
LECTURE 30

(30.0) Galois extensions.– Let L/K be a field extension, and let Γ = G (L/K) be its
Galois group. Recall that we say L/K is a Galois extension if LΓ = K.

In previous lecture, we showed that an algebraic extension L/K is Galois if and only if it
is normal and separable.

• An algebraic extension L/K is called normal if for every α ∈ L, mα(x) splits into
linear factors in L[x].

• A polynomial f(x) ∈ K[x] is said to be separable if f(x) has distinct roots in
E(f(x), K), the splitting extension of f(x) over K.

• An algebraic extension L/K is said to be separable if for every α ∈ L, the minimal
polynomial mα(x) is separable.

We will prove that normal extensions are nothing but splitting extensions of various sub-
sets of K[x]. Theorem 29.5 says that an algebraic extension is Galois if and only if it is
the splitting extension of a set of separable polynomials. We will discuss how an irreducible
polynomial may fail to be separable.

(30.1) Normal extensions.– Recall that a field extension L/K is normal if it is algebraic,
and for every α ∈ L, mα(x) splits into a product of (not necessarily distinct) linear factors
in L[x].

Theorem. The following are equivalent, for an algebraic extension L/K.

(1) L/K is normal.
(2) There exists a set P ⊂ K[x], such that L = E(P,K) is the splitting extension of P .
(3) For every extension E/L and g ∈ G (E/K), g(L) = L. Thus we have a short exact

sequence:
1→ G (E/L)→ G (E/K)→ G (L/K)→ 1,

proving that G (E/L) ⊂ G (E/K) is a normal subgroup.
(4) Let K be the algebraic closure of K. We view L ⊂ K via a fixed embedding. Then,

for every g ∈ G
(
K/K

)
, we have g(L) = L.

Proof. (1)⇒ (2). It is clear that L = E(PL, K), where

PL(x) = {mα(x) : α ∈ L} ⊂ K[x].

(2) ⇒ (3). Assume that a set I ⊂ K[x] of irreducible, monic polynomials is given. It is
not a serious restriction, since given any set P ⊂ K[x], we may replace P by I consisting
of irreducible polynomials which divide some element of P . Then E(P,K) = E(I,K). Let
L = E(I,K). Let E/L be an arbitrary extension and g ∈ G (E/K). To show that g(L) = L,
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it is enough to prove that g(α) ∈ L for every α ∈ L which is a root of some f(x) ∈ P (since
L is generated over K by such elements). Now g(α) is another root of f(x), hence is in L.

(3) ⇒ (4) is obvious. Now we show that (4) implies (1). Let α ∈ L and f(x) = mα(x) ∈
K[x]. In K[x], we have the factorization f(x) = (x− r1) · · · (x− rn), where n = deg(f) and
r1, . . . , rn ∈ K are not necessarily distinct. Assuming r1 = α, let rj = β be different from α
(if r1 = . . . = rn = α, then f(x) = (x − α)n is already in L[x] as we want to prove). Then
f(x) = mα(x) = mβ(x) and hence (by Theorem 26.1) there exists g ∈ G

(
K/K

)
such that

g(α) = β. As g(L) ⊂ L, we conclude that β ∈ L. We have shown that r1, . . . , rn ∈ L, that
is, f(x) splits into a product of linear factors in L[x]. �

(30.2) Separable polynomials.– Theorem 29.5 can now be stated as follows. An algebraic
extension L/K is Galois if and only if L = E(I,K) where I ⊂ K[x] is a set of irreducible,
separable polynomials.

Theorem. Let K be a field and let f(x) ∈ K[x] be an irreducible, monic polynomial of
degree n ≥ 1. Then the following conditions are equivalent.

(1) f(x) has n distinct roots in its splitting extension (i.e, f(x) is separable).
(2) The ideal generated by f and its derivative f ′ in K[x] is the unit ideal.
(3) f ′(x) 6= 0.
(4) Either Char(K) = 0, or Char(K) = p (p ∈ Z≥2 a prime number) and f(x) 6∈ K[xp] ⊂

K[x].

Proof. We will first show that (1) and (2) are equivalent. (2) and (3) are clearly equivalent,
since f(x) is irreducible. (4) follows since

f(x) = xn +
n−1∑
j=0

cjx
j ⇒ f ′(x) = nxn−1 +

n−1∑
j=1

jcjx
j−1,

Thus f ′(x) = 0 if and only if jcj = 0 for every 1 ≤ j ≤ n (with the assumption that cn = 1).
If Char(K) = 0, this is equivalent to cj = 0 for every 1 ≤ j ≤ n, i.e, f is a constant.
But deg(f) ≥ 1. In Char(K) = p case, we conclude that either cj = 0 or p|j. That is,
f(x) ∈ K[xp].

