
LECTURE 29

(29.0) Review.– Let L/K be a field extension. Last time we defined

G (L/K) = AutK−Alg(L) = {σ : L
∼−→ L field automorphism, such that σ|K = IdK},

called the Galois group of the extension L/K.

For a group Γ acting on L via field automorphisms (that is, we are given a group homo-
morphism Γ→ Autfield(L)), we denote by LΓ ⊂ L, the subfield of Γ–fixed elements:

LΓ = {z ∈ L such that σ(z) = z, ∀ σ ∈ Γ}.

A field extension L/K is called a Galois extension if LG(L/K) = K.

(29.1) Linear independence of algebra homomorphisms.– Let K be a field, L/K a
field extension, and A a unital (not necessarily commutative) algebra over K. Meaning, A
is a unital ring together with a ring homomorphism, necessarily injective, K ↪→ A.

Theorem. HomK−Alg(A,L) ⊂ HomK−vs(A,L) is linearly independent over L.

Remark. For a K–vector space V , we view HomK−vs(V, L) as an L–vector space via the
following operations. For every ξ, η : V → L, K–linear maps, and a, b ∈ L, we set:

(aξ + bη)(v) = aξ(v) + bη(v).

Note that, we have the canonical L–linear map:

β : V ∗ ⊗K L→ HomK−vs(V, L), β(f ⊗ z) : v 7→ f(v)z.

If V is finite–dimensional, this map is an isomorphism, and we obtain:

dimL−vs (HomK−vs(V, L)) = dimK−vs(V
∗) = dimK−vs(V )

Proof. Let {ξ1, . . . , ξn} ⊂ HomK−Alg(A,L) be a finite set of K–algebra homomorphisms
A → L. We will show, by induction on n, that this set of linearly indepedent. For n = 1,
we have {ξ : A→ L} is linearly independent if and only if ξ 6= 0, which is true since ξ(1) = 1.

Now assume that we have a linear relation
n∑
i=1

aiξi = 0, where a1, . . . , an ∈ L. Note that

for every x, y ∈ A, we get:

anξn(xy)− ξn(x)(anξn(y)) = 0.
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Replacing anξn = −
∑n−1

i=1 aiξi, we get:

n−1∑
i=1

ai(ξi(x)− ξn(x))ξi(y) = 0, for every y ∈ A.

Thus, we obtain (by induction) that for every 1 ≤ i ≤ n−1, and x ∈ A: ai(ξi(x)−ξn(x)) = 0.
Since ξi 6= ξn, there must exist some x ∈ A such that ξi(x) 6= ξn(x), implying that ai = 0.
Now anξn = −

∑n−1
i=1 aiξi = 0, but ξn 6= 0, and we conclude that an = 0. Therefore, the set

{ξ1, . . . , ξn} is linearly independent over L. �

(29.2) Application of Theorem 29.1 I: independence of characters.– Let Γ be a group
and L be a field. Let L[Γ] be the group algebra of Γ over L. As an L–vector space, L[Γ] has
a basis {e(g) : g ∈ Γ}, relative to which multiplication is determined by e(g) · e(h) = e(gh).
Note that

Homgp(Γ, L×) = HomL−Alg(L[Γ], L).

Therefore, we obtain the following result, due to Dedekind, known as independence of char-
acters. An L–valued character of a group Γ, is just a group homomorphism Γ→ L×.

Corollary. Elements of Homgp(Γ, L×) are linearly independent over L.

(29.3) Application of Theorem 29.1 II: inequalities.– Let K be a field and E/K,
L/K two field extensions. By Theorem 29.1, HomK−Alg(E,L) ⊂ HomK−vs(E,L) is linearly
independent over L. Moreover, if [E : K] < ∞, HomK−vs(E,L) is an L–vector space of
dimension [E : K] (see Remark 29.1). Thus, we get:

|HomK−Alg(E,L)| ≤ [E : K]

Taking E = L, and viewing G (L/K) ⊂ HomK−Alg(L,L), we get:

|G (L/K)| ≤ [L : K]

(29.4) Application of Theorem 29.1 III: Artin’s theorem.– Now let L be a field and
let Γ ⊂ Autfield(L) be a finite subgroup. Let F = LΓ ⊂ L.

Theorem. L/F is a Galois extension of degree |Γ|.

Proof. Let n = |Γ| and m = [L : F ]. Since Γ ⊂ HomF−Alg(L,L), the inequalities from
the previous paragraph imply that n ≤ m. Assume that n < m. Let Γ = {σ1, . . . , σn} and
{x1, . . . , xm} be a basis of L as an F–vector space. Form an n×m matrix:

X = (σi(xj))1≤i≤n,1≤j≤m ∈ Matn×m(L).
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Since m > n, there exists a non–zero vector a ∈ Lm, such that Xa = 0. That is, for every
1 ≤ i ≤ n:

m∑
j=1

ajσi(xj) = 0.

We will arrive at a contradiction as follows. Let p be the smallest positive integer such that
there exists a ∈ Ker(X) with p non–zero entries. Note that p = 1 is absurd since it will
imply the existence of 1 ≤ j ≤ m such that σi(xj) = 0 for each i. But σi is an automorphism
and xj 6= 0.

