LECTURE 30

(30.0) Galois extensions.- Let L / K be a field extension, and let $\Gamma=G(L / K)$ be its Galois group. Recall that we say L / K is a Galois extension if $L^{\Gamma}=K$.

In previous lecture, we showed that an algebraic extension L / K is Galois if and only if it is normal and separable.

- An algebraic extension L / K is called normal if for every $\alpha \in L, \mathrm{~m}_{\alpha}(x)$ splits into linear factors in $L[x]$.
- A polynomial $f(x) \in K[x]$ is said to be separable if $f(x)$ has distinct roots in $\mathcal{E}(f(x), K)$, the splitting extension of $f(x)$ over K.
- An algebraic extension L / K is said to be separable if for every $\alpha \in L$, the minimal polynomial $\mathrm{m}_{\alpha}(x)$ is separable.

We will prove that normal extensions are nothing but splitting extensions of various subsets of $K[x]$. Theorem 29.5 says that an algebraic extension is Galois if and only if it is the splitting extension of a set of separable polynomials. We will discuss how an irreducible polynomial may fail to be separable.
(30.1) Normal extensions.- Recall that a field extension L / K is normal if it is algebraic, and for every $\alpha \in L, \mathrm{~m}_{\alpha}(x)$ splits into a product of (not necessarily distinct) linear factors in $L[x]$.

Theorem. The following are equivalent, for an algebraic extension L / K.
(1) L / K is normal.
(2) There exists a set $P \subset K[x]$, such that $L=\mathcal{E}(P, K)$ is the splitting extension of P.
(3) For every extension E / L and $g \in \mathrm{G}(E / K), g(L)=L$. Thus we have a short exact sequence:

$$
\mathbf{1} \rightarrow \mathrm{G}(E / L) \rightarrow \mathrm{G}(E / K) \rightarrow \mathrm{G}(L / K) \rightarrow \mathbf{1},
$$

proving that $\mathrm{G}(E / L) \subset \mathrm{G}(E / K)$ is a normal subgroup.
(4) Let \bar{K} be the algebraic closure of K. We view $L \subset \bar{K}$ via a fixed embedding. Then, for every $g \in \mathrm{G}(\bar{K} / K)$, we have $g(L)=L$.
Proof. (1) \Rightarrow (2). It is clear that $L=\mathcal{E}\left(P_{L}, K\right)$, where

$$
P_{L}(x)=\left\{\mathrm{m}_{\alpha}(x): \alpha \in L\right\} \subset K[x] .
$$

$(2) \Rightarrow(3)$. Assume that a set $I \subset K[x]$ of irreducible, monic polynomials is given. It is not a serious restriction, since given any set $P \subset K[x]$, we may replace P by I consisting of irreducible polynomials which divide some element of P. Then $\mathcal{E}(P, K)=\mathcal{E}(I, K)$. Let $L=\mathcal{E}(I, K)$. Let E / L be an arbitrary extension and $g \in \mathrm{G}(E / K)$. To show that $g(L)=L$,
it is enough to prove that $g(\alpha) \in L$ for every $\alpha \in L$ which is a root of some $f(x) \in P$ (since L is generated over K by such elements). Now $g(\alpha)$ is another root of $f(x)$, hence is in L.
$(3) \Rightarrow(4)$ is obvious. Now we show that (4) implies (1). Let $\alpha \in L$ and $f(x)=\mathrm{m}_{\alpha}(x) \in$ $K[x]$. In $\bar{K}[x]$, we have the factorization $f(x)=\left(x-r_{1}\right) \cdots\left(x-r_{n}\right)$, where $n=\operatorname{deg}(f)$ and $r_{1}, \ldots, r_{n} \in \bar{K}$ are not necessarily distinct. Assuming $r_{1}=\alpha$, let $r_{j}=\beta$ be different from α (if $r_{1}=\ldots=r_{n}=\alpha$, then $f(x)=(x-\alpha)^{n}$ is already in $L[x]$ as we want to prove). Then $f(x)=\mathrm{m}_{\alpha}(x)=\mathrm{m}_{\beta}(x)$ and hence (by Theorem 26.1) there exists $g \in \mathrm{G}(\bar{K} / K)$ such that $g(\alpha)=\beta$. As $g(L) \subset L$, we conclude that $\beta \in L$. We have shown that $r_{1}, \ldots, r_{n} \in L$, that is, $f(x)$ splits into a product of linear factors in $L[x]$.
(30.2) Separable polynomials.- Theorem 29.5 can now be stated as follows. An algebraic extension L / K is Galois if and only if $L=\mathcal{E}(I, K)$ where $I \subset K[x]$ is a set of irreducible, separable polynomials.

