## LECTURE 35

(35.0) Overview.- Recall that for a Galois extension $L / K$ with Galois group $\Gamma=\mathrm{G}(L / K)$, we established a bijection between the following two partially ordered sets (order is inclusion).


Here, we view $\Gamma$ with the canonical topology of an inverse limit of finite discrete groups. For the rest of the course, we will narrow our focus to the case of finite $\Gamma$ (so topological considerations are no longer necessary).

We say a finite Galois extension $L / K$ is cyclic (resp. abelian, solvable, simple) if $\mathrm{G}(L / K)$ is cyclic (resp. abelian, solvable, simple). Recall that a group $G$ is said to be solvable if there exists a chain of normal subgroups:

$$
G=G_{0} \triangleright G_{1} \triangleright \cdots \triangleright G_{\ell}=\{e\},
$$

such that $G_{j} / G_{j+1}$ is abelian, for every $0 \leq j<\ell$. Thus, every abelian group is solvable. Solvability of an extension $L / K$ is equivalent to solvability by radicals of any minimal polynomial $\mathrm{m}_{\alpha}(x)$, where $\alpha \in L$.

We say a group $G$ is simple if there are no non-trivial, proper normal subgroups of $G$. That is, $H \triangleleft G \Rightarrow H=\{e\}$ or $G$. By convention, we do not consider the trivial group to be simple. The only abelian, simple, finite groups are $\mathbb{Z} / p \mathbb{Z}$ where $p \in \mathbb{Z}_{\geq 2}$ is a prime number.

Our next topic is to study abelian extensions.

- For each $n \in \mathbb{Z}_{\geq 3}$, let $\mu_{n} \in \mathbb{C}^{\times}$be the cyclic subgroup consisting of $n^{\text {th }}$ roots of 1 . Then $G\left(\mathbb{Q}\left(\mu_{n}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{\times}$is abelian.
- Let $k$ be a finite field. Let $K / k$ be the finite extension of degree $n$. Then $\mathrm{G}(K / k) \cong$ $\mathbb{Z} / n \mathbb{Z}$ is cyclic, hence abelian.

We also know that, for instance, if $K$ is the splitting extension over $\mathbb{Q}$ of $x^{5}-7$, then $\mathrm{G}(K / \mathbb{Q}) \cong \mathbb{Z} / 5 \mathbb{Z} \rtimes \mathbb{Z} / 4 \mathbb{Z}$ is not abelian. Here, $\mathbb{Z} / 4 \mathbb{Z} \cong(\mathbb{Z} / 5 \mathbb{Z})^{\times} \cong \operatorname{Aut}_{\mathrm{gp}}(\mathbb{Z} / 5 \mathbb{Z})$ acts naturall on $\mathbb{Z} / 5 \mathbb{Z}$. Note that $\mathrm{G}\left(K / \mathbb{Q}\left(\mu_{5}\right)\right) \cong \mathbb{Z} / 5 \mathbb{Z}$ is abelian. Thus, we will often have to assume that our base field contains a primitive $n^{\text {th }}$ root of unity.

Definition. Let $F$ be a field and let $n \in \mathbb{Z}_{\geq 3}$. Consider the subgroup (which we know to be cyclic):

$$
\mu_{n}(F):=\left\{x \in F: x^{n}=1\right\} \subset F^{\times}
$$

We say that $F$ contains a primitive $n^{\text {th }}$ root of unity if $\mu_{n}(F) \cong \mathbb{Z} / n \mathbb{Z}$. That is, there exists $\zeta \in F$ such that $\langle\zeta\rangle \cong \mathbb{Z} / n \mathbb{Z}$.
(35.1) Norm and trace. - Let $F$ be a field and let $A$ be an $F$-algebra, which is finitedimensional as an $F$-vector space. Given an element $a \in A$, consider the $F$-linear endomorphism of left multiplication by $a, \mathcal{L}_{a}: A \rightarrow A$. That is, $\mathcal{L}_{a}(x)=a x$.

$$
\text { Norm of } a=\mathrm{N}_{A / K}(a):=\operatorname{det}\left(\mathcal{L}_{a}\right)
$$

$$
\text { Trace of } a=\operatorname{Tr}_{A / K}(a):=\operatorname{Tr}\left(\mathcal{L}_{a}\right)
$$

Example. Let $f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n} \in K[x]$, and let $A=K[x] /(f(x))$. Let $\alpha=\bar{x} \in A$. Then multiplication by $\alpha$, in the basis $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ of $A$ over $K$, has the following form:

$$
\mathcal{L}_{\alpha}=\left[\begin{array}{cccccc}
0 & 0 & \cdots & \cdots & 0 & -a_{n} \\
1 & 0 & \cdots & \cdots & 0 & -a_{n-1} \\
0 & 1 & \ddots & \cdots & 0 & \vdots \\
\vdots & 0 & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 & \vdots \\
0 & 0 & \cdots & 0 & 1 & -a_{1}
\end{array}\right]
$$

Hence, we get $\mathrm{N}_{A / K}(\alpha)=(-1)^{n} a_{n}=(-1)^{\operatorname{deg}(f)} f(0)$ and $\operatorname{Tr}_{A / K}(\alpha)=-a_{1}$.

