In Problems 1-10, k is a field and A is a unital, associative algebra over k.

Problem 1. [10 points] Let V be a representation of A.

- (a) Prove that V is irreducible if, and only if, for every non-zero $v \in V$, we have: $A \cdot v = V$. Here, $A \cdot v := \{a \cdot v : a \in A\}$.
- (b) We say that V is co-cyclic if there exists $0 \neq v \in V$ such that $v \in U$ for every non-zero subrepresentation $U \subset V$. Prove that every co-cyclic representation is indecomposable.
- (c) Let $A = \mathbb{C}[x, y]/(x^2, xy, y^2)$. Prove that A is indecomposable (as A-representation) and A is not co-cyclic. Consider $\rho : A \to \operatorname{End}_{\mathbb{C}}(\mathbb{C}^3)$ given by:

	0	0	0			0	0	0]
$\rho(x) =$	0	0	0	,	$\rho(y) =$	0	0	0	
	1	0	0			0	1	0	

Show that ρ a co-cyclic (hence indecomposable) representation of A.

Problem 2. [15 points] Let K be an extension of k (i.e., k is a subfield of K), and let $f_1, \ldots, f_m : A \to K$ be m distinct homomorphisms of k-algebras. Prove that f_1, \ldots, f_m are linearly independent over K.

Problem 3. [10 points] Assume that k is algebraically closed in this problem. Let V be a finite-dimensional representation of A. Prove that V is semisimple if, and only if, for every subrepresentation $U \subset V$, there exists a subrepresentation $W \subset V$ such that $V \cong U \oplus W$.

Problem 4. [10 points] Show that the following representations are irreducible.

(a) A = Mat_{n×n}(k), V = kⁿ.
(b) A = C ⟨X, D⟩ /(DX - XD - 1), V = C[x] with the action given by X ⋅ f(x) = xf(x) and D ⋅ f(x) = f'(x) (derivative of f).

Problem 5. [10 points] (Idempotent decomposition) Assume that there exist $e_1, \ldots, e_n \in A$ such that

 $1 = e_1 + \dots + e_n, \qquad e_i e_j = \delta_{ij} e_i, \ \forall \ 1 \le i, j \le n.$

Prove that for any A-representation V, we have a direct sum decomposition of vector spaces: $V \cong \bigoplus_{i=1}^{n} e_i \cdot V.$

Problem 6. [10 points] (Tensor-Hom adjointness) Let V and W be two vector spaces over k. Write the natural map $\alpha_{V,W} : W \otimes V^* \to \operatorname{Hom}_k(V,W)$. Prove that this map is an isomorphism, assuming V is finite-dimensional. Here, $V^* = \operatorname{Hom}_k(V,k)$ is the dual vector space. **Problem 7.** [10 points] Assume that k is algebraically closed. Let V be a finitedimensional, irreducible representation of A. Let D_1 and D_2 be two finite-dimensional vector spaces over k. Recall that we have an isomorphism:

$$\operatorname{Hom}_k(D_1, D_2) \xrightarrow{\varphi} \operatorname{Hom}_A(V \otimes_k D_1, V \otimes_k D_2)$$

given by: $\varphi(X)(v \otimes \xi) = v \otimes X(\xi)$, for every $X \in \operatorname{Hom}_k(D_1, D_2)$, $v \in V$ and $\xi \in D_1$. Prove that (a) $\operatorname{Ker}(\varphi(X)) = V \otimes \operatorname{Ker}(X)$ and (b) $\operatorname{Image}(\varphi(X)) = V \otimes \operatorname{Image}(X)$.

Problem 8. [10 points] Let V, W be two finite-dimensional representations of A. Assume that there exists a finite extension L of k such that $V \otimes_k L$ is isomorphic to $W \otimes_k L$, as representations of $A \otimes_k L$. Prove that V and W are isomorphic (as representations of A). [Problem 3.8.4 of Pasha's book.]

Problem 9. [15 points] Let $A = \{f : \mathbb{R} \to \mathbb{R} \text{ continuous } | f(x+1) = f(x) \}$ and let $M = \{g : \mathbb{R} \to \mathbb{R} \text{ continuous } | g(x+1) = -g(x) \}$. Prove that A and M are non-isomorphic, indecomposable representations of A. Show that $A \oplus A$ is isomorphic to $M \oplus M$.

