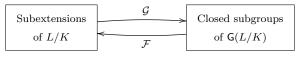
LECTURE 33

(33.0) Fundamental theorem of Galois theory.– Recall that last time we proved the following result. For an algebraic Galois extension L/K, there is a topology on the Galois group G(L/K), with regards to which we have bijections:



Here, $\mathcal{F}(H) = L^H$ and $\mathcal{G}(E) = \mathsf{G}(L/E)$.

These notes contain a description of the Galois group of the algebraic closure of a finite field, as a topological group. The main theorem is stated and proved for \mathbb{F}_p , though the argument is valid for any finite field (necessarily of the form \mathbb{F}_{p^r} , see Theorem 33.2 below). Thus, for any finite field k, the Galois group $G(\overline{k}/k)$ is independent of k, and is given by $\widehat{\mathbb{Z}} = \lim_{n \to \infty} \mathbb{Z}/n\mathbb{Z}$.

(33.1) A useful lemma.–

Lemma. Let F be a field and $A \subset F^{\times}$ a finite subgroup. Then A is cyclic.

PROOF. Let $m \in \mathbb{Z}_{\geq 1}$ be such that $m\mathbb{Z} \subset \mathbb{Z}$ is the annihilator of A. That is, m is the smallest positive integer such that $a^m = 1$ for every $a \in A$. Thus, every element of A is a root of $x^m - 1$. Since a polynomial cannot have more roots than its degree, we have $|A| \leq m$. Note that $m \leq |A|$, since $a^{|A|} = 1$ for every $a \in A$, which proves that m = |A|. By HW 10, Problem 12, there exists $x \in A$ of order m, proving that A is cyclic.

(33.2) Finite fields. Let us fix $p \in \mathbb{Z}_{\geq 2}$ a prime number. Let K be a finite field of characteristic p. Then $[K : \mathbb{F}_p] = r$ implies that K has $q = p^r$ elements.

Theorem. For each $r \in \mathbb{Z}_{\geq 1}$, there exists a unique (up to isomorphism) field with $q = p^r$ elements, denoted by \mathbb{F}_q . This field K is determined by the following equivalent properties.

- (1) K is the splitting extension of $x^q x \in \mathbb{F}_p[x]$.
- (2) Let $\overline{\mathbb{F}_p}$ be the algebraic closure of \mathbb{F}_p , and let σ_p be the Frobenius endomorphism of $\overline{\mathbb{F}_p}$. Then $K = \{ \alpha \in \overline{\mathbb{F}_p} : \sigma_p^r(\alpha) = \alpha \}.$

Moreover, there exists $a \in K$ such that $K = \mathbb{F}_p(a)$.

PROOF. Since |K| = q, K^{\times} is a finite abelian group of order q-1, proving that $a^{q-1} = 1$ for every $a \in K^{\times}$. This implies that every element of K is a solution of $x^q - x = 0$. Hence Kconsists of all (distinct) roots of $x^q - x \in \mathbb{F}_p[x]$. By definition, K is the splitting extension of this polynomial, proving its uniqueness and (1) above. (2) is merely a reformulation of (1), since $\sigma_p^r(\alpha) = \alpha$ is same as saying that α is a root of $x^{p^r} - x$. Note that K^{\times} is a cyclic group, by Lemma 33.1 above. Let $a \in K^{\times}$ be its generator. Then $K = \mathbb{F}_p(a)$.

(33.3) Galois group of $\overline{\mathbb{F}_p}/\mathbb{F}_p$. – Again we fix a prime number $p \in \mathbb{Z}_{\geq 2}$. For any field K of characteristic p, we will denote by σ_p the Frobenius endomorphism of K.

Let $\overline{\mathbb{F}_p}$ be the algebraic closure of \mathbb{F}_p . As a corollary of Theorem 33.2, we have the following description of finite subextensions of $\overline{\mathbb{F}_p}$.

Corollary.

- (1) Every finite subextension K/\mathbb{F}_p of $\overline{\mathbb{F}_p}/\mathbb{F}_p$ is Galois.
- (2) We have a bijection between the set of finite (Galois) subextensions of $\overline{\mathbb{F}_p}/\mathbb{F}_p$ and $\mathbb{Z}_{>1}$:

$$r \in \mathbb{Z}_{>1} \rightsquigarrow K_r = \mathbb{F}_{p^r}$$

(3) $\mathsf{G}(\mathbb{F}_{p^r}/\mathbb{F}_p) \cong \mathbb{Z}/r\mathbb{Z}$ is generated by the Frobenius automorphism σ_p .

Hence, we have:

$$\mathsf{G}\left(\overline{\mathbb{F}_p}/\mathbb{F}_p\right) \cong \lim_{\substack{r \in \mathbb{Z}_{\geq 1}}} \mathbb{Z}/r\mathbb{Z}$$

Note that the inverse system appearing above is based on the partially ordered set $\mathbb{Z}_{\geq 1}$, where the partial order is via divisibility. That is, we have a group homomorphism ρ_{mn} : $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$, sending $\overline{1}$ to $\overline{1}$, assuming that m divides n.

