
LECTURE 34

(34.0) Overview.– In this lecture we will see some equations (Noether’s equations) related
to the cohomology of the Galois group. Theorem 34.4 and Corollary 34.5 are the main results
of these notes. Theorem 34.4 is proved using some basic facts about rationalily over the base
field - which was outlined in Homework 10, problems 10 and 11. The theorem itself, and
its proof are not part of the syllabus. In that sense it is somewhat optional. However, its
application (Corollary 34.5) is needed later in studying cyclic (and more generally abelian)
extensions. For this reason, I have included a “direct proof” of this corollary, not assuming
Theorem 34.4. In the end these results rely heavily on Dedekind’s independence of charac-
ters, see Lecture 29, Sections 29.1 and 29.2.

(34.1) Rationality over the base field.– Recall the notion of a K–structure on a vector
space. Namely, let L/K be a Galois extension, and let V be an L–vector space.

Definition. A K–structure on V is a sub-K-vector space V 0 ⊂ V such that extension of
scalars ϕ : V 0 ⊗K L→ V is an isomorphism of L–vector spaces.

Assuming (V, V 0) is a K–structure on V as above, a vector x ∈ V is said to be rational
over K if x ∈ V 0. Similarly, a sub-L-vector space W ⊂ V is said to be rational over K if
W 0 := W ∩ V 0 is a K–structure on W .

Let (V`, V
0
` ), ` = 1, 2 be two L–vector spaces together with their respective K–structures.

Let f : V1 → V2 be an L–linear map. We say that f is rational over K if f(V 0
1 ) ⊂ V 0

2 .

Remark. A K–structure on V is essentially same as a choice of a basis of V . Namely, if
{vi} ⊂ V is a basis of V (over L), we can define V 0 to be the K–span of {vi}. Conversely,
if {ei} is a basis of V 0, it is clear from the definition that {ei} will be a basis (over L) of V .

(34.2) Rationality via Γ–action.– Now, let Γ = G (L/K). Given a K–structure V 0

on an L–vector space V , we can define an action of Γ = G (L/K) on V , via K–linear
automorphisms:

u : Γ→ AutK−vs(V )

as follows. If {ei}i∈I is a basis of V 0, then every x ∈ V can be written as x =
∑

i∈I λiei,
where λi ∈ L. Set:

uσ(x) =
∑
i∈I

σ(λi)ei, ∀ σ ∈ Γ.

Alternately, via the identification ϕ : V 0 ⊗K L
∼−→ V , we have:

For every σ ∈ Γ, uσ = IdV 0 ⊗σ ∈ AutK−vs(V
0 ⊗K L).

This way of defining uσ makes it clear that it is independent of the choice of the basis
{ei}i∈I of V 0. Moreover, the following equation follows directly from the definitions

1
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(Γ–linear) uσ(λv) = σ(λ)uσ(v) ∀ σ ∈ Γ, λ ∈ L, v ∈ V.

Theorem.

(1) x ∈ V is rational over K if and only if uσ(x) = x for every σ ∈ Γ. In other words,
V 0 = V Γ := {v ∈ V : uσ(v) = v, ∀ σ ∈ Γ}.

(2) Let f : V1 → V2 be an L–linear map between two L–vector spaces. Asssume that
V 0
` ⊂ V` is a K–structure (` = 1, 2). Then f is rational over K if, and only if it

commutes with the Γ–action. That is,

f(uσ(x)) = uσ(f(x)), for every σ ∈ Γ, x ∈ V1.

(3) With the same notational set up of the previous part, let G(f) ⊂ V1⊕V2 be the graph
of f . Then f is rational over K if and only if G(f) is rational over K, where the
K–structure on V1 ⊕ V2 is given by V 0

1 ⊕ V 0
2 .

(4) Let W ⊂ V be a sub-L-vector space of V . Then W is rational over K if and only if
uσ(W ) ⊂ W for every σ ∈ Γ.

Proof. (1). Let us choose a basis {ei}i∈I of V 0. Given x ∈ V , we can write it, uniquely, as
a finite sum x =

∑
i∈I λiei, where λi ∈ L. The condition uσ(x) = x is then equivalent to∑

i∈I

(σ(λi)− λi)ei = 0,

which implies (since {ei} is a basis of V as an L–vector space) that σ(λi) = λi. Thus,
uσ(x) = x for every σ, if and only if σ(λi) = λi for every σ and i ∈ I. As L/K is a Galois
extension, this implies that λi ∈ K for every i ∈ I, and hence x ∈ V 0.

