LECTURE 25

(25.0) Galois theory: sketch. – Last time we started our study of Galois theory. A brief sketch of the main ideas of this theory is as follows.

Let K be a field and $f(x) \in K[x]$ a monic polynomial. Recall that *monic* means that the coefficient of $x^{\deg(f)}$ (called leading coefficient) is 1. Assume $n = \deg(f) \in \mathbb{Z}_{>1}$.

• Construct a field L containing K so that f(x) splits into a product of linear terms:

$$f(x) = \prod_{j=1}^{n} (x - \alpha_j) \qquad \text{in } L[x],$$

and $L = K(\alpha_1, \ldots, \alpha_n)$. Such extensions will be called *splitting extensions* and we will have to show that they exist and are uniquely determined by f. This will be done next week when we will also establish the existence of an *algebraic closure*.

• Define a group (in honour of Galois, we will call them *Galois groups*)

 $G = \{ \sigma : L \to L \text{ field isomorphism such that } \sigma |_K = \mathrm{Id}_K \}.$

The fundamental theorem of Galois theory will establish a dictionary between *field exten*sions and groups. We will carefully translate the properties of one to the other.

Remark. It is worth noticing the similarity between the construction of a group associated to a field extension L/K, and the group of *deck transformations of a covering space*. In fact this is more than an analogy, and in algebraic geometry fundamental group of algebraic schemes is defined via Galois theory.

(25.1) Terms introduced last time.–

Prime fields are \mathbb{Q} and \mathbb{F}_p where $p \in \mathbb{Z}_{\geq 2}$ is a prime number. For any field K, there is only one prime field P and only one homomorphism (necessarily injective) $P \hookrightarrow K$. We say K is of characteristic zero (resp. p) if $P = \mathbb{Q}$ (resp. $P = \mathbb{F}_p$).

A field extension is a pair consisting of a field L and a subfield K. We denote a field extension by $K \subset L$, or L/K. In some textbooks, a field extension is also denoted by (implying authors' fondness for covering spaces) $\begin{bmatrix} L \\ K \end{bmatrix}$.

• Degree of an extension L/K is defined as the dimension of L as a K-vector space

$$[L:K] = \dim_K(L)$$

We say L/K is a finite extension if $[L:K] < \infty$.

- For a set of elements $\{\alpha_i\}_{i\in I} \subset L$, we denote by $K(\alpha_i : i \in I) \subset L$ the smallest subfield containing K and the set $\{\alpha_i\}_{i\in I}$.
- An element $\alpha \in L$ is said to be *algebraic* over K if there exists $p(x) \in K[x]$ such that $p(\alpha) = 0$. Transcendental elements are the ones which are not algebraic.
- For $\alpha \in L$, we defined a homomorphism (evaluation at α) $ev_{\alpha} : K[x] \to L$, by $p(x) \mapsto p(\alpha)$. We observed from the definition that:

 α is algebraic $\iff \operatorname{Ker}(\operatorname{ev}_{\alpha}) \neq \{0\}$

The minimal polynomial of α is defined as the unique monic polynomial $\mathbf{m}_{\alpha}(x) \in K[x]$ such that $\operatorname{Ker}(\operatorname{ev}_{\alpha}) = (\mathbf{m}_{\alpha}(x))$.

(25.2) Equivalent characterizations of algebraic elements. Again, let L/K be a field extension, and let $\alpha \in L$.

Proposition. The following three statements are equivalent: (1) α is algebraic. (2) Ker(ev_{α}) \neq {0}. (3) $K[\alpha] = K(\alpha)$.

In this case, we have:

$$[K(\alpha):K] = \deg(\mathsf{m}_{\alpha}(x))$$

The last equation was proved in the previous lecture (see Proposition 24.5 on page 5).

PROOF. As observed above, $(1) \iff (2)$ by definition. $(2) \Rightarrow (3)$ is also proved in Proposition 24.5. Let us check $(3) \Rightarrow (2)$. By $K[\alpha] = K(\alpha)$ we know that α^{-1} exists in $K[\alpha]$. That is, there is a polynomial $p(x) \in K[x]$ such that $p(\alpha) = \alpha^{-1}$. But then, we have $xp(x) - 1 \in \text{Ker}(\text{ev}_{\alpha})$, hence it is non-zero.

(25.3) Degree of successive extensions.-

Theorem. Let us assume that $K_1 \subset K_2 \subset K_3$ are field extensions. Then we have:

$$[K_3:K_1] = [K_3:K_2] \cdot [K_2:K_1]$$

PROOF. Note that the equation written above is only meaningful when the three degrees involved are finite. Our proof however will not assume this.

Let $\{\alpha_i\}_{i\in I}$ be a basis of K_2 as a K_1 -vector space, and let $\{\beta_j\}_{j\in J}$ be a basis of K_3 as a K_2 -vector space. The equation claimed in the theorem above is an easy consequence of the following claim.

Claim: $\{\alpha_i\beta_j\}_{i\in I, j\in J}$ is a basis of K_3 as a K_1 vector space.