Theorem. Let K be a field and let $f(x) \in K[x]$ be an irreducible, monic polynomial of degree $n \geq 1$. Then the following conditions are equivalent.
(1) $f(x)$ has n distinct roots in its splitting extension (i.e, $f(x)$ is separable).
(2) The ideal generated by f and its derivative f^{\prime} in $K[x]$ is the unit ideal.
(3) $f^{\prime}(x) \neq 0$.
(4) Either $\operatorname{Char}(K)=0$, or $\operatorname{Char}(K)=p\left(p \in \mathbb{Z}_{\geq 2}\right.$ a prime number) and $f(x) \notin K\left[x^{p}\right] \subset$ $K[x]$.

Proof. We will first show that (1) and (2) are equivalent. (2) and (3) are clearly equivalent, since $f(x)$ is irreducible. (4) follows since

$$
f(x)=x^{n}+\sum_{j=0}^{n-1} c_{j} x^{j} \quad \Rightarrow \quad f^{\prime}(x)=n x^{n-1}+\sum_{j=1}^{n-1} j c_{j} x^{j-1}
$$

Thus $f^{\prime}(x)=0$ if and only if $j c_{j}=0$ for every $1 \leq j \leq n$ (with the assumption that $c_{n}=1$). If $\operatorname{Char}(K)=0$, this is equivalent to $c_{j}=0$ for every $1 \leq j \leq n$, i.e, f is a constant. But $\operatorname{deg}(f) \geq 1$. In $\operatorname{Char}(K)=p$ case, we conclude that either $c_{j}=0$ or $p \mid j$. That is, $f(x) \in K\left[x^{p}\right]$.
$(1) \Longleftrightarrow(2)$. Let L / K be the splitting extension of $f(x)$. Write $f(x)=\prod_{i=1}^{n}\left(x-r_{i}\right)$. Then:

$$
f^{\prime}(x)=\sum_{j=1}^{n} \prod_{i \neq j}\left(x-r_{i}\right)
$$

Thus, for each $1 \leq j \leq n, f^{\prime}\left(r_{j}\right)=\prod_{i \neq j}\left(r_{j}-r_{i}\right)$. Therefore, $f(x) \in K[x]$ has a repeated root $r \in L$ if and only if $f^{\prime}(r)=0$. Now, if $\left(f, f^{\prime}\right)=(1)$ in $K[x]$, then there exist $a(x), b(x) \in K[x]$ such that $a(x) f(x)+b(x) f^{\prime}(x)=1$. Setting $x=r$ gives $0=1$ which is absurd.

Conversely, assume that $\left(f, f^{\prime}\right)=(d(x))$. Since $d(x)$ divides $f(x)$, it has a root $\gamma \in L$. Since $d(x)$ divides $f^{\prime}(x), f^{\prime}(\gamma)=0$. So f has a repeated root.

(30.3) Perfect fields.-

Definition. A field K is said to be perfect if every irreducible polynomial $f(x) \in K[x]$ is separable. Thus, every field of characteristic zero is perfect (by Theorem 30.2). Every algebraically closed field is perfect.

Lemma. Let $p \in \mathbb{Z}_{\geq 2}$ be a prime number. Let K be a field of characteristic p. Then $\sigma_{p}: K \rightarrow K$ given by $\sigma_{p}(x)=x^{p}$ is a homomorphism (known as Frobenius endomorphism). K is perfect if and only if σ_{p} is an isomorphism.

