Frobenius and the group determinant

Sachin Gautam

Reading Classics. November 16, 2021

Main references

- Pavel Etingof et al. Introduction to representation theory, Student Mathematics Library volume 59, AMS publications (2010).
- Leonard Eugene Dickson An elementary exposition of Frobenius' theory of group characters and group determinants, Annals of Mathematics, second series, vol. 4, no. 1 (1902).
- Thomas Hawkins The origins of the theory of group characters, Archive for history of exact sciences, vol. 7, no. 2 (1971).
- mathshistory.st-andrews.ac.uk

Plan of the talk

－Georg Frobenius．
－Group determinant．
■ Linear factors of the group determinant（Frobenius＇Theorem 1）．
■ Irreducible factors of the group determinant（Frobenius＇Theorem 2）．
－Irreducible factors vs irreducible representations．
－Example of the dihedral group．

Georg Frobenius（1849－10－26 to 1917－08－03，Berlin）

－Joined University of Berlin in 1867．Studied under Kronecker， Kummer and Weierstraß．
－Obtained his doctorate in 1870 under the supervision of Weierstraß．
－Taught in Joachimsthal Gymnasium（his high school）1870－1874．
－1875－1892：Eidengnössische Polytechnikum，Zürich．
－Kronecker passed away in 1891．Frobenius got appointed Kronecker chair of mathematics in University of Berlin， 1892 （strong support from Fuchs and Weierstraß）．

Group determinant

Dedekind ${ }^{1}$ (around 1886) encountered what he called "group determinant" during his investigations into finite Galois extensions.

[^0]
Group determinant

Dedekind ${ }^{1}$（around 1886）encountered what he called＂group determinant＂during his investigations into finite Galois extensions．

Definition（Group Determinant）
Let G be a finite group．Consider $|G|$ many variables $\left\{x_{g}: g \in G\right\}$ ．

[^1]
Group determinant

Dedekind ${ }^{1}$（around 1886）encountered what he called＂group determinant＂during his investigations into finite Galois extensions．

Definition（Group Determinant）

Let G be a finite group．Consider $|G|$ many variables $\left\{x_{g}: g \in G\right\}$ ．Let $M_{G}(\underline{x})$ be $|G| \times|G|$－matrix（rows and columns indexed by elements of $G)$ whose (g, h)－th entry is $x_{g^{-1}} h$ ．

[^2]
Group determinant

Dedekind ${ }^{1}$（around 1886）encountered what he called＂group determinant＂during his investigations into finite Galois extensions．

Definition（Group Determinant）

Let G be a finite group．Consider $|G|$ many variables $\left\{x_{g}: g \in G\right\}$ ．Let $M_{G}(\underline{x})$ be $|G| \times|G|$－matrix（rows and columns indexed by elements of $G)$ whose (g, h)－th entry is $x_{g^{-1} h}$ ．

$$
\Delta_{G}(\underline{x}):=\operatorname{Det}\left(M_{G}(\underline{x})\right) \text { polynomial in variables } x_{g}(g \in G) .
$$

[^3]
Group determinant

Dedekind ${ }^{1}$ (around 1886) encountered what he called "group determinant" during his investigations into finite Galois extensions.

Definition (Group Determinant)

Let G be a finite group. Consider $|G|$ many variables $\left\{x_{g}: g \in G\right\}$. Let $M_{G}(\underline{x})$ be $|G| \times|G|$-matrix (rows and columns indexed by elements of $G)$ whose (g, h)-th entry is $x_{g^{-1} h}$.

$$
\Delta_{G}(\underline{x}):=\operatorname{Det}\left(M_{G}(\underline{x})\right) \text { polynomial in variables } x_{g}(g \in G) .
$$

Example. $G=\mathbb{Z} / 2 \mathbb{Z}$. Variables: $x_{0}, x_{1} . M_{G}\left(x_{0}, x_{1}\right)=\left[\begin{array}{ll}x_{0} & x_{1} \\ x_{1} & x_{0}\end{array}\right]$.

[^4]
Group determinant

Dedekind ${ }^{1}$ (around 1886) encountered what he called "group determinant" during his investigations into finite Galois extensions.

Definition (Group Determinant)

Let G be a finite group. Consider $|G|$ many variables $\left\{x_{g}: g \in G\right\}$. Let $M_{G}(\underline{x})$ be $|G| \times|G|$-matrix (rows and columns indexed by elements of $G)$ whose (g, h)-th entry is $x_{g^{-1} h}$.

$$
\Delta_{G}(\underline{x}):=\operatorname{Det}\left(M_{G}(\underline{x})\right) \text { polynomial in variables } x_{g}(g \in G) .
$$

Example. $G=\mathbb{Z} / 2 \mathbb{Z}$. Variables: $x_{0}, x_{1} . M_{G}\left(x_{0}, x_{1}\right)=\left[\begin{array}{ll}x_{0} & x_{1} \\ x_{1} & x_{0}\end{array}\right]$. Hence, $\Delta_{G}\left(x_{0}, x_{1}\right)=x_{0}^{2}-x_{1}^{2}=\left(x_{0}+x_{1}\right)\left(x_{0}-x_{1}\right)$.

[^5]
$\Delta_{G}=\operatorname{Det}\left(\left(x_{g^{-1} h}\right)_{g, h \in G}\right)$ Group determinant

Example. $G=\mathbb{Z} / 3 \mathbb{Z}$. Variables: x_{0}, x_{1}, x_{2}.

$$
M_{G}\left(x_{0}, x_{1}, x_{2}\right)=\left[\begin{array}{lll}
x_{0} & x_{1} & x_{2} \\
x_{2} & x_{0} & x_{1} \\
x_{1} & x_{2} & x_{0}
\end{array}\right]
$$

$\Delta_{G}=\operatorname{Det}\left(\left(x_{g^{-1} h}\right)_{g, h \in G}\right)$ Group determinant

Example. $G=\mathbb{Z} / 3 \mathbb{Z}$. Variables: x_{0}, x_{1}, x_{2}.

$$
M_{G}\left(x_{0}, x_{1}, x_{2}\right)=\left[\begin{array}{lll}
x_{0} & x_{1} & x_{2} \\
x_{2} & x_{0} & x_{1} \\
x_{1} & x_{2} & x_{0}
\end{array}\right]
$$

$\Delta_{G}\left(x_{0}, x_{1}, x_{2}\right)=x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 x_{0} x_{1} x_{2}$.

$\Delta_{G}=\operatorname{Det}\left(\left(x_{g^{-1} h}\right)_{g, h \in G}\right)$ Group determinant

Example. $G=\mathbb{Z} / 3 \mathbb{Z}$. Variables: x_{0}, x_{1}, x_{2}.

$$
M_{G}\left(x_{0}, x_{1}, x_{2}\right)=\left[\begin{array}{lll}
x_{0} & x_{1} & x_{2} \\
x_{2} & x_{0} & x_{1} \\
x_{1} & x_{2} & x_{0}
\end{array}\right]
$$

$\Delta_{G}\left(x_{0}, x_{1}, x_{2}\right)=x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 x_{0} x_{1} x_{2}$.

$$
\Delta_{G}\left(x_{0}, x_{1}, x_{2}\right)=\left(x_{0}+x_{1}+x_{2}\right)\left(x_{0}+\omega_{3} x_{1}+\omega_{3}^{2} x_{2}\right)\left(x_{0}+\omega_{3}^{2} x_{1}+\omega_{3} x_{2}\right)
$$

where $\omega_{3}=\exp \left(\frac{2 \pi \iota}{3}\right)$.

$\Delta_{G}=\operatorname{Det}\left(\left(x_{g-1} h\right)_{g, h \in G}\right)$ Group determinant

Example. $G=\mathbb{Z} / N \mathbb{Z}(N \geq 2)$. Variables: $x_{0}, x_{1}, \ldots, x_{N-1}$.

$$
M_{\mathbb{Z} / N \mathbb{Z}}\left(x_{0}, \ldots, x_{N-1}\right)=\left[\begin{array}{ccccc}
x_{0} & x_{1} & \cdots & x_{N-2} & x_{N-1} \\
x_{N-1} & x_{0} & \cdots & x_{N-3} & x_{N-2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
x_{1} & x_{2} & \cdots & x_{N-1} & x_{0}
\end{array}\right]
$$

$\Delta_{G}=\operatorname{Det}\left(\left(x_{g^{-1} h}\right)_{g, h \in G}\right)$ Group determinant

Example. $G=\mathbb{Z} / N \mathbb{Z}(N \geq 2)$. Variables: $x_{0}, x_{1}, \ldots, x_{N-1}$.

$$
\begin{aligned}
& M_{\mathbb{Z} / N \mathbb{Z}}\left(x_{0}, \ldots, x_{N-1}\right)=\left[\begin{array}{ccccc}
x_{0} & x_{1} & \cdots & x_{N-2} & x_{N-1} \\
x_{N-1} & x_{0} & \cdots & x_{N-3} & x_{N-2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
x_{1} & x_{2} & \cdots & x_{N-1} & x_{0}
\end{array}\right] \\
& \Delta_{\mathbb{Z} / N \mathbb{Z}}=\prod_{k=0}^{N-1}\left(x_{0}+\omega_{N}^{k} x_{1}+\omega_{N}^{2 k} x_{2}+\cdots+\omega_{N}^{(N-1) k} x_{N-1}\right) \\
& \text { where } \omega_{N}=\exp \left(\frac{2 \pi \iota}{N}\right)
\end{aligned}
$$

Group determinant for abelian groups

Theorem (Dedekind)
If G is a finite abelian group, then

$$
\Delta_{G}(\underline{x})=\prod_{\substack{\chi: G \rightarrow \mathbb{C}^{\times} \\ \text {group homomorphism }}}\left(\sum_{g \in G} \chi(g) x_{g}\right)
$$

Group determinant for abelian groups

Theorem (Dedekind)
If G is a finite abelian group, then

$$
\Delta_{G}(\underline{x})=\prod_{\substack{\chi: G \rightarrow \mathbb{C}^{\times} \\ \text {group homomorphism }}}\left(\sum_{g \in G} \chi(g) x_{g}\right)
$$

- When $G=\mathbb{Z} / N \mathbb{Z}$ written as $\left\langle\sigma \mid \sigma^{N}=e\right\rangle$, there are exactly N group homomorphisms $\chi_{k}: G \rightarrow \mathbb{C}^{\times}(0 \leq k \leq N-1)$, given by: $\chi_{k}(\sigma)=\omega_{N}^{k}$.

Group determinant for abelian groups

Theorem（Dedekind）

If G is a finite abelian group，then

■ When $G=\mathbb{Z} / N \mathbb{Z}$ written as $\left\langle\sigma \mid \sigma^{N}=e\right\rangle$ ，there are exactly N group homomorphisms $\chi_{k}: G \rightarrow \mathbb{C}^{\times}(0 \leq k \leq N-1)$ ，given by： $\chi_{k}(\sigma)=\omega_{N}^{k}$ ．
－Using the structure theorem of finite abelian groups（Kronecker （1870）），it follows that for any finite abelian group G ： $\left|\operatorname{Hom}_{\mathrm{gp}}\left(G, \mathbb{C}^{\times}\right)\right|=|G|$ ．

Dedekind-Frobenius correspondences, 1896

Dedekind wrote to Frobenius (March 25, 1896) a letter containing the definition of the group determinant and the factorization in the abelian case. Dedekind also hinted at some computations in the non-abelian case that he had done (without including them). Upon Frobenius' insistence, he hesitatingly formulated a conjecture in a letter dated April 3, 1896, for an arbitrary finite group G.

