LECTURE 35

(35.0) Overview.– Recall that for a Galois extension L/K with Galois group $\Gamma = G(L/K)$, we established a bijection between the following two partially ordered sets (order is inclusion).

Here, we view Γ with the canonical topology of an inverse limit of finite discrete groups. For the rest of the course, we will narrow our focus to the case of finite Γ (so topological considerations are no longer necessary).

We say a finite Galois extension L/K is cyclic (resp. abelian, solvable, simple) if G(L/K) is cyclic (resp. abelian, solvable, simple). Recall that a group G is said to be solvable if there exists a chain of normal subgroups:

$$G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_{\ell} = \{e\} ,$$

such that G_j/G_{j+1} is abelian, for every $0 \leq j < \ell$. Thus, every abelian group is solvable. Solvability of an extension L/K is equivalent to solvability by radicals of any minimal polynomial $\mathbf{m}_{\alpha}(x)$, where $\alpha \in L$.

We say a group G is *simple* if there are no non-trivial, proper normal subgroups of G. That is, $H \triangleleft G \Rightarrow H = \{e\}$ or G. By convention, we do not consider the trivial group to be simple. The only abelian, simple, finite groups are $\mathbb{Z}/p\mathbb{Z}$ where $p \in \mathbb{Z}_{\geq 2}$ is a prime number.

Our next topic is to study *abelian extensions*.

- For each $n \in \mathbb{Z}_{\geq 3}$, let $\mu_n \in \mathbb{C}^{\times}$ be the cyclic subgroup consisting of n^{th} roots of 1. Then $\mathsf{G}(\mathbb{Q}(\mu_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$ is abelian.
- Let k be a finite field. Let K/k be the finite extension of degree n. Then $G(K/k) \cong \mathbb{Z}/n\mathbb{Z}$ is cyclic, hence abelian.

We also know that, for instance, if K is the splitting extension over \mathbb{Q} of $x^5 - 7$, then $\mathsf{G}(K/\mathbb{Q}) \cong \mathbb{Z}/5\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$ is not abelian. Here, $\mathbb{Z}/4\mathbb{Z} \cong (\mathbb{Z}/5\mathbb{Z})^{\times} \cong \operatorname{Aut}_{\mathrm{gp}}(\mathbb{Z}/5\mathbb{Z})$ acts naturall on $\mathbb{Z}/5\mathbb{Z}$. Note that $\mathsf{G}(K/\mathbb{Q}(\mu_5)) \cong \mathbb{Z}/5\mathbb{Z}$ is abelian. Thus, we will often have to assume that our base field contains a primitive n^{th} root of unity.

Definition. Let F be a field and let $n \in \mathbb{Z}_{\geq 3}$. Consider the subgroup (which we know to be cyclic):

$$\mu_n(F) := \{ x \in F : x^n = 1 \} \subset F^{\times}.$$

We say that F contains a primitive n^{th} root of unity if $\mu_n(F) \cong \mathbb{Z}/n\mathbb{Z}$. That is, there exists $\zeta \in F$ such that $\langle \zeta \rangle \cong \mathbb{Z}/n\mathbb{Z}$.

(35.1) Norm and trace. Let F be a field and let A be an F-algebra, which is finitedimensional as an F-vector space. Given an element $a \in A$, consider the F-linear endomorphism of left multiplication by $a, \mathcal{L}_a : A \to A$. That is, $\mathcal{L}_a(x) = ax$.

Norm of
$$a = \mathsf{N}_{A/K}(a) := \det(\mathcal{L}_a)$$

Trace of $a = \operatorname{Tr}_{A/K}(a) := \operatorname{Tr}(\mathcal{L}_a)$

Example. Let $f(x) = x^n + a_1 x^{n-1} + \dots + a_n \in K[x]$, and let A = K[x]/(f(x)). Let $\alpha = \overline{x} \in A$. Then multiplication by α , in the basis $\{1, x, x^2, \dots, x^{n-1}\}$ of A over K, has the following form:

$$\mathcal{L}_{\alpha} = \begin{bmatrix} 0 & 0 & \cdots & \cdots & 0 & -a_{n} \\ 1 & 0 & \cdots & \cdots & 0 & -a_{n-1} \\ 0 & 1 & \ddots & \cdots & 0 & \vdots \\ \vdots & 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 0 & 1 & -a_{1} \end{bmatrix}$$

Hence, we get $N_{A/K}(\alpha) = (-1)^n a_n = (-1)^{\deg(f)} f(0)$ and $\text{Tr}_{A/K}(\alpha) = -a_1$.