Problem 10. [10 points] (See Problem 3.9.1 of Pasha's book). Let V, W be two representations of A. Given a linear map $f : A \to \operatorname{Hom}_k(W, V)$, define $\rho_f : A \to \operatorname{End}_k(V \oplus W)$ given by:

$$\rho_f(a) = \left[\begin{array}{cc} \rho_1(a) & f(a) \\ 0 & \rho_2(a) \end{array} \right]$$

- (a) Show that ρ_f is a representation of A if, and only if $f(ab) = \rho_1(a)f(b) + f(a)\rho_2(b)$, for every $a, b \in A$. Let the space of all the solutions of this equation be denoted by $Z^1(W, V) \subset \operatorname{Hom}_k(A, \operatorname{Hom}_k(W, V))$ (called 1-cocycles).
- (b) Given $X \in \text{Hom}_k(W, V)$, define the automorphism of the vector space $g \in \text{Aut}_k(V \oplus W)$ given by:

$$g = \left[\begin{array}{cc} \mathrm{Id}_{V_1} & X \\ 0 & \mathrm{Id}_{V_2} \end{array} \right].$$

Let $f : A \to \operatorname{Hom}_k(W, V)$ be an element of $Z^1(W, V)$ as in part (a). Show that gis an isomorphism between ρ_f and ρ_0 if, and only if $f(a) = \rho_1(a)X - X\rho_2(a)$ for every $a \in A$. Given $X \in \operatorname{Hom}_k(W, V)$, let $\delta(X) : A \to \operatorname{Hom}_k(W, V)$ be defined as: $\delta(X)(a) = \rho_1(a)X - X\rho_2(a).$

Problem 10 cntd. [20 points] (same notations as in Problem 10 above). Let $B^1(W, V) = \{\delta(X) : X \in \operatorname{Hom}_k(W, V)\}$. Verify that $B^1(W, V) \subset Z^1(W, V)$. Define $\operatorname{Ext}_A^1(W, V) := Z^1(W, V)/B^1(W, V)$.

Let $0 \to V_1 \to V_2 \to V_3 \to 0$ be a short exact sequence of A-linear maps between A-representations. Show that, for every representation W of A, we get the following long exact sequence of vector spaces (describe the connecting homomorphism δ explicitly):

Problem 11. [15 points] Let G be a finite group acting on a finite set X via group homomorphism $\alpha : G \to S_X$ (here, S_X is the group of permutations of elements of X). Let V be the vector space (over \mathbb{C}) of all complex-valued functions on X. We view V as a G-representation, $\rho : G \to \operatorname{GL}(V)$, by:

$$(\rho(g)(f))(x) := f(\alpha(g)^{-1}(x)), \text{ for every } g \in G, f \in V, x \in X$$

- (1) Prove that $\dim(V^G) = |X/G|$ (number of *G*-orbits in *X*).
- (2) For $g \in G$, show that $\operatorname{Tr}(\rho(g)) = |X^g|$. Here, $X^g := \{x \in X : \alpha(g)(x) = x\}$.
- (3) Consider the averaging operator $P = \frac{1}{|G|} \sum_{g \in G} \rho(g)$, acting on V. Show that $\operatorname{Tr}(P) =$

 $\dim(V^G)$. Hence we obtain Burnside's orbit counting formula

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

Problem 12. [10 points] Let G be a finite group and V a finite-dimensional G-representation over \mathbb{C} . Assume that $\chi_V(g) = 0$ for every $g \in G \setminus \{e\}$. Prove that dim(V) is divisible by |G|.

Problem 13. [20 points] Let D_n be the dihedral group (symmetries of regular *n*-gon, thus $|D_n| = 2n$). In the problems below, the representations of D_n are over \mathbb{C} .

- (1) Count the number of conjugacy classes in D_n .
- (2) Show that D_n has exactly two 1-dimensional representations, if n is odd; and exactly four 1-dimensional representations, if n is even.
- (3) Let V be an irreducible representation of D_n . Show that dim $(V) \leq 2$.
- (4) Give explicit description of all irreducible D_n -representations.

