LECTURE 33

(33.0) Fundamental theorem of Galois theory.— Recall that last time we proved the
following result. For an algebraic Galois extension L/K, there is a topology on the Galois
group G (L/K), with regards to which we have bijections:

g Closed subgroups

of G(L/K)

Subextensions

of L/IK

F

Here, F(H) = L and G(F) = G(L/E).

These notes contain a description of the Galois group of the algebraic closure of a finite
field, as a topological group. The main theorem is stated and proved for F,, though the
argument is valid for any finite field (necessarily of the form F,r, see Theorem 33.2 below).
Thus, for any finite field k&, the Galois group G (E/ kz) is independent of k, and is given by

Z =limZ/nZ.
(—

n

(33.1) A useful lemma.—
Lemma. Let F be a field and A C F* a finite subgroup. Then A is cyclic.

PROOF. Let m € Z>; be such that mZ C 7Z is the annihilator of A. That is, m is the
smallest positive integer such that a™ = 1 for every a € A. Thus, every element of A is a
root of 2 — 1. Since a polynomial cannot have more roots than its degree, we have |A| < m.
Note that m < |A[, since a4l = 1 for every a € A, which proves that m = |A|. By HW 10,
Problem 12, there exists x € A of order m, proving that A is cyclic. O

(33.2) Finite fields.— Let us fix p € Z>o a prime number. Let K be a finite field of
characteristic p. Then [K : F,| = r implies that K has ¢ = p" elements.

Theorem. For each r € Z>1, there exists a unique (up to isomorphism) field with ¢ = p”
elements, denoted by F,. This field K is determined by the following equivalent properties.

(1) K is the splitting extension of x? — x € Fy[z].
(2) Let IE‘TP be the algebraic closure of F),, and let o, be the Frobenius endomorphism of
F,. Then K ={a € F,:0,(a) = a}.
Moreover, there exists a € K such that K = Fy(a).

PROOF. Since |K| = ¢, K* is a finite abelian group of order ¢ — 1, proving that a?~* = 1 for
every a € K*. This implies that every element of K is a solution of 29 — x = 0. Hence K
consists of all (distinct) roots of ¢ —x € Fy[z]. By definition, K is the splitting extension of
this polynomial, proving its uniqueness and (1) above. (2) is merely a reformulation of (1),

. . . . T
since a;(oz) = « is same as saying that « is a root of 7 — z.
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Note that K~ is a cyclic group, by Lemma 33.1 above. Let a € K* be its generator. Then
K =TFy(a). O

(33.3) Galois group of F,/F,.— Again we fix a prime number p € Z>,. For any field K of
characteristic p, we will denote by o, the Frobenius endomorphism of K.

Let E be the algebraic closure of F,,. As a corollary of Theorem 33.2, we have the following
description of finite subextensions of F,,.

Corollary.

(1) Every finite subextension K/F, of F,/F, is Galois.
(2) We have a bijection between the set of finite (Galois) subextensions of ¥, /F, and Z>,:

TEZleKT:Fpr
(3) G(F,r/F,) = Z/rZ is generated by the Frobenius automorphism o,.

Hence, we have:

G (F,/F,) = lim Z/rZ

TEZZl

Note that the inverse system appearing above is based on the partially ordered set Z>;,
where the partial order is via divisibility. That is, we have a group homomorphism pp, :
Z/nZ — Z/mZ, sending 1 to 1, assuming that m divides n.

(33.4) G (]ITp/IFp) is (topologically) cyclic.— By our description of the topology on the
Galois group (see Lecture 32, §32.2), the following sets are open and form a fundamental
system of neighbourhoods of identity:

U,={9€G (]PT,/FP) : glr,. = 1d}.
Note that U, = G (F,/Fyn).

Proposition. G (E/Fp) is topologically generated by the Frobenius automorphism o,. The
subgroup generated by o, is isomorphic to Z and is dense on G (E/Fp).

PRrROOF. This follows easily from the fundamental theorem, since if H = (o,), then:
=\ H ——\G
(Fp) =F,= (Fp) )

implying that H = G.

Let us try to prove it directly. That is, given g € G, and n € Z>;, we have to prove
that gU, N H # (). In other words, gle,n = a’;]FPn for some k. This is obviously true, since
G (Fpn/F,) is cyclic and generated by o,.
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It remains to show that H = Z. If not, then there exists N such that ofgv = Id on E.

But that would mean that F, = [F,~ is finite, contradicting the fact that algebraically closed
fields are necessarily infinite. O

(33.5) (—adic integers.— Let Z denote the set Z>q, with partial order given by divisibilityﬂ.

m,n € 7, m < n <= m divides n.

Let P denote the set of prime numbers and for ¢ € P, consider the totally ordered subset
Z(0) C 7Z given by

Z(g) = {gr re Zzo}.
We have the following inverse limits:
7 :=limZ/nZ, Zy:= lim Z/U"Z.
nez erez(0)

Remark. For each prime number ¢, Z, is a topological ring, called the ring of /—adic integers.
Z also has a ring structure, though in the statement G (Fp /Fp) = 7, we are only claiming
isomorphism of topological groups.

Zy is known to be uncountable. For instance, for ¢ = 2, Z, is homeomorphic to the Cantor
set (the one obtained by repeatedly removing the middle third from an interval) - left as an
interesting exercise.

Proposition.

12

Z
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Idea of the proof. It is an interesting exercise to work out the details of this isomorphism.
The underlying idea is the chinese remainder theorem.
A typical element of Z is a sequence of numbers (@pn)n>1 such that
e a,c{0,....n—1}.
e For each n, k € Z>1, a,, = ay, modulo n.

We claim that such a sequence of numbers is completely determined by its coordinates
placed at powers of primes. That is, if ¢ and b are two elements of 7 such that for every
prime number ¢, and non—negative integer r, we have a, = by, then a = b.

To see why this is true, let n be an arbitrary positive integer, and let n = (7' - - - (;* be its
prime factorization. By Chinese remainder theorem:

ZInZ 2 TIPT X - x L) OFT.

where the map sends z to its respective residue class modulo powers of primes on the right
hand side. Thus, if we know that a,; = b, for every j, then a, = by,.
J J

T am using a different notation Z, so as not to confuse its partial order with the usual total order on
integers.



