LECTURE 35

(35.0) Overview.— Recall that for a Galois extension L/K with Galois group I' = G (L/K),
we established a bijection between the following two partially ordered sets (order is inclusion).

Sub- K-extensions
-—ﬂ Closed subgroups of I' ‘
of L/K

Here, we view I with the canonical topology of an inverse limit of finite discrete groups.
For the rest of the course, we will narrow our focus to the case of finite I' (so topological
considerations are no longer necessary).

We say a finite Galois extension L/K is cyclic (resp. abelian, solvable, simple)if G (L/K)
is cyclic (resp. abelian, solvable, simple). Recall that a group G is said to be solvable if there
exists a chain of normal subgroups:

G:GQDGlb"'DGg:{G},

such that G;/Gj41 is abelian, for every 0 < j < £. Thus, every abelian group is solv-
able. Solvability of an extension L/K is equivalent to solvability by radicals of any minimal
polynomial m,(z), where o € L.

We say a group G is simple if there are no non—trivial, proper normal subgroups of G.
That is, H <G = H = {e} or G. By convention, we do not consider the trivial group to
be simple. The only abelian, simple, finite groups are Z/pZ where p € Z>5 is a prime number.

Our next topic is to study abelian extensions.

e For each n € Zs3, let p, € C* be the cyclic subgroup consisting of n*® roots of 1.
Then G (Q(u,)/Q) = (Z/nZ)™ is abelian.

e Let k be a finite field. Let K/k be the finite extension of degree n. Then G (K /k) =
Z/nZ is cyclic, hence abelian.

We also know that, for instance, if K is the splitting extension over Q of x° — 7, then
G(K/Q) 2 Z/5Z x Z/AZ is not abelian. Here, Z/47Z = (Z/5Z7)" = Autg,(Z/5Z) acts natu-
rall on Z/5Z. Note that G (K/Q(us)) = Z/57Z is abelian. Thus, we will often have to assume
that our base field contains a primitive n'" root of unity.

Definition. Let I be a field and let n € Z>3. Consider the subgroup (which we know to be
cyclic):

pn(F) ={x e F:a2" =1} C F*.
We say that F contains a primitive n'" root of unity if u,(F) = Z/nZ. That is, there
exists ( € F such that (¢) = Z/nZ.



2 LECTURE 35

(35.1) Norm and trace.— Let F' be a field and let A be an F-algebra, which is finite-
dimensional as an F—vector space. Given an element a € A, consider the F-linear endomor-
phism of left multiplication by a, £, : A — A. That is, L,(x) = az.

Norm of a = Ny/k(a) := det(L,)

Trace of a = Try/k(a) := Tr(L,)

Example. Let f(z) = 2" + a;2" ' + -+ a, € K[z, and let A = K[z]/(f(z)). Let
a =T € A. Then multiplication by «, in the basis {1, 2,22, ...,2" 1} of A over K, has the
following form:

0 0 0 -—a,
10 - - 0 —a,4
0 1 0 :
Aﬁa - . .
0
B .. 0
_0 O -+ 0 1 —-a |

Hence, we get N4k (a) = (—1)"a, = (—1)%0) £(0) and Tra/x(e) = —a;.

Proposition. Let L/K be a finite field extension, A a finite—dimensional L—algebra. Let
m = dimg(A). For a € L, we have:

m

Nasr () = (Npr(a)™, Tra/r(a) = mTry k().

PROOF. Let ¢ = dimg (L) and let X = (2;4)1<;7<¢ € Matyxs(K) be the matrix of £, : L —
L, in a chosen basis {\;}1<i<.
Let {a;}1<j<m be a basis of A as an L-vector space. Recall that {\;a;} is a basis of A as

a K—vector space. In this basis, the matrix of left multiplication by «a, say £, : A — A is a
block mf x mf size matrix with X on the diagonals. The proposition follows. U

(35.2) Norm and trace via the Galois group.— Let L/K be a finite Galois extension.
Let I' = G(L/K).

Proposition. For every a € L, we have:

Np/x(e) =[] o(a) Trr (o) =) o)

el el

PROOF. Let f(z) = my(z) € K[z] and n = deg f. Note that f(x) splits over L since L is
Galois. That is, we have:

fl@)=(z =) (z—a) = [ (@~ 5)

el
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Since K(a) = Klz]/(f(x)), by Example from the previous paragraph, we have:
Nica/xc (@) = (=1 T 2,

pela

Trg)/k(a) = — Z B

pela

Let rn = [L : K], where r = [L : K(a)]. Note that L/K(«) is also Galois, hence
G (L/K(«)) has order r, and is isomorphic to the subgroup Stabr(«) C I'. This observation
leads to the following identity:

| Stabr (a)|
Ha(a) = (H 6) = Ngc(ay/r (@)
cel’ Bela
> o(a) = |Stabr(a)] Y B =rTrga)x(a).

oel Bela

The right-hand sides of these two equations are respectively N, k(o) and Trp x(c), by
Proposition 35.1, and the result follows.

(35.3) Hilbert’s 90*" problem.— The following result is the key step in classifying cyclic
extensions.

Theorem. Let L/K be a cyclic extension, with I’ = G(L/K) = Z/mZ. Choose a generator
ocel.

(1) For B € L*, N x(B) =1 if and only if there exists o € L™ such that 3 = %

(2) For p € L, Trr/k(B) = 0 if and only there exists a € L such that B = o(a) — a.

PRrROOF. (1). If g = @, then we have:

m—1
(o) ola)o?(a)- - o™(a)
N — J fry — 1
/i (B) j[[(] 7 < a ) ao(a) o™ a)
using the fact that ¢™ = Id.
For the converse, define u : I' — L* by

?

k—1
Ugh = H al(B).
5=0
This definition is unambiguous, since
m—1
Ue = Ugm = H ol(B) = Nz/k(8) = 1.
j=0

It is also easy to see that uyr+1 = u,0(u,+). This implies, by Corollary 34.5, that there exists

a € L™ such that u, = % For 7 = o we get the claimed result.
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(2). As in the previous part, it is easy to see that if 5 = o(a) — «, for some a € L, then

TrL/K(B) = 0.
Now we prove the converse. Define u : I' — L by

k—1 ‘
e = _ol(B).
j=0

Again, using Try/x(8) = 0, we can check that this definition is unambiguous. Moreover,
Ugk+1 = Uy + 0(ugr). Corollary 34.5 again implies the existence of an o € L so that
g =o(a)—a. O

(35.4) Cyclic extensions.— Again we assume that L/K is a cyclic extension, with I' =
G(L/K) = Z/mZ. We choose a generator o € I'. We further assume that K contains a
primitive m'™" root of unity, which we denote by (.

Theorem. There exists « € L™ such that the following assertions hold.
(1) a=a™ e K*.
(2) o(a) = Ca. Hence Ta = {a,(a, ..., (" ta}.
(3) L = K(«v). Hence L is the splitting extension over K of 2™ —a € K|z

a:m—a:Hx—Cjoz, in L]x].

ProoFr. Note that ( € K*, and ("™ = 1, which implies:
Nr/r(Q) =" =1.

Therefore, by Theorem 35.4, there exists a € L* such that ( = % (2) is proved.
As norm of any element of L is an element of K, we get

Np/x(e) = 5 am = (~1)"la™ € K.
m—1
Here, we have used that 2™ — 1 = H (x —¢?) in K[z], which implies (upon setting x = 0)
=0

that —1 = (—1)m(m("5_1). Thus, a = o™ € K as claimed in (1).
m—1
It remains to show that L = K(«). Note that the identity 2™ — a = r — (Yo implies
=0
that K(«a)/K is the splitting extension of 2™ — a, which has m distinct roots in K(«).
Hence K(a)/K is a Galois extension. The claim that K(«) = L follows from the fact that

Stabg(z,/ k) () is trivial (since o/ (a) = (Fa # o for 1 < j <m —1). O