Problem 14. [10 points] Let S_n be the group of permutations of n letters. Let \mathbb{C}^n be the standard n-dimensional S_n -representation (i.e., in a basis e_1, \ldots, e_n of \mathbb{C}^n : $\sigma \cdot e_i = e_{\sigma(i)}$, for every $\sigma \in S_n$ and $1 \leq i \leq n$). Show that \mathbb{C}^n is a direct sum of two irreducible S_n -representations. Give a basis of each of these subrepresentations of \mathbb{C}^n .

Notations for Problems 15 and 16: Let G be a finite group, $\mathbb{C}[G]$ its group algebra over \mathbb{C} . Recall the convolution product, for $f_1, f_2 \in \mathbb{C}[G]$:

$$(f_1 * f_2)(g) = \sum_{\sigma \in G} f_1(\sigma) f_2(\sigma^{-1}g).$$

We defined a symmetric, bilinear form $\beta : \mathbb{C}[G] \times \mathbb{C}[G] \to \mathbb{C}$ by:

$$\beta(f_1, f_2) = \frac{1}{|G|} (f_1 * f_2)(e) = \frac{1}{|G|} \sum_{g \in G} f_1(g^{-1}) f_2(g) .$$

Let $\mathbb{C}[G]_{\text{class}}$ denote the (commutative) subalgebra of functions constant on conjugacy classes of G (abbreviated to Conj(()G)).

Let $\{V_{\lambda} : \lambda \in P(G)\}$ be the set of isomorphism classes of finite-dimensional, irreducible *G*-representations. Let ρ_{λ} denote the group homomorphism $G \to \operatorname{GL}(V_{\lambda})$, or the corresponding algebra homomorphism $\mathbb{C}[G] \to \operatorname{End}(V_{\lambda})$. Also, let χ_{λ} denote the character of the representation V_{λ} .

Problem 15. [10 points] Write the change of bases formulae for the following three bases for $\mathbb{C}[G]_{\text{class}}$: (i) $\{\delta_C : C \in \text{Conj}(G)\}$, (ii) $\{\chi_\lambda : \lambda \in P(G)\}$, and (iii) $\{P_\lambda : \lambda \in P(G)\}$, where

$$P_{\lambda} := \frac{\dim(V_{\lambda})}{|G|} \sum_{g \in G} \chi_{\lambda}(g^{-1}) \delta_g \in \mathbb{C}[G]_{\text{class}}$$

Problem 16. [15 points] *Plancheral formula.* For $f_1, f_2 \in \mathbb{C}[G]$, show that:

$$\beta(f_1, f_2) = \frac{1}{|G|^2} \sum_{\lambda \in P(G)} \dim(V_\lambda) \operatorname{Tr}(\rho_\lambda(f_1 * f_2))$$

Problem 17. [15 points] Consider the following isomorphisms:

$$\psi: \mathbb{C}[G] \to \bigoplus_{\lambda \in P(G)} \operatorname{End}(V_{\lambda}), \qquad \varphi: \bigoplus_{\lambda \in P(G)} V_{\lambda} \otimes V_{\lambda}^* \to \bigoplus_{\lambda \in P(G)} \operatorname{End}(V_{\lambda}).$$

- (1) Show that ψ and φ are $G \times G$ -intertwiners.
- (2) For $v \in V_{\lambda}$ and $\xi \in V_{\lambda}^*$, consider the following function on G (called *matrix coefficient*): $c_{v,\xi}(g) = \xi(g^{-1} \cdot v)$.

Show that
$$\psi^{-1}(\varphi(v \otimes \xi)) = \frac{\dim(V_{\lambda})}{|G|} c_{v,\xi}$$

Problem 18. [10 points] Let G, H be two finite groups. Prove that irreducible, finitedimensional $G \times H$ -representations are precisely $V \otimes W$, where V and W are irreducible, finite-dimensional representations of G and H respectively.

Problem 19. [20 points] Compute the character table of S_5 .