Proof of the claim. Let $\alpha \in K_3$. Then we can write it as a (finite) linear combination

$$\alpha = \sum_{j \in J} \beta_j c_j,$$

where the sum is finite, and $c_j \in K_2$. Each c_j can be written as a finite sum $c_j = \sum_{i \in I} \alpha_i d_{ij}$, where $d_{ij} \in K_1$. This implies:

$$\alpha = \sum_{i,j \in I \times J}^{\text{finite}} d_{ij} \cdot \alpha_i \beta_j$$

proving that $\{\alpha_i\beta_i\}$ span K_3 as a K_1 -vector space.

Now we will check that this set is linearly independent. Consider a linear dependence relation:

$$\sum_{i,j\in I\times J}^{\text{nmite}} x_{ij} \cdot \alpha_i \beta_j = 0$$

where $x_{ij} \in K_1$. Collect terms with same j subscript to write it as

$$\sum_{j \in J} \beta_j \left(\sum_{i \in I} x_{ij} \alpha_i \right) = 0.$$

Now $\{\beta_j\}_{j\in J}$ are linearly independent over K_2 , proving that for each $j \in J$, we have:

$$\sum_{i\in I} x_{ij}\alpha_i = 0.$$

We get $x_{ij} = 0$ for each $i \in I$ by using linear independence of $\{\alpha_i\}$ over K_1 .

Corollary. If $K_1 \subset K_2 \subset \cdots \subset K_\ell$ are field extensions, then

$$[K_{\ell}:K_1] = \prod_{j=1}^{\ell-1} [K_{j+1}:K_j].$$

(25.4) Algebraic extensions. – A field extension L/K is said to be an algebraic extension if every $\alpha \in L$ is algebraic over K.

Theorem.

(1) Every finite extension is algebraic.

(2) If L/K is any field extension, then:

 $L^{\text{alg}} := \{ \alpha \in L : \alpha \text{ is algberaic over } K \} \subset L$

is a subfield of L. L^{alg}/K is an algberaic extension.

PROOF. (1). Let L/K be a finite extension, and let $\alpha \in L$. Since L is a finite-dimensional vector space over K, the infinite set $\{\alpha^n : n \in \mathbb{Z}_{\geq 0}\}$ has to be linearly dependent. A dependence relation $\sum_{n=0}^{N} c_n \alpha^n = 0$ gives us a non-zero polynomial $p(x) = \sum_{n=0}^{N} c_n x^n \in \text{Ker}(\text{ev}_{\alpha})$, proving that α is algebraic over K.

(2). Now we assume L/K is an arbitrary extension. We have to show that given two (say, non-zero) algebraic elements $\alpha, \beta \in L^{\text{alg}}, \alpha\beta, \alpha + \beta$ and α^{-1} are again algebraic. The last one is obvious, since:

$$\sum_{j=0}^{n} c_{j} \alpha^{j} = 0 \iff \sum_{j=0}^{n} c_{j} (\alpha^{-1})^{n-j} = 0.$$

As for the first two, consider the successive extensions:

$$K = K_1 \subset K(\alpha) = K_2 \subset K(\alpha, \beta) = K_3.$$

As α, β are algebraic, each of the extensions K_2/K_1 and K_3/K_2 is finite by Proposition 25.2 (note that β being algebraic over K implies that it is algebraic over $K(\alpha) \supset K$). Hence, using Theorem 25.3, we know K_3/K_1 is finite, hence algebraic by (1). So $\alpha + \beta, \alpha\beta \in K(\alpha, \beta)$ are algebraic over K.

Remark. In general it is a bit non-trivial to get the minimal polynomial of $\alpha + \beta$ from that of α and β . For instance, let $\alpha = 2^{\frac{1}{3}}$ and $\beta = \sqrt{3}$. Over \mathbb{Q} , the minimal polynomials are easily computable:

$$m_{\alpha}(x) = x^3 - 2, \qquad m_{\beta}(x) = x^2 - 3.$$

(I am leaving as an easy exercise to prove that these polynomials are irreducible over \mathbb{Q}).

Let $\gamma = \alpha + \beta$ and try to compute the minimal polynomial of γ . Our proof of the theorem above implies that its degree will be ≤ 6 .

$$(\gamma - \sqrt{3})^3 = 2 \Rightarrow \gamma^3 - 3\sqrt{3}\gamma^2 + 9\gamma - 3\sqrt{3} = 2$$

We have to eliminate radicals from $3\sqrt{3}(\gamma^2 + 1) = \gamma^3 + 9\gamma - 2$ to get:

$$27(\gamma^2 + 1)^2 = (\gamma^3 + 9\gamma - 2)^2.$$

Expanding this out, we get:

$$\gamma^6 - 9\gamma^4 - 4\gamma^3 + 27\gamma^2 - 36\gamma - 23 = 0.$$

(I am also leaving, not so easy, exercise of proving that this is irreducible).

Example. There exist algebraic extensions which are not finite. A typical example is obtained by taking $\mathbb{Q} \subset \mathbb{C}$ and looking at all algebraic elements of \mathbb{C} (called *algebraic numbers* and denoted by $\overline{\mathbb{Q}}$):

$$\overline{\mathbb{Q}} = \mathbb{C}^{\text{alg}} = \{ z \in \mathbb{C} : z \text{ is algebraic over } \mathbb{Q} \}.$$

(2) of the theorem above implies that $\overline{\mathbb{Q}} \subset \mathbb{C}$ is a field, clearly algebraic over \mathbb{Q} . It is not hard to see that this field is infinite-dimensional as a \mathbb{Q} -vector space.