LECTURE 25

(25.0) Galois theory: sketch.- Last time we started our study of Galois theory. A brief sketch of the main ideas of this theory is as follows.

Let K be a field and $f(x) \in K[x]$ a monic polynomial. Recall that monic means that the coefficient of $x^{\operatorname{deg}(f)}$ (called leading coefficient) is 1 . Assume $n=\operatorname{deg}(f) \in \mathbb{Z}_{\geq 1}$.

- Construct a field L containing K so that $f(x)$ splits into a product of linear terms:

$$
f(x)=\prod_{j=1}^{n}\left(x-\alpha_{j}\right) \quad \text { in } L[x]
$$

and $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Such extensions will be called splitting extensions and we will have to show that they exist and are uniquely determined by f. This will be done next week when we will also establish the existence of an algebraic closure.

- Define a group (in honour of Galois, we will call them Galois groups)

$$
G=\left\{\sigma: L \rightarrow L \text { field isomorphism such that }\left.\sigma\right|_{K}=\operatorname{Id}_{K}\right\} .
$$

The fundamental theorem of Galois theory will establish a dictionary between field extensions and groups. We will carefully translate the properties of one to the other.

Remark. It is worth noticing the similarity between the construction of a group associated to a field extension L / K, and the group of deck transformations of a covering space. In fact this is more than an analogy, and in algebraic geometry fundamental group of algebraic schemes is defined via Galois theory.

(25.1) Terms introduced last time.-

Prime fields are \mathbb{Q} and \mathbb{F}_{p} where $p \in \mathbb{Z}_{\geq 2}$ is a prime number. For any field K, there is only one prime field P and only one homomorphism (necessarily injective) $P \hookrightarrow K$. We say K is of characteristic zero (resp. p) if $P=\mathbb{Q}\left(\right.$ resp. $\left.P=\mathbb{F}_{p}\right)$.

A field extension is a pair consisting of a field L and a subfield K. We denote a field extension by $K \subset L$, or L / K. In some textbooks, a field extension is also denoted by (implying authors' fondness for covering spaces) \int_{K}^{L}.

- Degree of an extension L / K is defined as the dimension of L as a K-vector space

$$
[L: K]=\operatorname{dim}_{K}(L)
$$

We say L / K is a finite extension if $[L: K]<\infty$.

- For a set of elements $\left\{\alpha_{i}\right\}_{i \in I} \subset L$, we denote by $K\left(\alpha_{i}: i \in I\right) \subset L$ the smallest subfield containing K and the set $\left\{\alpha_{i}\right\}_{i \in I}$.
- An element $\alpha \in L$ is said to be algebraic over K if there exists $p(x) \in K[x]$ such that $p(\alpha)=0$. Transcendental elements are the ones which are not algebraic.
- For $\alpha \in L$, we defined a homomorphism (evaluation at α) $\mathrm{ev}_{\alpha}: K[x] \rightarrow L$, by $p(x) \mapsto p(\alpha)$. We observed from the definition that:

$$
\alpha \text { is algebraic } \Longleftrightarrow \operatorname{Ker}\left(\operatorname{ev}_{\alpha}\right) \neq\{0\}
$$

The minimal polynomial of α is defined as the unique monic polynomial $\mathrm{m}_{\alpha}(x) \in$ $K[x]$ such that $\operatorname{Ker}\left(\mathrm{ev}_{\alpha}\right)=\left(\mathrm{m}_{\alpha}(x)\right)$.
(25.2) Equivalent characterizations of algebraic elements.- Again, let L / K be a field extension, and let $\alpha \in L$.

Proposition. The following three statements are equivalent:
(1) α is algebraic. (2) $\operatorname{Ker}\left(\mathrm{ev}_{\alpha}\right) \neq\{0\}$. (3) $K[\alpha]=K(\alpha)$.

In this case, we have:

$$
[K(\alpha): K]=\operatorname{deg}\left(\mathrm{m}_{\alpha}(x)\right)
$$

The last equation was proved in the previous lecture (see Proposition 24.5 on page 5).
Proof. As observed above, $(1) \Longleftrightarrow(2)$ by definition. $(2) \Rightarrow(3)$ is also proved in Proposition 24.5. Let us check $(3) \Rightarrow(2)$. By $K[\alpha]=K(\alpha)$ we know that α^{-1} exists in $K[\alpha]$. That is, there is a polynomial $p(x) \in K[x]$ such that $p(\alpha)=\alpha^{-1}$. But then, we have $x p(x)-1 \in \operatorname{Ker}\left(\operatorname{ev}_{\alpha}\right)$, hence it is non-zero.

(25.3) Degree of successive extensions.-

Theorem. Let us assume that $K_{1} \subset K_{2} \subset K_{3}$ are field extensions. Then we have:

$$
\left[K_{3}: K_{1}\right]=\left[K_{3}: K_{2}\right] \cdot\left[K_{2}: K_{1}\right]
$$

Proof. Note that the equation written above is only meaningful when the three degrees involved are finite. Our proof however will not assume this.

Let $\left\{\alpha_{i}\right\}_{i \in I}$ be a basis of K_{2} as a K_{1}-vector space, and let $\left\{\beta_{j}\right\}_{j \in J}$ be a basis of K_{3} as a K_{2}-vector space. The equation claimed in the theorem above is an easy consequence of the following claim.