Problem 20. [15 points] Let $f(t) = \sum_{n=0}^{\infty} f_n \frac{t^n}{n!}$ and $g(t) = \sum_{\ell=1}^{\infty} g_{\ell} t^{\ell}$ be two formal power series with coefficients from an arbitrary commutative algebra over \mathbb{Q} . Note that g(0) = 0. Prove that:

$$f(g(t)) = \sum_{n=0}^{\infty} f_n \frac{g(t)^n}{n!} = f_0 + \sum_{N=1}^{\infty} t^N \left(\sum_{k=1}^N f_k \left(\sum_{\substack{\lambda \vdash N \\ \ell(\lambda) = k}} \frac{g_\lambda}{\prod_{i \ge 1} \ell_i!} \right) \right)$$

where $\ell_i = |\{r : \lambda_r = i\}|$ and $g_{\lambda} = g_{\lambda_1} \cdots g_{\lambda_k}$.

Problem 21. [15 points] Recall the definition of elementary, complete and power sum symmetric polynomials, in N variable. Convention: $e_0 = h_0 = 1$.

$$e_r := \sum_{1 \le i_1 < \dots < i_r \le N} x_{i_1} \cdots x_{i_r}, \qquad p_r := \sum_{i=1}^N x_i^r, \qquad h_r := \sum_{1 \le i_1 \le \dots \le i_r \le N} x_{i_1} \cdots x_{i_r}.$$

Consider the generating series:

$$E(t) = \sum_{r=0}^{N} e_r t^r, \qquad H(t) = \sum_{r=0}^{\infty} h_r t^r, \qquad P(t) = \sum_{n=1}^{\infty} p_n \frac{t^n}{n}.$$

(a) Show that H(t)E(-t) = 1 and $H(t) = \exp(P(t))$.

(b) Prove Newton's identities:

$$nh_n = \sum_{r=1}^n p_r h_{n-r}, \qquad ne_n = \sum_{r=1}^n (-1)^{r-1} p_r e_{n-r}.$$

Problem 22. [10 points] Let $n \in \mathbb{Z}_{\geq 2}$ and $\lambda \vdash n$. Let V_{λ} be the finite-dimensional, irreducible representation of the symmetric group S_n , labelled by λ , as in Frobenius' theorem. Let $w = (1 \ 2 \ \dots \ n) \in S_n$. Prove that

Trace(*w* acting on
$$V_{\lambda}$$
) = $\begin{cases} (-1)^k, & \text{if } \lambda = (n-k, 1, \dots, 1), \\ 0 & \text{otherwise.} \end{cases}$

Problem 23. [10 points] Let $\lambda, \mu \vdash n$. Recall the notation:

$$X_{\lambda} = \left\{ (I_1, \dots, I_{\ell}) : \{1, \dots, n\} = \bigsqcup_{i=1}^{\ell} I_i \text{ and } |I_j| = \lambda_j, \forall j \right\}$$

- (a) Show that X_{λ} is in bijection with S_n/S_{λ} , where $S_{\lambda} = S_{\lambda_1} \times \cdots \otimes S_{\lambda_{\ell}} < S_n$.
- (b) Show that there is a bijection between the following three sets:

(1)
$$(X_{\lambda} \times X_{\mu})/S_n$$
,
(2) $X_{\mu}^{S_{\lambda}} := \{a \in X_{\mu} : w \cdot a = a, \forall w \in S_{\lambda}\},$
(3) $\{A = (a_{ij}) \in \mathcal{M}_{n \times n}(\mathbb{Z}_{\geq 0}) : \sum_{j} a_{ij} = \lambda_i, \forall i \text{ and } \sum_{i} a_{ij} = \mu_j, \forall j\}.$

Problem 24. [15 points] Recall the definition of (\cdot, \cdot) on $\Lambda_n = \mathbb{Z}[x_1, \ldots, x_N]_{\deg=n}^{S_N}$.

(1) For $\lambda \vdash n$, let $h_{\lambda} = h_{\lambda_1} \cdots h_{\lambda_{\ell}}$ and $e_{\lambda} = e_{\lambda_1} \cdots e_{\lambda_{\ell}}$, where h_r and e_r are defined above (Problem 21). Show that (h_{λ}, e_{μ}) is the number of matrices with 0, 1 entries whose row sums equal λ and column sums equal μ .

$$(h_{\lambda}, e_{\mu}) = \left| \left\{ A = (a_{ij}) : a_{ij} \in \{0, 1\} \; \forall i, j \text{ and } \sum_{j} a_{ij} = \lambda_i, \; \forall i; \sum_{i} a_{ij} = \mu_j, \; \forall j \right\} \right|$$

