LECTURE 27

(27.0) Splitting extensions.- Recall that last time we proved the existence and uniqueness (up to a non-unique isomorphism) of splitting extension of a set of polynomials. More precisely, for a field K and a set of polynomials $P \subset K[x]$, there exists a unique field extension L / K such that (i) every polynomial $p(x) \in P$ splits completely in $L[x]$ and (ii) the smallest subfield of L containing K and the roots of all the polynomials from P is L itself.

Recall that the argument for its existence had three main steps:

- We can adjoin one root of an irreducible polynomial (Kronecker's theorem).
- By induction, we proved the existence of the splitting extension of a finite set of polynomials.
- Direct limit of the splitting extensions corresponding to finite subsets of P is the splitting extension for P.

In this lecture we will go over the theory of symmetric polynomials, and see two of its applications. Next time we will use the basic results about symmetric polynomials (Proposition 27.2 and Theorem 27.3) to give a different proof of the existence of splitting extensions.
(27.1) Symmetric polynomials.- Let A be a unital commutative ring and let $n \in \mathbb{Z}_{\geq 0}$. We denote by \mathfrak{S}_{n} the symmetric group on n letters. Consider the ring of polynomials in n variables, with coefficients from A, and the natural action of \mathfrak{S}_{n} :

$$
\mathfrak{S}_{n} \bigcirc R=A\left[x_{1}, \ldots, x_{n}\right]
$$

given by $(\sigma \cdot p)\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$.

Definition. A polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in R$ is symmetric if $\sigma \cdot p=p$, for every $\sigma \in \mathfrak{S}_{n}$. The set of all symmetric polynomials is denoted by $S=R^{\mathfrak{G}_{n}} \subset R$, and is an A-subalgebra of R.

$$
S=\left\{p \in R: \sigma \cdot p=p \forall \sigma \in \mathfrak{S}_{n}\right\}
$$

(27.2) Elementary symmetric polynomials.- We keep the notations of the previous paragraph.

Definition. For each $k \in \mathbb{Z}_{\geq 0}$, the $k^{\text {th }}$ elementary symmetric polynomial, denoted by $e_{k}\left(x_{1}, \ldots, x_{n}\right)$ (or just e_{k} if the number of variables is clear from the context) is defined as:

$$
e_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{k}}
$$

Note that $e_{0}=1$ and $e_{k}=0$ for every $k>n$. Each e_{k} is homogeneous of degree k (if we assign degree 1 to each of the variables $\left.x_{1}, \ldots, x_{n}\right)$.

It is clear that $e_{k} \in S=R^{\mathfrak{G}_{n}}$. For instance,

$$
e_{1}=x_{1}+\cdots+x_{n}, \quad e_{2}=\sum_{i<j} x_{i} x_{j}, \quad e_{n}=x_{1} \cdots x_{n}
$$

Proposition.

(1) We have the following identity:

$$
\prod_{i=1}^{n}\left(x-x_{i}\right)=x^{n}+\sum_{k=1}^{n}(-1)^{k} e_{k}\left(x_{1}, \ldots, x_{n}\right) x^{n-k}
$$

(2) $(-1)^{n+1} e_{n}=x_{n}^{n}+\sum_{k=1}^{n-1}(-1)^{k} e_{k} x_{n}^{n-k}$.
(3) Let $e_{k}^{\prime}=e_{k}\left(x_{1}, \ldots, x_{n-1}\right)$ and $e_{k}=e_{k}\left(x_{1}, \ldots, x_{n}\right)$. That is, $e_{k}^{\prime}=\left.e_{k}\right|_{x_{n}=0}$. Then we have:

$$
e_{k}=e_{k}^{\prime}+e_{k-1}^{\prime} x_{n}, \quad e_{k}^{\prime}=\sum_{j=0}^{k}(-1)^{j} x_{n}^{j} e_{k-j} .
$$

Here, $e_{-1}^{\prime}=0$ (if $k=0$ in the first equation).
Proof. (1) is obtained by expanding the left-hand side. (2) follows from (1) if we substitute $x=x_{n}$.

The first identity in (3) is clear from the definition of e_{k}. The second one is obtained simply by inverting the first one (or an easy induction on k argument).
(27.3) Main theorem of symmetric polynomials.- Again, we keep the notations as above: A is a unital commutative ring, $R=A\left[x_{1}, \ldots, x_{n}\right], S=R^{\mathfrak{C}_{n}}$, and $e_{k} \in S(1 \leq k \leq n)$.

Theorem.

(1) S is generated, as an algebra over A, by $\left\{e_{1}, \ldots, e_{n}\right\}$.
(2) $\left\{e_{1}, \ldots, e_{n}\right\}$ are algebraically independent.
(3) As an S-module, R is free of rank n!. More precisely, the following set of n ! monomials is an S-basis for R :

$$
\left\{x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}: 0 \leq k_{j}<j, \forall j=1, \ldots, n\right\} .
$$

Proof. Our proof of this theorem is going to be based on induction. The base case of the induction is when $n=0, R=S=A$ and there is nothing to show. Our induction hypothesis is that the theorem is true for $n-1$, and we will prove it for n.

Let us prove (1) first. Let $p\left(x_{1}, \ldots, x_{n}\right) \in S$ be homogeneous of degree m. We want to argue, by (a second) induction on m, that p can be written as a polynomial in e_{1}, \ldots, e_{n}, with coefficients from A. If $m=0$, then $p \in A$ and there is nothing to prove. Otherwise, consider:

$$
p^{\prime}=p\left(x_{1}, \ldots, x_{n-1}, 0\right) \in A\left[x_{1}, \ldots, x_{n-1}\right]^{\mathfrak{S}_{n-1}}
$$

By induction hypothesis (on n) there exists a polynomial $P\left(y_{1}, \ldots, y_{n-1}\right) \in A\left[y_{1}, \ldots, y_{n-1}\right]$ such that $p^{\prime}=P\left(e_{1}^{\prime}, \ldots, e_{n-1}^{\prime}\right)$. Here, we are using the same notation as in Proposition 27.2 (2) above. Now it is clear that $p\left(x_{1}, \ldots, x_{n}\right)-P\left(e_{1}, \ldots, e_{n-1}\right)$ is divisible by x_{n}. Since it is symmetric, it must also be divisible by $x_{1}, x_{2}, \ldots, x_{n-1}$. That is,

$$
p\left(x_{1}, \ldots, x_{n}\right)-P\left(e_{1}, \ldots, e_{n-1}\right)=q\left(x_{1}, \ldots, x_{n}\right) \cdot\left(x_{1} \cdots x_{n}\right)=q\left(x_{1}, \ldots, x_{n}\right) \cdot e_{n}
$$

with $\operatorname{deg}(q)<\operatorname{deg}(p)$. This finishes the proof of (1).
Now we prove (2) and (3). For this, consider

$$
\widetilde{S}=R^{\mathfrak{G}_{n-1}}=A\left[x_{1}, \ldots, x_{n}\right]^{\mathfrak{G}_{n-1}}=\left(A\left[x_{n}\right]\right)\left[x_{1}, \ldots, x_{n-1}\right]^{\mathfrak{G}_{n-1}}
$$

That is, \widetilde{S} is the ring of symmetric polynomials in $n-1$ variables x_{1}, \ldots, x_{n-1} with coefficients from $A\left[x_{n}\right]$. By induction hypothesis (on n), \widetilde{S} is generated (as an $A\left[x_{n}\right]$-algebra) by algebraically independent elements $e_{1}^{\prime}, \ldots, e_{n-1}^{\prime}$:

$$
\widetilde{S}=\left(A\left[x_{n}\right]\right)\left[e_{1}^{\prime}, \ldots, e_{n-1}^{\prime}\right]
$$

By Proposition 27.2 (3) above, the two sets $\left\{e_{1}^{\prime}, \ldots, e_{n-1}^{\prime}\right\}$ and $\left\{e_{1}, \ldots, e_{n-1}\right\}$ are related by invertible linear (over $A\left[x_{n}\right]$) transformations. Hence, we conclude that e_{1}, \ldots, e_{n-1} are algebraically independent over $A\left[x_{n}\right]$ (in particular, over A), and can write:

$$
\widetilde{S}=A\left[x_{n}, e_{1}, \ldots, e_{n-1}\right]=\left(A\left[e_{1}, \ldots, e_{n-1}\right]\right)\left[x_{n}\right] .
$$