Claim: $\left\{\alpha_{i} \beta_{j}\right\}_{i \in I, j \in J}$ is a basis of K_{3} as a K_{1} vector space.
Proof of the claim. Let $\alpha \in K_{3}$. Then we can write it as a (finite) linear combination

$$
\alpha=\sum_{j \in J} \beta_{j} c_{j}
$$

where the sum is finite, and $c_{j} \in K_{2}$. Each c_{j} can be written as a finite sum $c_{j}=\sum_{i \in I} \alpha_{i} d_{i j}$, where $d_{i j} \in K_{1}$. This implies:

$$
\alpha=\sum_{i, j \in I \times J}^{\text {finite }} d_{i j} \cdot \alpha_{i} \beta_{j},
$$

proving that $\left\{\alpha_{i} \beta_{j}\right\}$ span K_{3} as a K_{1}-vector space.
Now we will check that this set is linearly independent. Consider a linear dependence relation:

$$
\sum_{i, j \in I \times J}^{\text {finite }} x_{i j} \cdot \alpha_{i} \beta_{j}=0
$$

where $x_{i j} \in K_{1}$. Collect terms with same j subscript to write it as

$$
\sum_{j \in J} \beta_{j}\left(\sum_{i \in I} x_{i j} \alpha_{i}\right)=0
$$

Now $\left\{\beta_{j}\right\}_{j \in J}$ are linearly independent over K_{2}, proving that for each $j \in J$, we have:

$$
\sum_{i \in I} x_{i j} \alpha_{i}=0
$$

We get $x_{i j}=0$ for each $i \in I$ by using linear independence of $\left\{\alpha_{i}\right\}$ over K_{1}.
Corollary. If $K_{1} \subset K_{2} \subset \cdots \subset K_{\ell}$ are field extensions, then

$$
\left[K_{\ell}: K_{1}\right]=\prod_{j=1}^{\ell-1}\left[K_{j+1}: K_{j}\right]
$$

(25.4) Algebraic extensions.- A field extension L / K is said to be an algebraic extension if every $\alpha \in L$ is algebraic over K.

Theorem.

(1) Every finite extension is algebraic.
(2) If L / K is any field extension, then:

$$
L^{\text {alg }}:=\{\alpha \in L: \alpha \text { is algberaic over } K\} \subset L
$$

is a subfield of $L . L^{\text {alg }} / K$ is an algberaic extension.
Proof. (1). Let L / K be a finite extension, and let $\alpha \in L$. Since L is a finite-dimensional vector space over K, the infinite set $\left\{\alpha^{n}: n \in \mathbb{Z}_{\geq 0}\right\}$ has to be linearly dependent. A dependence relation $\sum_{n=0}^{N} c_{n} \alpha^{n}=0$ gives us a non-zero polynomial $p(x)=\sum_{n=0}^{N} c_{n} x^{n} \in \operatorname{Ker}\left(\operatorname{ev}_{\alpha}\right)$, proving that α is algebraic over K.
(2). Now we assume L / K is an arbitrary extension. We have to show that given two (say, non-zero) algebraic elements $\alpha, \beta \in L^{\text {alg }}, \alpha \beta, \alpha+\beta$ and α^{-1} are again algebraic. The last one is obvious, since:

$$
\sum_{j=0}^{n} c_{j} \alpha^{j}=0 \Longleftrightarrow \sum_{j=0}^{n} c_{j}\left(\alpha^{-1}\right)^{n-j}=0
$$

As for the first two, consider the successive extensions:

$$
K=K_{1} \subset K(\alpha)=K_{2} \subset K(\alpha, \beta)=K_{3}
$$

As α, β are algebraic, each of the extensions K_{2} / K_{1} and K_{3} / K_{2} is finite by Proposition 25.2 (note that β being algebraic over K implies that it is algebraic over $K(\alpha) \supset K)$. Hence, using Theorem 25.3, we know K_{3} / K_{1} is finite, hence algebraic by (1). So $\alpha+\beta, \alpha \beta \in K(\alpha, \beta)$ are algebraic over K.

Remark. In general it is a bit non-trivial to get the minimal polynomial of $\alpha+\beta$ from that of α and β. For instance, let $\alpha=2^{\frac{1}{3}}$ and $\beta=\sqrt{3}$. Over \mathbb{Q}, the minimal polynomials are easily computable:

$$
\mathrm{m}_{\alpha}(x)=x^{3}-2, \quad \mathrm{~m}_{\beta}(x)=x^{2}-3
$$

(I am leaving as an easy exercise to prove that these polynomials are irreducible over \mathbb{Q}).
Let $\gamma=\alpha+\beta$ and try to compute the minimal polynomial of γ. Our proof of the theorem above implies that its degree will be ≤ 6.

$$
(\gamma-\sqrt{3})^{3}=2 \Rightarrow \gamma^{3}-3 \sqrt{3} \gamma^{2}+9 \gamma-3 \sqrt{3}=2
$$

We have to eliminate radicals from $3 \sqrt{3}\left(\gamma^{2}+1\right)=\gamma^{3}+9 \gamma-2$ to get:

$$
27\left(\gamma^{2}+1\right)^{2}=\left(\gamma^{3}+9 \gamma-2\right)^{2}
$$

Expanding this out, we get:

$$
\gamma^{6}-9 \gamma^{4}-4 \gamma^{3}+27 \gamma^{2}-36 \gamma-23=0
$$

(I am also leaving, not so easy, exercise of proving that this is irreducible).

Example. There exist algebraic extensions which are not finite. A typical example is obtained by taking $\mathbb{Q} \subset \mathbb{C}$ and looking at all algebraic elements of \mathbb{C} (called algebraic numbers and denoted by $\overline{\mathbb{Q}})$:

$$
\overline{\mathbb{Q}}=\mathbb{C}^{\text {alg }}=\{z \in \mathbb{C}: z \text { is algebraic over } \mathbb{Q}\} .
$$

(2) of the theorem above implies that $\overline{\mathbb{Q}} \subset \mathbb{C}$ is a field, clearly algebraic over \mathbb{Q}. It is not hard to see that this field is infinite-dimensional as a \mathbb{Q}-vector space.