Assuming the existence of a ∈ Ker(X) with p non–zero entries, we will produce b ∈ Ker(X)
with p− 1 non–zero entries, thus a contradiction, proving that Ker(X) = {0}.

Upon reordering elements of Γ, if necessary, we can assume that a1, . . . , ap ∈ L× and
ap+1 = . . . = am = 0. Further, we can scale a to assume that ap = 1. Thus,

For every 1 ≤ i ≤ n, σi(xp) = −
p−1∑
j=1

ajσi(xj).

Since Γ is a subgroup, there is i such that σi = IdL. We are assuming that {x1, . . . , xm}
are linearly independent over F , so xp = −

∑p−1
j=1 ajxj implies that there must be some

1 ≤ ` ≤ p − 1 so that a` 6∈ F . By definition of F , this means there is 1 ≤ k ≤ n, with
σk(a`) 6= a`.

Apply σk to σi(xp) = −
∑p−1

j=1 ajσi(xj) to get:

(σkσi)(xp) = −
p−1∑
j=1

σk(aj)(σkσi)(xj), for every 1 ≤ i ≤ n.

Now left multiplication by σk is a permutation of Γ. So we get:

σq(xp) = −
p−1∑
j=1

σk(aj)σq(xj), for every 1 ≤ q ≤ n.

Subtracting from the original relation, we get:

0 =

p−1∑
j=1

(σk(aj)− aj)σq(xj), for every 1 ≤ q ≤ n.

Thus we obtain a non–zero (since σk(a`) 6= a`) element of Ker(X) with strictly less than
p− 1 non–zero entries. �

Corollary. Let L/K be a finite extension. Then it is a Galois extension if and only if
|G (L/K) | = [L : K].

(29.5) Algebraic Galois extensions.– Let L/K be an algebraic extension. The following
result gives algebraic characterization for L/K to be a Galois extension.
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Theorem. An algebraic extension L/K is Galois if and only if for every α ∈ L, its minimal
polynomial mα(x) ∈ K[x] has deg(mα(x)) distinct roots in L.

Proof. Let Γ = G (L/K). Assume that L/K is Galois, that is, LΓ = K. Let α ∈ L and
mα(x) ∈ K[x] its minimal polynomial. Let n = deg(mα(x)).

Consider the Γ–orbit of α.

Γα = {σ(α) : σ ∈ Γ} ⊂ L.

Note that for every σ ∈ Γ, σ(α) is another root of mα(x). Since number of roots of a
polynomial ≤ degree of that polynomial, we conclude that Γα is finite and has at most n
elements.

Define f(x) =
∏
β∈Γα

(x− β). Since f(x) is invariant under Γ, we have f(x) ∈ K[x]. More-

over, it divides mα(x) whose irreducibility implies that deg(f) = n. That is |Γα| = n consists
of n distinct roots of mα(x).

Let us prove the converse now. Note that the assumption on L/K implies two statements.

• L is the splitting extension of the following set of (irreducible, monic) polynomials.

L = E(P,K), where, P = {mα(x) : α ∈ L} ⊂ K[x].

• Every f(x) ∈ P has distinct roots in L.

Assume α ∈ L \ K. We will exhibit an element σ ∈ Γ such that σ(α) 6= α. Note that
n = deg(mα(x)) ≥ 2, therefore there exists β 6= α also a root of mα(x). By Theorem 26.0,

there exists an isomorphism σ : K(α)
∼−→ K(β) uniquely determined by σ|K = IdK and

σ(α) = β. By the same theorem, part (2), σ extends to an element σ ∈ G (L/K), since
L/K is a splitting extension. Thus, we have shown the existence of σ ∈ G (L/K) such that
σ(α) = β 6= α. �

(29.6) Separable polynomials and normal extensions.– Let us record the two impor-
tant properties listed in the proof of the theorem given above.

Definition. Let K be a field and f(x) ∈ K[x] be a polynomial. We say f(x) is separable if
all its roots (in its splitting extension, for instance) are distinct.

An extension L/K is called separable if it is algebraic and for every α ∈ L, its minimal
polynomial mα(x) is separable.

An extension L/K is called normal if it is algebraic and for every α ∈ L, its minimal
polynomial mα(x) splits as a product of linear terms in L[x]. That is, L is the splitting
extension of {mα(x) : α ∈ L}.

Theorem 29.5 is often phrased as Galois if and only if separable and normal. Note that
there exist fields F over which irreducible polynomials are not necessarily separable. We will
discuss such F (called imperfect fields) next time.
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(29.7) Example.– Recall that last time we defined Q(µn) ⊂ C, where

µn =
{
e

2πkι
n : 0 ≤ k ≤ n− 1

}
.

We saw that |G (Q(µn)/Q) | = φ(n), where

φ(n) = |{1 ≤ k ≤ n− 1 : gcd(k, n) = 1}| , Euler’s φ function.

It is immediate that Q(µn)/Q is Galois. By Corollary 29.4, we have:

[Q(µn) : Q] = φ(n).