Proof. It is clear that $\sigma_{p}(x y)=\sigma_{p}(x) \sigma_{p}(y)$. Note that

$$
\sigma_{p}(x+y)=(x+y)^{p}=\sum_{i=0}^{p}\binom{p}{i} x^{i} y^{p-i}=x^{p}+y^{p},
$$

since for every $1 \leq i \leq p-1$, the binomial coefficient:

$$
\binom{p}{i}=\frac{p(p-1) \ldots(p-i+1)}{i!}
$$

is divisible by p, hence zero in K. Thus $\sigma_{p}: K \rightarrow K$ is a homomorphism.
Now assume that $\sigma_{p}: K \rightarrow K$ is an isomorphism. If K is not perfect, the there would exist $g(x) \in K[x]$ monic irreducible such that $g^{\prime}(x)=0$. But that means $g(x) \in K\left[x^{p}\right]$, i.e,

$$
g(x)=\sum_{j=0}^{n} c_{j} x^{p j}, \text { with } c_{n}=1
$$

Let $a_{j} \in K$ be such that $a_{j}^{p}=c_{j}$. Then

$$
g(x)=\left(\sum_{j=0}^{n} a_{j} x^{j}\right)^{p} \text { is not irreducible. }
$$

For the converse, we will need the following claim.
Claim. For every $a \in K, x^{p}-a \in K[x]$ is irreducible if and only if $a \notin \operatorname{Im}\left(\sigma_{p}\right)$.
Let us assume the claim for now. Assume that σ_{p} is not surjective. That is there exists $a \notin \operatorname{Im}\left(\sigma_{p}\right)$. By the claim, $x^{p}-a \in K[x]$ is irreducible, and its derivative is 0 , so it is not separable. Thus, K is not perfect.

Proof of the claim. Let L / K be the splitting extension of $f(x)=x^{p}-a \in K[x]$, and let $b \in L$ be a root of $f(x)$. Then $f(x)=(x-b)^{p}$. Now if $f(x)=f_{1}(x)^{n_{1}} \cdots f_{r}(x)^{n_{r}}$ is the unique factorization of $f(x)$ into a product of monic irreducible polynomials in $K[x]$, then in L, each $f_{j}(x)$ can only have one root, namely b. But distinct irreducible polynomials are coprime, so they cannot share a root. This implies that $r=1$ and $f(x)=g(x)^{n}$. By degree reasons, either $g(x)=f(x)$ is irreducible, or $g(x)$ is linear (hence necessarily equal to $x-b$) and $n=p$, proving that $b=a^{1 / p} \in K$.
(30.4) Imperfect fields and purely inseparable extensions.- According to Lemma 30.3 above, every finite field is perfect. The first non-trivial example of imperfect fields is thus $K=\mathbb{F}_{p}(\lambda)$. Since $\lambda \notin \operatorname{Im}\left(\sigma_{p}\right), K$ is imperfect. Moreover the splitting extension of $x^{p}-\lambda \in K[x]$ is $K_{1}=\mathbb{F}_{p}\left(\lambda_{1}\right)$, where $\lambda_{1}^{p}=\lambda$. Continuing this way, we obtain a tower of field extensions:

$$
K \subset K_{1} \subset K_{2} \subset \cdots
$$

where $K_{n}=\mathbb{F}_{p}\left(\lambda_{n}\right)$ is the splitting extension of $x^{p}-\lambda_{n-1} \in K_{n-1}[x]$. In other words,

$$
K_{n}=\text { the splitting extension of } x^{p^{n}}-\lambda \in K[x] .
$$

Note that $\mathrm{G}\left(K_{n} / K\right)=\{\mathrm{Id}\}$, so in a very concrete sense, the Galois group cannot separate different K_{n} / K. Such extensions are thus orthogonal to Galois extensions and are defined to be purely inseparable (or p-radical) extensions.

Definition. Let K be a field of characteristic $p \in \mathbb{Z}_{\geq 2}$. Let E / K be a field extension. An element $\alpha \in E$ is said to be purely inseparable (or p-radical) if there exists n such that $\alpha^{p^{n}} \in K$. The smallest such n is often called height of α. An algebraic extension E / K is called purely inseparable if it is generated by a set of purely inseparable elements.

