
LECTURE 33

(33.0) Fundamental theorem of Galois theory.– Recall that last time we proved the
following result. For an algebraic Galois extension L/K, there is a topology on the Galois
group G (L/K), with regards to which we have bijections:

Subextensions

of L/K

Closed subgroups

of G(L/K)

G ..

F
nn

Here, F(H) = LH and G(E) = G (L/E).

These notes contain a description of the Galois group of the algebraic closure of a finite
field, as a topological group. The main theorem is stated and proved for Fp, though the
argument is valid for any finite field (necessarily of the form Fpr , see Theorem 33.2 below).

Thus, for any finite field k, the Galois group G
(
k/k
)

is independent of k, and is given by

Ẑ = lim←−
n

Z/nZ.

(33.1) A useful lemma.–

Lemma. Let F be a field and A ⊂ F× a finite subgroup. Then A is cyclic.

Proof. Let m ∈ Z≥1 be such that mZ ⊂ Z is the annihilator of A. That is, m is the
smallest positive integer such that am = 1 for every a ∈ A. Thus, every element of A is a
root of xm−1. Since a polynomial cannot have more roots than its degree, we have |A| ≤ m.
Note that m ≤ |A|, since a|A| = 1 for every a ∈ A, which proves that m = |A|. By HW 10,
Problem 12, there exists x ∈ A of order m, proving that A is cyclic. �

(33.2) Finite fields.– Let us fix p ∈ Z≥2 a prime number. Let K be a finite field of
characteristic p. Then [K : Fp] = r implies that K has q = pr elements.

Theorem. For each r ∈ Z≥1, there exists a unique (up to isomorphism) field with q = pr

elements, denoted by Fq. This field K is determined by the following equivalent properties.

(1) K is the splitting extension of xq − x ∈ Fp[x].

(2) Let Fp be the algebraic closure of Fp, and let σp be the Frobenius endomorphism of

Fp. Then K = {α ∈ Fp : σr
p(α) = α}.

Moreover, there exists a ∈ K such that K = Fp(a).

Proof. Since |K| = q, K× is a finite abelian group of order q− 1, proving that aq−1 = 1 for
every a ∈ K×. This implies that every element of K is a solution of xq − x = 0. Hence K
consists of all (distinct) roots of xq−x ∈ Fp[x]. By definition, K is the splitting extension of
this polynomial, proving its uniqueness and (1) above. (2) is merely a reformulation of (1),
since σr

p(α) = α is same as saying that α is a root of xp
r − x.
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Note that K× is a cyclic group, by Lemma 33.1 above. Let a ∈ K× be its generator. Then
K = Fp(a). �

(33.3) Galois group of Fp/Fp.– Again we fix a prime number p ∈ Z≥2. For any field K of
characteristic p, we will denote by σp the Frobenius endomorphism of K.

Let Fp be the algebraic closure of Fp. As a corollary of Theorem 33.2, we have the following

description of finite subextensions of Fp.

Corollary.

(1) Every finite subextension K/Fp of Fp/Fp is Galois.

(2) We have a bijection between the set of finite (Galois) subextensions of Fp/Fp and Z≥1:

r ∈ Z≥1  Kr = Fpr

(3) G (Fpr/Fp) ∼= Z/rZ is generated by the Frobenius automorphism σp.

Hence, we have:

G
(
Fp/Fp

) ∼= lim←−
r∈Z≥1

Z/rZ

Note that the inverse system appearing above is based on the partially ordered set Z≥1,
where the partial order is via divisibility. That is, we have a group homomorphism ρmn :
Z/nZ→ Z/mZ, sending 1 to 1, assuming that m divides n.

(33.4) G
(
Fp/Fp

)
is (topologically) cyclic.– By our description of the topology on the

Galois group (see Lecture 32, §32.2), the following sets are open and form a fundamental
system of neighbourhoods of identity:

Un = {g ∈ G
(
Fp/Fp

)
: g|Fpn

= Id}.

Note that Un = G
(
Fp/Fpn

)
.

Proposition. G
(
Fp/Fp

)
is topologically generated by the Frobenius automorphism σp. The

subgroup generated by σp is isomorphic to Z and is dense on G
(
Fp/Fp

)
.

Proof. This follows easily from the fundamental theorem, since if H = 〈σp〉, then:(
Fp

)H
= Fp =

(
Fp

)G
,

implying that H = G.
Let us try to prove it directly. That is, given g ∈ G, and n ∈ Z≥1, we have to prove

that gUn ∩H 6= ∅. In other words, g|Fpn
= σk

p |Fpn
for some k. This is obviously true, since

G (Fpn/Fp) is cyclic and generated by σp.
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It remains to show that H ∼= Z. If not, then there exists N such that σN
p = Id on Fp.

But that would mean that Fp = FpN is finite, contradicting the fact that algebraically closed
fields are necessarily infinite. �

(33.5) `–adic integers.– Let Z denote the set Z≥1, with partial order given by divisibility1.

m,n ∈ Z, m ≤ n ⇐⇒ m divides n.

Let P denote the set of prime numbers and for ` ∈ P, consider the totally ordered subset
Z(`) ⊂ Z given by

Z(`) = {`r : r ∈ Z≥0}.
We have the following inverse limits:

Ẑ := lim
n∈Z

Z/nZ, Z` := lim
`r∈Z(`)

Z/`rZ.

Remark. For each prime number `, Z` is a topological ring, called the ring of `–adic integers.

Ẑ also has a ring structure, though in the statement G
(
Fp/Fp

) ∼= Ẑ, we are only claiming
isomorphism of topological groups.

Z` is known to be uncountable. For instance, for ` = 2, Z2 is homeomorphic to the Cantor
set (the one obtained by repeatedly removing the middle third from an interval) - left as an
interesting exercise.

Proposition.

Ẑ ∼=
∏
`∈P

Z`

Idea of the proof. It is an interesting exercise to work out the details of this isomorphism.
The underlying idea is the chinese remainder theorem.

A typical element of Ẑ is a sequence of numbers (an)n≥1 such that

• an ∈ {0, . . . , n− 1}.
• For each n, k ∈ Z≥1, an = akn modulo n.

We claim that such a sequence of numbers is completely determined by its coordinates

placed at powers of primes. That is, if a and b are two elements of Ẑ such that for every
prime number `, and non–negative integer r, we have a`r = b`r , then a = b.

To see why this is true, let n be an arbitrary positive integer, and let n = `r11 · · · `
rk
k be its

prime factorization. By Chinese remainder theorem:

Z/nZ ∼= Z/`r11 Z× · · · × Z/`rkk Z ,

where the map sends x to its respective residue class modulo powers of primes on the right
hand side. Thus, if we know that a

`
rj
j

= b
`
rj
j

for every j, then an = bn.

1I am using a different notation Z, so as not to confuse its partial order with the usual total order on
integers.