Dedekind－Frobenius correspondences， 1896

Dedekind wrote to Frobenius（March 25，1896）a letter containing the definition of the group determinant and the factorization in the abelian case．Dedekind also hinted at some computations in the non－abelian case that he had done（without including them）．Upon Frobenius＇insistence， he hesitatingly formulated a conjecture in a letter dated April 3，1896，for an arbitrary finite group G ．

Conjecture（Dedekind）
Number of distinct linear factors in $\Delta_{G}(\underline{x})$ is equal to the index of the commutator subgroup $[G, G]$（i．e，$|G| /|[G, G]|)$ ．

Dedekind－Frobenius correspondences， 1896

Dedekind wrote to Frobenius（March 25，1896）a letter containing the definition of the group determinant and the factorization in the abelian case．Dedekind also hinted at some computations in the non－abelian case that he had done（without including them）．Upon Frobenius＇insistence， he hesitatingly formulated a conjecture in a letter dated April 3，1896，for an arbitrary finite group G ．

Conjecture（Dedekind）
Number of distinct linear factors in $\Delta_{G}(\underline{x})$ is equal to the index of the commutator subgroup $[G, G]$（i．e，$|G| /|[G, G]|$ ）．
（recall the commutator subgroup $[G, G]$ is the（normal）subgroup generated by $a b a^{-1} b^{-1}$ for all $\left.a, b \in G\right)$ ．

Dedekind-Frobenius correspondences, 1896

Dedekind wrote to Frobenius (March 25, 1896) a letter containing the definition of the group determinant and the factorization in the abelian case. Dedekind also hinted at some computations in the non-abelian case that he had done (without including them). Upon Frobenius' insistence, he hesitatingly formulated a conjecture in a letter dated April 3, 1896, for an arbitrary finite group G.

Conjecture (Dedekind)

Number of distinct linear factors in $\Delta_{G}(\underline{x})$ is equal to the index of the commutator subgroup $[G, G]$ (i.e, $|G| /|[G, G]|)$.
(recall the commutator subgroup [$G, G]$ is the (normal) subgroup generated by $a b a^{-1} b^{-1}$ for all $a, b \in G$). Dedekind ended the letter inviting Frobenius to pursue this conjecture:

I would be delighted if you wished to involve yourself with these matters, because I distinctly feel that I will not achieve anything here.

Dedekind-Frobenius correspondences, 1896

- Within 10 days, Frobenius managed to prove this conjecture. He presented his research to Berlin academy on July 30, 1896 titled "Über Gruppencharaktere".

Dedekind-Frobenius correspondences, 1896

- Within 10 days, Frobenius managed to prove this conjecture. He presented his research to Berlin academy on July 30, 1896 titled "Über Gruppencharaktere".
- By the end of the year (December 3, 1896) Frobenius had obtained very deep results about factorization of $\Delta_{G}(\underline{x})$. He published these in "Über die Primfactoren der Gruppendeterminante".

Dedekind－Frobenius correspondences， 1896

－Within 10 days，Frobenius managed to prove this conjecture．He presented his research to Berlin academy on July 30， 1896 titled ＂Über Gruppencharaktere＂．
－By the end of the year（December 3，1896）Frobenius had obtained very deep results about factorization of $\Delta_{G}(\underline{x})$ ．He published these in＂Uber die Primfactoren der Gruppendeterminante＂．

Convention．Note that $\Delta_{G}(\underline{x})$ is homogeneous of degree $N=|G|$ ．Also， if x_{e} is the variable corresponding to the neutral element $e \in G$ ，then the coefficient of x_{e}^{N} in $\Delta_{G}(\underline{x})$ is 1 ．This is simply because the diagonal entries of $M_{G}(\underline{x})$ are all equal to x_{e} ．
Here，and for the rest of this talk，a factor $p(\underline{x})$ of $\Delta_{G}(\underline{x})$（necessarily homogeneous）will always assumed to be monic with respect to the variable x_{e}（that is，the coefficient of $x_{e}^{\operatorname{deg}(p)}$ is 1 ）．

Frobenius' Theorem 1 (July, 1896)

Theorem (Frobenius)
Linear factors in $\Delta_{G}(\underline{x})$ are
$\left\{\ell_{\chi}(\underline{x})=\sum_{g \in G} \chi(g) x_{g}\right.$ where $\chi: G \rightarrow \mathbb{C}^{\times}$is a group homomorphism $\}$.
Moreover, each such factor appears with multiplicity 1.

Frobenius＇Theorem 1 （July，1896）

Theorem（Frobenius）

Linear factors in $\Delta_{G}(\underline{x})$ are
$\left\{\ell_{\chi}(\underline{x})=\sum_{g \in G} \chi(g) x_{g}\right.$ where $\chi: G \rightarrow \mathbb{C}^{\times}$is a group homomorphism $\}$.
Moreover，each such factor appears with multiplicity 1.

Remark

Note that，if $\chi: G \rightarrow \mathbb{C}^{\times}$is a group homomorphism，then for every $a, b \in G$ we have：$\chi\left(a b a^{-1} b^{-1}\right)=\chi(a) \chi(b) \chi(a)^{-1} \chi(b)^{-1}=1$ ．Hence， $\chi([G, G])=\{1\}$ ．

Frobenius' Theorem 1 (July, 1896)

Theorem (Frobenius)

Linear factors in $\Delta_{G}(\underline{x})$ are

$$
\left\{\ell_{\chi}(\underline{x})=\sum_{g \in G} \chi(g) x_{g} \text { where } \chi: G \rightarrow \mathbb{C}^{\times} \text {is a group homomorphism }\right\} .
$$

Moreover, each such factor appears with multiplicity 1.

Remark

Note that, if $\chi: G \rightarrow \mathbb{C}^{\times}$is a group homomorphism, then for every $a, b \in G$ we have: $\chi\left(a b a^{-1} b^{-1}\right)=\chi(a) \chi(b) \chi(a)^{-1} \chi(b)^{-1}=1$. Hence, $\chi([G, G])=\{1\}$. Furthermore, $G /[G, G]$ is abelian. All of this implies that number of linear factors in $\Delta_{G}(\underline{x})$ is equal to

$$
\left|\operatorname{Hom}_{g p}\left(G, \mathbb{C}^{\times}\right)\right|=\left|\operatorname{Hom}_{g p}\left(G /[G, G], \mathbb{C}^{\times}\right)\right|=|G /[G, G]|
$$

Proof of Frobenius' Theorem 1

Let $\chi: G \rightarrow \mathbb{C}^{\times}$be a group homomorphism. $\ell_{\chi}(\underline{x}):=\sum_{g \in G} \chi(g) x_{g}$.
To prove: $\ell_{\chi}(\underline{x})$ divides $\Delta_{G}(\underline{x})$ with multiplicitly 1 .

Proof of Frobenius' Theorem 1

Let $\chi: G \rightarrow \mathbb{C}^{\times}$be a group homomorphism. $\ell_{\chi}(\underline{x}):=\sum_{g \in G} \chi(g) x_{g}$.
To prove: $\ell_{\chi}(\underline{x})$ divides $\Delta_{G}(\underline{x})$ with multiplicitly 1 .
For $h \in G$, let Column (h) denote the h-th column of $M_{G}(\underline{x})$. Replace Column (e) by $\sum_{h \in G} \chi(h)$ Column (h).

Proof of Frobenius' Theorem 1

Let $\chi: G \rightarrow \mathbb{C}^{\times}$be a group homomorphism. $\ell_{\chi}(\underline{x}):=\sum_{g \in G} \chi(g) x_{g}$.
To prove: $\ell_{\chi}(\underline{x})$ divides $\Delta_{G}(\underline{x})$ with multiplicitly 1 .
For $h \in G$, let Column (h) denote the h-th column of $M_{G}(\underline{x})$. Replace Column (e) by $\sum_{h \in G} \chi(h)$ Column (h).

$$
M_{G}(\underline{x}) \rightsquigarrow\left[\begin{array}{cccc}
\ell_{\chi}(\underline{x}) & * & \cdots & * \\
\vdots & * & \cdots & * \\
\chi(g) \ell_{\chi}(\underline{x}) & * & x_{g^{-1} h} & * \\
\vdots & * & \cdots & *
\end{array}\right]
$$

Proof of Frobenius＇Theorem 1

Let $\chi: G \rightarrow \mathbb{C}^{\times}$be a group homomorphism．$\ell_{\chi}(\underline{x}):=\sum_{g \in G} \chi(g) x_{g}$ ．
To prove：$\ell_{\chi}(\underline{x})$ divides $\Delta_{G}(\underline{x})$ with multiplicitly 1 ．
For $h \in G$ ，let Column (h) denote the h－th column of $M_{G}(\underline{x})$ ．Replace Column (e) by $\sum_{h \in G} \chi(h) \operatorname{Column}(h)$ ．

$$
M_{G}(\underline{x}) \rightsquigarrow\left[\begin{array}{cccc}
\ell_{\chi}(\underline{x}) & * & \cdots & * \\
\vdots & * & \cdots & * \\
\chi(g) \ell_{\chi}(\underline{x}) & * & x_{g-1 h} & * \\
\vdots & * & \cdots & *
\end{array}\right]
$$

Because，g－th entry of Column (e) becomes：

$$
\sum_{h \in G} \chi(h) x_{g^{-1} h}=\sum_{\sigma \in G} \chi(g \sigma) x_{\sigma}=\sum_{\sigma \in G} \chi(g) \chi(\sigma) x_{\sigma}=\chi(g) \ell_{\chi}(\underline{x}) .
$$

$\ell_{\chi}(\underline{x})=\sum_{g \in G} \chi(g) x_{g}$ divides $\Delta_{G}(\underline{x})$ only once

Hence, $\Delta_{G}(\underline{x})=\ell_{\chi}(\underline{x}) \cdot \operatorname{Det}(A)$,

$\ell_{\chi}(\underline{x})=\sum_{g \in G} \chi(g) x_{g}$ divides $\Delta_{G}(\underline{x})$ only once

Hence, $\Delta_{G}(\underline{x})=\ell_{\chi}(\underline{x}) \cdot \operatorname{Det}(A)$, where $A=\left[\begin{array}{cccc}\vdots & * & \cdots & * \\ \chi(g) & * & x_{g-1} h & * \\ \vdots & * & \cdots & *\end{array}\right]$.

$\ell_{\chi}(\underline{x})=\sum_{g \in G} \chi(g) x_{g}$ divides $\Delta_{G}(\underline{x})$ only once

Hence, $\Delta_{G}(\underline{x})=\ell_{\chi}(\underline{x}) \cdot \operatorname{Det}(A)$, where $A=\left[\begin{array}{clll}1 & * & \cdots & * \\ \chi(g) & * & x_{g-1 h} & * \\ \vdots & * & \cdots & *\end{array}\right]$.
Row operation on A : Replace $\operatorname{Row}(g)$ by $\operatorname{Row}(g)-\chi(g) \operatorname{Row}(e)$, for every $g \neq e$.