Proposition. Let $L / K$ be a finite field extension, $A$ a finite-dimensional L-algebra. Let $m=\operatorname{dim}_{L}(A)$. For $\alpha \in L$, we have:

$$
\mathrm{N}_{A / K}(\alpha)=\left(\mathrm{N}_{L / K}(\alpha)\right)^{m}, \quad \operatorname{Tr}_{A / K}(\alpha)=m \operatorname{Tr}_{L / K}(\alpha) .
$$

Proof. Let $\ell=\operatorname{dim}_{K}(L)$ and let $X=\left(x_{i, i^{\prime}}\right)_{1 \leq i, i^{\prime} \leq \ell} \in \operatorname{Mat}_{\ell \times \ell}(K)$ be the matrix of $\mathcal{L}_{\alpha}: L \rightarrow$ $L$, in a chosen basis $\left\{\lambda_{i}\right\}_{1 \leq i \leq \ell}$.

Let $\left\{a_{j}\right\}_{1 \leq j \leq m}$ be a basis of $A$ as an $L$-vector space. Recall that $\left\{\lambda_{i} \alpha_{j}\right\}$ is a basis of $A$ as a $K$-vector space. In this basis, the matrix of left multiplication by $\alpha$, say $\widetilde{\mathcal{L}}_{\alpha}: A \rightarrow A$ is a block $m \ell \times m \ell$ size matrix with $X$ on the diagonals. The proposition follows.
(35.2) Norm and trace via the Galois group.- Let $L / K$ be a finite Galois extension. Let $\Gamma=\mathrm{G}(L / K)$.

Proposition. For every $\alpha \in L$, we have:

$$
\mathrm{N}_{L / K}(\alpha)=\prod_{\sigma \in \Gamma} \sigma(\alpha) \quad \operatorname{Tr}_{L / K}(\alpha)=\sum_{\sigma \in \Gamma} \sigma(\alpha)
$$

Proof. Let $f(x)=\mathrm{m}_{\alpha}(x) \in K[x]$ and $n=\operatorname{deg} f$. Note that $f(x)$ splits over $L$ since $L$ is Galois. That is, we have:

$$
f(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)=\prod_{\beta \in \Gamma \alpha}(x-\beta)
$$

Since $K(\alpha) \cong K[x] /(f(x))$, by Example from the previous paragraph, we have:

$$
\begin{gathered}
\mathrm{N}_{K(\alpha) / K}(\alpha)=(-1)^{n} \prod_{\beta \in \Gamma \alpha} \beta \\
\operatorname{Tr}_{K(\alpha) / K}(\alpha)=-\sum_{\beta \in \Gamma \alpha} \beta
\end{gathered}
$$

Let $r n=[L: K]$, where $r=[L: K(\alpha)]$. Note that $L / K(\alpha)$ is also Galois, hence $\mathrm{G}(L / K(\alpha))$ has order $r$, and is isomorphic to the subgroup $\operatorname{Stab}_{\Gamma}(\alpha) \subset \Gamma$. This observation leads to the following identity:

$$
\begin{aligned}
& \prod_{\sigma \in \Gamma} \sigma(\alpha)=\left(\prod_{\beta \in \Gamma \alpha} \beta\right)^{\left|\operatorname{Stab}_{\Gamma}(\alpha)\right|}=\mathrm{N}_{K(\alpha) / K}(\alpha)^{r} \\
& \sum_{\sigma \in \Gamma} \sigma(\alpha)=\left|\operatorname{Stab}_{\Gamma}(\alpha)\right| \sum_{\beta \in \Gamma \alpha} \beta=r \operatorname{Tr}_{K(\alpha) / K}(\alpha) .
\end{aligned}
$$

The right-hand sides of these two equations are respectively $\mathrm{N}_{L / K}(\alpha)$ and $\operatorname{Tr}_{L / K}(\alpha)$, by Proposition 35.1, and the result follows.
(35.3) Hilbert's $90^{\text {th }}$ problem.- The following result is the key step in classifying cyclic extensions.

Theorem. Let $L / K$ be a cyclic extension, with $\Gamma=\mathrm{G}(L / K) \cong \mathbb{Z} / m \mathbb{Z}$. Choose a generator $\sigma \in \Gamma$.
(1) For $\beta \in L^{\times}, \mathrm{N}_{L / K}(\beta)=1$ if and only if there exists $\alpha \in L^{\times}$such that $\beta=\frac{\sigma(\alpha)}{\alpha}$.
(2) For $\beta \in L, \operatorname{Tr}_{L / K}(\beta)=0$ if and only there exists $\alpha \in L$ such that $\beta=\sigma(\alpha)-\alpha$.

