LECTURE 30

(30.0) Galois extensions. Let L/K be a field extension, and let $\Gamma = \mathsf{G}(L/K)$ be its Galois group. Recall that we say L/K is a Galois extension if $L^{\Gamma} = K$.

In previous lecture, we showed that an algebraic extension L/K is Galois if and only if it is normal and separable.

- An algebraic extension L/K is called *normal* if for every $\alpha \in L$, $\mathbf{m}_{\alpha}(x)$ splits into linear factors in L[x].
- A polynomial $f(x) \in K[x]$ is said to be *separable* if f(x) has distinct roots in $\mathcal{E}(f(x), K)$, the splitting extension of f(x) over K.
- An algebraic extension L/K is said to be *separable* if for every $\alpha \in L$, the minimal polynomial $\mathbf{m}_{\alpha}(x)$ is separable.

We will prove that normal extensions are nothing but splitting extensions of various subsets of K[x]. Theorem 29.5 says that an algebraic extension is Galois if and only if it is the splitting extension of a set of separable polynomials. We will discuss how an irreducible polynomial may fail to be separable.

(30.1) Normal extensions. – Recall that a field extension L/K is normal if it is algebraic, and for every $\alpha \in L$, $\mathbf{m}_{\alpha}(x)$ splits into a product of (not necessarily distinct) linear factors in L[x].

Theorem. The following are equivalent, for an algebraic extension L/K.

- (1) L/K is normal.
- (2) There exists a set $P \subset K[x]$, such that $L = \mathcal{E}(P, K)$ is the splitting extension of P.
- (3) For every extension E/L and $g \in G(E/K)$, g(L) = L. Thus we have a short exact sequence:

 $\mathbf{1} \to \mathsf{G}\left(E/L\right) \to \mathsf{G}\left(E/K\right) \to \mathsf{G}\left(L/K\right) \to \mathbf{1},$

proving that $G(E/L) \subset G(E/K)$ is a normal subgroup.

(4) Let \overline{K} be the algebraic closure of K. We view $L \subset \overline{K}$ via a fixed embedding. Then, for every $g \in G(\overline{K}/K)$, we have g(L) = L.

PROOF. (1) \Rightarrow (2). It is clear that $L = \mathcal{E}(P_L, K)$, where

$$P_L(x) = \{\mathsf{m}_{\alpha}(x) : \alpha \in L\} \subset K[x]$$

 $(2) \Rightarrow (3)$. Assume that a set $I \subset K[x]$ of irreducible, monic polynomials is given. It is not a serious restriction, since given any set $P \subset K[x]$, we may replace P by I consisting of irreducible polynomials which divide some element of P. Then $\mathcal{E}(P, K) = \mathcal{E}(I, K)$. Let $L = \mathcal{E}(I, K)$. Let E/L be an arbitrary extension and $g \in \mathsf{G}(E/K)$. To show that g(L) = L,

LECTURE 30

it is enough to prove that $g(\alpha) \in L$ for every $\alpha \in L$ which is a root of some $f(x) \in P$ (since L is generated over K by such elements). Now $g(\alpha)$ is another root of f(x), hence is in L.

 $(3) \Rightarrow (4)$ is obvious. Now we show that (4) implies (1). Let $\alpha \in L$ and $f(x) = \mathfrak{m}_{\alpha}(x) \in K[x]$. In $\overline{K}[x]$, we have the factorization $f(x) = (x - r_1) \cdots (x - r_n)$, where $n = \deg(f)$ and $r_1, \ldots, r_n \in \overline{K}$ are not necessarily distinct. Assuming $r_1 = \alpha$, let $r_j = \beta$ be different from α (if $r_1 = \ldots = r_n = \alpha$, then $f(x) = (x - \alpha)^n$ is already in L[x] as we want to prove). Then $f(x) = \mathfrak{m}_{\alpha}(x) = \mathfrak{m}_{\beta}(x)$ and hence (by Theorem 26.1) there exists $g \in \mathsf{G}(\overline{K}/K)$ such that $g(\alpha) = \beta$. As $g(L) \subset L$, we conclude that $\beta \in L$. We have shown that $r_1, \ldots, r_n \in L$, that is, f(x) splits into a product of linear factors in L[x].

(30.2) Separable polynomials.– Theorem 29.5 can now be stated as follows. An algebraic extension L/K is Galois if and only if $L = \mathcal{E}(I, K)$ where $I \subset K[x]$ is a set of irreducible, separable polynomials.

Theorem. Let K be a field and let $f(x) \in K[x]$ be an irreducible, monic polynomial of degree $n \ge 1$. Then the following conditions are equivalent.

- (1) f(x) has n distinct roots in its splitting extension (i.e., f(x) is separable).
- (2) The ideal generated by f and its derivative f' in K[x] is the unit ideal.
- (3) $f'(x) \neq 0$.
- (4) Either Char(K) = 0, or Char(K) = $p \ (p \in \mathbb{Z}_{\geq 2} \ a \ prime \ number)$ and $f(x) \notin K[x^p] \subset K[x]$.

PROOF. We will first show that (1) and (2) are equivalent. (2) and (3) are clearly equivalent, since f(x) is irreducible. (4) follows since

$$f(x) = x^n + \sum_{j=0}^{n-1} c_j x^j \qquad \Rightarrow \qquad f'(x) = n x^{n-1} + \sum_{j=1}^{n-1} j c_j x^{j-1},$$

Thus f'(x) = 0 if and only if $jc_j = 0$ for every $1 \le j \le n$ (with the assumption that $c_n = 1$). If $\operatorname{Char}(K) = 0$, this is equivalent to $c_j = 0$ for every $1 \le j \le n$, i.e., f is a constant. But $\operatorname{deg}(f) \ge 1$. In $\operatorname{Char}(K) = p$ case, we conclude that either $c_j = 0$ or p|j. That is, $f(x) \in K[x^p]$.