$\ell_{\chi}(\underline{x})=\sum_{g \in G} \chi(g) x_{g}$ divides $\Delta_{G}(\underline{x})$ only once

Hence, $\Delta_{G}(\underline{x})=\ell_{\chi}(\underline{x}) \cdot \operatorname{Det}(A)$, where $A=\left[\begin{array}{clll}1 & * & \cdots & * \\ \chi(g) & * & x_{g-1 h} & * \\ \vdots & * & \cdots & *\end{array}\right]$.
Row operation on A : Replace $\operatorname{Row}(g)$ by $\operatorname{Row}(g)-\chi(g) \operatorname{Row}(e)$, for every $g \neq e$.
$A \rightsquigarrow\left[\begin{array}{cccc}1 & * & \cdots & * \\ 0 & * & \cdots & * \\ \vdots & * & a_{g, h} & * \\ 0 & * & \cdots & *\end{array}\right], \quad \begin{array}{ll}\quad a_{g, h} & =x_{g-1 h}-\chi(g) x_{h} \\ & =\chi\left(g h^{-1}\right)\left(\chi\left(g^{-1} h\right) x_{g-1}-\chi(h) x_{h}\right)\end{array}$

$\ell_{\chi}(\underline{x})=\sum_{g \in G} \chi(g) x_{g}$ divides $\Delta_{G}(\underline{x})$ only once

Hence, $\Delta_{G}(\underline{x})=\ell_{\chi}(\underline{x}) \cdot \operatorname{Det}(A)$, where $A=\left[\begin{array}{cccc}1 & * & \cdots & * \\ \chi(g) & * & x_{g-1} & * \\ \vdots & * & \cdots & *\end{array}\right]$.
Row operation on A : Replace $\operatorname{Row}(g)$ by $\operatorname{Row}(g)-\chi(g) \operatorname{Row}(e)$, for every $g \neq e$.
$A \rightsquigarrow\left[\begin{array}{cccc}1 & * & \cdots & * \\ 0 & * & \cdots & * \\ \vdots & * & a_{g, h} & * \\ 0 & * & \cdots & *\end{array}\right], \quad \begin{array}{ll}\quad \begin{array}{l}a_{g, h}\end{array} \quad \begin{array}{l}=x_{g-1}-\chi(g) x_{h} \\ \\ \\ \end{array} \quad \chi\left(g h^{-1}\right)\left(\chi\left(g^{-1} h\right) x_{g-1}-\chi(h) x_{h}\right)\end{array}$
Hence, $\frac{\Delta_{G}(\underline{X})}{\ell_{\chi}(\underline{X})}=\operatorname{Det}(A)$ depends only on $\chi(a) x_{a}-\chi(b) x_{b}$.

$\ell_{\chi}(\underline{x})=\sum_{g \in G} \chi(g) x_{g}$ divides $\Delta_{G}(\underline{x})$ only once

Fact. Let $P\left(w_{a}-w_{b}: 1 \leq a, b \leq n\right)$ be a (non-zero) polynomial in n variables, depending only on the differences of variables, as indicated. Then P is not divisible by $\sum_{a} w_{a}$.

$\ell_{\chi}(\underline{x})=\sum_{g \in G} \chi(g) x_{g}$ divides $\Delta_{G}(\underline{x})$ only once

Fact. Let $P\left(w_{a}-w_{b}: 1 \leq a, b \leq n\right)$ be a (non-zero) polynomial in n variables, depending only on the differences of variables, as indicated. Then P is not divisible by $\sum_{a} w_{a}$.
(For a proof of this fact, replace w_{a} by $w_{a}+\frac{t}{n}$. This does not change P, but adds t to $\sum_{a} w_{a}$. Assuming the contrary, we arrive at a linear polynomial in t dividing something independent of t, which is absurd.)

$\ell_{\chi}(\underline{x})=\sum_{\underline{g} \in G} \chi(\underline{g}) x_{g}$ divides $\Delta_{G}(\underline{x})$ only once

Fact. Let $P\left(w_{a}-w_{b}: 1 \leq a, b \leq n\right)$ be a (non-zero) polynomial in n variables, depending only on the differences of variables, as indicated. Then P is not divisible by $\sum_{a} w_{a}$.
(For a proof of this fact, replace w_{a} by $w_{a}+\frac{t}{n}$. This does not change P, but adds t to $\sum_{a} w_{a}$. Assuming the contrary, we arrive at a linear polynomial in t dividing something independent of t, which is absurd.)

The proof of this part is finished by taking $w_{a}=\chi(a) x_{a}(a \in G)$ and $P=\frac{\Delta_{G}(\underline{x})}{l_{\chi}(\underline{x})}=\operatorname{Det}(A)$.

Every linear factor of $\Delta_{G}(\underline{x})$ is of the form $\ell_{\chi}(\underline{x})$

Every linear factor of $\Delta_{G}(\underline{x})$ is of the form $\ell_{\chi}(\underline{x})$

Brilliant idea. Consider three sets of variables $\underline{x}=\left\{x_{g}: g \in G\right\}$, $\underline{y}=\left\{y_{g}: g \in G\right\}$ and $\underline{z}=\left\{z_{g}: g \in G\right\}$ related by:

$$
\underline{z}=\underline{x} * \underline{y} \text { meaning } z_{g}=\sum_{\substack{a, b \in G \\ a b=g}} x_{a} y_{b}=\sum_{a \in G} x_{a} y_{a-1} g .
$$

Every linear factor of $\Delta_{G}(\underline{x})$ is of the form $\ell_{\chi}(\underline{x})$

Brilliant idea. Consider three sets of variables $\underline{x}=\left\{x_{g}: g \in G\right\}$, $\underline{y}=\left\{y_{g}: g \in G\right\}$ and $\underline{z}=\left\{z_{g}: g \in G\right\}$ related by:

$$
\underline{z}=\underline{x} * \underline{y} \text { meaning } z_{g}=\sum_{\substack{a, b \in G \\ a b=g}} x_{a} y_{b}=\sum_{a \in G} x_{a} y_{a-1} g \text {. }
$$

Then, $M_{G}(\underline{z})=M_{G}(\underline{x}) \cdot M_{G}(\underline{y})$.

Every linear factor of $\Delta_{G}(\underline{x})$ is of the form $\ell_{\chi}(\underline{x})$

Brilliant idea. Consider three sets of variables $\underline{x}=\left\{x_{g}: g \in G\right\}$, $\underline{y}=\left\{y_{g}: g \in G\right\}$ and $\underline{z}=\left\{z_{g}: g \in G\right\}$ related by:

$$
\underline{z}=\underline{x} * \underline{y} \text { meaning } z_{g}=\sum_{\substack{a, b \in G \\ a b=g}} x_{a} y_{b}=\sum_{a \in G} x_{a} y_{a-1} g .
$$

Then, $M_{G}(\underline{z})=M_{G}(\underline{x}) \cdot M_{G}(\underline{y})$.
Proof. For $g, h \in G$, the (g, h)-th entry of $M_{G}(\underline{z})$ is given by:

$$
z_{g^{-1} h}=\sum_{a \in G} x_{a} y_{a^{-1} g^{-1} h}=\sum_{c \in G} x_{g^{-1} c} y_{c^{-1} h}=\left(M_{G}(\underline{x}) M_{G}(\underline{y})\right)_{g, h} .
$$

Every linear factor of $\Delta_{G}(\underline{x})$ is of the form $\ell_{\chi}(\underline{x})$

$$
\underline{z}=\underline{x} * \underline{y} \equiv\left\{z_{g}=\sum_{a} x_{a} y_{a^{-1} g}\right\}_{g \in G} \Rightarrow M_{G}(\underline{z})=M_{G}(\underline{x}) M_{G}(\underline{y})
$$

Every linear factor of $\Delta_{G}(\underline{x})$ is of the form $\ell_{\chi}(\underline{x})$

$$
\underline{z}=\underline{x} * \underline{y} \equiv\left\{z_{g}=\sum_{a} x_{a} y_{a^{-1} g}\right\}_{g \in G} \Rightarrow M_{G}(\underline{z})=M_{G}(\underline{x}) M_{G}(\underline{y})
$$

Taking determinant, we get $\Delta_{G}(\underline{z})=\Delta_{G}(\underline{x}) \Delta_{G}(\underline{y})$.

Every linear factor of $\Delta_{G}(\underline{x})$ is of the form $\ell_{\chi}(\underline{x})$

$$
\underline{z}=\underline{x} * \underline{y} \equiv\left\{z_{g}=\sum_{a} x_{a} y_{a^{-1} g}\right\}_{g \in G} \Rightarrow M_{G}(\underline{z})=M_{G}(\underline{x}) M_{G}(\underline{y})
$$

Taking determinant, we get $\Delta_{G}(\underline{z})=\Delta_{G}(\underline{x}) \Delta_{G}(\underline{y})$.
Now, assume that there is a linear form $\ell(\underline{x})=\sum_{g} \lambda_{g} x_{g}$, with $\lambda_{e}=1$, which divides $\Delta_{G}(\underline{x})$.

Every linear factor of $\Delta_{G}(\underline{x})$ is of the form $\ell_{\chi}(\underline{x})$

$$
\underline{z}=\underline{x} * \underline{y} \equiv\left\{z_{g}=\sum_{a} x_{a} y_{a^{-1} g}\right\}_{g \in G} \Rightarrow M_{G}(\underline{z})=M_{G}(\underline{x}) M_{G}(\underline{y})
$$

Taking determinant, we get $\Delta_{G}(\underline{z})=\Delta_{G}(\underline{x}) \Delta_{G}(\underline{y})$.
Now, assume that there is a linear form $\ell(\underline{x})=\sum_{g} \lambda_{g} x_{g}$, with $\lambda_{e}=1$, which divides $\Delta_{G}(\underline{x})$.

Claim. $\ell(\underline{z})=\ell(\underline{x}) \ell(\underline{y})$.

Every linear factor of $\Delta_{G}(\underline{x})$ is of the form $\ell_{\chi}(\underline{x})$

$$
\underline{z}=\underline{x} * \underline{y} \equiv\left\{z_{g}=\sum_{a} x_{a} y_{a^{-1} g}\right\}_{g \in G} \Rightarrow M_{G}(\underline{z})=M_{G}(\underline{x}) M_{G}(\underline{y})
$$

Taking determinant, we get $\Delta_{G}(\underline{z})=\Delta_{G}(\underline{x}) \Delta_{G}(\underline{y})$.
Now, assume that there is a linear form $\ell(\underline{x})=\sum_{g} \lambda_{g} x_{g}$, with $\lambda_{e}=1$, which divides $\Delta_{G}(\underline{x})$.

Claim. $\ell(\underline{z})=\ell(\underline{x}) \ell(\underline{y})$.
Note. Comparing coefficients of $x_{a} y_{b}$ on both sides, we get $\lambda_{a b}=\lambda_{a} \lambda_{b}$. That is, $g \mapsto \lambda_{g}$ is a group homomorphism, and $\ell=\ell_{\lambda}$ as desired.

Every linear factor of $\Delta_{G}(\underline{x})$ is of the form $\ell_{\chi}(\underline{x})$

$$
\left\{z_{g}=\sum_{a \in G} x_{a} y_{a^{-1} g}\right\}_{g \in G}, \quad \Delta_{G}(\underline{z})=\Delta_{G}(\underline{x}) \Delta_{G}(\underline{y})
$$

$\ell(\underline{z})=\sum_{g \in G} \lambda_{g} z_{g}$ divides $\Delta_{G}(\underline{z})$. (recall $\lambda_{e}=1$).
To prove: $\ell(\underline{z})=\ell(\underline{x}) \ell(\underline{y})$.

Every linear factor of $\Delta_{G}(\underline{x})$ is of the form $\ell_{\chi}(\underline{x})$

$$
\left\{z_{g}=\sum_{a \in G} x_{a} y_{a-1}\right\}_{g \in G}, \quad \Delta_{G}(\underline{z})=\Delta_{G}(\underline{x}) \Delta_{G}(\underline{y})
$$

$\ell(\underline{z})=\sum_{g \in G} \lambda_{g} z_{g}$ divides $\Delta_{G}(\underline{z})$. (recall $\left.\lambda_{e}=1\right)$.
To prove: $\ell(\underline{z})=\ell(\underline{x}) \ell(\underline{y})$.
Since $\ell(\underline{z})$ divides $\Delta_{G}(\underline{x}) \Delta_{G}(\underline{y})$, it must be product of a linear form in \underline{x} and another one in $\underline{y}: \ell(\underline{z})=\ell_{1}(\underline{x}) \ell_{2}(\underline{y})$.

Every linear factor of $\Delta_{G}(\underline{x})$ is of the form $\ell_{\chi}(\underline{x})$

$$
\left\{z_{g}=\sum_{a \in G} x_{a} y_{a^{-1} g}\right\}_{g \in G}, \quad \Delta_{G}(\underline{z})=\Delta_{G}(\underline{x}) \Delta_{G}(\underline{y})
$$

$\ell(\underline{z})=\sum_{g \in G} \lambda_{g} z_{g}$ divides $\Delta_{G}(\underline{z})$. (recall $\left.\lambda_{e}=1\right)$.
To prove: $\ell(\underline{z})=\ell(\underline{x}) \ell(\underline{y})$.
Since $\ell(\underline{z})$ divides $\Delta_{G}(\underline{x}) \Delta_{G}(\underline{y})$, it must be product of a linear form in \underline{x} and another one in $\underline{y}: \ell(\underline{z})=\ell_{1}(\underline{x}) \ell_{2}(\underline{y})$.

Specializing $y_{g}=\delta_{g, e}$ turns $z_{g}=x_{g}$ and $\ell_{2}(\underline{y})$ into a complex number, say c_{2}. Similarly for the same specialization of \underline{x} variables. We get:
$\ell(\underline{x})=\ell_{1}(\underline{x}) c_{2}, \quad \ell(\underline{y})=c_{1} \ell_{2}(\underline{y})$.

Every linear factor of $\Delta_{G}(\underline{x})$ is of the form $\ell_{\chi}(\underline{x})$

$$
\left\{z_{g}=\sum_{a \in G} x_{a} y_{a^{-1} g}\right\}_{g \in G}, \quad \Delta_{G}(\underline{z})=\Delta_{G}(\underline{x}) \Delta_{G}(\underline{y})
$$

$\ell(\underline{z})=\sum_{g \in G} \lambda_{g} z_{g}$ divides $\Delta_{G}(\underline{z})$ ．（recall $\left.\lambda_{e}=1\right)$ ．
To prove：$\ell(\underline{z})=\ell(\underline{x}) \ell(\underline{y})$ ．
Since $\ell(\underline{z})$ divides $\Delta_{G}(\underline{x}) \Delta_{G}(\underline{y})$ ，it must be product of a linear form in \underline{x} and another one in $\underline{y}: \ell(\underline{z})=\ell_{1}(\underline{x}) \ell_{2}(\underline{y})$ ．
Specializing $y_{g}=\delta_{g, e}$ turns $z_{g}=x_{g}$ and $\ell_{2}(\underline{y})$ into a complex number， say c_{2} ．Similarly for the same specialization of \underline{x} variables．We get：
$\ell(\underline{x})=\ell_{1}(\underline{x}) c_{2}, \quad \ell(\underline{y})=c_{1} \ell_{2}(\underline{y})$.
Put together，$\ell(\underline{x}) \ell(\underline{y})=c_{1} c_{2} \ell(\underline{z})$ ．But $c_{1} c_{2}$ is the coefficient of z_{e} in $\ell(\underline{z})$ assumed to be 1 ．

Frobenius' Theorem 2 (December 1896)

Theorem

Consider the factorization of $\Delta_{G}(\underline{x})$ into irreducible factors:

$$
\Delta_{G}(\underline{x})=\prod_{i=1}^{r} P_{i}(\underline{x})^{d_{i}} .
$$

Frobenius' Theorem 2 (December 1896)

Theorem

Consider the factorization of $\Delta_{G}(\underline{x})$ into irreducible factors:

$$
\Delta_{G}(\underline{x})=\prod_{i=1}^{r} P_{i}(\underline{x})^{d_{i}}
$$

Then,
$1 r$ is equal to the number of conjugacy classes of G.

Frobenius' Theorem 2 (December 1896)

Theorem

Consider the factorization of $\Delta_{G}(\underline{x})$ into irreducible factors:

$$
\Delta_{G}(\underline{x})=\prod_{i=1}^{r} P_{i}(\underline{x})^{d_{i}} .
$$

Then,
$1 r$ is equal to the number of conjugacy classes of G.
[2 $\operatorname{deg}\left(P_{i}\right)=d_{i}$. In particular, $\sum_{i=1}^{r} d_{i}^{2}=|G|$

Frobenius' Theorem 2 (December 1896)

Theorem

Consider the factorization of $\Delta_{G}(\underline{x})$ into irreducible factors:

$$
\Delta_{G}(\underline{x})=\prod_{i=1}^{r} P_{i}(\underline{x})^{d_{i}} .
$$

Then,
$1 r$ is equal to the number of conjugacy classes of G.
[2 $\operatorname{deg}\left(P_{i}\right)=d_{i}$. In particular, $\sum_{i=1}^{r} d_{i}^{2}=|G|$
Recall that conjugacy classes in G are equivalence classes under the equivalence relation: $a \sim b$ iff there exists g such that $a=g b g^{-1}$.

Example: $G=S_{3}$ symmetric group on 3 letters

Variables: x_{0}, \ldots, x_{5} corresponding to the following ordering of permutations:

$$
e,(123),(132),(23),(13),(12) .
$$

Example: $G=S_{3}$ symmetric group on 3 letters

Variables: x_{0}, \ldots, x_{5} corresponding to the following ordering of permutations:

$$
\begin{gathered}
e,(123),(132),(23),(13),(12) . \\
M_{G}(\underline{x})=\left[\begin{array}{lll|lll}
x_{0} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{2} & x_{0} & x_{1} & x_{4} & x_{5} & x_{3} \\
x_{1} & x_{2} & x_{0} & x_{5} & x_{3} & x_{4} \\
\hline x_{3} & x_{4} & x_{5} & x_{0} & x_{1} & x_{2} \\
x_{4} & x_{5} & x_{3} & x_{2} & x_{0} & x_{1} \\
x_{5} & x_{3} & x_{4} & x_{1} & x_{2} & x_{0}
\end{array}\right]
\end{gathered}
$$

Example: $G=S_{3}$ symmetric group on 3 letters

Variables: x_{0}, \ldots, x_{5} corresponding to the following ordering of permutations:

$$
\begin{gathered}
e,(123),(132),(23),(13),(12) . \\
M_{G}(\underline{x})=\left[\begin{array}{lll|lll}
x_{0} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{2} & x_{0} & x_{1} & x_{4} & x_{5} & x_{3} \\
x_{1} & x_{2} & x_{0} & x_{5} & x_{3} & x_{4} \\
\hline x_{3} & x_{4} & x_{5} & x_{0} & x_{1} & x_{2} \\
x_{4} & x_{5} & x_{3} & x_{2} & x_{0} & x_{1} \\
x_{5} & x_{3} & x_{4} & x_{1} & x_{2} & x_{0}
\end{array}\right]
\end{gathered}
$$

Dedekind computed $\Delta_{G}=(u+v)(u-v)\left(u_{1} u_{2}-v_{1} v_{2}\right)^{2}$, where $\left(\omega=\omega_{3}\right.$ here):

$$
\begin{aligned}
u=x_{0}+x_{1}+x_{2}, & v=x_{3}+x_{4}+x_{5}, \\
u_{1}=x_{0}+\omega x_{1}+\omega^{2} x_{2}, & v_{1}=x_{3}+\omega x_{4}+\omega^{2} x_{5}, \\
u_{2}=x_{0}+\omega^{2} x_{1}+\omega x_{2}, & v_{2}=x_{3}+\omega^{2} x_{4}+\omega x_{5}
\end{aligned}
$$

Example: $G=S_{3}$

View $M_{G}(\underline{x})$ as a linear operator on \mathbb{C}^{6} with (ordered) basis $\left\{b_{0}, \ldots, b_{5}\right\}$.

Example: $G=S_{3}$

View $M_{G}(\underline{x})$ as a linear operator on \mathbb{C}^{6} with (ordered) basis $\left\{b_{0}, \ldots, b_{5}\right\}$.

$$
\begin{aligned}
\alpha_{0}=b_{0}+b_{1}+b_{2}, & \beta_{0}=b_{3}+b_{4}+b_{5} \\
\alpha_{1}=b_{0}+\omega b_{1}+\omega^{2} b_{2}, & \beta_{1}=b_{3}+\omega b_{4}+\omega^{2} b_{5} \\
\alpha_{2}=b_{0}+\omega^{2} b_{1}+\omega b_{2}, & \beta_{2}=b_{3}+\omega^{2} b_{4}+\omega b_{5}
\end{aligned}
$$

Example: $G=S_{3}$

View $M_{G}(\underline{x})$ as a linear operator on \mathbb{C}^{6} with (ordered) basis $\left\{b_{0}, \ldots, b_{5}\right\}$.

$$
\begin{aligned}
\alpha_{0}=b_{0}+b_{1}+b_{2}, & \beta_{0}=b_{3}+b_{4}+b_{5} \\
\alpha_{1}=b_{0}+\omega b_{1}+\omega^{2} b_{2}, & \beta_{1}=b_{3}+\omega b_{4}+\omega^{2} b_{5} \\
\alpha_{2}=b_{0}+\omega^{2} b_{1}+\omega b_{2}, & \beta_{2}=b_{3}+\omega^{2} b_{4}+\omega b_{5}
\end{aligned}
$$

$\left.M_{G}(\underline{x}) \substack{ \\\alpha_{0}, \beta_{0}, \alpha_{1}, \beta_{2}, \alpha_{2}, \beta_{1}} \begin{array}{ccc}\begin{array}{|cc|}\hline u & v \\ v & u \\ \hline\end{array} & 0 & 0 \\ 0 & \begin{array}{|cc|}\hline u_{1} & v_{2} \\ v_{1} & u_{2} \\ \hline\end{array} & 0 \\ 0 & 0 & \begin{array}{|cc|}\hline u_{2} & v_{1} \\ v_{2} & u_{1} \\ \hline\end{array}\end{array}\right]$

Example: $G=S_{3}$

View $M_{G}(\underline{x})$ as a linear operator on \mathbb{C}^{6} with (ordered) basis $\left\{b_{0}, \ldots, b_{5}\right\}$.

$$
\begin{aligned}
\alpha_{0}=b_{0}+b_{1}+b_{2}, & \beta_{0}=b_{3}+b_{4}+b_{5} \\
\alpha_{1}=b_{0}+\omega b_{1}+\omega^{2} b_{2}, & \beta_{1}=b_{3}+\omega b_{4}+\omega^{2} b_{5} \\
\alpha_{2}=b_{0}+\omega^{2} b_{1}+\omega b_{2}, & \beta_{2}=b_{3}+\omega^{2} b_{4}+\omega b_{5}
\end{aligned}
$$

Representation theory (1896-12-03, Berlin)

Definitions. Let G be a group. In this talk, vector spaces are over \mathbb{C}.

