
LECTURE 32

(32.0) Generalities on topological groups.– A topological group is a group G, together
with a topology T ⊂ 2G (that is, (i) ∅, X ∈ T , and (ii) T is closed under arbitrary unions
and finite intersections), such that multiplication and inverse

m : G×G→ G, i : G→ G

(here, m(a, b) = ab and i(a) = a−1) are continuous maps.

For a ∈ G, we will denote by T (a) = {U ∈ T : a ∈ U}. A subset B(a) ⊂ T (a) is said
to be a fundamental system of neighbourhoods if for every U ∈ T (a), there exists V ∈ B(a)
such that V ⊂ U .

The continuity of multiplication can be written more explicitly as the following condition
on T : for any a, b ∈ G and U ∈ T (ab), there exist U1 ∈ T (a) and U2 ∈ T (b) such that
U1U2 ⊂ U . Similarly, inverse being a homeomorphism (as i ◦ i = Id) can be written as:
T (a)−1 = T (a−1). Here, by a little abuse of notation, for any subset V ⊂ G, we write
V −1 = {a−1 : a ∈ V }. Thus,

T (a)−1 = {V −1 : V ∈ T (a)}.

The following properties of a topological group follow directly from definitions:

(1) For g ∈ G, let Lg : G→ G be the multiplication on the left by g. Then Lg is a homeo-
morphism. Note that it is enough to show that Lg is continuous, since Lg◦Lg−1 = IdG.
That is, for h ∈ G and U ∈ T (gh), there exists V ∈ T (h) such that gV ⊂ U . This
is clear, since we have U1 ∈ T (g) and U2 ∈ T (h), such that U1U2 ⊂ U , we can take
V = U2.

(2) Similarly, right multiplication by g ∈ G is a homeomorphism.

(3) Let H ⊂ G be a subgroup. If H is open, then H is closed. This is because, we have
the following disjoint union:

G =
⊔

g∈G/H

gH, H − cosets in G.

Thus, H is the complement of
⋃
g 6∈H

gH which is open, being a union of open sets.

(4) Again let H ⊂ G be a subgroup. Then H is a subgroup. To see this, let g, h ∈ H.
We need to show that gh ∈ H. That is, for every U ∈ T (gh), we have U ∩H 6= ∅. By
definition, we have U1 ∈ T (g) and U2 ∈ T (h) such that U1U2 ⊂ U . Since g, h ∈ H,
we have U1 ∩ H 6= ∅ and U2 ∩ H 6= ∅. Since H is a group, we get U1U2 ∩ H 6= ∅.
Same argument can be used to show that H is closed under inverse.
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(32.1) Topology of the Galois group.– Let L/K be an algebraic, Galois extension. We
simplify the notation from the previous lecture.

Hypothesis. Let (I,≤) be a right directed partially ordered set. Assume that we have a direct
system of finite, Galois subextensions: K ⊂ Li ⊂ L (Li/K is finite and Galois); Li ⊂ Lj for
every i ≤ j, such that

lim−→
i∈I

Li
∼−→ L.

Note that such direct systems always exist - for instance, we can take I to be the indexing
set labelling all finite, Galois subextensions, ordered by inclusion.

Since each Li/K is a normal extension, we get restriction homomorphisms:

ρij : G (Lj/K)→ G (Li/K) , ∀i ≤ j,

which form an inverse system of (finite) groups. We also have:

φi : G (L/K)→ G (Li/K) , ∀i ∈ I,
such that each φi is surjective, and for i ≤ j, we have: ρijφj = φi. Thus there is a group
homomorphism φ : G (L/K)→ lim←−

i∈I
G (Li/K), uniquely determined by: πi ◦ φ = φi, for every

i ∈ I. Here πi : lim←−
j∈I

G (Lj/K)→ G (Li/K) is the canonical homomorphism.

Proposition. φ : G (L/K)→ lim←−
i∈I

G (Li/K) is an isomorphism of groups.

Proof. It is clear that Ker(φ) is trivial, since if φi(g) = IdLi
for each i ∈ I, and L ∼= lim−→

i∈I
Li,

then g = IdL. Conversely, if (gi)i∈I ∈ lim←−
i∈I

G (Li/K), then we can define g ∈ G (L/K) via

g|Li
= gi. This definition is unambiguous since ρij(gj) = gi. �

Definition. The Galois group G (L/K) is assumed to be equipped with the coarsest topology
which makes each of the restriction homomorphisms φi : G (L/K) → G (Li/K) continuous,
when G (Li/K) is given the discrete topology.

(32.2) Explicit description of open sets.– We retain the set up of the previous para-
graph. Let us use the notation:

G = G (L/K) , Gi = G (Li/K) .

Then, we have the following inverse system of finite, discrete groups:

G = ({Gi}i∈I ; {ρij : Gj → Gi}i≤j) .

Also, for each i ∈ I we have φi : G → Gi which induces an isomorphism φ : G
∼−→ lim←−

i∈I
Gi.

Thus G can be viewed as a subgroup of G̃ =
∏

i∈I Gi. The topology on G and G̃ is the



LECTURE 32 3

coarsest one that makes the following homomorphisms continuous.

G G̃
� � //

Gi

φi �� πi��

It makes it clear that the topology of G ⊂ G̃ is that of a subspace.

Recall that, by our definition, the following are open sets containing the identity element

e ∈ G̃:

For each i ∈ I, Ũi(e) := Ker(πi) = {σ ∈ G̃ : πi(σ) = ei} ⊂ G̃.

This is because {ei} ⊂ Gi is open.

Note that we are assuming (I,≤) to be right directed. So, for finite intersections, for every
i1, . . . , in ∈ I, choose i ∈ I such that ij ≤ i for each j. Then we have:

Ũi(e) ⊂
n⋂
j=1

Ũj(e).

Thus, B̃(e) := {Ũi(e) : i ∈ I} ⊂ 2G̃ is a fundamental system of neighbourhoods of the
identity element.

It is also clear that G ⊂ G̃ is closed. This is because,

G =
⋂
i≤j

Fij, where Fij = {σ ∈ G̃ : ρij(πj(σ)) = πi(σ)} ⊂ G̃.

Each Fij is closed, hence so must be G.

Let Ui(e) = G∩ Ũi, for each i ∈ I. Note that Ui(e) = Ker(φi) is a normal subgroup, which
is open and hence closed. It is naturally identified with Ui(e) = G (L/Li) ⊂ G (L/K).

For any σ ∈ G, we get a fundamental system of neighbourhoods B(σ) = σB(e) = B(e)σ.
If σ 6= τ are two elements of G, then there exists i ∈ I such that φi(σ) 6= φi(τ). Thus, we
obtain

(σUi(e)) ∩ (τUi(e)) = ∅.
We have shown that any two points can be separated by sets which are both open and closed.
That is, G is totally disconnected (two distinct points belong to different connected compo-
nents).

(32.3) Proof of the fundamental theorem.– Recall the set maps

F : {Subgroups of G (L/K)} → {Subextensions of L/K},

G : {Subextensions of L/K} → {Subgroups of G (L/K)}
given by F(H) = LH and G(E) = G (L/E).

1. For each subextension K ⊂ E ⊂ L, G (L/E) ⊂ G (L/K) is a closed subgroup.
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Let H = G (L/E) and G = G (L/K). To show that H = H, it is enough to prove that
every σ ∈ H is an element of H. For σ to be in the closure of H, it is necessary and suf-
ficient that for each i ∈ I, σUi(e) ∩ H 6= ∅. For z ∈ E, choose i ∈ I so that z ∈ Li. Let
h = σg ∈ σUi(e) ∩ H (recall Ui(e) is normal). Then z = h(z) = σ(g(z)) = σ(z). Thus
σ|E = IdE proving that σ ∈ H as claimed.

2. For any subgroup H of G (L/K), we have LH = LH .

(It is the same argument as for the proof of 1 above). Since H ⊂ H, it is clear that

LH ⊂ LH . Conversely, let z ∈ L be fixed by every element of H, and let σ ∈ H. We want
to show that σ(z) = z. Choose i ∈ I such that z ∈ Li. As σUi(e) ∩ H 6= ∅, we can write
σ = gh, where g ∈ Ui(e) and h ∈ H. Now h(z) = z = g(z), which implies σ(z) = z.

3. Finally, if H ⊂ G (L/K) is a subgroup, and E = LH , then G (L/E) = H.

We already know that L/E is a Galois extension, and G (L/E) contains H and is closed.
Therefore, H ⊂ G (L/E). Now assume that σ ∈ G (L/E). In order to show that σ ∈ H, we
need to prove that for every i ∈ I, σUi(e) ∩ H 6= ∅. That is, there exists h ∈ H such that
φi(h) = φi(σ).

Now let Ni = LiE ⊂ L be the smallest field containing both Li and E. Note that Ni/E
is a finite Galois extension: (i) if Li is the splitting extension of a set Pi ⊂ K[x], then LiE
is the splitting extension of the same set of polynomials, viewed as elements of E[x], (ii)
[Ni : E] ≤ [Li : K] <∞.

Let pi : G (L/E)→ G (Ni/E) be the restriction map. Note that N
pi(H)
i = E since LH = E.

From the theorem for the finite case (Theorem 31.1), we conclude that pi(H) = G (Ni/E).
So, there exists h ∈ H such that pi(h) = pi(σ). Since φi restricted to G (L/E) can be written
as the composition:

G (L/E)
pi−→ G (Ni/E) ↪→ G (Ni/K)→ G (Li/K) ,

we conclude that φi(g) = φi(σ), as required.