(1) \iff (2). Let L/K be the splitting extension of f(x). Write $f(x) = \prod_{i=1}^{n} (x - r_i)$. Then:

$$f'(x) = \sum_{j=1}^{n} \prod_{i \neq j} (x - r_i).$$

Thus, for each $1 \leq j \leq n$, $f'(r_j) = \prod_{i \neq j} (r_j - r_i)$. Therefore, $f(x) \in K[x]$ has a repeated root $r \in L$ if and only if f'(r) = 0. Now, if (f, f') = (1) in K[x], then there exist $a(x), b(x) \in K[x]$ such that a(x)f(x) + b(x)f'(x) = 1. Setting x = r gives 0 = 1 which is absurd.

Conversely, assume that (f, f') = (d(x)). Since d(x) divides f(x), it has a root $\gamma \in L$. Since d(x) divides f'(x), $f'(\gamma) = 0$. So f has a repeated root.

LECTURE 30

(30.3) Perfect fields.–

Definition. A field K is said to be *perfect* if every irreducible polynomial $f(x) \in K[x]$ is separable. Thus, every field of characteristic zero is perfect (by Theorem 30.2). Every algebraically closed field is perfect.

Lemma. Let $p \in \mathbb{Z}_{\geq 2}$ be a prime number. Let K be a field of characteristic p. Then $\sigma_p : K \to K$ given by $\sigma_p(x) = x^p$ is a homomorphism (known as Frobenius endomorphism). K is perfect if and only if σ_p is an isomorphism.

PROOF. It is clear that $\sigma_p(xy) = \sigma_p(x)\sigma_p(y)$. Note that

$$\sigma_p(x+y) = (x+y)^p = \sum_{i=0}^p {p \choose i} x^i y^{p-i} = x^p + y^p,$$

since for every $1 \le i \le p-1$, the binomial coefficient:

$$\begin{pmatrix} p\\i \end{pmatrix} = \frac{p(p-1)\dots(p-i+1)}{i!}$$

is divisible by p, hence zero in K. Thus $\sigma_p: K \to K$ is a homomorphism.

Now assume that $\sigma_p : K \to K$ is an isomorphism. If K is not perfect, the there would exist $g(x) \in K[x]$ monic irreducible such that g'(x) = 0. But that means $g(x) \in K[x^p]$, i.e.,

$$g(x) = \sum_{j=0}^{n} c_j x^{pj}$$
, with $c_n = 1$.

Let $a_j \in K$ be such that $a_j^p = c_j$. Then

$$g(x) = \left(\sum_{j=0}^{n} a_j x^j\right)^p$$
 is not irreducible.

For the converse, we will need the following claim. Claim. For every $a \in K$, $x^p - a \in K[x]$ is irreducible if and only if $a \notin \text{Im}(\sigma_p)$.

Let us assume the claim for now. Assume that σ_p is not surjective. That is there exists $a \notin \text{Im}(\sigma_p)$. By the claim, $x^p - a \in K[x]$ is irreducible, and its derivative is 0, so it is not separable. Thus, K is not perfect.

Proof of the claim. Let L/K be the splitting extension of $f(x) = x^p - a \in K[x]$, and let $b \in L$ be a root of f(x). Then $f(x) = (x - b)^p$. Now if $f(x) = f_1(x)^{n_1} \cdots f_r(x)^{n_r}$ is the unique factorization of f(x) into a product of monic irreducible polynomials in K[x], then in L, each $f_j(x)$ can only have one root, namely b. But distinct irreducible polynomials are coprime, so they cannot share a root. This implies that r = 1 and $f(x) = g(x)^n$. By degree reasons, either g(x) = f(x) is irreducible, or g(x) is linear (hence necessarily equal to x - b) and n = p, proving that $b = a^{1/p} \in K$.

(30.4) Imperfect fields and purely inseparable extensions.— According to Lemma 30.3 above, every finite field is perfect. The first non-trivial example of imperfect fields is thus $K = \mathbb{F}_p(\lambda)$. Since $\lambda \notin \text{Im}(\sigma_p)$, K is imperfect. Moreover the splitting extension of $x^p - \lambda \in K[x]$ is $K_1 = \mathbb{F}_p(\lambda_1)$, where $\lambda_1^p = \lambda$. Continuing this way, we obtain a tower of field extensions:

 $K \subset K_1 \subset K_2 \subset \cdots$

where $K_n = \mathbb{F}_p(\lambda_n)$ is the splitting extension of $x^p - \lambda_{n-1} \in K_{n-1}[x]$. In other words,

 K_n = the splitting extension of $x^{p^n} - \lambda \in K[x]$.

Note that $G(K_n/K) = {Id}$, so in a very concrete sense, the Galois group cannot *separate* different K_n/K . Such extensions are thus orthogonal to Galois extensions and are defined to be purely inseparable (or *p*-radical) extensions.

Definition. Let K be a field of characteristic $p \in \mathbb{Z}_{\geq 2}$. Let E/K be a field extension. An element $\alpha \in E$ is said to be *purely inseparable* (or *p*-*radical*) if there exists n such that $\alpha^{p^n} \in K$. The smallest such n is often called *height of* α . An algebraic extension E/K is called purely inseparable if it is generated by a set of purely inseparable elements.