
LECTURE 36

(36.0) Kummer’s theorem.– In this set of notes, we fix a field K, an integer n ≥ 2, and
assume that µn(K) ∼= Z/nZ. That is, K contains a primitive nth root of unity.

Consider the following two sets:

• Let Eabn (K) be the set of all finite, abelian, Galois extensions L/K such that the
exponent of G (L/K) divides n. In other words, σn = Id for every σ ∈ G (L/K).

In order to avois logical fallacies, let Ω = K be the algebraic closure of K. We can
view each L ∈ Eabn (K) as a subfield of Ω, which makes it clear that Eabn (K) is a set
(subset of the power set of Ω).

• Let Gn(K×) consist of all subgroups H ⊂ K× containing

Pn
(
K×
)

:= {zn : z ∈ K×} ⊂ H ⊂ K×,

such that H/Pn (K) is finite.

Theorem. The following assignments are mutually inverse to each other, inclusion preserv-
ing bijections between Eabn (K) and Gn(K×).

H ⊂ K× 7→ K(H1/n) = {z ∈ Ω : zn ∈ H},
L ∈ Eabn (K) 7→ HL := Pn

(
L×
)
∩K×.

Moreover, for every H ∈ Gn(K×), there is a group isomorphism:

ψ : G
(
K(H1/n)/K

) ∼−→ Homgp(H/Pn
(
K×
)
, µn(K))

given as follows. For σ ∈ G
(
K(H1/n)/K

)
and θ ∈ K(H1/n) such that θn ∈ H, let t = θn ∈

H/Pn (K×). Then

ψ(σ) : t 7→ σ(θ)

θ
.

In particular, we have [K(H1/n) : K] =
∣∣H/Pn (K×)∣∣.

Remark. The first assertion is true without the finiteness hypothesis, with the same proof
as we give below. The second assertion, without finiteness hypothesis, is proved by taking
the inverse limit over finite subextensions, and claims that ψ is an isomorphism of topological
groups. We will only give a proof in the finite case here, which is the heart of the argument
anyway.
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(36.1) Pairing for Galois extensions.– Let L/K be a Galois extension. Let HL =
Pn (L×) ∩K×. We consider the following map:

〈·, ·〉 : G (L/K)×HL/Pn
(
K×
)
→ µn(K),

given as follows. Let σ ∈ G (L/K) and t ∈ HL/Pn (K×). Choose an element θ ∈ L× such
that θn ≡ t modulo Pn (K×). Then:

〈σ, t〉 =
σ(θ)

θ
∈ L×.

Note that if τ ∈ L× is such that τn ≡ θn modulo Pn (K×), then (θ/τ)n = an for some
a ∈ K×. Thus, θ/τ is a solution of

xn − an =
n−1∏
j=0

x− ζja,

showing that there is 0 ≤ j ≤ n − 1, such that θ/τ = ζja ∈ K. Hence σ(θ/τ) = θ/τ for
every σ ∈ G (L/K). This proves that 〈·, ·〉 is unambiguous. We still have to show that it
takes values in µn(K).

Let θ ∈ L× be such that t = θn ∈ K×. Thus θ is a solution of xn − t. This implies:

xn − t =
n−1∏
j=0

x− ζjθ.

For any σ ∈ G (L/K), σ(θ) is another root of xn − t showing that there exists j with
σ(θ) = ζjθ. Hence, σ(θ)/θ ∈ µn(K).

Proposition. The map 〈·, ·〉 is bi–multiplicative. That is, for every g1, g2, g ∈ G (L/K) and
t1, t2, t ∈ HL/Pn (K×), we have:

〈g1g2, t〉 = 〈g1, t〉〈g2, t〉, 〈g, t1t2〉 = 〈g, t1〉〈g, t2〉.

Let φ : HL/Pn (K×) → Homgp(G (L/K) , µn(K)) be given by φ(t) = 〈−, t〉. Then φ is a
bijection.

Proof. The proof of bi–multiplicativity is left as an easy exercise. It essentially follows from
the discussion preceding the proposition.

Let us prove that φ is a bijection. Let t ∈ HL/Pn (K×). Let θ ∈ L× be such that
θn = t ∈ K×. If φ(t) = e, then σ(θ) = θ for every σ ∈ G (L/K), showing that θ ∈ K×, i.e,
t = 1. This proves that φ is injective.

To show surjectivity, let χ ∈ Homgp(G (L/K) , µn(K)). Then χ(στ) = χ(σ)χ(τ) =
χ(σ)σ(χ(τ)), since σ acts trivially on K. By Corollary 34.5, we can find θ ∈ L× such
that χ(σ) = σ(θ)/θ for every σ ∈ G (L/K). It remains to check that θn ∈ K×.

Note that χ(σ)n = 1, for every σ ∈ G (L/K). This means, σ(θ)n

θn
= 1, that is, σ(θn) = θn

for every σ ∈ G (L/K). Since the extension is Galois, we get θn ∈ K× as claimed. �
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Remark. When G (L/K) is finite, abelian and of exponent dividing n, then

Homgp(G (L/K) , µn(K)) ∼= G (L/K) (non–canonically).

