
LECTURE 27

(27.0) Splitting extensions.– Recall that last time we proved the existence and unique-
ness (up to a non–unique isomorphism) of splitting extension of a set of polynomials. More
precisely, for a field K and a set of polynomials P ⊂ K[x], there exists a unique field
extension L/K such that (i) every polynomial p(x) ∈ P splits completely in L[x] and (ii)
the smallest subfield of L containing K and the roots of all the polynomials from P is L itself.

Recall that the argument for its existence had three main steps:

• We can adjoin one root of an irreducible polynomial (Kronecker’s theorem).
• By induction, we proved the existence of the splitting extension of a finite set of

polynomials.
• Direct limit of the splitting extensions corresponding to finite subsets of P is the

splitting extension for P .

In this lecture we will go over the theory of symmetric polynomials, and see two of its
applications. Next time we will use the basic results about symmetric polynomials (Propo-
sition 27.2 and Theorem 27.3) to give a different proof of the existence of splitting extensions.

(27.1) Symmetric polynomials.– Let A be a unital commutative ring and let n ∈ Z≥0.
We denote by Sn the symmetric group on n letters. Consider the ring of polynomials in n
variables, with coefficients from A, and the natural action of Sn:

Sn R = A[x1, . . . , xn]!!

given by (σ · p)(x1, . . . , xn) = p(xσ(1), . . . , xσ(n)).

Definition. A polynomial p(x1, . . . , xn) ∈ R is symmetric if σ · p = p, for every σ ∈ Sn.
The set of all symmetric polynomials is denoted by S = RSn ⊂ R, and is an A–subalgebra
of R.

S = {p ∈ R : σ · p = p ∀ σ ∈ Sn}

(27.2) Elementary symmetric polynomials.– We keep the notations of the previous
paragraph.

Definition. For each k ∈ Z≥0, the kth elementary symmetric polynomial, denoted by
ek(x1, . . . , xn) (or just ek if the number of variables is clear from the context) is defined
as:

ek(x1, . . . , xn) =
∑

1≤i1<...<ik≤n

xi1 · · ·xik

1
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Note that e0 = 1 and ek = 0 for every k > n. Each ek is homogeneous of degree k (if we
assign degree 1 to each of the variables x1, . . . , xn).

It is clear that ek ∈ S = RSn . For instance,

e1 = x1 + · · ·+ xn, e2 =
∑
i<j

xixj, en = x1 · · ·xn.

Proposition.

(1) We have the following identity:

n∏
i=1

(x− xi) = xn +
n∑
k=1

(−1)kek(x1, . . . , xn)xn−k

(2) (−1)n+1en = xnn +
n−1∑
k=1

(−1)kekx
n−k
n .

(3) Let e′k = ek(x1, . . . , xn−1) and ek = ek(x1, . . . , xn). That is, e′k = ek|xn=0. Then we
have:

ek = e′k + e′k−1xn, e′k =
k∑
j=0

(−1)jxjnek−j.

Here, e′−1 = 0 (if k = 0 in the first equation).

Proof. (1) is obtained by expanding the left–hand side. (2) follows from (1) if we substitute
x = xn.

The first identity in (3) is clear from the definition of ek. The second one is obtained
simply by inverting the first one (or an easy induction on k argument). �

(27.3) Main theorem of symmetric polynomials.– Again, we keep the notations as
above: A is a unital commutative ring, R = A[x1, . . . , xn], S = RSn , and ek ∈ S (1 ≤ k ≤ n).

Theorem.

(1) S is generated, as an algebra over A, by {e1, . . . , en}.

(2) {e1, . . . , en} are algebraically independent.

(3) As an S–module, R is free of rank n!. More precisely, the following set of n! mono-
mials is an S–basis for R:

{xk11 · · ·xknn : 0 ≤ kj < j, ∀ j = 1, . . . , n}.
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Proof. Our proof of this theorem is going to be based on induction. The base case of the
induction is when n = 0, R = S = A and there is nothing to show. Our induction hypothesis
is that the theorem is true for n− 1, and we will prove it for n.