(2). Assume that f commutes with Γ–actions. Let v ∈ V 0
1 . Then we have:

f(v) = f(uσ(v)) = uσ(f(v)),

showing that f(v) ∈ V 0
2 by the previous part. Conversely, assume that f is rational over

K, i.e, f(V 0
1 ) ⊂ V 0

2 . Choose a basis {ei}i∈I of V 0
1 . Then, for every v =

∑
i∈I λiei ∈ V , and

σ ∈ Γ, we have:

f(uσ(v)) =
∑
i∈I

σ(λi)f(ei) = uσ(
∑
i∈I

λif(ei)) = uσ(f(v)).

Here, we have used L–linearity of f , K–linearity of uσ and equation (Γ–linear).

(3) is obvious from the definitions.

(4) Let W ⊂ V be a sub-L-vector space of V .
Claim. There exist two sub-L-vector spaces V1, V2 ⊂ V , each rational over K, an L–linear
map f : V1 → V2 such that V = V1 ⊕ V2 and W ⊂ V is identified with the graph of f ,
W = G(f) ⊂ V1 ⊕ V2.

Proof of the claim. We need to make some choices.
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• Let {wj}j∈J be a basis of W (over L).
• Let {eb}b∈B ⊂ V 0 be such that {wj} ∪ {eb} is a basis of V .
• Let {ea}a∈A ⊂ V 0 be such that {ea} ∪ {eb} is a basis of V .

The fact that these choices can be made is a foundational result of linear algebra.
Now let V1 = L− Span{ea} and V2 = L− Span{eb}. These sub-L-vector spaces of V are

rational over K by construction. Moreover, V = V1⊕V2 and for every v1 ∈ V1, there exists a
unique f(v1) ∈ V2 such that v1 +f(v1) ∈ W . This is because each ea can be written uniquely
in the basis {wj} ∪ {eb}. In other words, we have:

V1 ↪→ V � V/W ∼= V2.

Thus, f : V1 → V2 defined as: f(v1) is the unique vector in V2 so that v1 +f(v1) ∈ W satisfies
the requirements of the claim.

Now part (4) follows from parts (2) and (3) (left as an easy exercise). �

(34.3) K–structures via Γ–actions.– Now assume that Γ is finite. Let V be an L–vector
space together with a group homomorphism u : Γ→ AutK−vs(V ) satisfying:

uσ(λv) = σ(λ)uσ(v), ∀ σ ∈ Γ, λ ∈ L, v ∈ V.

Theorem. V 0 = V Γ is a K–structure on V .

Proof. Let ϕ : V 0 ⊗K L → V be the canonical L–linear map. Let u′σ = IdV 0 ⊗σ ∈
AutK(V 0 ⊗K L) be the Γ–action on V 0 ⊗K L (associated to the canonical K–structure
V 0 = V 0 ⊗K K ⊂ V 0 ⊗ L). Let W = Ker(ϕ) ⊂ V 0 ⊗K L. It is clear that u′σ(W ) ⊂ W , for
every σ ∈ Γ, since ϕ commutes with Γ–actions. Theorem 34.2 (4) implies that W 0 = W ∩V 0

spans W as an L–vector space. But for every w ∈ W 0, we have w = ϕ(w) = 0, proving that
W = {0}, i.e, ϕ is injective. Note that we did not use |Γ| <∞ hypothesis for this part.

To prove surjectivity, we have to show that V 0 ⊂ V spans V as an L–vector space. If not,
we will be able to find a non–zero linear form ξ : V → L (L–linear) such that ξ|V0 ≡ 0. Let

v ∈ V be such that ξ(v) 6= 0. Then, for any α ∈ L,
∑
σ∈Γ

uσ(αv) is in V 0, which implies:

0 = ξ(
∑
σ∈Γ

uσ(αv)) = ξ(
∑
σ∈Γ

σ(α)uσ(v)) =
∑
σ∈Γ

σ(α)ξ(uσ(v))

By Dedekind’s independence of characters, this means ξ(uσ(v)) = 0 for every σ ∈ Γ. In
particular, for σ = e, we get ξ(v) = 0 which is a contradiction. �

(34.4) Noether’s equations.– Assume that L/K is a finite Galois extension, with Γ =
G (L/K). Let m,n ∈ Z≥1. For an m × n matrix X = (Xij) ∈ Matm×n(L) and σ ∈ Γ, we
denote by σ(X) = (σ(Xij)).

Theorem. Let U : Γ → GLn(L) be a set map. Then the following two conditions are
equivalent.
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(1) For every σ, τ ∈ Γ, we have

Uστ = Uσ · σ(Uτ )

These equations for the set map U are often called Noether’s equations.

(2) There exists A ∈ GLn(L) such that Uσ = A−1 · σ(A) for every σ ∈ Γ.