Proposition. Let L/K be a finite field extension, A a finite-dimensional L-algebra. Let $m = \dim_L(A)$. For $\alpha \in L$, we have:

$$\mathsf{N}_{A/K}(\alpha) = \left(\mathsf{N}_{L/K}(\alpha)\right)^m, \qquad \operatorname{Tr}_{A/K}(\alpha) = m \operatorname{Tr}_{L/K}(\alpha).$$

PROOF. Let $\ell = \dim_K(L)$ and let $X = (x_{i,i'})_{1 \leq i,i' \leq \ell} \in \operatorname{Mat}_{\ell \times \ell}(K)$ be the matrix of $\mathcal{L}_{\alpha} : L \to L$, in a chosen basis $\{\lambda_i\}_{1 \leq i \leq \ell}$.

Let $\{a_j\}_{1 \leq j \leq m}$ be a basis of A as an L-vector space. Recall that $\{\lambda_i \alpha_j\}$ is a basis of A as a K-vector space. In this basis, the matrix of left multiplication by α , say $\widetilde{\mathcal{L}}_{\alpha} : A \to A$ is a block $m\ell \times m\ell$ size matrix with X on the diagonals. The proposition follows. \Box

(35.2) Norm and trace via the Galois group. Let L/K be a finite Galois extension. Let $\Gamma = G(L/K)$.

Proposition. For every $\alpha \in L$, we have:

PROOF. Let $f(x) = \mathbf{m}_{\alpha}(x) \in K[x]$ and $n = \deg f$. Note that f(x) splits over L since L is Galois. That is, we have:

$$f(x) = (x - \alpha_1) \cdots (x - \alpha_n) = \prod_{\beta \in \Gamma \alpha} (x - \beta)$$

Since $K(\alpha) \cong K[x]/(f(x))$, by Example from the previous paragraph, we have:

$$\mathsf{N}_{K(\alpha)/K}(\alpha) = (-1)^n \prod_{\beta \in \Gamma\alpha} \beta$$
$$\operatorname{Tr}_{K(\alpha)/K}(\alpha) = -\sum_{\beta \in \Gamma\alpha} \beta$$

Let rn = [L : K], where $r = [L : K(\alpha)]$. Note that $L/K(\alpha)$ is also Galois, hence $\mathsf{G}(L/K(\alpha))$ has order r, and is isomorphic to the subgroup $\mathrm{Stab}_{\Gamma}(\alpha) \subset \Gamma$. This observation leads to the following identity:

$$\prod_{\sigma \in \Gamma} \sigma(\alpha) = \left(\prod_{\beta \in \Gamma \alpha} \beta\right)^{|\operatorname{Stab}_{\Gamma}(\alpha)|} = \mathsf{N}_{K(\alpha)/K}(\alpha)^{r}.$$
$$\sum_{\sigma \in \Gamma} \sigma(\alpha) = |\operatorname{Stab}_{\Gamma}(\alpha)| \sum_{\beta \in \Gamma \alpha} \beta = r \operatorname{Tr}_{K(\alpha)/K}(\alpha).$$

The right-hand sides of these two equations are respectively $N_{L/K}(\alpha)$ and $Tr_{L/K}(\alpha)$, by Proposition 35.1, and the result follows.

(35.3) Hilbert's 90th problem.– The following result is the key step in classifying cyclic extensions.

Theorem. Let L/K be a cyclic extension, with $\Gamma = \mathsf{G}(L/K) \cong \mathbb{Z}/m\mathbb{Z}$. Choose a generator $\sigma \in \Gamma$.

- (1) For $\beta \in L^{\times}$, $\mathsf{N}_{L/K}(\beta) = 1$ if and only if there exists $\alpha \in L^{\times}$ such that $\beta = \frac{\sigma(\alpha)}{\alpha}$. (2) For $\beta \in L$, $\operatorname{Tr}_{L/K}(\beta) = 0$ if and only there exists $\alpha \in L$ such that $\beta = \sigma(\alpha) \alpha$.