Let us pause and recollect what we know by now. We have shown that $\left\{e_{1}, \ldots, e_{n-1}, x_{n}\right\}$ are algebraically independent over A. We also know that S is generated by $\left\{e_{1}, \ldots, e_{n}\right\}$ as an A-algebra. That is, if we write $C=A\left[e_{1}, \ldots, e_{n-1}\right]$, then S is the image of $\varphi: C[T] \rightarrow$ $\widetilde{S}=C\left[x_{n}\right]$, where:

$$
\varphi(T)=e_{n}=(-1)^{n+1} x_{n}^{n}+\sum_{j=1}^{n}(-1)^{n-j+1} e_{j} x_{n}^{n-j}, \quad \text { by Prop. } 27.2 \text { (2) above. }
$$

Note that $\varphi(T)$ is a degree n polynomial in variable x_{n}, whose leading coefficient ± 1 is invertible. First of all, this implies that φ is injective, since if $p(T) \in C[T]$ is of degree $N \geq 1$ (in T variable), then $\varphi(p(T))$ will have (± 1) same leading coefficient as $p(T)$, in degree $N n$ in x_{n} variable. This proves (2), that is, $\left\{e_{1}, \ldots, e_{n}\right\}$ are algebraically independent over A.

Secondly, Euclidean division algorithm can be performed to divide a given element of $C\left[x_{n}\right]$ by $\varphi(T)$. Thus $\left\{1, x_{n}, \ldots, x_{n}^{n-1}\right\}$ is an S-basis of \widetilde{S}. Combined with induction hypothesis, this proves (3).
(27.4) Remark.- Note that our proof of (1) of Theorem 27.3 above gives an efficient algorithm to express a given symmetric polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ as a polynomial in e_{1}, \ldots, e_{n}. Namely:

- Set $x_{n}=0$ and express the resulting polynomial in $n-1$ variables, say p^{\prime}, as a polynomial $P\left(e_{1}^{\prime}, \ldots, e_{n-1}^{\prime}\right)$.
- Take the difference $p\left(x_{1}, \ldots, x_{n}\right)-P\left(e_{1}, \ldots, e_{n-1}\right)$, divide it by $e_{n}=x_{1} \cdots x_{n}$ to get another symmetric polynomial $q\left(x_{1}, \ldots, x_{n}\right)$ of $\operatorname{degree} \operatorname{deg}(p)-n$.
- If $\operatorname{deg}(q)=0$, we are done. Otherwise, repeat the previous two steps for q.

For instance, let $p=x_{1}^{2}\left(x_{2}+x_{3}\right)+x_{2}^{2}\left(x_{3}+x_{1}\right)+x_{3}^{2}\left(x_{1}+x_{2}\right) \in \mathbb{Z}\left[x_{1}, x_{2}, x_{3}\right]^{\mathfrak{G}_{3}}$. Then:

$$
p^{\prime}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}=e_{1}^{\prime} e_{2}^{\prime} .
$$

Now we compute:

$$
\begin{gathered}
p-e_{1} e_{2}=x_{1}^{2}\left(x_{2}+x_{3}\right)+x_{2}^{2}\left(x_{3}+x_{1}\right)+x_{3}^{2}\left(x_{1}+x_{2}\right)-\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}\right) \\
=-3 x_{1} x_{2} x_{3}=-3 e_{3} .
\end{gathered}
$$

So $p=e_{1} e_{2}-3 e_{3}$.
(27.5) Application I.- Let K be any field, and let T_{1}, \ldots, T_{n} be variables.

- Let $R=K\left[T_{1}, \ldots, T_{n}\right], F(R)=K\left(T_{1}, \ldots, T_{n}\right)$ (field of fractions of R). Note that we have a group homomorphism $\mathfrak{S}_{n} \rightarrow \operatorname{Aut}(F(R)$), the group of field automorphisms of $F(R)$.
- $S=R^{\mathfrak{S}_{n}}=K\left[e_{1}, \ldots, e_{n}\right]$, where e_{k} 's are the elementary symmetric polynomials in T_{1}, \ldots, T_{n}. Let $F(S)=K\left(e_{1}, \ldots, e_{n}\right)$ denote the field of fractions of S.

Corollary.

(1) $F(S)=F(R)^{\mathfrak{G}_{n}}$.
(2) $F(R)$ is n ! dimensional $F(S)$-vector space. That is:

$$
[F(R): F(S)]=n!
$$

Proof. It is clear that $F(S) \subset F(R)^{\mathfrak{G}_{n}}$. For the converse, assume that $p / q \in F(R)$ is symmetric (where $p, q \in R=K\left[T_{1}, \ldots, T_{n}\right]$).

$$
\frac{p}{q}=\frac{p \prod_{\substack{\sigma \in \mathfrak{S}_{n} \\ \sigma \neq \mathrm{Id}}}(\sigma \cdot q)}{\prod_{\sigma \in \mathfrak{S}_{n}}(\sigma \cdot q)}
$$

Now the denominator of the right-hand side is symmetric. Hence, so must be the numerator since p / q is symmetric. So $p / q \in F(S)$.
(2) follows from Theorem 27.3 (3) and an argument similar to the one above. Consider the basis of R as a rank n ! free S-module given in Theorem 27.3 (3). For notational ease, we will write $m(\underline{k})$ for $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$. The indexing set will be denoted by I :

$$
I=\left\{\underline{k}=\left(k_{1}, \ldots, k_{n}\right): 0 \leq k_{j}<j, \forall j\right\}, \quad B=\{m(\underline{k}): \underline{k} \in I\} \subset R .
$$

We will show that B spans $F(R)$ as $F(S)$-vector space, and is linearly independent.
Let $p / q \in F(R)$. Multiplying and dividing this element by $\prod_{\sigma}(\sigma \cdot q)$, where the product is over all non-identity permutations, we may assume that the denominator is symmetric. By Theorem 27.3 (3), we can write:

$$
\frac{p}{q}=\frac{1}{q}\left(\sum_{\underline{k} \in I} c(\underline{k}) m(\underline{k})\right)=\sum_{\underline{k} \in I} \frac{c(\underline{k})}{q} m(\underline{k})
$$

where $c(\underline{k}) \in S$ for every $\underline{k} \in I$, hence $c(\underline{k}) / q \in F(S)$. Therefore, B spans $F(R)$. For linear independence, if we have a linear dependence relation:

$$
\sum_{\underline{k} \in I} a(\underline{k}) m(\underline{k})=0, \quad \text { where } a(\underline{k}) \in F(S)
$$

then we can clear the denominator to assume that $a(\underline{k}) \in S$. By Theorem 27.3 (3), this implies that each $a(\underline{k})=0$.
(27.6) Application II. Discriminants.- Let K be a field, and assume that $p(x) \in K[x]$ is monic polynomial of degree n. Let L / K be an extension of K. Assume there exist $r_{1}, \ldots, r_{n} \in L$ such that $p(x)=\left(x-r_{1}\right) \cdots\left(x-r_{n}\right)$ in $L[x]$. As another application of Theorem 27.3, we have that every symmetric polynomial in r_{1}, \ldots, r_{n} is an element of K, which can be written as a polynomial in the coefficients of $p(x)$.

Corollary. Let $P\left(x_{1}, \ldots, x_{n}\right) \in K\left[x_{1}, \ldots, x_{n}\right]^{\mathfrak{G}_{n}}$. Then, $P\left(r_{1}, \ldots, r_{n}\right) \in K$. Moreover, if $p(x)=x^{n}+\sum_{j=1}^{n} a_{j} x^{n-j}$, where $a_{1}, \ldots, a_{n} \in K$, then $P\left(r_{1}, \ldots, r_{n}\right)$ is a polynomial in a_{1}, \ldots, a_{n}.
Proof. By Theorem 27.3, $P\left(x_{1}, \ldots, x_{n}\right)=Q\left[e_{1}, \ldots, e_{n}\right]$ for a unique polynomial Q in $K\left[y_{1}, \ldots, y_{n}\right]$. By Proposition $27.2(1), e_{j}\left(r_{1}, \ldots, r_{n}\right)=(-1)^{j} a_{j}$. This finishes the proof.

For instance, let $\operatorname{Disc}(p)=\prod_{i \neq j}\left(r_{i}-r_{j}\right) \in L$. Since this is symmetric in the roots, we get that $\operatorname{Disc}(p) \in K$ is a polynomial in the coefficients of p, called the discriminant of p. By definition, $\operatorname{Disc}(p)=0$ if, and only if p has repeated roots in L.

As an example, if $p(x)=x^{2}+b x+c=(x-r)(x-s)$, then $r+s=-b$ and $r s=c . \operatorname{Disc}(p)$ is computed as:

$$
(r-s)(s-r)=-(r-s)^{2}=-\left((r+s)^{2}-4 r s\right)=-\left(b^{2}-4 c\right) .
$$