Representation theory (1896-12-03, Berlin)

Definitions. Let G be a group. In this talk, vector spaces are over \mathbb{C}.

- A G-representation (V, ρ) is a vector space V together with linear maps $\rho(g): V \rightarrow V$, for every $g \in G$, such that:

$$
\rho(e)=\operatorname{ld} v, \quad \rho\left(g_{1} g_{2}\right)=\rho\left(g_{1}\right) \circ \rho\left(g_{2}\right) .
$$

Representation theory（1896－12－03，Berlin）

Definitions．Let G be a group．In this talk，vector spaces are over \mathbb{C} ．
－A G－representation (V, ρ) is a vector space V together with linear maps $\rho(g): V \rightarrow V$ ，for every $g \in G$ ，such that：

$$
\rho(e)=\operatorname{ld} V, \quad \rho\left(g_{1} g_{2}\right)=\rho\left(g_{1}\right) \circ \rho\left(g_{2}\right) .
$$

－A subrepresentation of a representation (V, ρ) is a vector subspace $V_{1} \subset V$ such that $\rho(g)\left(V_{1}\right) \subset V_{1}$ ，for every $g \in G$ ．A representation (V, ρ) is said to be irreducible if its only subrepresentations are $\{0\}$ and V ．

Representation theory (1896-12-03, Berlin)

Definitions. Let G be a group. In this talk, vector spaces are over \mathbb{C}.

- A G-representation (V, ρ) is a vector space V together with linear maps $\rho(g): V \rightarrow V$, for every $g \in G$, such that:

$$
\rho(e)=\operatorname{ld} V, \quad \rho\left(g_{1} g_{2}\right)=\rho\left(g_{1}\right) \circ \rho\left(g_{2}\right) .
$$

- A subrepresentation of a representation (V, ρ) is a vector subspace $V_{1} \subset V$ such that $\rho(g)\left(V_{1}\right) \subset V_{1}$, for every $g \in G$. A representation (V, ρ) is said to be irreducible if its only subrepresentations are $\{0\}$ and V.
- A G-linear map (or a G-intertwiner) between two representations (V, ρ) and $\left(V^{\prime}, \rho^{\prime}\right)$ is a linear map $X: V \rightarrow V^{\prime}$ such that

$$
\rho^{\prime}(g) \circ X=X \circ \rho(g), \text { for every } g \in G
$$

Representation theory（1896－12－03，Berlin）

Definitions．Let G be a group．In this talk，vector spaces are over \mathbb{C} ．
－A G－representation (V, ρ) is a vector space V together with linear maps $\rho(g): V \rightarrow V$ ，for every $g \in G$ ，such that：

$$
\rho(e)=\operatorname{ld} V, \quad \rho\left(g_{1} g_{2}\right)=\rho\left(g_{1}\right) \circ \rho\left(g_{2}\right) .
$$

－A subrepresentation of a representation (V, ρ) is a vector subspace $V_{1} \subset V$ such that $\rho(g)\left(V_{1}\right) \subset V_{1}$ ，for every $g \in G$ ．A representation (V, ρ) is said to be irreducible if its only subrepresentations are $\{0\}$ and V ．
－A G－linear map（or a G－intertwiner）between two representations (V, ρ) and $\left(V^{\prime}, \rho^{\prime}\right)$ is a linear map $X: V \rightarrow V^{\prime}$ such that

$$
\rho^{\prime}(g) \circ X=X \circ \rho(g), \text { for every } g \in G
$$

（Easy check：kernel and image of a G－intertwiner are subrepresentations of V and V^{\prime} respectively．）

```
ロ・岛
```


Representation theory (1896-12-03, Berlin)

Direct Sum. Given two representations $\left(V_{1}, \rho_{1}\right)$ of $\left(V_{2}, \rho_{2}\right)$, their direct sum is the representation (V, ρ), where $V=V_{1} \oplus V_{2}$ and $\rho(g)=\rho_{1}(g) \oplus \rho_{2}(g)$, for every $g \in G$. That is, $\rho(g)$ is a block diagonal matrix:

$$
\rho(g)=\left[\begin{array}{cc}
\rho_{1}(g) & 0 \\
0 & \rho_{2}(g)
\end{array}\right]
$$

Representation theory (1896-12-03, Berlin)

Direct Sum. Given two representations $\left(V_{1}, \rho_{1}\right)$ of $\left(V_{2}, \rho_{2}\right)$, their direct sum is the representation (V, ρ), where $V=V_{1} \oplus V_{2}$ and $\rho(g)=\rho_{1}(g) \oplus \rho_{2}(g)$, for every $g \in G$. That is, $\rho(g)$ is a block diagonal matrix:

$$
\rho(g)=\left[\begin{array}{cc}
\rho_{1}(g) & 0 \\
0 & \rho_{2}(g)
\end{array}\right]
$$

Notation. For two vector spaces $V, W, \operatorname{Hom}_{\mathbb{C}}(V, W)$ denotes the vector space of all linear maps $V \rightarrow W$. If (V, ρ) and $\left(W, \rho^{\prime}\right)$ are G-representations, then $\operatorname{Hom}_{G}(V, W) \subset \operatorname{Hom}_{\mathbb{C}}(V, W)$ denotes the vector space of all G-intertwiners.

Representation theory (1896-12-03, Berlin)

Direct Sum. Given two representations $\left(V_{1}, \rho_{1}\right)$ of $\left(V_{2}, \rho_{2}\right)$, their direct sum is the representation (V, ρ), where $V=V_{1} \oplus V_{2}$ and $\rho(g)=\rho_{1}(g) \oplus \rho_{2}(g)$, for every $g \in G$. That is, $\rho(g)$ is a block diagonal matrix:

$$
\rho(g)=\left[\begin{array}{cc}
\rho_{1}(g) & 0 \\
0 & \rho_{2}(g)
\end{array}\right]
$$

Notation. For two vector spaces $V, W, \operatorname{Hom}_{\mathbb{C}}(V, W)$ denotes the vector space of all linear maps $V \rightarrow W$. If (V, ρ) and $\left(W, \rho^{\prime}\right)$ are G-representations, then $\operatorname{Hom}_{G}(V, W) \subset \operatorname{Hom}_{\mathbb{C}}(V, W)$ denotes the vector space of all G-intertwiners.
$\operatorname{Hom}_{G}(V, W)=\left\{X \in \operatorname{Hom}_{\mathbb{C}}(V, W): \rho^{\prime}(g) X=X \rho(g), \forall g \in G\right\}$

Examples

Remark. (V, ρ) is a G-representation is same as saying $\rho: G \rightarrow \mathrm{GL}(V)$ is a group homomorphism. If $n=\operatorname{dim}(V)$, it is same as (after picking a basis of V) a group homomorphism $G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$.

Examples

Remark. (V, ρ) is a G-representation is same as saying $\rho: G \rightarrow \mathrm{GL}(V)$ is a group homomorphism. If $n=\operatorname{dim}(V)$, it is same as (after picking a basis of V) a group homomorphism $G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$.

1-dimensional representations of G are same as group homomorphisms $G \rightarrow \mathrm{GL}_{1}(\mathbb{C})=\mathbb{C}^{\times}$.

Examples

Remark. (V, ρ) is a G-representation is same as saying $\rho: G \rightarrow \mathrm{GL}(V)$ is a group homomorphism. If $n=\operatorname{dim}(V)$, it is same as (after picking a basis of V) a group homomorphism $G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$.

1-dimensional representations of G are same as group homomorphisms $G \rightarrow \mathrm{GL}_{1}(\mathbb{C})=\mathbb{C}^{\times}$.

When G is finite, abelian. Every finite-dimensional, irreducible representation of G is 1 -dimensional.

Examples

Remark. (V, ρ) is a G-representation is same as saying $\rho: G \rightarrow \mathrm{GL}(V)$ is a group homomorphism. If $n=\operatorname{dim}(V)$, it is same as (after picking a basis of V) a group homomorphism $G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$.

1-dimensional representations of G are same as group homomorphisms $G \rightarrow \mathrm{GL}_{1}(\mathbb{C})=\mathbb{C}^{\times}$.

When G is finite, abelian. Every finite-dimensional, irreducible representation of G is 1-dimensional.
Proof. Let (V, ρ) be a finite-dimensional representation. For every $g \in G$, there exists $m \in \mathbb{Z}_{\geq 1}$ such that $g^{m}=e$. So $\rho(g)^{m}=I_{V}$, hence $\rho(g)$ is diagonalizable.

Examples

Remark．(V, ρ) is a G－representation is same as saying $\rho: G \rightarrow \operatorname{GL}(V)$ is a group homomorphism．If $n=\operatorname{dim}(V)$ ，it is same as（after picking a basis of V ）a group homomorphism $G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ ．

1－dimensional representations of G are same as group homomorphisms $G \rightarrow \mathrm{GL}_{1}(\mathbb{C})=\mathbb{C}^{\times}$．

When G is finite，abelian．Every finite－dimensional，irreducible representation of G is 1－dimensional．
Proof．Let（ V, ρ ）be a finite－dimensional representation．For every $g \in G$ ，there exists $m \in \mathbb{Z}_{\geq 1}$ such that $g^{m}=e$ ．So $\rho(g)^{m}=\mathrm{Id}_{v}$ ，hence $\rho(g)$ is diagonalizable．This implies that $\{\rho(g)\}_{g \in G}$ is a collection of pairwise commuting，diagonalizable matrices．Thus they can be diagonalized simultaneously，giving a joint eigenvector $0 \neq v \in V$ ． $\mathbb{C} V \subset V$ is a non－zero subrepresentation which will have to be equal to V ，if V is irreducible．

Example of the dihedral group D_{n}

- D_{n} is the dihedral group (symmetries of a regular n-gon).