Proof. (1). If $\beta=\frac{\sigma(\alpha)}{\alpha}$, then we have:

$$
\mathbf{N}_{L / K}(\beta)=\prod_{j=0}^{m-1} \sigma^{j}\left(\frac{\sigma(\alpha)}{\alpha}\right)=\frac{\sigma(\alpha) \sigma^{2}(\alpha) \cdots \sigma^{m}(\alpha)}{\alpha \sigma(\alpha) \cdots \sigma^{m-1}(\alpha)}=1
$$

using the fact that $\sigma^{m}=\mathrm{Id}$.
For the converse, define $u: \Gamma \rightarrow L^{\times}$by

$$
u_{\sigma^{k}}=\prod_{j=0}^{k-1} \sigma^{j}(\beta)
$$

This definition is unambiguous, since

$$
u_{e}=u_{\sigma^{m}}=\prod_{j=0}^{m-1} \sigma^{j}(\beta)=\mathrm{N}_{L / K}(\beta)=1
$$

It is also easy to see that $u_{\sigma^{k+1}}=u_{\sigma} \sigma\left(u_{\sigma^{k}}\right)$. This implies, by Corollary 34.5, that there exists $\alpha \in L^{\times}$such that $u_{\tau}=\frac{\tau(\alpha)}{\alpha}$. For $\tau=\sigma$ we get the claimed result.
(2). As in the previous part, it is easy to see that if $\beta=\sigma(\alpha)-\alpha$, for some $\alpha \in L$, then $\operatorname{Tr}_{L / K}(\beta)=0$.

Now we prove the converse. Define $u: \Gamma \rightarrow L$ by

$$
u_{\sigma^{k}}=\sum_{j=0}^{k-1} \sigma^{j}(\beta) .
$$

Again, using $\operatorname{Tr}_{L / K}(\beta)=0$, we can check that this definition is unambiguous. Moreover, $u_{\sigma^{k+1}}=u_{\sigma}+\sigma\left(u_{\sigma^{k}}\right)$. Corollary 34.5 again implies the existence of an $\alpha \in L$ so that $\beta=\sigma(\alpha)-\alpha$.
(35.4) Cyclic extensions.- Again we assume that $L / K$ is a cyclic extension, with $\Gamma=$ $\mathrm{G}(L / K) \cong \mathbb{Z} / m \mathbb{Z}$. We choose a generator $\sigma \in \Gamma$. We further assume that $K$ contains a primitive $m^{\text {th }}$ root of unity, which we denote by $\zeta$.

Theorem. There exists $\alpha \in L^{\times}$such that the following assertions hold.
(1) $a=\alpha^{m} \in K^{\times}$.
(2) $\sigma(\alpha)=\zeta \alpha$. Hence $\Gamma \alpha=\left\{\alpha, \zeta \alpha, \ldots, \zeta^{m-1} \alpha\right\}$.
(3) $L=K(\alpha)$. Hence $L$ is the splitting extension over $K$ of $x^{m}-a \in K[x]$

$$
x^{m}-a=\prod_{j=0}^{m-1} x-\zeta^{j} \alpha, \quad \text { in } L[x] .
$$

Proof. Note that $\zeta \in K^{\times}$, and $\zeta^{m}=1$, which implies:

$$
\mathrm{N}_{L / K}(\zeta)=\zeta^{m}=1
$$

Therefore, by Theorem 35.4, there exists $\alpha \in L^{\times}$such that $\zeta=\frac{\sigma(\alpha)}{\alpha}$. (2) is proved.
As norm of any element of $L$ is an element of $K$, we get

$$
\mathrm{N}_{L / K}(\alpha)=\zeta^{\frac{m(m-1)}{2}} \alpha^{m}=(-1)^{m-1} \alpha^{m} \in K
$$

Here, we have used that $x^{m}-1=\prod_{j=0}^{m-1}\left(x-\zeta^{j}\right)$ in $K[x]$, which implies (upon setting $x=0$ ) that $-1=(-1)^{m} \zeta^{\frac{m(m-1)}{2}}$. Thus, $a=\alpha^{m} \in K$ as claimed in (1).

It remains to show that $L=K(\alpha)$. Note that the identity $x^{m}-a=\prod_{j=0}^{m-1} x-\zeta^{j} \alpha$ implies that $K(\alpha) / K$ is the splitting extension of $x^{m}-a$, which has $m$ distinct roots in $K(\alpha)$. Hence $K(\alpha) / K$ is a Galois extension. The claim that $K(\alpha)=L$ follows from the fact that $\operatorname{Stab}_{(L / K)}(\alpha)$ is trivial $\left(\right.$ since $\sigma^{j}(\alpha)=\zeta^{j} \alpha \neq \alpha$ for $\left.1 \leq j \leq m-1\right)$.