(2) Let s_{λ} be the Schur polynomial, and m_{μ} be the monomial symmetric polynomial. Let $\rho = (N - 1, N - 2, ..., 0)$. Show that:

$$(s_{\lambda}, m_{\mu}) = \sum_{\substack{w \in S_N:\\ \lambda + \rho - w(\rho) \in S_N \cdot \mu}} \varepsilon(w)$$

Problem 25. [10 points] Let $\mu \vdash (n-1)$. Prove the following (*Pieri's rule*):

$$s_{\mu}s_{(1)} = \sum s_{\lambda} \; ,$$

where the sum is over all $\lambda \vdash n$ which can be obtained from μ by adding exactly one box (i.e., $\exists j : \lambda_i = \mu_i, \forall i \neq j$, and $\lambda_j = \mu_j + 1$).

Problem 26. [10 points] Let G be a finite group, H < G a subgroup and let 1 denote the one dimensional, trivial representation of H. Prove that:

$$\chi_{\mathrm{Ind}_{H}^{G}\mathbf{1}}(g) = |(G/H)^{g}| = \frac{|C \cap H| \cdot |Z_{G}(g)|}{|H|}$$

where $C = \{xgx^{-1} : x \in G\}$ is the conjugacy class containing g, and $Z_G(g) = \{x \in G : xg = gx\}$ is its centralizer.

Problem 27. [10 points] Let $\lambda \vdash n$ and let ι_{λ} is the character of the induced representation U_{λ} of S_n . Let $\mu \vdash n$ be another partition and let $r_i = |\{j : \mu_j = i\}|$. Use the previous exercise to prove the following formula:

$$\iota_{\lambda}(\mu) = \sum_{(s_{ij})} \prod_{i \ge 1} \frac{r_i!}{\prod_j s_{ij}!} ,$$

where the sum is over all matrices with $\mathbb{Z}_{\geq 0}$ entries such that $\sum_{i} s_{ij} = r_i$ and $\sum_{i} i s_{ij} = \lambda_i$.

Problem 28. [10 points] (Reciprocity formula) Let G be a finite group and H < G a subgroup. Let $\phi \in \mathbb{C}[G]_{\text{class}}$ and $\psi \in \mathbb{C}[H]_{\text{class}}$. Prove that

$$\left(\operatorname{Res}_{H}^{G}\phi,\psi\right)_{H}=\left(\phi,\operatorname{Ind}_{H}^{G}\psi\right)_{G}$$
.

Problem 29. [10 points] Let $m \in \mathbb{Z}_{\geq 2}$. Prove directly that, for any $r \in \mathbb{Z}_{\geq 0}$, $\operatorname{Sym}^{r}(\mathbb{C}^{m})$ is an irreducible representation on $\operatorname{GL}_{m}(\mathbb{C})$.

Problem 30. [10 points] Let $\{R_1, \ldots, R_N\}$ be finite-dimensional representations of a group G. Show that these are pairwise non-isomorphic, irreducible representations of G if, and only if, the matrix coefficients of R_1, \ldots, R_N are linearly independent.

Problem 31. [15 points] Recall that, for a graded vector space $U = \bigoplus_{n=0}^{\infty} U[n]$, such that $\dim(U[n]) < \infty$, for every $n \ge 0$, we define:

(Hilbert polynomial)
$$P(U;t) = \sum_{n\geq 0} \dim(U[n])t^n.$$

Let V be a finite-dimensional vector space, and let $T^{\bullet}(V) = \bigoplus_{n \ge 0} T^n(V)$, and similarly $\operatorname{Sym}^{\bullet}(V), \wedge^{\bullet}(V)$. Prove that:

$$P(T^{\bullet}(V);t) = \frac{1}{1 - \dim(V)t} , \qquad P(\operatorname{Sym}^{\bullet}(V);t) = \frac{1}{(1 - t)^{\dim(V)}} ,$$
$$P(\wedge^{\bullet}(V);t) = (1 + t)^{\dim(V)} .$$

Problem 32. [10 points] Let $\lambda = (\lambda_1 \ge \ldots \ge \lambda_\ell)$ be a partition, and let $m \ge \ell$. