LECTURE 27

(27.0) Splitting extensions.— Recall that last time we proved the existence and unique-
ness (up to a non—unique isomorphism) of splitting extension of a set of polynomials. More
precisely, for a field K and a set of polynomials P C KJz|, there exists a unique field
extension L/K such that (i) every polynomial p(x) € P splits completely in L[z| and (ii)
the smallest subfield of L containing K and the roots of all the polynomials from P is L itself.

Recall that the argument for its existence had three main steps:

e We can adjoin one root of an irreducible polynomial (Kronecker’s theorem).

e By induction, we proved the existence of the splitting extension of a finite set of
polynomials.

e Direct limit of the splitting extensions corresponding to finite subsets of P is the
splitting extension for P.

In this lecture we will go over the theory of symmetric polynomials, and see two of its
applications. Next time we will use the basic results about symmetric polynomials (Propo-
sition 27.2 and Theorem 27.3) to give a different proof of the existence of splitting extensions.

(27.1) Symmetric polynomials.— Let A be a unital commutative ring and let n € Zso.
We denote by &,, the symmetric group on n letters. Consider the ring of polynomials in n
variables, with coefficients from A, and the natural action of &,,:

G, (> R=Alx,... )

given by (o -p)(@1,...,2n) = D(To(1), - - To@m))-

Definition. A polynomial p(zy,...,z,) € R is symmetric if o - p = p, for every 0 € &,,.
The set of all symmetric polynomials is denoted by S = R®» C R, and is an A-subalgebra
of R.

S={peR:c-p=pVoe&,}

(27.2) Elementary symmetric polynomials.— We keep the notations of the previous
paragraph.

Definition. For each k € Zsg, the k'™ elementary symmetric polynomial, denoted by
er(xy,...,x,) (or just e if the number of variables is clear from the context) is defined
as:

er(r,. .., x,) = g Tiy Ty
1<i1<...<ip<n
1
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Note that eg = 1 and e, = 0 for every k > n. Each e, is homogeneous of degree k (if we
assign degree 1 to each of the variables x4, ..., z,).

It is clear that e, € S = RS". For instance,

€1 =21+ + Ty, 6225 Tixj, €n = T1 " Tp.
i<j
Proposition.

(1) We have the following identity:

(2) (=1 e, = o+ 3 (~ 1o

1

(3) Let ef, = ex(1,...,2n-1) and ey = ex(z1,...,2,). That is, €}, = eg|s,—0. Then we
have:

B
Il

k
/ / ! ] ]
o=yt et =S (~Lle,.

Here, ¢/ =0 (if k = 0 in the first equation).

PROOF. (1) is obtained by expanding the left—hand side. (2) follows from (1) if we substitute
T = Iy,

The first identity in (3) is clear from the definition of e;. The second one is obtained
simply by inverting the first one (or an easy induction on k argument). U

(27.3) Main theorem of symmetric polynomials.— Again, we keep the notations as
above: A is a unital commutative ring, R = A[zy,...,2,], S = R®", and e, € S (1 <k < n).

Theorem.

(1) S is generated, as an algebra over A, by {ey,... ,en}.
(2) {e1,...,en} are algebraically independent.

(3) As an S—module, R is free of rank n!. More precisely, the following set of n! mono-
mials is an S—basis for R:

{abt - ab0<k; <, Vi=1,...,n}.



LECTURE 27 3

PROOF. Our proof of this theorem is going to be based on induction. The base case of the
induction is when n = 0, R = S = A and there is nothing to show. Our induction hypothesis
is that the theorem is true for n — 1, and we will prove it for n.

Let us prove (1) first. Let p(zi,...,z,) € S be homogeneous of degree m. We want to
argue, by (a second) induction on m, that p can be written as a polynomial in ey, ..., e,,
with coefficients from A. If m = 0, then p € A and there is nothing to prove. Otherwise,
consider:

p =plry,...,0,.1,0) € Alwy, ... 2y ]
By induction hypothesis (on n) there exists a polynomial P(y1,...,Yn-1) € Aly1, .., Yn_1]

such that p’ = P(e!,...,el,_,). Here, we are using the same notation as in Proposition 27.2
(2) above. Now it is clear that p(z1,...,z,) — P(e1,...,e,—1) is divisible by z,. Since it is
symmetric, it must also be divisible by x1,xs, ..., x,_1. That is,

p(x1, ... xn) — Pler, ... en1) = q(x1, .. yxy) - (1 xn) = q(x1, ..., 2y) - g,

with deg(q) < deg(p). This finishes the proof of (1).

Now we prove (2) and (3). For this, consider

S=RO"' = Alwy,...,2,)% " = (Alza])[21, - .., 2]
That is, S is the ring of symmetric polynomials in n — 1 variables x1,. .., z,1 with coeffi-
cients from Alz,]. By induction hypothesis (on n), S is generated (as an A[z,|-algebra) by
algebraically independent elements ¢},... e/ _;:
S = (Alza])er, - € 1]-
By Proposition 27.2 (3) above, the two sets {€],...,e/,_;} and {ei,...,e,_1} are related
by invertible linear (over Alx,]) transformations. Hence, we conclude that eq,... e, 1 are

algebraically independent over A[z,] (in particular, over A), and can write:

S=Altn e, ... en] = (Aler, ..., en1])[xn)-
Let us pause and recollect what we know by now. We have shown that {e1,...,e,_1,2,}
are algebraically independent over A. We also know that S is generated by {ej,...,e,} as

an A-algebra. That is, if we write C' = Aley, ..., €,-1], then S is the image of ¢ : C[T] —
S = C[x,], where:

o(T) = e, = (—1)""a™ + Z )" e;a I by Prop. 27.2 (2) above.

Note that ¢(T') is a degree n polynomlal in variable x,, whose leading coefficient +1
is invertible. First of all, this implies that ¢ is injective, since if p(T') € C[T] is of degree
N >1 (in T variable), then ¢(p(T")) will have (+1) same leading coefficient as p(7'), in degree
Nn in z,, variable. This proves (2), that is, {e1, ..., e,} are algebraically independent over A.

Secondly, Euclidean division algorithm can be performed to divide a given element of C[z,,]
by ¢(T). Thus {1,z,,...,2" '} is an S-basis of S. Combined with induction hypothesis,
this proves (3). O
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(27.4) Remark.— Note that our proof of (1) of Theorem 27.3 above gives an efficient algo-
rithm to express a given symmetric polynomial p(z1,...,x,) as a polynomial in ey, ..., e,.
Namely:

e Set x, = 0 and express the resulting polynomial in n — 1 variables, say p/, as a
polynomial P(e},... el ;).

’ “n—1
e Take the difference p(zy,...,z,) — P(e1,...,e,—1), divide it by e, = x1 -+ - x,, to get
another symmetric polynomial g(x1,...,z,) of degree deg(p) — n.

e If deg(q) = 0, we are done. Otherwise, repeat the previous two steps for g.

For instance, let p = x3 (22 + x3) + 23(x3 + 1) + 23(21 + 22) € Z[x1, 29, 23]%. Then:
p = 2379 + 1175 = €] e,
Now we compute:
p—ereg = 7(1y + x3) + 23(13 + 1) + 25 (T1 + T2) — (71 + T2 + 3) (2179 + ToT3 + T173)
= —3112973 = —3e€3.

So p = ejes — 3es.

(27.5) Application I.— Let K be any field, and let T3, ..., T, be variables.

e Let R=KI[T1,...,T,], F(R) = K(T\,...,T,) (field of fractions of R). Note that we
have a group homomorphism &,, — Aut(F(R)), the group of field automorphisms of
F(R).

e S = RS = Kley,...,e,], where e,’s are the elementary symmetric polynomials in
Ty,...,T,. Let F(S) = K(ey,...,e,) denote the field of fractions of S.

Corollary.

(1) F(S) = F(R)™".
(2) F(R) is n! dimensional F(S)-vector space. That is:

[F(R) : F(S)] = n!

PROOF. It is clear that F(S) C F(R)®". For the converse, assume that p/q € F(R) is
symmetric (where p,q € R = K[T1,...,T,]).

p HUEGn (U : Q)
p_ o#ld .
q Hae@n (J ' Q)

Now the denominator of the right—hand side is symmetric. Hence, so must be the numerator
since p/q is symmetric. So p/q € F(S).
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(2) follows from Theorem 27.3 (3) and an argument similar to the one above. Consider
the basis of R as a rank n! free S—module given in Theorem 27.3 (3). For notational ease,
we will write m(k) for 2 - .. 2% The indexing set will be denoted by I:

I={k=(ki,...,kn):0<k; <3, Vj}, B={m(k):kel}CR.
We will show that B spans F(R) as F(S)—vector space, and is linearly independent.
Let p/q € F(R). Multiplying and dividing this element by H(a -q), where the product is

g
over all non—identity permutations, we may assume that the denominator is symmetric. By
Theorem 27.3 (3), we can write:

kel kel

where ¢(k) € S for every k € I, hence c¢(k)/q € F(S). Therefore, B spans F(R). For linear
independence, if we have a linear dependence relation:

Za(@)m(@) =0, where a(k) € F(S5),
kel

then we can clear the denominator to assume that a(k) € S. By Theorem 27.3 (3), this
implies that each a(k) = 0. O

(27.6) Application II. Discriminants.— Let K be a field, and assume that p(z) € K|z]
is monic polynomial of degree n. Let L/K be an extension of K. Assume there exist
T1,...,7, € L such that p(z) = (x —r)---(x —r,) in L[z]. As another application of
Theorem 27.3, we have that every symmetric polynomial in ry,... 7, is an element of K,
which can be written as a polynomial in the coefficients of p(x).

Corollary. Let P(x1,...,x,) € Klxy,...,2,|%". Then, P(ri,...,r,) € K. Moreover, if

p(z) = x”—l—z a;z"7, whereay, ..., a, € K, then P(ry,...,r,) is a polynomial in ay, . . ., ay,.
7=1

ProoF. By Theorem 27.3, P(z1,...,x,) = Qlei,...,e,] for a unique polynomial @ in
Kly1, ..., yn). By Proposition 27.2 (1), e;(r1,...,7,) = (=1)7a;. This finishes the proof. O

For instance, let Disc(p) = [[,;(ri —r;) € L. Since this is symmetric in the roots, we get
that Disc(p) € K is a polynomial in the coefficients of p, called the discriminant of p. By
definition, Disc(p) = 0 if, and only if p has repeated roots in L.

As an example, if p(x) = 22+ br+c= (x —7r)(x — s), then r+s = —b and rs = c¢. Disc(p)
is computed as:

(r—s)(s—7r)=—(r—=s)*=—((r+s)* —4rs) = —(b* — 4c).