Example of the dihedral group D_{n}

- D_{n} is the dihedral group (symmetries of a regular n-gon). It has the following presentation:

$$
D_{n}=\left\langle s, r \mid s^{2}=r^{n}=(s r)^{2}=e\right\rangle, \quad\left(s r s=r^{-1}\right)
$$

Example of the dihedral group D_{n}

- D_{n} is the dihedral group (symmetries of a regular n-gon). It has the following presentation:

$$
D_{n}=\left\langle s, r \mid s^{2}=r^{n}=(s r)^{2}=e\right\rangle, \quad\left(s r s=r^{-1}\right)
$$

- $\left|D_{n}\right|=2 n$. Its elements can be listed as (note $r^{k} s=s r^{-k}=s r^{n-k}$):

$$
\left\{e, r, r^{2}, \ldots, r^{n-1}, s, s r, s r^{2}, \ldots, s r^{n-1}\right\}
$$

Example of the dihedral group D_{n}

- D_{n} is the dihedral group (symmetries of a regular n-gon). It has the following presentation:

$$
D_{n}=\left\langle s, r \mid s^{2}=r^{n}=(s r)^{2}=e\right\rangle, \quad\left(s r s=r^{-1}\right)
$$

- $\left|D_{n}\right|=2 n$. Its elements can be listed as (note $r^{k} s=s r^{-k}=s r^{n-k}$):

$$
\left\{e, r, r^{2}, \ldots, r^{n-1}, s, s r, s r^{2}, \ldots, s r^{n-1}\right\}
$$

- Let $\zeta \in \mathbb{C}$ be such that $\zeta^{n}=1$. We have a 2-dimensional representation of D_{n}, denoted here by $\left(V_{\zeta}, \rho_{\zeta}\right)$:

Example of the dihedral group D_{n}

- D_{n} is the dihedral group (symmetries of a regular n-gon). It has the following presentation:

$$
D_{n}=\left\langle s, r \mid s^{2}=r^{n}=(s r)^{2}=e\right\rangle, \quad\left(s r s=r^{-1}\right)
$$

- $\left|D_{n}\right|=2 n$. Its elements can be listed as (note $r^{k} s=s r^{-k}=s r^{n-k}$):

$$
\left\{e, r, r^{2}, \ldots, r^{n-1}, s, s r, s r^{2}, \ldots, s r^{n-1}\right\}
$$

- Let $\zeta \in \mathbb{C}$ be such that $\zeta^{n}=1$. We have a 2-dimensional representation of D_{n}, denoted here by $\left(V_{\zeta}, \rho_{\zeta}\right)$:

$$
\rho_{\zeta}(r)=\left[\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right], \quad \rho_{\zeta}(s)=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Example of the dihedral group D_{n}

- D_{n} is the dihedral group (symmetries of a regular n-gon). It has the following presentation:

$$
D_{n}=\left\langle s, r \mid s^{2}=r^{n}=(s r)^{2}=e\right\rangle, \quad\left(s r s=r^{-1}\right)
$$

- $\left|D_{n}\right|=2 n$. Its elements can be listed as (note $r^{k} s=s r^{-k}=s r^{n-k}$):

$$
\left\{e, r, r^{2}, \ldots, r^{n-1}, s, s r, s r^{2}, \ldots, s r^{n-1}\right\}
$$

- Let $\zeta \in \mathbb{C}$ be such that $\zeta^{n}=1$. We have a 2-dimensional representation of D_{n}, denoted here by $\left(V_{\zeta}, \rho_{\zeta}\right)$:

$$
\rho_{\zeta}(r)=\left[\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right], \quad \rho_{\zeta}(s)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Note: $V_{\zeta} \cong V_{\zeta^{-1}}$.

Example of the dihedral group D_{n}

- D_{n} is the dihedral group (symmetries of a regular n-gon). It has the following presentation:

$$
D_{n}=\left\langle s, r \mid s^{2}=r^{n}=(s r)^{2}=e\right\rangle, \quad\left(s r s=r^{-1}\right)
$$

- $\left|D_{n}\right|=2 n$. Its elements can be listed as (note $r^{k} s=s r^{-k}=s r^{n-k}$):

$$
\left\{e, r, r^{2}, \ldots, r^{n-1}, s, s r, s r^{2}, \ldots, s r^{n-1}\right\}
$$

■ Let $\zeta \in \mathbb{C}$ be such that $\zeta^{n}=1$. We have a 2-dimensional representation of D_{n}, denoted here by $\left(V_{\zeta}, \rho_{\zeta}\right)$:

$$
\rho_{\zeta}(r)=\left[\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right], \quad \rho_{\zeta}(s)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Note: $V_{\zeta} \cong V_{\zeta^{-1}}$. If $\zeta \neq \zeta^{-1}$, this representation is irreducible.

Example of the dihedral group D_{n}

■ D_{n} is the dihedral group（symmetries of a regular n－gon）．It has the following presentation：

$$
D_{n}=\left\langle s, r \mid s^{2}=r^{n}=(s r)^{2}=e\right\rangle, \quad\left(s r s=r^{-1}\right)
$$

■ $\left|D_{n}\right|=2 n$ ．Its elements can be listed as（note $r^{k} s=s r^{-k}=s r^{n-k}$ ）：

$$
\left\{e, r, r^{2}, \ldots, r^{n-1}, s, s r, s r^{2}, \ldots, s r^{n-1}\right\}
$$

■ Let $\zeta \in \mathbb{C}$ be such that $\zeta^{n}=1$ ．We have a 2 －dimensional representation of D_{n} ，denoted here by $\left(V_{\zeta}, \rho_{\zeta}\right)$ ：

$$
\rho_{\zeta}(r)=\left[\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right], \quad \rho_{\zeta}(s)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Note：$V_{\zeta} \cong V_{\zeta^{-1}}$ ．If $\zeta \neq \zeta^{-1}$ ，this representation is irreducible．If $\zeta= \pm 1$（ ζ could be -1 iff n is even），V_{ζ} further breaks into two 1－dimensional representations．

Example: regular representation

Let G be a finite group. Let $\mathbb{C} G$ be a $|G|$-dimensional vector space, with basis $\{|g\rangle: g \in G\}$.

Example: regular representation

Let G be a finite group. Let $\mathbb{C} G$ be a $|G|$-dimensional vector space, with basis $\{|g\rangle: g \in G\}$. For each $\sigma \in G$, let $L(\sigma): \mathbb{C} G \rightarrow \mathbb{C} G$ be defined by: $L(\sigma)|g\rangle=|\sigma g\rangle$.
Then $(\mathbb{C} G, L)$ is a G-representation.

Example: regular representation

Let G be a finite group. Let $\mathbb{C} G$ be a $|G|$-dimensional vector space, with basis $\{|g\rangle: g \in G\}$. For each $\sigma \in G$, let $L(\sigma): \mathbb{C} G \rightarrow \mathbb{C} G$ be defined by: $L(\sigma)|g\rangle=|\sigma g\rangle$.
Then $(\mathbb{C} G, L)$ is a G-representation.

Lemma

For any G-representation (V, ρ), we have: $\operatorname{Hom}_{G}(\mathbb{C} G, V) \cong V$.

Example: regular representation

Let G be a finite group. Let $\mathbb{C} G$ be a $|G|$-dimensional vector space, with basis $\{|g\rangle: g \in G\}$. For each $\sigma \in G$, let $L(\sigma): \mathbb{C} G \rightarrow \mathbb{C} G$ be defined by: $L(\sigma)|g\rangle=|\sigma g\rangle$.
Then $(\mathbb{C} G, L)$ is a G-representation.

Lemma

For any G-representation (V, ρ), we have: $\operatorname{Hom}_{G}(\mathbb{C} G, V) \cong V$.
Proof. Any G-intertwiner $X: \mathbb{C} G \rightarrow V$ is completely determined by $v=X|e\rangle .(X|g\rangle=X(L(g)|e\rangle)=\rho(g)(X|e\rangle)=\rho(g)(v))$
Conversely, given $v \in V$, the map $|g\rangle \mapsto \rho(g)(v)$ is a G-intertwiner. These assignments are inverse to each other and we are done.

Two fundamental results

Let G be a finite group. Let $\left\{\left(V_{\lambda}, \rho_{\lambda}\right): \lambda \in \Lambda_{G}\right\}$ be the set of isomorphism classes of irreducible, finite-dimensional G-representations.

[^6]
Two fundamental results

Let G be a finite group. Let $\left\{\left(V_{\lambda}, \rho_{\lambda}\right): \lambda \in \Lambda_{G}\right\}$ be the set of isomorphism classes of irreducible, finite-dimensional G-representations.

- Schur's lemma ${ }^{2} \operatorname{dim}\left(\operatorname{Hom}_{G}\left(V_{\lambda}, V_{\mu}\right)\right)=\delta_{\lambda \mu}$.

[^7]
Two fundamental results

Let G be a finite group．Let $\left\{\left(V_{\lambda}, \rho_{\lambda}\right): \lambda \in \Lambda_{G}\right\}$ be the set of isomorphism classes of irreducible，finite－dimensional G－representations．
－Schur＇s lemma ${ }^{2} \operatorname{dim}\left(\operatorname{Hom}_{G}\left(V_{\lambda}, V_{\mu}\right)\right)=\delta_{\lambda \mu}$ ．
－Maschke＇s theorem ${ }^{3}$ Let V be a finite－dimensional representation of G ．Then there exist non－negative integers $\left\{m_{\lambda}(V): \lambda \in \Lambda_{G}\right\}$ such that：

$$
V \cong \bigoplus_{\lambda \in \Lambda_{G}} V_{\lambda}^{\oplus m_{\lambda}(V)}
$$

[^8]
Two fundamental results

Let G be a finite group. Let $\left\{\left(V_{\lambda}, \rho_{\lambda}\right): \lambda \in \Lambda_{G}\right\}$ be the set of isomorphism classes of irreducible, finite-dimensional G-representations.

- Schur's lemma ${ }^{2} \operatorname{dim}\left(\operatorname{Hom}_{G}\left(V_{\lambda}, V_{\mu}\right)\right)=\delta_{\lambda \mu}$.
- Maschke's theorem ${ }^{3}$ Let V be a finite-dimensional representation of G. Then there exist non-negative integers $\left\{m_{\lambda}(V): \lambda \in \Lambda_{G}\right\}$ such that:

$$
V \cong \bigoplus_{\lambda \in \Lambda_{G}} V_{\lambda}^{\oplus m_{\lambda}(V)}
$$

The non-negative integers $m_{\lambda}(V)$ can be computed as

$$
m_{\lambda}(V)=\operatorname{dim}\left(\operatorname{Hom}_{G}\left(V, V_{\lambda}\right)\right)
$$

[^9]
The case of the regular representation

Taking $V=\mathbb{C} G$, we get $\mathbb{C} G \cong \bigoplus V_{\lambda}^{\oplus d_{\lambda}}$,
$\lambda \in \Lambda_{G}$

The case of the regular representation

Taking $V=\mathbb{C} G$, we get $\mathbb{C} G \cong \bigoplus_{\lambda \in \Lambda_{G}} V_{\lambda}^{\oplus d_{\lambda}}$, where:

$$
d_{\lambda}=\operatorname{dim}\left(\operatorname{Hom}_{G}\left(\mathbb{C} G, V_{\lambda}\right)\right)=\operatorname{dim}\left(V_{\lambda}\right)
$$

The case of the regular representation

Taking $V=\mathbb{C} G$, we get $\mathbb{C} G \cong \bigoplus_{\lambda \in \Lambda_{G}} V_{\lambda}^{\oplus d_{\lambda}}$, where:

$$
d_{\lambda}=\operatorname{dim}\left(\operatorname{Hom}_{G}\left(\mathbb{C} G, V_{\lambda}\right)\right)=\operatorname{dim}\left(V_{\lambda}\right)
$$

Hence $|G|=\sum_{\lambda \in \Lambda_{G}} d_{\lambda}^{2}$. In particular Λ_{G} is a finite set.

