obtained a similar formula for a typical degree 4 equation. I am not going to reproduce
the result here, but the idea is as follows. Start from a (monic, with no x3 term) degree 4
equation: x4 = ax2 + bx+ c. Add 2zx2 + z2 to both sides to get (here z is to be determined
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later):

(x2 + z)2 = (a+ 2z)x2 + bx+ (c+ z2)

Next, we try to find two numbers A and B such that (a+ 2z)x2 + bx+ (c+ z2) = (Ax+B)2.
If this were the case, our problem is solved, as x2 + z = ±(Ax + B) from which we extract
the value of x.

Now the auxiliary equation (a+ 2z)x2 + bx+ (c+ z2) = (Ax+B)2, gives rise to:

a+ 2z = A2, b = 2AB, c+ z2 = B2,

from which we obtain the following cubic equation for z:

2z3 + az2 + 2cz + ac =
b2

4
.

We know how to solve this, which gives a value for z, and A,B as above. Substituting it
back gives a formula for x.

It was clear at that time what the precise problem is. Given a polynomial equation
xn = an−1x

n−1 + · · · + a0, find a formula for x, in terms of the coefficients {a0, . . . , an−1},
involving only (i) rational functions, and (ii) kth roots (in other words, solve it by radicals).

The list of names of famous mathematicians who contributed (positively) towards this
problem is too long to include here (see Bourbaki’s historical notes). Niels Henrik Abel

(1802-1829) and his contemporary Évariste Galois (1811-1832) are the two main characters
who finally finished this story. At a very young age, Abel believed that he had a formula
for a degree 5 polynomial equation. However, he soon recognized his error, and became
convinced that no such formula could possibly exist. Abel developed a general (algebraic)
theory of elliptic functions (whose independent analytic treatment was discovered by Jacobi)
to attack this problem. Abel’s idea was to characterize all polynomial equations which can
be solved by radicals. However, he passed away before he could finish his program. In his
honour, certain algebraic extensions are called abelian extensions, whose groups of symme-
tries became known as abelian groups. It turns out that these could be any group where the
group operation is commutative, which is why commutative groups are also called abelian
groups.

Galois approached the problem of solvability by radicals, via considering the group of
symmetries of the (not yet found) roots of a given polynomial equation (which we now call
Galois group). He also had a very short life, but he succeeded in proving that polynomial
equations of degree ≥ 5 cannot be solved by radicals, because Sn is not a solvable group, for
n ≥ 5. Hopefully, by the end of this topic we will see what this last statement precisely means.

(24.1) Fields.– Recall that a field is a (unital, commutative) ring where every non–zero
element is invertible. In other words, {0} is the only proper ideal of a field.

Since we require our ring homomorphisms to be unital, we have the following.

Lemma. Let K be a field and A a commutative (unital) ring. Then every ring homomor-
phism f : K → A is injective.
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Proof. As Ker(f) ⊂ K is a proper ideal (1 6∈ Ker(f)), it has to be zero, proving that f is
injective. �

In other words, HomRings(K,A) is either empty, or consists entirely of injective morphisms.

(24.2) Characteristic of a field.– Let K be a field. Consider the natural ring homomor-
phism i : Z→ K, defined on n ∈ Z≥1 as: i(n) = 1 + · · ·+ 1︸ ︷︷ ︸

n terms

, and i(−n) = −ι(n). There are

two possibilities for Ker(i):

• Ker(i) = {0}. In this case, i extends to a unique homomorphism (still denoted by i)
Q → K (since for every n ∈ Z6=0, i(n) ∈ K is non–zero, hence invertible). Being a
homomorphism from a field, it has to be injective, by Lemma 24.1 above.

• Ker(i) = (p) for some p ∈ Z≥2. In this case, we get an injective ring homomorphism
i : Z/pZ → K. As K is an integral domain, so will be Z/pZ proving that p has to
be a prime number.

Let Fp denote the field Z/pZ, where p ∈ Z≥2 is a prime number. We summarize our
preceding argument as:

Proposition. Let K be a field. Then either Q ↪→ K, or there exists a prime number p ∈ Z≥2
such that Fp ↪→ K.

Definition. We say K is of characteristic zero if Q ↪→ K. If Fp ↪→ K, we say that the
characteristic of K is p (or K is of characteristic p). The characteristic of a field K is
denoted by Char(K).

Note that the inclusions mentioned in this definition are canonical, namely i from the
discussion above. More precisely, given any field K, we have:

Hom(Q, K) =

{
{i} Char(K) = 0,
∅ CharK 6= 0.

Hom(Fp, K) =

{
{i} Char(K) = p,
∅ CharK 6= p.

(24.3) Field extensions.– Let K and L be two fields. Recall (Lemma 24.1) that either
there are no homomorphisms K → L, or there is an injective homomorphism K ↪→ L.
Therefore, a necessary condition for the existence of a homomorphism K → L is that
Char(K) = Char(L). If such a homomorphism exists, and is clear from the context, we
will simply write K ⊂ L, and refer to it as K is a subfield of L.

Definition. Assume K ⊂ L are two fields. Then, L is called an extension of K, also denoted
by L/K. Degree of the extension L/K, denoted by [L : K], is defined to be the dimension
of L, viewed as a K–vector space.

[L : K] = dimK(L)

If [L : K] <∞, we say L is a finite extension of K.
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Example. Any field of characteristic 0 is an extension of Q. A field of characteristic p is an
extension of Fp. The field of complex number C is a degree 2 extension of R.

(24.4) Adjoining elements.– Let L/K be a field extension. Given a set of element
{αi}i∈I ⊂ L, let K(αi : i ∈ I) denote the smallest subfield of L containing K and {αi : i ∈ I}.
We say K(αi : i ∈ I) is a subextension of L/K obtained by adjoining elements {αi} to K.

Proof of existence. Consider the set F of all subfields of L which contain K and the set
of elements {αi}. This set is non–empty, since L ∈ F . Moreover, it is easy to see that an
arbitrary intersection of subfields is again a subfield, proving that

K(αi : i ∈ I) =
⋂
L′∈F

L′.

A word on notations. K[αi : i ∈ I] denotes the smallest K–subalgebra of L, and is in
general different from K(αi : i ∈ I), as we will see below. A (commutative) K–algebra is
any commutative ring which contains K as a subring. A typical element of K[αi : i ∈ I] ⊂ L
is thus a polynomial in {αi}i∈I with coefficients from K.

The following proposition will be useful in studying infinite extensions.

Proposition. Let L/K be a field extension and {αi}i∈I ⊂ L. Consider the right directed
partially ordered set I:

I = {J ⊂ I : J is finite},
ordered by inclusion. For each J ∈ I, let K(J) denote the subextension of L/K obtained by
adjoining {αj}j∈J .

K(J) = K(αj : j ∈ J) ⊂ L.

Then, {K(J)}J∈I is a direct system of subextensions of L/K, and

K(αi : i ∈ I) = lim−→
J∈I

K(J) =
⋃
J∈I

K(J)

Proof. Let K̃ denote the union
⋃
J∈I

K(J). We begin by showing that K̃ ⊂ L is a subfield.

It is clear that K̃ contains 0 and 1. Given two elements a, b ∈ K̃, there is some J ∈ I such

that a, b ∈ K(J). Therefore, a + b, ab ∈ K(J) ⊂ K̃. Moreover, if a ∈ K̃ is non–zero, then

a ∈ K(J) for some J and a−1 ∈ K(J) ⊂ K̃. This finishes the proof that K̃ is a field.

