
LECTURE 28

(28.0) Review.– Last time we stated and proved the main theorem about symmetric poly-
nomials (Theorem 27.3). We saw two of its applications (Corollaries 27.5 and 27.6) which
stated the following.

• For a field K and a non–negative integer n, the field extension:

F (S) = K(T1, . . . , Tn)Sn ⊂ F (R) = K(T1, . . . , Tn)

is of degree n!.
• Let p(x) ∈ K[x] be monic of degree n. Let r1, . . . , rn ∈ L be its roots in an extension
L/K. Then every symmetric polynomial in r1, . . . , rn is a polynomial in the coffi-
cients of p(x), hence an element of K.

(28.1) Application III: Existence of splitting extensions.– We can use Theorem 27.3
to give another proof of the existence of splitting extensions.

Proposition. Let K be a field and let p(x) ∈ K[x] be a monic polynomial of degree n. Then
there exists a field extension L/K and r1, . . . , rn ∈ L such that

(1) p(x) =
n∏
i=1

(x− ri) in L[x].

(2) L = K(r1, . . . , rn).

Proof. Let R = K[x1, . . . , xn] and S = RSn = K[e1, . . . , en], where ek is the degree k ele-
mentary symmetric polynomial in x1, . . . , xn. Write p(x) = xn +

∑n
j=1 ajx

n−j ∈ K[x], and

define the ideal a = (ek − (−1)kak : 1 ≤ k ≤ n) ⊂ R. Set R := R/a.

Claim. a ( R. Hence, R 6= {0}.

Given the claim, we can choose a maximal ideal m ( R and define L = R/m. Let
π : R → L be the natural quotient homomorphism. Composing the ring homomorphisms
K ↪→ R � L, we obtain K → L which is necessarily injective, showing that L is a field
extension of K. Let ri = π(xi) ∈ L (1 ≤ i ≤ n). As p(x) =

∏
(x − xi) in R[x], we get the

following in L[x].

p(x) =
n∏
i=1

(x− ri), in L[x].

Similarly, since R is generated as an K–algebra by x1, . . . , xn, L = K(r1, . . . , rn).

Proof of the claim. Note that a = R ⇐⇒ R = {0}. We will show that R is n!–
dimensional K vector space, which will prove the claim. For this, recall that (Theorem 27.3)
S = RS if a polynomial ring S = K[e1, . . . , en]. Hence there exists a ring homomorphism
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ψ : S → K such that ψ(ek) = (−1)kak. This allows us to view K ∼= S/Ker(ψ) as an
S–module, and by definition a = Ker(ψ)R ⊂ R. Viewing R as S⊕n!, we get:

R = R/a = R⊗S (S/Ker(ψ)) ∼= (S ⊗S S/Ker(ψ))⊕n! = Kn! as a K −−vector space.

This finishes the proof of the claim. �

(28.2) Application III continued.– Now let P ⊂ K[x] consist of monic polynomials. For
every p(x) ∈ P , let Lp/K be the field extension constructed above. Define:

R =
⊗
p∈P

Lp,

as an infinite tensor product of finite–dimensional K–vector spaces. Note that we have
φ : K → R, given by sending 1 ∈ K to ⊗p1p, where 1p ∈ Lp is the unit element. We consider
componenet–wise multiplication on R which gives it a structure of a (unital, commutative)

K–algebra. Moreover, R 6= {0}, since upon choosing a basis {ξ(p)1 , . . . , ξ
(p)
`p
} of Lp as a

K–vector space, we get a basis of R:{
⊗p∈P ξ(p)jp

: 1 ≤ jp ≤ `p

}
.

Now we proceed as before. Choose a maximal ideal M ( R, and define L = R/M , which
is easily seen to be a splitting extension of P ⊂ K[x].

(28.3) Fundamental theorem of algebra.– We can now give a proof of the fundamental
theorem of algebra. We view C ∼= R[x]/(x2 + 1) as a degree 2 extension of R. Let ι := x ∈ C
so that ι2 = −1.

The following proof was sketched by Euler in 1749, and completed by Lagrange in 1776.
At the time of its appearance, this proof was considered incomplete but these objections
were superficial in nature, and the underlying idea is definitely flawless.

Theorem. C is the algebraic closure of R.

Proof. Note that it is sufficient to show that every f(x) ∈ R[x] has a root in C. If the root
α lies in R, then f(x) = (x − α)g(x) with g(x) ∈ R[x] of smaller degree. If α ∈ C \ R is a
root, then so is α and we get

f(x) = (x− α)(x− α)h(x) = (x2 − 2 Re(α)x+ |α|2)h(x),

so h(x) ∈ R[x] and it has smaller degree than f(x).

The proof is split into three claims.

Claim 1. Every odd degree polynomial in R[x] has a real root.
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Proof. This is the only topological step and requires the intemediate value theorem1.
Namely, if p(x) ∈ R[x] is of odd degree, then lim

x→±∞
p(x) = ±∞, hence we can find two real

numbers a < b ∈ R such that p(a) < 0 and p(b) > 0. Therefore, there must be some real
number c ∈ (a, b) such that p(c) = 0.

Claim 2. Every quadratic polynomial with coefficients from C splits in C.

Proof. This is easily shown by the well–known formula for quadratic polynomials. For
b, c ∈ C, we have:

x2 + bx+ c = 0, ⇒ x =
−b+

√
b2 − 4c

2
∈ C.

Claim 3. Every p(x) ∈ R[x] has a root in C.
Proof. Without loss of generality, we may assume that p(x) is monic. Note that the claim

is true for linear and quadratic polynomials. Let us write deg(p) = 2nm where m is odd.
Our argument is going to be by induction on n. The base case, n = 0 is settled in the first
claim.

Let L/C be an extension where p(x) splits2. Let r1, . . . , rN ∈ L be roots of p(x) in L
(N = 2nm = deg(p)). For every b ∈ R, define:

yij(b) = ri + rj + brirj ∈ L, P (b)(x) =
∏

1≤i<j≤N

(x− yij(b))

Note that coefficients of P (b)(x) ∈ L[x] are symmetric under permutation of r1, . . . , rN .
Therefore, by Corollary 27.6, P (b)(x) ∈ R[x], and

deg(P (b)(x)) = 2n−1m(2nm− 1),

has smaller exponent of 2 dividing its degree. By induction hypothesis, it has a root in C,
that is, there is a pair i < j such that yij(b) ∈ C.

Since there are infinitely many real numbers, and for each b ∈ R there is a pair i < j with
yij(b) ∈ C, we can find two different b 6= c ∈ R which have the same pair (i, j), that is, there
exists i < j such that yij(b), yij(c) ∈ C. Solving the linear system, we conclude that

ri + rj + brirj and ri + rj + crirj ∈ C ⇒ ri + rj, rirj ∈ C.
Now x2 − (ri + rj)x+ rirj ∈ C[x] is a quadratic polynomial. By Claim 2, its roots lie in C.
But its roots are ri and rj. So, ri, rj ∈ C. Hence, p(x) = 0 has a root in C. �

Corollary.

(1) If p(x) ∈ R[x] is irreducible, then deg(p) = 1 or 2.

1Intermediate value theorem was proved by Bolzano in 1817. Bolzano’s argument rested on the fact that
every bounded infinite set of real numbers has a cluster point, which was rigorously proved by Weierstrass
in 1872 (now called Bolzano–Weierstrass theorem).

2This is the part of Euler–Lagrange’s proof that was heavily criticized by, for instance, Gauss, to whom
the first complete proof is often attributed. Gauss objected that the proof requires the existence of roots in
order to show existence of the roots.
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(2) Q := {z ∈ C : z is algebraic over Q} ⊂ C is the algebraic closure of Q.

(28.4) Group of automorphisms: Galois group.– Let L/K be an arbitrary field exten-
sion.

Definition. The group of automorphisms of L over K, denoted by G (L/K), also called the
Galois group of L/K, is defined as:

G (L/K) =
{
σ : L

∼−→ L field automorphism such that σ|K = IdK

}
Remark. Note that G (L/K) acts on L via field automorphisms. As usual, we denote by
F = LG(L/K) ⊂ L the subfield of elements fixed by G (L/K):

F = LG(L/K) = {r ∈ L : σ(r) = r, ∀ σ ∈ G (L/K)}.
It is clear that K ⊂ F , however the reverse inclusion is false in general. For instance, let
K = Q and L = Q(2

1
3 ) ⊂ R. It is not hard to show that G (L/K) = {Id}. Therefore

K ( LG(L/K) = L.

(28.5) Galois extensions.– Next week we will discuss two results (due to Dedekind and
Artin), which will help us find inequalities relating |G (L/K) | and the degree of the extension
[L : K]. For now, we can give a definition.

Definition. A field extension L/K is called a Galois extension, if

K = LG(L/K)

As we saw in the last paragraph, Q(21/3)/Q is not a Galois extension.

Example. C/R is a Galois extension. Note that G (C/R) contains complex conjugation
σ : C→ C, given by σ(z) = z. It is a very easy exercise to show that:

G (C/R) = {Id, σ} ∼= Z/2Z.
We know that z = z if and only if the imaginary part of z is 0, i.e, z ∈ R. Hence CG(C/R) = R.

(28.6) Example: nth roots of unity.– Let n ∈ Z≥2. The roots of xn − 1 in C are often
called nth roots of unity, and are easy to list. Let

ωn = e
2π
n
ι ∈ C,

then we have:

xn − 1 =
n−1∏
k=0

(
x− ωkn

)
.

Thus µn = {1, ωn, ω2
n, . . . , ω

n−1
n } ⊂ C is the set of nth roots of unity. As a subgroup of C×,

we have µn ∼= Z/nZ.
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Consider the field extension Q(µn) of Q. It is clear that Q(µn) is the splitting extension
of xn − 1 over Q. Note that, for every field automorphism σ : Q(µn) → Q(µn), σ(ωn) is
another root of xn − 1, hence given by σ(ωn) = ωkn for some 0 ≤ k ≤ n − 1. Moreover, in
order to be surjective, it is necessary and sufficient that gcd(k, n) = 1. Thus we conclude:

G (Q(µn)/Q) = Autgp (Z/nZ)

The complex conjugation is still an element of G (Q(µn)/Q) and can be used to conclude
that Q(µn)/Q is a Galois extension.