PROOF. (1). If $\beta = \frac{\sigma(\alpha)}{\alpha}$, then we have:

$$\mathsf{N}_{L/K}(\beta) = \prod_{j=0}^{m-1} \sigma^j \left(\frac{\sigma(\alpha)}{\alpha}\right) = \frac{\sigma(\alpha)\sigma^2(\alpha)\cdots\sigma^m(\alpha)}{\alpha\sigma(\alpha)\cdots\sigma^{m-1}(\alpha)} = 1,$$

using the fact that $\sigma^m = \text{Id.}$

For the converse, define $u: \Gamma \to L^{\times}$ by

$$u_{\sigma^k} = \prod_{j=0}^{k-1} \sigma^j(\beta)$$

This definition is unambiguous, since

$$u_e = u_{\sigma^m} = \prod_{j=0}^{m-1} \sigma^j(\beta) = \mathsf{N}_{L/K}(\beta) = 1.$$

It is also easy to see that $u_{\sigma^{k+1}} = u_{\sigma}\sigma(u_{\sigma^k})$. This implies, by Corollary 34.5, that there exists $\alpha \in L^{\times}$ such that $u_{\tau} = \frac{\tau(\alpha)}{\alpha}$. For $\tau = \sigma$ we get the claimed result.

(2). As in the previous part, it is easy to see that if $\beta = \sigma(\alpha) - \alpha$, for some $\alpha \in L$, then $\operatorname{Tr}_{L/K}(\beta) = 0$.

Now we prove the converse. Define $u: \Gamma \to L$ by

$$u_{\sigma^k} = \sum_{j=0}^{k-1} \sigma^j(\beta)$$

Again, using $\operatorname{Tr}_{L/K}(\beta) = 0$, we can check that this definition is unambiguous. Moreover, $u_{\sigma^{k+1}} = u_{\sigma} + \sigma(u_{\sigma^k})$. Corollary 34.5 again implies the existence of an $\alpha \in L$ so that $\beta = \sigma(\alpha) - \alpha$.

(35.4) Cyclic extensions. Again we assume that L/K is a cyclic extension, with $\Gamma = G(L/K) \cong \mathbb{Z}/m\mathbb{Z}$. We choose a generator $\sigma \in \Gamma$. We further assume that K contains a primitive m^{th} root of unity, which we denote by ζ .

Theorem. There exists $\alpha \in L^{\times}$ such that the following assertions hold.

(1) $a = \alpha^m \in K^{\times}$. (2) $\sigma(\alpha) = \zeta \alpha$. Hence $\Gamma \alpha = \{\alpha, \zeta \alpha, \dots, \zeta^{m-1} \alpha\}$. (3) $L = K(\alpha)$. Hence L is the splitting extension over K of $x^m - a \in K[x]$ $r^m - a - \prod_{i=1}^{m-1} r - \zeta^j \alpha$ in L[r]

$$x^m - a = \prod_{j=0} x - \zeta^j \alpha$$
, in $L[x]$

PROOF. Note that $\zeta \in K^{\times}$, and $\zeta^m = 1$, which implies:

$$\mathsf{N}_{L/K}(\zeta) = \zeta^m = 1$$

Therefore, by Theorem 35.4, there exists $\alpha \in L^{\times}$ such that $\zeta = \frac{\sigma(\alpha)}{\alpha}$. (2) is proved. As norm of any element of L is an element of K, we get

$$\mathsf{N}_{L/K}(\alpha) = \zeta^{\frac{m(m-1)}{2}} \alpha^m = (-1)^{m-1} \alpha^m \in K.$$

Here, we have used that $x^m - 1 = \prod_{j=0}^{m-1} (x - \zeta^j)$ in K[x], which implies (upon setting x = 0)

that $-1 = (-1)^m \zeta^{\frac{m(m-1)}{2}}$. Thus, $a = \alpha^m \in K$ as claimed in (1).

It remains to show that $L = K(\alpha)$. Note that the identity $x^m - a = \prod_{j=0}^{m-1} x - \zeta^j \alpha$ implies

that $K(\alpha)/K$ is the splitting extension of $x^m - a$, which has m distinct roots in $K(\alpha)$. Hence $K(\alpha)/K$ is a Galois extension. The claim that $K(\alpha) = L$ follows from the fact that $\operatorname{Stab}_{\mathsf{G}(L/K)}(\alpha)$ is trivial (since $\sigma^j(\alpha) = \zeta^j \alpha \neq \alpha$ for $1 \leq j \leq m-1$).