(33.4) $G(\overline{\mathbb{F}_p}/\mathbb{F}_p)$ is (topologically) cyclic.— By our description of the topology on the Galois group (see Lecture 32, §32.2), the following sets are open and form a fundamental system of neighbourhoods of identity:

$$U_n = \{g \in \mathsf{G}\left(\overline{\mathbb{F}_p}/\mathbb{F}_p\right) : g|_{\mathbb{F}_p^n} = \mathrm{Id}\}.$$

Note that $U_n = \mathsf{G}\left(\overline{\mathbb{F}_p}/\mathbb{F}_{p^n}\right)$.

Proposition. $G\left(\overline{\mathbb{F}}_p/\mathbb{F}_p\right)$ is topologically generated by the Frobenius automorphism σ_p . The subgroup generated by σ_p is isomorphic to \mathbb{Z} and is dense on $G\left(\overline{\mathbb{F}}_p/\mathbb{F}_p\right)$.

PROOF. This follows easily from the fundamental theorem, since if $H = \langle \sigma_p \rangle$, then:

$$\left(\overline{\mathbb{F}_p}\right)^H = \mathbb{F}_p = \left(\overline{\mathbb{F}_p}\right)^G$$
,

implying that $\overline{H} = G$.

Let us try to prove it directly. That is, given $g \in G$, and $n \in \mathbb{Z}_{\geq 1}$, we have to prove that $gU_n \cap H \neq \emptyset$. In other words, $g|_{\mathbb{F}_{p^n}} = \sigma_p^k|_{\mathbb{F}_{p^n}}$ for some k. This is obviously true, since $\mathsf{G}(\mathbb{F}_{p^n}/\mathbb{F}_p)$ is cyclic and generated by σ_p .

LECTURE 33

It remains to show that $H \cong \mathbb{Z}$. If not, then there exists N such that $\sigma_p^N = \text{Id on } \overline{\mathbb{F}_p}$. But that would mean that $\overline{\mathbb{F}_p} = \mathbb{F}_{p^N}$ is finite, contradicting the fact that algebraically closed fields are necessarily infinite.

(33.5) ℓ -adic integers. - Let Z denote the set $\mathbb{Z}_{\geq 1}$, with partial order given by divisibility¹.

$$m, n \in \mathbb{Z}, \qquad m \leq n \iff m \text{ divides } n.$$

Let P denote the set of prime numbers and for $\ell \in P$, consider the totally ordered subset $Z(\ell) \subset Z$ given by

$$\mathbf{Z}(\ell) = \{\ell^r : r \in \mathbb{Z}_{>0}\}.$$

We have the following inverse limits:

$$\widehat{\mathbb{Z}}:=\lim_{n\in {\mathbb{Z}}} {\mathbb{Z}}/n{\mathbb{Z}}, \qquad {\mathbb{Z}}_\ell:=\lim_{\ell^r\in {\mathbb{Z}}(\ell)} {\mathbb{Z}}/\ell^r{\mathbb{Z}}.$$

Remark. For each prime number ℓ , \mathbb{Z}_{ℓ} is a topological ring, called the ring of ℓ -adic integers. $\widehat{\mathbb{Z}}$ also has a ring structure, though in the statement $G(\overline{\mathbb{F}_p}/\mathbb{F}_p) \cong \widehat{\mathbb{Z}}$, we are only claiming isomorphism of topological *groups*.

 \mathbb{Z}_{ℓ} is known to be uncountable. For instance, for $\ell = 2$, \mathbb{Z}_2 is homeomorphic to the Cantor set (the one obtained by repeatedly removing the middle third from an interval) - left as an interesting exercise.

Proposition.

$$\widehat{\mathbb{Z}}\cong\prod_{\ell\in P}\mathbb{Z}_\ell$$

Idea of the proof. It is an interesting exercise to work out the details of this isomorphism. The underlying idea is the *chinese remainder theorem*.

A typical element of $\widehat{\mathbb{Z}}$ is a sequence of numbers $(a_n)_{n\geq 1}$ such that

- $a_n \in \{0, \ldots, n-1\}.$
- For each $n, k \in \mathbb{Z}_{\geq 1}$, $a_n = a_{kn}$ modulo n.

We claim that such a sequence of numbers is completely determined by its coordinates placed at powers of primes. That is, if \underline{a} and \underline{b} are two elements of $\widehat{\mathbb{Z}}$ such that for every prime number ℓ , and non-negative integer r, we have $a_{\ell r} = b_{\ell r}$, then $\underline{a} = \underline{b}$.

To see why this is true, let n be an arbitrary positive integer, and let $n = \ell_1^{r_1} \cdots \ell_k^{r_k}$ be its prime factorization. By Chinese remainder theorem:

$$\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}/\ell_1^{r_1}\mathbb{Z} imes\cdots imes\mathbb{Z}/\ell_k^{r_k}\mathbb{Z}$$
,

where the map sends x to its respective residue class modulo powers of primes on the right hand side. Thus, if we know that $a_{\ell_i^{r_j}} = b_{\ell_i^{r_j}}$ for every j, then $a_n = b_n$.

¹I am using a different notation Z, so as not to confuse its partial order with the usual total order on integers.