Let us prove (1) first. Let p(x1, . . . , xn) ∈ S be homogeneous of degree m. We want to
argue, by (a second) induction on m, that p can be written as a polynomial in e1, . . . , en,
with coefficients from A. If m = 0, then p ∈ A and there is nothing to prove. Otherwise,
consider:

p′ = p(x1, . . . , xn−1, 0) ∈ A[x1, . . . , xn−1]
Sn−1 .

By induction hypothesis (on n) there exists a polynomial P (y1, . . . , yn−1) ∈ A[y1, . . . , yn−1]
such that p′ = P (e′1, . . . , e

′
n−1). Here, we are using the same notation as in Proposition 27.2

(2) above. Now it is clear that p(x1, . . . , xn)− P (e1, . . . , en−1) is divisible by xn. Since it is
symmetric, it must also be divisible by x1, x2, . . . , xn−1. That is,

p(x1, . . . , xn)− P (e1, . . . , en−1) = q(x1, . . . , xn) · (x1 · · ·xn) = q(x1, . . . , xn) · en,
with deg(q) < deg(p). This finishes the proof of (1).

Now we prove (2) and (3). For this, consider

S̃ = RSn−1 = A[x1, . . . , xn]Sn−1 = (A[xn])[x1, . . . , xn−1]
Sn−1 .

That is, S̃ is the ring of symmetric polynomials in n − 1 variables x1, . . . , xn−1 with coeffi-

cients from A[xn]. By induction hypothesis (on n), S̃ is generated (as an A[xn]–algebra) by
algebraically independent elements e′1, . . . , e

′
n−1:

S̃ = (A[xn])[e′1, . . . , e
′
n−1].

By Proposition 27.2 (3) above, the two sets {e′1, . . . , e′n−1} and {e1, . . . , en−1} are related
by invertible linear (over A[xn]) transformations. Hence, we conclude that e1, . . . , en−1 are
algebraically independent over A[xn] (in particular, over A), and can write:

S̃ = A[xn, e1, . . . , en−1] = (A[e1, . . . , en−1])[xn].

Let us pause and recollect what we know by now. We have shown that {e1, . . . , en−1, xn}
are algebraically independent over A. We also know that S is generated by {e1, . . . , en} as
an A–algebra. That is, if we write C = A[e1, . . . , en−1], then S is the image of ϕ : C[T ] →
S̃ = C[xn], where:

ϕ(T ) = en = (−1)n+1xnn +
n∑
j=1

(−1)n−j+1ejx
n−j
n , by Prop. 27.2 (2) above.

Note that ϕ(T ) is a degree n polynomial in variable xn, whose leading coefficient ±1
is invertible. First of all, this implies that ϕ is injective, since if p(T ) ∈ C[T ] is of degree
N ≥ 1 (in T variable), then ϕ(p(T )) will have (±1) same leading coefficient as p(T ), in degree
Nn in xn variable. This proves (2), that is, {e1, . . . , en} are algebraically independent over A.

Secondly, Euclidean division algorithm can be performed to divide a given element of C[xn]

by ϕ(T ). Thus {1, xn, . . . , xn−1n } is an S–basis of S̃. Combined with induction hypothesis,
this proves (3). �
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(27.4) Remark.– Note that our proof of (1) of Theorem 27.3 above gives an efficient algo-
rithm to express a given symmetric polynomial p(x1, . . . , xn) as a polynomial in e1, . . . , en.
Namely:

• Set xn = 0 and express the resulting polynomial in n − 1 variables, say p′, as a
polynomial P (e′1, . . . , e

′
n−1).

• Take the difference p(x1, . . . , xn)− P (e1, . . . , en−1), divide it by en = x1 · · ·xn to get
another symmetric polynomial q(x1, . . . , xn) of degree deg(p)− n.
• If deg(q) = 0, we are done. Otherwise, repeat the previous two steps for q.

For instance, let p = x21(x2 + x3) + x22(x3 + x1) + x23(x1 + x2) ∈ Z[x1, x2, x3]
S3 . Then:

p′ = x21x2 + x1x
2
2 = e′1e

′
2.