Proof. (2)⇒(1) is easily verified as follows.

Uστ = A−1 · σ(τ(A)) = A−1 · σ(A) · σ(A−1) · σ(τ(A)) = Uσ · σ(Uτ ).

Conversely, let U : Γ → GLn(L) be a set map satisfying Noether’s equations. We can
define uσ : Ln → Ln as uσ(ξ) = Uσ ·σ(ξ). Here, we are viewing Ln as n×1 matrices (column
vectors).

• uστ = uσuτ . This is clear, since for every ξ ∈ Ln, we have:

uστ (ξ) = Uστ · σ(τ(ξ)) = Uσ · σ(Uτ ) · σ(τ(ξ)) = Uσ · σ(Uτ · τ(ξ)) = uσ(uτ (ξ)).

• uσ(λξ) = σ(λ)uσ(ξ), for every ξ ∈ Ln and λ ∈ L. This is clear from the definition of
uσ.
• ue = Id, where e ∈ Γ is the neutral element. Using Noether’s equations with σ = τ =
e, we get Ue = U2

e . Since Ue is invertible, this implies that Ue is the identity matrix.

Thus, we have verified the hypotheses of Theorem 34.3, showing that V 0 = (Ln)Γ is a K–
structure on Ln. Unfolding the definitions, this means that dimK(V 0) = n. Let B ∈ GLn(L)
be an invertible matrix whose columns constitute a basis of V 0. The condition uσ(B) = B
translates to Uσ · σ(B) = B. Taking A = B−1 proves our theorem. �

Remark. The statement of this theorem is often written as

H1(Γ,GLn(L)) = {1}

where H1(Γ,M) is the first Galois cohomology group. We will learn more about this next
week during Will Newman’s presentation.

(34.5) Special cases.– The following result is a corollary of Theorem 34.4. Again, L/K is
a finite Galois extension, with Γ = G (L/K).

Corollary.

(1) Let {cσ ∈ L×}σ∈Γ ⊂ L×. Then there exists a ∈ L× such that cσ = σ(a)
a

(∀ σ ∈ Γ) if
and only if cστ = cσσ(cτ ) (∀ σ, τ ∈ Γ).

(2) Let {xσ ∈ L}σ∈L ⊂ L. Then there exists a ∈ L such that xσ = σ(a) − a (∀σ ∈ Γ) if
and only if xστ = xσ + σ(xτ ) (∀ σ, τ ∈ Γ).
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Proof. (1) is obtained by taking n = 1 in Theorem 34.4. (2) is proved using n = 2 and

Uσ =

[
1 xσ
0 1

]
. We give a direct proof below, since this result is going to be crucial in our

study of abelian extensions.

Proof of (1): As it was for the proof of Theorem 34.4, if there exists a ∈ L× such that
cσ = σ(a)/a, then cστ = cσσ(cτ ). Let us prove the converse. Using Dedekind’s independence
of characters,

∑
τ∈Γ cττ : L → L is not identically zero. Meaning, there exists x ∈ L× such

that
b :=

∑
τ∈Γ

cττ(x) 6= 0.

Now, for every σ ∈ Γ, we have:

σ(b) =
∑
τ∈Γ

σ(cτ )σ(τ(x)) =
∑
τ∈Γ

cστ
cσ

(στ)(x) =
1

cσ

∑
τ ′∈Γ

cτ ′τ
′(x) =

b

cσ
.

Here, we changed variables τ ′ = στ . We conclude that, for every σ ∈ Γ, cσ =
b

σ(b)
. (1) is

proved by taking a = b−1.

Proof of (2): Again we only show the sufficiency of Noether’s equations. Namely, assuming
xστ = xσ + σ(xτ ) we will establish the existence of a ∈ L so that xσ = σ(a) − a for every
σ ∈ Γ. Using Dedekind’s independence of characters, we conclude the existence of an element
θ ∈ L so that

y =
∑
τ∈Γ

τ(θ) 6= 0.

Note that σ(y) = y for every σ ∈ Γ, which implies that y ∈ K×. Define:

b =
1

y

∑
τ∈Γ

xττ(θ).

For any σ ∈ Γ, we get, using σ(xτ ) = xστ − xσ:

σ(b) =
1

y

∑
τ

σ(xτ )σ(τ(θ)) =
1

y

∑
τ

(xστ − xσ)(στ)(θ)

=
1

y

∑
τ ′

xτ ′τ
′(θ)− xσ

y

∑
τ ′

τ ′(θ) = b− xσ.

Thus, xσ = b− σ(b) for every σ ∈ Γ. (2) is proved by taking a = −b. �


