LECTURE 33

(33.0) Fundamental theorem of Galois theory.- Recall that last time we proved the following result. For an algebraic Galois extension L / K, there is a topology on the Galois group $\mathrm{G}(L / K)$, with regards to which we have bijections:

Here, $\mathcal{F}(H)=L^{H}$ and $\mathcal{G}(E)=\mathrm{G}(L / E)$.
These notes contain a description of the Galois group of the algebraic closure of a finite field, as a topological group. The main theorem is stated and proved for \mathbb{F}_{p}, though the argument is valid for any finite field (necessarily of the form $\mathbb{F}_{p^{r}}$, see Theorem 33.2 below). Thus, for any finite field k, the Galois group $\mathrm{G}(\bar{k} / k)$ is independent of k, and is given by

(33.1) A useful lemma.-

Lemma. Let F be a field and $A \subset F^{\times}$a finite subgroup. Then A is cyclic.
Proof. Let $m \in \mathbb{Z}_{\geq 1}$ be such that $m \mathbb{Z} \subset \mathbb{Z}$ is the annihilator of A. That is, m is the smallest positive integer such that $a^{m}=1$ for every $a \in A$. Thus, every element of A is a root of $x^{m}-1$. Since a polynomial cannot have more roots than its degree, we have $|A| \leq m$. Note that $m \leq|A|$, since $a^{|A|}=1$ for every $a \in A$, which proves that $m=|A|$. By HW 10, Problem 12, there exists $x \in A$ of order m, proving that A is cyclic.
(33.2) Finite fields.- Let us fix $p \in \mathbb{Z}_{\geq 2}$ a prime number. Let K be a finite field of characteristic p. Then $\left[K: \mathbb{F}_{p}\right]=r$ implies that K has $q=p^{r}$ elements.

Theorem. For each $r \in \mathbb{Z}_{\geq 1}$, there exists a unique (up to isomorphism) field with $q=p^{r}$ elements, denoted by \mathbb{F}_{q}. This field K is determined by the following equivalent properties.
(1) K is the splitting extension of $x^{q}-x \in \mathbb{F}_{p}[x]$.
(2) Let $\overline{\mathbb{F}_{p}}$ be the algebraic closure of \mathbb{F}_{p}, and let σ_{p} be the Frobenius endomorphism of $\overline{\mathbb{F}_{p}}$. Then $K=\left\{\alpha \in \overline{\mathbb{F}_{p}}: \sigma_{p}^{r}(\alpha)=\alpha\right\}$.
Moreover, there exists $a \in K$ such that $K=\mathbb{F}_{p}(a)$.
Proof. Since $|K|=q, K^{\times}$is a finite abelian group of order $q-1$, proving that $a^{q-1}=1$ for every $a \in K^{\times}$. This implies that every element of K is a solution of $x^{q}-x=0$. Hence K consists of all (distinct) roots of $x^{q}-x \in \mathbb{F}_{p}[x]$. By definition, K is the splitting extension of this polynomial, proving its uniqueness and (1) above. (2) is merely a reformulation of (1), since $\sigma_{p}^{r}(\alpha)=\alpha$ is same as saying that α is a root of $x^{p^{r}}-x$.

Note that K^{\times}is a cyclic group, by Lemma 33.1 above. Let $a \in K^{\times}$be its generator. Then $K=\mathbb{F}_{p}(a)$.
(33.3) Galois group of $\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}$. - Again we fix a prime number $p \in \mathbb{Z}_{\geq 2}$. For any field K of characteristic p, we will denote by σ_{p} the Frobenius endomorphism of K.

Let $\overline{\mathbb{F}_{p}}$ be the algebraic closure of \mathbb{F}_{p}. As a corollary of Theorem 33.2, we have the following description of finite subextensions of $\overline{\mathbb{F}_{p}}$.

Corollary.

(1) Every finite subextension K / \mathbb{F}_{p} of $\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}$ is Galois.
(2) We have a bijection between the set of finite (Galois) subextensions of $\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}$ and $\mathbb{Z}_{\geq 1}$:

$$
r \in \mathbb{Z}_{\geq 1} \rightsquigarrow K_{r}=\mathbb{F}_{p^{r}}
$$

(3) $\mathrm{G}\left(\mathbb{F}_{p^{r}} / \mathbb{F}_{p}\right) \cong \mathbb{Z} / r \mathbb{Z}$ is generated by the Frobenius automorphism σ_{p}.

Hence, we have:

$$
\mathrm{G}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right) \cong \lim _{r \in \mathbb{\mathbb { Z } _ { \geq 1 }}} \mathbb{Z} / r \mathbb{Z}
$$

Note that the inverse system appearing above is based on the partially ordered set $\mathbb{Z}_{\geq 1}$, where the partial order is via divisibility. That is, we have a group homomorphism $\rho_{m n}$: $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$, sending $\overline{1}$ to $\overline{1}$, assuming that m divides n.
(33.4) G $\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right)$ is (topologically) cyclic.- By our description of the topology on the Galois group (see Lecture 32, §32.2), the following sets are open and form a fundamental system of neighbourhoods of identity:

$$
U_{n}=\left\{g \in \mathrm{G}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right):\left.g\right|_{\mathbb{F}_{p^{n}}}=\mathrm{Id}\right\}
$$

Note that $U_{n}=\mathrm{G}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p^{n}}\right)$.

Proposition. $\mathrm{G}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right)$ is topologically generated by the Frobenius automorphism σ_{p}. The subgroup generated by σ_{p} is isomorphic to \mathbb{Z} and is dense on $\mathrm{G}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right)$.

Proof. This follows easily from the fundamental theorem, since if $H=\left\langle\sigma_{p}\right\rangle$, then:

$$
\left(\overline{\mathbb{F}_{p}}\right)^{H}=\mathbb{F}_{p}=\left(\overline{\mathbb{F}_{p}}\right)^{G}
$$

implying that $\bar{H}=G$.
Let us try to prove it directly. That is, given $g \in G$, and $n \in \mathbb{Z}_{\geq 1}$, we have to prove that $g U_{n} \cap H \neq \emptyset$. In other words, $\left.g\right|_{\mathbb{F}_{p^{n}}}=\left.\sigma_{p}^{k}\right|_{\mathbb{F}_{p^{n}}}$ for some k. This is obviously true, since $\mathrm{G}\left(\mathbb{F}_{p^{n}} / \mathbb{F}_{p}\right)$ is cyclic and generated by σ_{p}.

It remains to show that $H \cong \mathbb{Z}$. If not, then there exists N such that $\sigma_{p}^{N}=$ Id on $\overline{\mathbb{F}_{p}}$. But that would mean that $\overline{\mathbb{F}_{p}}=\mathbb{F}_{p^{N}}$ is finite, contradicting the fact that algebraically closed fields are necessarily infinite.
(33.5) ℓ-adic integers.- Let Z denote the set $\mathbb{Z}_{\geq 1}$, with partial order given by divisibility ${ }^{1}$.

$$
m, n \in \mathrm{Z}, \quad m \leq n \Longleftrightarrow m \text { divides } n
$$

Let P denote the set of prime numbers and for $\ell \in \mathrm{P}$, consider the totally ordered subset $\mathrm{Z}(\ell) \subset \mathrm{Z}$ given by

$$
\mathrm{Z}(\ell)=\left\{\ell^{r}: r \in \mathbb{Z}_{\geq 0}\right\}
$$

We have the following inverse limits:

$$
\widehat{\mathbb{Z}}:=\lim _{n \in \mathbb{Z}} \mathbb{Z} / n \mathbb{Z}, \quad \mathbb{Z}_{\ell}:=\lim _{\ell^{r} \in \mathbb{Z}(\ell)} \mathbb{Z} / \ell^{r} \mathbb{Z}
$$

Remark. For each prime number ℓ, \mathbb{Z}_{ℓ} is a topological ring, called the ring of ℓ-adic integers. $\widehat{\mathbb{Z}}$ also has a ring structure, though in the statement $G\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right) \cong \widehat{\mathbb{Z}}$, we are only claiming isomorphism of topological groups.
\mathbb{Z}_{ℓ} is known to be uncountable. For instance, for $\ell=2, \mathbb{Z}_{2}$ is homeomorphic to the Cantor set (the one obtained by repeatedly removing the middle third from an interval) - left as an interesting exercise.

Proposition.

$$
\widehat{\mathbb{Z}} \cong \prod_{\ell \in \mathrm{P}} \mathbb{Z}_{\ell}
$$

Idea of the proof. It is an interesting exercise to work out the details of this isomorphism. The underlying idea is the chinese remainder theorem.

A typical element of $\widehat{\mathbb{Z}}$ is a sequence of numbers $\left(a_{n}\right)_{n \geq 1}$ such that

- $a_{n} \in\{0, \ldots, n-1\}$.
- For each $n, k \in \mathbb{Z}_{\geq 1}, a_{n}=a_{k n}$ modulo n.

We claim that such a sequence of numbers is completely determined by its coordinates placed at powers of primes. That is, if \underline{a} and \underline{b} are two elements of $\widehat{\mathbb{Z}}$ such that for every prime number ℓ, and non-negative integer r, we have $a_{\ell^{r}}=b_{\ell^{r}}$, then $\underline{a}=\underline{b}$.

To see why this is true, let n be an arbitrary positive integer, and let $n=\ell_{1}^{r_{1}} \cdots \ell_{k}^{r_{k}}$ be its prime factorization. By Chinese remainder theorem:

$$
\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z} / \ell_{1}^{r_{1}} \mathbb{Z} \times \cdots \times \mathbb{Z} / \ell_{k}^{r_{k}} \mathbb{Z}
$$

where the map sends x to its respective residue class modulo powers of primes on the right hand side. Thus, if we know that $a_{\ell_{j}^{r_{j}}}=b_{\ell_{j}^{r_{j}}}$ for every j, then $a_{n}=b_{n}$.

[^0]
[^0]: ${ }^{1}$ I am using a different notation Z , so as not to confuse its partial order with the usual total order on integers.