As K ⊂ K̃ and αi ∈ K̃ for every i ∈ I, we conclude that K(αi : i ∈ I) ⊂ K̃. Moreover,
for every J ∈ I, K(J) ⊂ K(αi : i ∈ I) which establishes the reverse inclusion and completes
the proof. �

(24.5) Algebraic vs transcendental elements.– Let L/K be a field extension and let
α ∈ L. There are two possibilities for the set of elements {1, α, α2, . . .}:
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• There exists an N ∈ Z≥0 such that the set {1, α, . . . , αN+1} is linearly dependent
over K.

• For every N ∈ Z≥0, the set {1, α, . . . , αN+1} is linearly independent over K.

In the first case, we say α is algebraic over K, while in the second transcendental. Another
useful way to think about this, is to consider the ring homomorphism called evaluation at α.

evα : K[x]→ L, evα(f(x)) = f(α).

The following statement is clear from the definitions.

α ∈ L is transcendental if, and only if evα is injective

Remark. Thus, α ∈ L is transcendental over K ⇐⇒ K[α] ∼= K[x], which is not a field.
This is further equivalent to K[α] ( K(α). For instance, we know π is transcendental over
Q, which implies Q[π] ( Q(π). The former being the set of all real numbers which are
polynomials in π, with coefficients from Q, while the latter rational expressions. Thus, alge-
braically speaking, there is no conceptual difference between a transcendental element, and
a formal variable.

Definition. Let L/K be a field extension, and let α ∈ L be an element which is algebraic over
K. The minimal polynomial of α, denoted by mα(x) ∈ K[x] is the unique monic polynomial
such that Ker(evα) = (mα(x)). Note that since evα induces an injective ring homomorphism
evα : K[x]/(mα(x)) ↪→ L, the ring K[x]/(mα(x)) has to be an integral domain, proving that
mα(x) must be an irreducible polynomial.

Proposition. Let L/K be a field extension, and α ∈ L be algebraic over K. Then K(α) =
K[α] is a finite extension of K, with

[K(α) : K] = deg(mα(x))

Proof. We begin by proving that K[α] = K(α). Note that evα : K[x]/(mα(x))
∼−→ K[α] ⊂

L. The former is a finite–dimensional integral domain, hence a field. This proves that K[α]
is a field, and clearly the smallest one containing K and α, so K[α] = K(α).

To recall the proof of finite–dimensional integral domains are fields, let A be a commuta-
tive algebra over K, which is finite–dimensional as a K–vector space. Assume that A is an
integral domain. Then, given any 0 6= a ∈ A, the operation of left multiplication µa : A→ A
is an injective K–linear map, hence surjective by dimension reasons. So, there must be b ∈ A
such that ab = µa(b) = 1.

Now assume mα(x) = xn−
n−1∑
j=0

ajx
j, where a0, . . . , an−1 ∈ K. We claim that {1, α, . . . , αn−1}

is a basis of K[α] as a K–vector space.
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Span. Note that we have (in L):

αn =
n−1∑
j=0

ajα
j.

We claim that for every ` ∈ Z≥0, αn+` can be written as a linear combination of {1, α, . . . , αn−1}.
It is true for ` = 0 by the equation given above. Assuming its validity for ` ∈ Z≥1, that is,

αn+` =
n−1∑
j=0

cjα
j.

Multiply both sides by α to get:

αn+`+1 =
n−2∑
j=0

cjα
j+1 + cn−1α

n =
n−2∑
j=0

cjα
j+1 +

n−1∑
i=0

aiα
i

which proves that {1, α, . . . , αn−1} spans K[α].

Linear independence. If the set {1, α, . . . , αn−1} were linearly dependent, we will have a
(non–zero) polynomial of degree ≤ n − 1, say g(x) ∈ K[x], such that g(α) = 0. That
is, g(x) ∈ Ker(evα) = (mα(x)), proving that g(x) = mα(x)h(x) for some h(x). But
deg(g) < deg(mα(x)), which is absurd.

Thus we conclude that {1, α, . . . , αn−1} is a basis of K(α) ∼= K[α] ∼= K[x]/(mα(x)) as a
K–vector space. This proves the proposition. �


