LECTURE 29

(29.0) Review. – Let L/K be a field extension. Last time we defined

 $G(L/K) = \operatorname{Aut}_{K-\operatorname{Alg}}(L) = \{ \sigma : L \xrightarrow{\sim} L \text{ field automorphism, such that } \sigma|_K = \operatorname{Id}_K \},$ called the Galois group of the extension L/K.

For a group Γ acting on L via field automorphisms (that is, we are given a group homomorphism $\Gamma \to \operatorname{Aut}_{\operatorname{field}}(L)$), we denote by $L^{\Gamma} \subset L$, the subfield of Γ -fixed elements:

 $L^{\Gamma} = \{ z \in L \text{ such that } \sigma(z) = z, \forall \sigma \in \Gamma \}.$

A field extension L/K is called a *Galois extension* if $L^{\mathsf{G}(L/K)} = K$.

(29.1) Linear independence of algebra homomorphisms. – Let K be a field, L/K a field extension, and A a unital (not necessarily commutative) algebra over K. Meaning, A is a unital ring together with a ring homomorphism, necessarily injective, $K \hookrightarrow A$.

Theorem. Hom_{K-Alg} $(A, L) \subset$ Hom_{K-vs}(A, L) is linearly independent over L.

Remark. For a K-vector space V, we view $\operatorname{Hom}_{K-vs}(V, L)$ as an L-vector space via the following operations. For every $\xi, \eta : V \to L$, K-linear maps, and $a, b \in L$, we set:

$$(a\xi + b\eta)(v) = a\xi(v) + b\eta(v).$$

Note that, we have the canonical *L*-linear map:

$$\beta: V^* \otimes_K L \to \operatorname{Hom}_{K-\mathrm{vs}}(V, L), \qquad \beta(f \otimes z): v \mapsto f(v)z.$$

If V is finite-dimensional, this map is an isomorphism, and we obtain:

$$\dim_{L \to \mathrm{vs}} (\mathrm{Hom}_{K \to \mathrm{vs}}(V, L)) = \dim_{K \to \mathrm{vs}}(V^*) = \dim_{K \to \mathrm{vs}}(V)$$

PROOF. Let $\{\xi_1, \ldots, \xi_n\} \subset \operatorname{Hom}_{K-\operatorname{Alg}}(A, L)$ be a finite set of K-algebra homomorphisms $A \to L$. We will show, by induction on n, that this set of linearly independent. For n = 1, we have $\{\xi : A \to L\}$ is linearly independent if and only if $\xi \neq 0$, which is true since $\xi(1) = 1$.

Now assume that we have a linear relation $\sum_{i=1}^{n} a_i \xi_i = 0$, where $a_1, \ldots, a_n \in L$. Note that for every $x, y \in A$, we get:

$$a_n\xi_n(xy) - \xi_n(x)(a_n\xi_n(y)) = 0.$$

Replacing $a_n\xi_n = -\sum_{i=1}^{n-1} a_i\xi_i$, we get: $\sum_{i=1}^{n-1} a_i(\xi_i(x) - \xi_n(x))\xi_i(y) = 0$, for every $y \in A$.

Thus, we obtain (by induction) that for every $1 \le i \le n-1$, and $x \in A$: $a_i(\xi_i(x) - \xi_n(x)) = 0$. Since $\xi_i \ne \xi_n$, there must exist some $x \in A$ such that $\xi_i(x) \ne \xi_n(x)$, implying that $a_i = 0$. Now $a_n\xi_n = -\sum_{i=1}^{n-1} a_i\xi_i = 0$, but $\xi_n \ne 0$, and we conclude that $a_n = 0$. Therefore, the set $\{\xi_1, \ldots, \xi_n\}$ is linearly independent over L.

(29.2) Application of Theorem 29.1 I: independence of characters. – Let Γ be a group and L be a field. Let $L[\Gamma]$ be the group algebra of Γ over L. As an L-vector space, $L[\Gamma]$ has a basis $\{e(g) : g \in \Gamma\}$, relative to which multiplication is determined by $e(g) \cdot e(h) = e(gh)$. Note that

$$\operatorname{Hom}_{\operatorname{gp}}(\Gamma, L^{\times}) = \operatorname{Hom}_{L-\operatorname{Alg}}(L[\Gamma], L).$$

Therefore, we obtain the following result, due to Dedekind, known as *independence of char*acters. An *L*-valued character of a group Γ , is just a group homomorphism $\Gamma \to L^{\times}$.

Corollary. Elements of $\operatorname{Hom}_{gp}(\Gamma, L^{\times})$ are linearly independent over L.

(29.3) Application of Theorem 29.1 II: inequalities. Let K be a field and E/K, L/K two field extensions. By Theorem 29.1, $\operatorname{Hom}_{K-\operatorname{Alg}}(E, L) \subset \operatorname{Hom}_{K-\operatorname{vs}}(E, L)$ is linearly independent over L. Moreover, if $[E : K] < \infty$, $\operatorname{Hom}_{K-\operatorname{vs}}(E, L)$ is an L-vector space of dimension [E : K] (see Remark 29.1). Thus, we get:

$$|\operatorname{Hom}_{K-\operatorname{Alg}}(E,L)| \leq [E:K]$$

Taking E = L, and viewing $G(L/K) \subset \operatorname{Hom}_{K-\operatorname{Alg}}(L, L)$, we get:

$$\left|\mathsf{G}\left(L/K\right)\right| \le [L:K]$$

(29.4) Application of Theorem 29.1 III: Artin's theorem. – Now let L be a field and let $\Gamma \subset \operatorname{Aut}_{\operatorname{field}}(L)$ be a finite subgroup. Let $F = L^{\Gamma} \subset L$.

Theorem. L/F is a Galois extension of degree $|\Gamma|$.

PROOF. Let $n = |\Gamma|$ and m = [L : F]. Since $\Gamma \subset \operatorname{Hom}_{F-\operatorname{Alg}}(L, L)$, the inequalities from the previous paragraph imply that $n \leq m$. Assume that n < m. Let $\Gamma = \{\sigma_1, \ldots, \sigma_n\}$ and $\{x_1, \ldots, x_m\}$ be a basis of L as an F-vector space. Form an $n \times m$ matrix:

$$X = (\sigma_i(x_j))_{1 \le i \le n, 1 \le j \le m} \in \operatorname{Mat}_{n \times m}(L).$$

Since m > n, there exists a non-zero vector $\underline{a} \in L^m$, such that $X\underline{a} = \underline{0}$. That is, for every $1 \le i \le n$:

$$\sum_{j=1}^{m} a_j \sigma_i(x_j) = 0.$$

We will arrive at a contradiction as follows. Let p be the smallest positive integer such that there exists $\underline{a} \in \text{Ker}(X)$ with p non-zero entries. Note that p = 1 is absurd since it will imply the existence of $1 \leq j \leq m$ such that $\sigma_i(x_j) = 0$ for each i. But σ_i is an automorphism and $x_j \neq 0$.

Assuming the existence of $\underline{a} \in \text{Ker}(X)$ with p non-zero entries, we will produce $\underline{b} \in \text{Ker}(X)$ with p-1 non-zero entries, thus a contradiction, proving that $\text{Ker}(X) = \{0\}$.

Upon reordering elements of Γ , if necessary, we can assume that $a_1, \ldots, a_p \in L^{\times}$ and $a_{p+1} = \ldots = a_m = 0$. Further, we can scale <u>a</u> to assume that $a_p = 1$. Thus,

For every
$$1 \le i \le n$$
, $\sigma_i(x_p) = -\sum_{j=1}^{p-1} a_j \sigma_i(x_j)$.

Since Γ is a subgroup, there is *i* such that $\sigma_i = \operatorname{Id}_L$. We are assuming that $\{x_1, \ldots, x_m\}$ are linearly independent over *F*, so $x_p = -\sum_{j=1}^{p-1} a_j x_j$ implies that there must be some $1 \leq \ell \leq p-1$ so that $a_\ell \notin F$. By definition of *F*, this means there is $1 \leq k \leq n$, with $\sigma_k(a_\ell) \neq a_\ell$.

Apply σ_k to $\sigma_i(x_p) = -\sum_{j=1}^{p-1} a_j \sigma_i(x_j)$ to get:

$$(\sigma_k \sigma_i)(x_p) = -\sum_{j=1}^{p-1} \sigma_k(a_j)(\sigma_k \sigma_i)(x_j), \quad \text{for every } 1 \le i \le n.$$

Now left multiplication by σ_k is a permutation of Γ . So we get:

$$\sigma_q(x_p) = -\sum_{j=1}^{p-1} \sigma_k(a_j) \sigma_q(x_j), \quad \text{for every } 1 \le q \le n.$$

Subtracting from the original relation, we get:

$$0 = \sum_{j=1}^{p-1} (\sigma_k(a_j) - a_j) \sigma_q(x_j), \quad \text{for every } 1 \le q \le n.$$

Thus we obtain a non-zero (since $\sigma_k(a_\ell) \neq a_\ell$) element of Ker(X) with strictly less than p-1 non-zero entries.

Corollary. Let L/K be a finite extension. Then it is a Galois extension if and only if |G(L/K)| = [L:K].

(29.5) Algebraic Galois extensions. – Let L/K be an algebraic extension. The following result gives algebraic characterization for L/K to be a Galois extension.

Theorem. An algebraic extension L/K is Galois if and only if for every $\alpha \in L$, its minimal polynomial $\mathbf{m}_{\alpha}(x) \in K[x]$ has $\deg(\mathbf{m}_{\alpha}(x))$ distinct roots in L.

PROOF. Let $\Gamma = \mathsf{G}(L/K)$. Assume that L/K is Galois, that is, $L^{\Gamma} = K$. Let $\alpha \in L$ and $\mathsf{m}_{\alpha}(x) \in K[x]$ its minimal polynomial. Let $n = \deg(\mathsf{m}_{\alpha}(x))$.

Consider the Γ -orbit of α .

$$\Gamma \alpha = \{ \sigma(\alpha) : \sigma \in \Gamma \} \subset L$$

Note that for every $\sigma \in \Gamma$, $\sigma(\alpha)$ is another root of $\mathbf{m}_{\alpha}(x)$. Since number of roots of a polynomial \leq degree of that polynomial, we conclude that $\Gamma \alpha$ is finite and has at most n elements.

Define $f(x) = \prod_{\beta \in \Gamma \alpha} (x - \beta)$. Since f(x) is invariant under Γ , we have $f(x) \in K[x]$. More-

over, it divides $\mathbf{m}_{\alpha}(x)$ whose irreducibility implies that $\deg(f) = n$. That is $|\Gamma \alpha| = n$ consists of n distinct roots of $\mathbf{m}_{\alpha}(x)$.

Let us prove the converse now. Note that the assumption on L/K implies two statements.

• L is the splitting extension of the following set of (irreducible, monic) polynomials.

$$L = \mathcal{E}(P, K),$$
 where, $P = \{\mathsf{m}_{\alpha}(x) : \alpha \in L\} \subset K[x].$

• Every $f(x) \in P$ has distinct roots in L.

Assume $\alpha \in L \setminus K$. We will exhibit an element $\sigma \in \Gamma$ such that $\sigma(\alpha) \neq \alpha$. Note that $n = \deg(\mathsf{m}_{\alpha}(x)) \geq 2$, therefore there exists $\beta \neq \alpha$ also a root of $\mathsf{m}_{\alpha}(x)$. By Theorem 26.0, there exists an isomorphism $\overline{\sigma} : K(\alpha) \xrightarrow{\sim} K(\beta)$ uniquely determined by $\overline{\sigma}|_{K} = \mathrm{Id}_{K}$ and $\overline{\sigma}(\alpha) = \beta$. By the same theorem, part (2), $\overline{\sigma}$ extends to an element $\sigma \in \mathsf{G}(L/K)$, since L/K is a splitting extension. Thus, we have shown the existence of $\sigma \in \mathsf{G}(L/K)$ such that $\sigma(\alpha) = \beta \neq \alpha$.

(29.6) Separable polynomials and normal extensions.— Let us record the two important properties listed in the proof of the theorem given above.

Definition. Let K be a field and $f(x) \in K[x]$ be a polynomial. We say f(x) is *separable* if all its roots (in its splitting extension, for instance) are distinct.

An extension L/K is called *separable* if it is algebraic and for every $\alpha \in L$, its minimal polynomial $\mathbf{m}_{\alpha}(x)$ is separable.

An extension L/K is called *normal* if it is algebraic and for every $\alpha \in L$, its minimal polynomial $\mathbf{m}_{\alpha}(x)$ splits as a product of linear terms in L[x]. That is, L is the splitting extension of $\{\mathbf{m}_{\alpha}(x) : \alpha \in L\}$.

Theorem 29.5 is often phrased as *Galois if and only if separable and normal*. Note that there exist fields F over which irreducible polynomials are not necessarily separable. We will discuss such F (called *imperfect fields*) next time.

(29.7) Example. – Recall that last time we defined $\mathbb{Q}(\mu_n) \subset \mathbb{C}$, where

$$\mu_n = \left\{ e^{\frac{2\pi k\iota}{n}} : 0 \le k \le n-1 \right\}$$

We saw that $|\mathsf{G}(\mathbb{Q}(\mu_n)/\mathbb{Q})| = \phi(n)$, where

 $\phi(n) = \left| \left\{ 1 \le k \le n-1 : \gcd(k,n) = 1 \right\} \right|, \text{ Euler's } \phi \text{ function.}$

It is immediate that $\mathbb{Q}(\mu_n)/\mathbb{Q}$ is Galois. By Corollary 29.4, we have:

$$[\mathbb{Q}(\mu_n):\mathbb{Q}] = \phi(n).$$