The case of the regular representation

Taking $V=\mathbb{C} G$, we get $\mathbb{C} G \cong \bigoplus_{\lambda \in \Lambda_{G}} V_{\lambda}^{\oplus d_{\lambda}}$, where:

$$
d_{\lambda}=\operatorname{dim}\left(\operatorname{Hom}_{G}\left(\mathbb{C} G, V_{\lambda}\right)\right)=\operatorname{dim}\left(V_{\lambda}\right) .
$$

Hence $|G|=\sum_{\lambda \in \Lambda_{G}} d_{\lambda}^{2}$. In particular Λ_{G} is a finite set.
Analogy with Frobenius' Theorem 2

$$
\Delta_{G}(\underline{x})=\prod_{i=1}^{r} P_{i}(\underline{x})^{d_{i}} \mid \mathbb{C} G \cong \bigoplus_{\lambda \in \Lambda_{G}} V_{\lambda}^{\oplus d_{\lambda}}
$$

The case of the regular representation

Taking $V=\mathbb{C} G$, we get $\mathbb{C} G \cong \bigoplus_{\lambda \in \Lambda_{G}} V_{\lambda}^{\oplus d_{\lambda}}$, where:

$$
d_{\lambda}=\operatorname{dim}\left(\operatorname{Hom}_{G}\left(\mathbb{C} G, V_{\lambda}\right)\right)=\operatorname{dim}\left(V_{\lambda}\right) .
$$

Hence $|G|=\sum_{\lambda \in \Lambda_{G}} d_{\lambda}^{2}$. In particular Λ_{G} is a finite set.
Analogy with Frobenius' Theorem 2

$$
\begin{array}{l|l}
\Delta_{G}(\underline{x})=\prod_{i=1}^{r} P_{i}(\underline{x})^{d_{i}} & \mathbb{C} G \cong \bigoplus_{\lambda \in \Lambda_{G}} V_{\lambda}^{\oplus d_{\lambda}} \\
d_{i}=\operatorname{deg}\left(P_{i}\right) & d_{\lambda}=\operatorname{dim}\left(V_{\lambda}\right)
\end{array}
$$

The case of the regular representation

Taking $V=\mathbb{C} G$, we get $\mathbb{C} G \cong \bigoplus_{\lambda \in \Lambda_{G}} V_{\lambda}^{\oplus d_{\lambda}}$, where:

$$
d_{\lambda}=\operatorname{dim}\left(\operatorname{Hom}_{G}\left(\mathbb{C} G, V_{\lambda}\right)\right)=\operatorname{dim}\left(V_{\lambda}\right) .
$$

Hence $|G|=\sum_{\lambda \in \Lambda_{G}} d_{\lambda}^{2}$. In particular Λ_{G} is a finite set.
Analogy with Frobenius' Theorem 2

$$
\begin{array}{l|l}
\Delta_{G}(\underline{x})=\prod_{i=1}^{r} P_{i}(\underline{x})^{d_{i}} & \mathbb{C} G \cong \bigoplus_{\lambda \in \Lambda_{G}} V_{\lambda}^{\oplus d_{\lambda}} \\
d_{i}=\operatorname{deg}\left(P_{i}\right) & d_{\lambda}=\operatorname{dim}\left(V_{\lambda}\right) \\
\sum_{i=1}^{r} d_{i}^{2}=|G| & \sum_{\lambda \in \Lambda_{G}} d_{\lambda}^{2}=|G|
\end{array}
$$

The case of the regular representation

Taking $V=\mathbb{C} G$, we get $\mathbb{C} G \cong \bigoplus_{\lambda \in \Lambda_{G}} V_{\lambda}^{\oplus d_{\lambda}}$, where:

$$
d_{\lambda}=\operatorname{dim}\left(\operatorname{Hom}_{G}\left(\mathbb{C} G, V_{\lambda}\right)\right)=\operatorname{dim}\left(V_{\lambda}\right) .
$$

Hence $|G|=\sum_{\lambda \in \Lambda_{G}} d_{\lambda}^{2}$. In particular Λ_{G} is a finite set.
Analogy with Frobenius' Theorem 2

$$
\begin{array}{l|l}
\Delta_{G}(\underline{x})=\prod_{i=1}^{r} P_{i}(\underline{x})^{d_{i}} & \mathbb{C} G \cong \bigoplus_{\lambda \in \Lambda_{G}} V_{\lambda}^{\oplus d_{\lambda}} \\
d_{i}=\operatorname{deg}\left(P_{i}\right) & d_{\lambda}=\operatorname{dim}\left(V_{\lambda}\right) \\
\sum_{i=1}^{r} d_{i}^{2}=|G| & \sum_{\lambda \in \Lambda_{G}} d_{\lambda}^{2}=|G| \\
r=\mid \text { Conj. classes } \mid & \left|\Lambda_{G}\right|=\mid \text { Conj. classes } \mid
\end{array}
$$

From irreducible representations to factorization of $\Delta_{G}(\underline{x})$

From irreducible representations to factorization of $\Delta_{G}(\underline{x})$

- Let $\left(V_{\lambda}, \rho_{\lambda}\right)$ be a finite-dimensional, irreducible representation of G. Choose a basis $\left\{v_{i}^{\lambda}: 1 \leq i \leq d_{\lambda}\right\} . d_{\lambda}=\operatorname{dim}\left(V_{\lambda}\right)$.

From irreducible representations to factorization of $\Delta_{G}(\underline{x})$

- Let $\left(V_{\lambda}, \rho_{\lambda}\right)$ be a finite-dimensional, irreducible representation of G. Choose a basis $\left\{v_{i}^{\lambda}: 1 \leq i \leq d_{\lambda}\right\}$. $d_{\lambda}=\operatorname{dim}\left(V_{\lambda}\right)$.
- For each $g \in G, 1 \leq i, j \leq d_{\lambda}$, let $\rho_{\lambda}(g)_{i j} \in \mathbb{C}$ be the matrix coefficient of $\rho_{\lambda}(g)$ in the basis chosen above.

From irreducible representations to factorization of $\Delta_{G}(\underline{x})$

- Let $\left(V_{\lambda}, \rho_{\lambda}\right)$ be a finite-dimensional, irreducible representation of G. Choose a basis $\left\{v_{i}^{\lambda}: 1 \leq i \leq d_{\lambda}\right\}$. $d_{\lambda}=\operatorname{dim}\left(V_{\lambda}\right)$.
- For each $g \in G, 1 \leq i, j \leq d_{\lambda}$, let $\rho_{\lambda}(g)_{i j} \in \mathbb{C}$ be the matrix coefficient of $\rho_{\lambda}(g)$ in the basis chosen above.
- Define $\ell_{i j}^{\lambda}(\underline{x})=\sum_{g \in G} \rho_{\lambda}(g)_{i j} x_{g}$.

From irreducible representations to factorization of $\Delta_{G}(\underline{x})$

- Let $\left(V_{\lambda}, \rho_{\lambda}\right)$ be a finite-dimensional, irreducible representation of G. Choose a basis $\left\{v_{i}^{\lambda}: 1 \leq i \leq d_{\lambda}\right\}$. $d_{\lambda}=\operatorname{dim}\left(V_{\lambda}\right)$.
- For each $g \in G, 1 \leq i, j \leq d_{\lambda}$, let $\rho_{\lambda}(g)_{i j} \in \mathbb{C}$ be the matrix coefficient of $\rho_{\lambda}(g)$ in the basis chosen above.
- Define $\ell_{i j}^{\lambda}(\underline{x})=\sum_{g \in G} \rho_{\lambda}(g)_{i j} x_{g}$.
- Let $P_{\lambda}(\underline{x})=\operatorname{Det}\left(\ell_{i j}^{\lambda}(\underline{x})\right)$.

From irreducible representations to factorization of $\Delta_{G}(\underline{x})$

- Let $\left(V_{\lambda}, \rho_{\lambda}\right)$ be a finite-dimensional, irreducible representation of G. Choose a basis $\left\{v_{i}^{\lambda}: 1 \leq i \leq d_{\lambda}\right\}$. $d_{\lambda}=\operatorname{dim}\left(V_{\lambda}\right)$.
■ For each $g \in G, 1 \leq i, j \leq d_{\lambda}$, let $\rho_{\lambda}(g)_{i j} \in \mathbb{C}$ be the matrix coefficient of $\rho_{\lambda}(g)$ in the basis chosen above.
- Define $\ell_{i j}^{\lambda}(\underline{x})=\sum_{g \in G} \rho_{\lambda}(g)_{i j} x_{g}$.
- Let $P_{\lambda}(\underline{x})=\operatorname{Det}\left(\ell_{i j}^{\lambda}(\underline{x})\right)$.

$$
\Delta_{G}(\underline{x})=\prod_{\lambda \in \Lambda_{G}} P_{\lambda}(\underline{x})^{d_{\lambda}}
$$

Example of $D_{n}(n$ is odd $)$

Variables. $x_{k} \leftrightarrow r^{k}$ and $y_{k} \leftrightarrow s r^{k}$. Here $0 \leq k \leq n-1$.

Example of $D_{n}(n$ is odd $)$

Variables. $x_{k} \leftrightarrow r^{k}$ and $y_{k} \leftrightarrow s r^{k}$. Here $0 \leq k \leq n-1$. List of irreducible representations.

Example of $D_{n}(n$ is odd $)$

Variables. $x_{k} \leftrightarrow r^{k}$ and $y_{k} \leftrightarrow s r^{k}$. Here $0 \leq k \leq n-1$.
List of irreducible representations.

- Two 1-dimensional representations: $V_{+, \pm .} r$ acts as 1 and s acts as ± 1. Linear factors coming from these:

$$
\ell^{+,+}=\sum_{k=0}^{n-1} x_{k}+y_{k}, \quad \ell^{+,-}=\sum_{k=0}^{n-1} x_{k}-y_{k}
$$

Example of $D_{n}(n$ is odd $)$

Variables. $x_{k} \leftrightarrow r^{k}$ and $y_{k} \leftrightarrow s r^{k}$. Here $0 \leq k \leq n-1$.
List of irreducible representations.

- Two 1-dimensional representations: $V_{+, \pm .} r$ acts as 1 and s acts as ± 1. Linear factors coming from these:

$$
\ell^{+,+}=\sum_{k=0}^{n-1} x_{k}+y_{k}, \quad \ell^{+,-}=\sum_{k=0}^{n-1} x_{k}-y_{k} .
$$

- 2-dimensional representations: $\left(V_{\zeta}, \rho_{\zeta}\right)$ where $\zeta=\omega_{n}^{j}$, $1 \leq j \leq(n-1) / 2$.

$$
\rho_{\zeta}\left(r^{k}\right)=\left[\begin{array}{cc}
\zeta^{k} & 0 \\
0 & \zeta^{-k}
\end{array}\right], \quad \rho_{\zeta}\left(s r^{k}\right)=\left[\begin{array}{cc}
0 & \zeta^{-k} \\
\zeta^{k} & 0
\end{array}\right] .
$$

Example of $D_{n}(n$ is odd $)$

Variables. $x_{k} \leftrightarrow r^{k}$ and $y_{k} \leftrightarrow s r^{k}$. Here $0 \leq k \leq n-1$.
List of irreducible representations.