(1)⇐⇒ (2). Let L/K be the splitting extension of f(x). Write f(x) =
n∏
i=1

(x− ri). Then:

f ′(x) =
n∑
j=1

∏
i 6=j

(x− ri).

Thus, for each 1 ≤ j ≤ n, f ′(rj) =
∏

i 6=j(rj−ri). Therefore, f(x) ∈ K[x] has a repeated root

r ∈ L if and only if f ′(r) = 0. Now, if (f, f ′) = (1) in K[x], then there exist a(x), b(x) ∈ K[x]
such that a(x)f(x) + b(x)f ′(x) = 1. Setting x = r gives 0 = 1 which is absurd.

Conversely, assume that (f, f ′) = (d(x)). Since d(x) divides f(x), it has a root γ ∈ L.
Since d(x) divides f ′(x), f ′(γ) = 0. So f has a repeated root. �
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(30.3) Perfect fields.–

Definition. A field K is said to be perfect if every irreducible polynomial f(x) ∈ K[x] is
separable. Thus, every field of characteristic zero is perfect (by Theorem 30.2). Every alge-
braically closed field is perfect.

Lemma. Let p ∈ Z≥2 be a prime number. Let K be a field of characteristic p. Then
σp : K → K given by σp(x) = xp is a homomorphism (known as Frobenius endomorphism).
K is perfect if and only if σp is an isomorphism.

Proof. It is clear that σp(xy) = σp(x)σp(y). Note that

σp(x+ y) = (x+ y)p =

p∑
i=0

(
p
i

)
xiyp−i = xp + yp,

since for every 1 ≤ i ≤ p− 1, the binomial coefficient:(
p
i

)
=
p(p− 1) . . . (p− i+ 1)

i!

is divisible by p, hence zero in K. Thus σp : K → K is a homomorphism.

Now assume that σp : K → K is an isomorphism. If K is not perfect, the there would
exist g(x) ∈ K[x] monic irreducible such that g′(x) = 0. But that means g(x) ∈ K[xp], i.e,

g(x) =
n∑
j=0

cjx
pj, with cn = 1.

Let aj ∈ K be such that apj = cj. Then

g(x) =

(
n∑
j=0

ajx
j

)p

is not irreducible.

For the converse, we will need the following claim.
Claim. For every a ∈ K, xp − a ∈ K[x] is irreducible if and only if a 6∈ Im(σp).

Let us assume the claim for now. Assume that σp is not surjective. That is there exists
a 6∈ Im(σp). By the claim, xp − a ∈ K[x] is irreducible, and its derivative is 0, so it is not
separable. Thus, K is not perfect.

Proof of the claim. Let L/K be the splitting extension of f(x) = xp − a ∈ K[x], and let
b ∈ L be a root of f(x). Then f(x) = (x − b)p. Now if f(x) = f1(x)n1 · · · fr(x)nr is the
unique factorization of f(x) into a product of monic irreducible polynomials in K[x], then
in L, each fj(x) can only have one root, namely b. But distinct irreducible polynomials are
coprime, so they cannot share a root. This implies that r = 1 and f(x) = g(x)n. By degree
reasons, either g(x) = f(x) is irreducible, or g(x) is linear (hence necessarily equal to x− b)
and n = p, proving that b = a1/p ∈ K. �
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(30.4) Imperfect fields and purely inseparable extensions.– According to Lemma
30.3 above, every finite field is perfect. The first non–trivial example of imperfect fields is
thus K = Fp(λ). Since λ 6∈ Im(σp), K is imperfect. Moreover the splitting extension of
xp−λ ∈ K[x] is K1 = Fp(λ1), where λp1 = λ. Continuing this way, we obtain a tower of field
extensions:

K ⊂ K1 ⊂ K2 ⊂ · · ·
where Kn = Fp(λn) is the splitting extension of xp − λn−1 ∈ Kn−1[x]. In other words,

Kn = the splitting extension of xp
n − λ ∈ K[x].

Note that G (Kn/K) = {Id}, so in a very concrete sense, the Galois group cannot separate
different Kn/K. Such extensions are thus orthogonal to Galois extensions and are defined
to be purely inseparable (or p–radical) extensions.

Definition. Let K be a field of characteristic p ∈ Z≥2. Let E/K be a field extension. An
element α ∈ E is said to be purely inseparable (or p–radical) if there exists n such that
αp

n ∈ K. The smallest such n is often called height of α. An algebraic extension E/K is
called purely inseparable if it is generated by a set of purely inseparable elements.