This claim uses the structure theorem of finite abelian groups, and is verified as follows.
Since all the groups involved are abelian, we may revert to the additive notation. A finite
abelian group G of exponent r has the following form:

G ∼= Z/r1Z⊕ · · · ⊕ Z/rtZ, where rt = r and r1|r2| · · · |rt.
Thus it suffices to prove that Hom(Z/rZ,Z/nZ) ∼= Z/rZ, where r|n. Let us write n = rd,
and let χ : Z/rZ → Z/nZ be given by χ(1) = d. It is left as an easy exercise that
Hom(Z/rZ,Z/nZ) is generated by χ and order of χ is r.

(36.2) Proof of Theorem 36.0 - I.– We begin by checking the assignments given in the
statement of Theorem 36.0. Let A ⊂ K× and let K(A1/n) be the extension generated by the
roots of the set of polynomials {xn − a}a∈A.

Proposition.

(1) K(A1/n) is an abelian, Galois extension of K. Moreover, σn = 1 for every σ ∈
G
(
K(A1/n)/K

)
. That is, G

(
K(A1/n)/n

)
has a finite exponent which divides n.

(2) Let H be the smallest subgroup of K× containing A and Pn (K×). Then K(H1/n) =
K(A1/n).

(3) If H/Pn (K×) is finite, then K(H1/n)/K is a finite extension.

Proof. (1). For each a ∈ K×, let La be the splitting extension of xn − a. Let α ∈ La be a
root of xn − a. Then:

xn − a =
n−1∏
j=0

x− ζjα, ∈ La[x]

proving that xn − a is a separable polynomial. This shows that K(A1/n)/K is a Galois
extension.

Now given σ ∈ G
(
K(A1/n)/K

)
and α ∈ K(A1/n) such that αn ∈ A, we have:

σ(αn) = αn ⇒
(
σ(α)

α

)n
= 1

that is, σ(α) = ζjα for some 0 ≤ j ≤ n−1. This shows that σn(α) = α for every α ∈ K(A1/n)
such that αn ∈ A. Since such elements generate the field K(A1/n) we conclude that σn = Id.

It remains to check that G
(
K(A1/n)/K

)
is abelian. Let σ, τ ∈ G

(
K(A1/n)/K

)
and

α ∈ K(A1/n) such that αn ∈ A (as above). By the previous argument, there exist j, k
such that σ(α) = ζjα and τ(α) = ζkα. It is now clear that σ(τ(α)) = τ(σ(α)). Again the
extension is generated by such α, showing that σ and τ commute.

(2) follows from the fact that if α` is a root of xn − a` (1 ≤ ` ≤ r), then α = α1 · · ·αr is a
root of xn − a, with a = a1 · · · ar.
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To prove (3), let us choose finite number of coset representatives

H = a1Pn
(
K×
)
t · · · t arPn

(
K×
)
.

Let L be the splitting extension of {xn − a`}1≤`≤r. It is clear that L = K(H1/n) and L is
finite.

�

This proposition shows that the map Gn(K×) → Eabn (K), given by H 7→ K(H1/n), is
well–defined. For the converse, L 7→ HL = Pn (L×) ∩ K×, it only remains to check that
HL/Pn (K×) is finite. But this group is isomorphic to Homgp(G (L/K) , µn(K)) by Proposi-
tion 36.1 above, and the latter is finite.

(36.3) Proof of Theorem 36.0 - II.– Now we will check that the two assignments are
mutually inverse to each other. That these preserve inclusions follows from the definitions.

Let L ∈ Eabn (K). Set HL := Pn (L×) ∩K×. Let L′ = K(H
1/n
L ). Clearly L′ ⊂ L is a sub-

K-extension. Moreover, it is obvious from the definitions that HL′ = HL. By Proposition
36.1 and Remark 36.1, we obtain an identification between G (L′/K) and G (L/K), showing
that L′ = L.

Conversely, let H ∈ Gn(K×) and let L = K(H1/n). Clearly H ⊂ HL = Pn (L×) ∩K×. To
show that H = HL, it is enough to establish that the restriction homomorphism

u : Homgp(HL/Pn
(
K×
)
, µn(K))→ Homgp(H/Pn

(
K×
)
, µn(K))

is injective. This is because, we already know that |H/Pn (K×) | ≤ |HL/Pn (K×) |. If u is in-
jective, by remark 36.1, we will also have the other way inequality, establishing that H = HL.

Now identifying Homgp(HL/Pn (K×) , µn(K)) with G (L/K), by the same remark, it is
easy to see that u(σ) = 1 means σ(θ) = θ for every θ ∈ L such that θn ∈ H. Since such
elements generate L, we get σ = Id showing that u is injective.

The last part of the theorem now follows from the established bijection and Proposition
(and Remark) 36.1.