Now we compute:

p− e1e2 = x21(x2 + x3) + x22(x3 + x1) + x23(x1 + x2)− (x1 + x2 + x3)(x1x2 + x2x3 + x1x3)

= −3x1x2x3 = −3e3.

So p = e1e2 − 3e3.

(27.5) Application I.– Let K be any field, and let T1, . . . , Tn be variables.

• Let R = K[T1, . . . , Tn], F (R) = K(T1, . . . , Tn) (field of fractions of R). Note that we
have a group homomorphism Sn → Aut(F (R)), the group of field automorphisms of
F (R).

• S = RSn = K[e1, . . . , en], where ek’s are the elementary symmetric polynomials in
T1, . . . , Tn. Let F (S) = K(e1, . . . , en) denote the field of fractions of S.

Corollary.

(1) F (S) = F (R)Sn.
(2) F (R) is n! dimensional F (S)–vector space. That is:

[F (R) : F (S)] = n!

Proof. It is clear that F (S) ⊂ F (R)Sn . For the converse, assume that p/q ∈ F (R) is
symmetric (where p, q ∈ R = K[T1, . . . , Tn]).

p

q
=

p
∏

σ∈Sn
σ 6=Id

(σ · q)∏
σ∈Sn

(σ · q)
.

Now the denominator of the right–hand side is symmetric. Hence, so must be the numerator
since p/q is symmetric. So p/q ∈ F (S).
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(2) follows from Theorem 27.3 (3) and an argument similar to the one above. Consider
the basis of R as a rank n! free S–module given in Theorem 27.3 (3). For notational ease,
we will write m(k) for xk11 · · ·xknn . The indexing set will be denoted by I:

I = {k = (k1, . . . , kn) : 0 ≤ kj < j, ∀ j}, B = {m(k) : k ∈ I} ⊂ R.

We will show that B spans F (R) as F (S)–vector space, and is linearly independent.

Let p/q ∈ F (R). Multiplying and dividing this element by
∏
σ

(σ · q), where the product is

over all non–identity permutations, we may assume that the denominator is symmetric. By
Theorem 27.3 (3), we can write:

p

q
=

1

q

∑
k∈I

c(k)m(k)

 =
∑
k∈I

c(k)

q
m(k)

where c(k) ∈ S for every k ∈ I, hence c(k)/q ∈ F (S). Therefore, B spans F (R). For linear
independence, if we have a linear dependence relation:∑

k∈I

a(k)m(k) = 0, where a(k) ∈ F (S),

then we can clear the denominator to assume that a(k) ∈ S. By Theorem 27.3 (3), this
implies that each a(k) = 0. �

(27.6) Application II. Discriminants.– Let K be a field, and assume that p(x) ∈ K[x]
is monic polynomial of degree n. Let L/K be an extension of K. Assume there exist
r1, . . . , rn ∈ L such that p(x) = (x − r1) · · · (x − rn) in L[x]. As another application of
Theorem 27.3, we have that every symmetric polynomial in r1, . . . , rn is an element of K,
which can be written as a polynomial in the coefficients of p(x).

Corollary. Let P (x1, . . . , xn) ∈ K[x1, . . . , xn]Sn. Then, P (r1, . . . , rn) ∈ K. Moreover, if

p(x) = xn+
n∑
j=1

ajx
n−j, where a1, . . . , an ∈ K, then P (r1, . . . , rn) is a polynomial in a1, . . . , an.

Proof. By Theorem 27.3, P (x1, . . . , xn) = Q[e1, . . . , en] for a unique polynomial Q in
K[y1, . . . , yn]. By Proposition 27.2 (1), ej(r1, . . . , rn) = (−1)jaj. This finishes the proof. �

For instance, let Disc(p) =
∏

i 6=j(ri− rj) ∈ L. Since this is symmetric in the roots, we get

that Disc(p) ∈ K is a polynomial in the coefficients of p, called the discriminant of p. By
definition, Disc(p) = 0 if, and only if p has repeated roots in L.

As an example, if p(x) = x2 + bx+ c = (x− r)(x− s), then r+ s = −b and rs = c. Disc(p)
is computed as:

(r − s)(s− r) = −(r − s)2 = −((r + s)2 − 4rs) = −(b2 − 4c).