- Two 1-dimensional representations: $V_{+, \pm .} r$ acts as 1 and s acts as ± 1. Linear factors coming from these:

$$
\ell^{+,+}=\sum_{k=0}^{n-1} x_{k}+y_{k}, \quad \ell^{+,-}=\sum_{k=0}^{n-1} x_{k}-y_{k} .
$$

- 2-dimensional representations: $\left(V_{\zeta}, \rho_{\zeta}\right)$ where $\zeta=\omega_{n}^{j}$, $1 \leq j \leq(n-1) / 2$.

$$
\begin{aligned}
\rho_{\zeta}\left(r^{k}\right) & =\left[\begin{array}{cc}
\zeta^{k} & 0 \\
0 & \zeta^{-k}
\end{array}\right], \quad \rho_{\zeta}\left(s r^{k}\right)=\left[\begin{array}{cc}
0 & \zeta^{-k} \\
\zeta^{k} & 0
\end{array}\right] . \\
2 n & =1+1+4\left(\frac{n-1}{2}\right) \Rightarrow \text { These are all! }
\end{aligned}
$$

Example of $D_{n}(n$ is odd $)$

$$
\rho_{\zeta}\left(r^{k}\right)=\left[\begin{array}{cc}
\zeta^{k} & 0 \\
0 & \zeta^{-k}
\end{array}\right], \quad \rho_{\zeta}\left(s r^{k}\right)=\left[\begin{array}{cc}
0 & \zeta^{-k} \\
\zeta^{k} & 0
\end{array}\right]
$$

Example of $D_{n}(n$ is odd $)$

$$
\rho_{\zeta}\left(r^{k}\right)=\left[\begin{array}{cc}
\zeta^{k} & 0 \\
0 & \zeta^{-k}
\end{array}\right], \quad \rho_{\zeta}\left(s r^{k}\right)=\left[\begin{array}{cc}
0 & \zeta^{-k} \\
\zeta^{k} & 0
\end{array}\right]
$$

Linear forms coming from these (recall: $\zeta=\omega_{n}^{j}, 1 \leq j \leq(n-1) / 2$):

Example of $D_{n}(n$ is odd $)$

$$
\rho_{\zeta}\left(r^{k}\right)=\left[\begin{array}{cc}
\zeta^{k} & 0 \\
0 & \zeta^{-k}
\end{array}\right], \quad \rho_{\zeta}\left(s r^{k}\right)=\left[\begin{array}{cc}
0 & \zeta^{-k} \\
\zeta^{k} & 0
\end{array}\right]
$$

Linear forms coming from these (recall: $\zeta=\omega_{n}^{j}, 1 \leq j \leq(n-1) / 2$):

$$
\begin{array}{ll}
\ell_{11}^{(j)}=\sum_{k=0}^{n-1} \zeta^{k} x_{k}, & \ell_{12}^{(j)}=\sum_{k=0}^{n-1} \zeta^{-k} y_{k} \\
\ell_{21}^{(j)}=\sum_{k=0}^{n-1} \zeta^{k} y_{k}, & \ell_{22}^{(j)}=\sum_{k=0}^{n-1} \zeta^{-k} x_{k}
\end{array}
$$

Example of $D_{n}(n$ is odd $)$

$$
\rho_{\zeta}\left(r^{k}\right)=\left[\begin{array}{cc}
\zeta^{k} & 0 \\
0 & \zeta^{-k}
\end{array}\right], \quad \rho_{\zeta}\left(s r^{k}\right)=\left[\begin{array}{cc}
0 & \zeta^{-k} \\
\zeta^{k} & 0
\end{array}\right]
$$

Linear forms coming from these (recall: $\zeta=\omega_{n}^{j}, 1 \leq j \leq(n-1) / 2$):

$$
\begin{aligned}
\ell_{11}^{(j)} & =\sum_{k=0}^{n-1} \zeta^{k} x_{k}, \quad \ell_{12}^{(j)}=\sum_{k=0}^{n-1} \zeta^{-k} y_{k} \\
\ell_{21}^{(j)} & =\sum_{k=0}^{n-1} \zeta^{k} y_{k}, \quad \ell_{22}^{(j)}=\sum_{k=0}^{n-1} \zeta^{-k} x_{k} \\
\Delta_{D_{n}}(\underline{x}) & =\ell^{+,+} \ell^{+,-} \prod_{j=1}^{\frac{n-1}{2}}\left(\ell_{11}^{(j)} \ell_{22}^{(j)}-\ell_{12}^{(j)} \ell_{21}^{(j)}\right)^{2}
\end{aligned}
$$

Example of D_{n} (n is even). $x_{k} \leftrightarrow r^{k}, y_{k} \leftrightarrow s r^{k}$

List of irreducible representations.

Example of D_{n} (n is even). $x_{k} \leftrightarrow r^{k}, y_{k} \leftrightarrow s r^{k}$

List of irreducible representations.

- Four 1-dimensional representations: $V_{ \pm, \pm}$. On $V_{\epsilon, \eta}, r$ acts by $\epsilon 1$ and s acts by $\eta 1$.

Example of D_{n} (n is even). $x_{k} \leftrightarrow r^{k}, y_{k} \leftrightarrow s r^{k}$

List of irreducible representations.

- Four 1-dimensional representations: $V_{ \pm, \pm}$. On $V_{\epsilon, \eta}, r$ acts by $\epsilon 1$ and s acts by $\eta 1$. Linear forms:

$$
\begin{aligned}
\ell^{+,+}=\sum_{k=0}^{n-1} x_{k}+y_{k}, \quad \ell^{+,-}=\sum_{k=0}^{n-1} x_{k}-y_{k} \\
\ell^{-,+}=\sum_{k=0}^{n-1}(-1)^{k}\left(x_{k}+y_{k}\right), \quad \ell^{-,-}=\sum_{k=0}^{n-1}(-1)^{k}\left(x_{k}-y_{k}\right)
\end{aligned}
$$

Example of D_{n} (n is even). $x_{k} \leftrightarrow r^{k}, y_{k} \leftrightarrow s r^{k}$

List of irreducible representations.

- Four 1-dimensional representations: $V_{ \pm, \pm}$. On $V_{\epsilon, \eta}, r$ acts by $\epsilon 1$ and s acts by $\eta 1$. Linear forms:

$$
\begin{aligned}
\ell^{+,+}=\sum_{k=0}^{n-1} x_{k}+y_{k}, \quad \ell^{+,-}=\sum_{k=0}^{n-1} x_{k}-y_{k} \\
\ell^{-,+}=\sum_{k=0}^{n-1}(-1)^{k}\left(x_{k}+y_{k}\right), \quad \ell^{-,-}=\sum_{k=0}^{n-1}(-1)^{k}\left(x_{k}-y_{k}\right)
\end{aligned}
$$

- 2-dimensional representations (V_{ζ}, ρ_{ζ}), where $\zeta=\omega_{n}^{j}$, $1 \leq j \leq(n-2) / 2$ (as before).

Example of D_{n} (n is even). $x_{k} \leftrightarrow r^{k}, y_{k} \leftrightarrow s r^{k}$

List of irreducible representations.

- Four 1-dimensional representations: $V_{ \pm, \pm}$. On $V_{\epsilon, \eta}, r$ acts by $\epsilon 1$ and s acts by $\eta 1$. Linear forms:

$$
\begin{aligned}
\ell^{+,+}=\sum_{k=0}^{n-1} x_{k}+y_{k}, \quad \ell^{+,-}=\sum_{k=0}^{n-1} x_{k}-y_{k} \\
\ell^{-,+}=\sum_{k=0}^{n-1}(-1)^{k}\left(x_{k}+y_{k}\right), \quad \ell^{-,-}=\sum_{k=0}^{n-1}(-1)^{k}\left(x_{k}-y_{k}\right)
\end{aligned}
$$

- 2-dimensional representations (V_{ζ}, ρ_{ζ}), where $\zeta=\omega_{n}^{j}$, $1 \leq j \leq(n-2) / 2$ (as before).

$$
2 n=1+1+1+1+4\left(\frac{n-2}{2}\right) \Rightarrow \text { These are all! }
$$

Example of D_{n} (n is even)

$$
\Delta_{D_{n}}(\underline{x})=\ell^{+,+} \ell^{+,-} \ell^{-,+} \ell^{-,-} \prod_{j=1}^{\frac{n-2}{2}}\left(\ell_{11}^{(j)} \ell_{22}^{(j)}-\ell_{12}^{(j)} \ell_{21}^{(j)}\right)^{2}
$$

Example of D_{n} (n is even)

$$
\Delta_{D_{n}}(\underline{x})=\ell^{+,+} \ell^{+,-} \ell^{-,+} \ell^{-,-} \prod_{j=1}^{\frac{n-2}{2}}\left(\ell_{11}^{(j)} \ell_{22}^{(j)}-\ell_{12}^{(j)} \ell_{21}^{(j)}\right)^{2}
$$

where, for each $1 \leq j \leq(n-2) / 2$, let $\zeta=\omega_{n}^{j}$ and define:

$$
\begin{array}{ll}
\ell_{11}^{(j)}=\sum_{k=0}^{n-1} \zeta^{k} x_{k}, & \ell_{12}^{(j)}=\sum_{k=0}^{n-1} \zeta^{-k} y_{k} \\
\ell_{21}^{(j)}=\sum_{k=0}^{n-1} \zeta^{k} y_{k}, & \ell_{22}^{(j)}=\sum_{k=0}^{n-1} \zeta^{-k} x_{k}
\end{array}
$$

Danke Schön!

[^0]: ${ }^{1}$ Richard Dedekind 1831-10-06 to 1916-02-12, Braunschweig (Germany)

[^1]: ${ }^{1}$ Richard Dedekind 1831－10－06 to 1916－02－12，Braunschweig（Germany）

[^2]: ${ }^{1}$ Richard Dedekind 1831－10－06 to 1916－02－12，Braunschweig（Germany）

[^3]: ${ }^{1}$ Richard Dedekind 1831－10－06 to 1916－02－12，Braunschweig（Germany）

[^4]: ${ }^{1}$ Richard Dedekind 1831-10-06 to 1916-02-12, Braunschweig (Germany)

[^5]: ${ }^{1}$ Richard Dedekind 1831-10-06 to 1916-02-12, Braunschweig (Germany)

[^6]: ${ }^{2}$ Issai Schur. 1875-01-10, Magilev, Russian empire (now Belarus) to 1941-01-10, Tel Aviv, Palestine (now Israel)
 ${ }^{3}$ Heinrich Maschke. 1853-10-24, Breslau, Prussia (now Poland) to 1908-03-01, Chicago, USA

[^7]: ${ }^{2}$ Issai Schur. 1875-01-10, Magilev, Russian empire (now Belarus) to 1941-01-10, Tel Aviv, Palestine (now Israel)
 ${ }^{3}$ Heinrich Maschke. 1853-10-24, Breslau, Prussia (now Poland) to 1908-03-01, Chicago, USA

[^8]: ${ }^{2}$ Issai Schur．1875－01－10，Magilev，Russian empire（now Belarus）to 1941－01－10， Tel Aviv，Palestine（now Israel）
 ${ }^{3}$ Heinrich Maschke．1853－10－24，Breslau，Prussia（now Poland）to 1908－03－01， Chicago，USA

[^9]: ${ }^{2}$ Issai Schur. 1875-01-10, Magilev, Russian empire (now Belarus) to 1941-01-10, Tel Aviv, Palestine (now Israel)
 ${ }^{3}$ Heinrich Maschke. 1853-10-24, Breslau, Prussia (now Poland) to 1908-03-01, Chicago, USA

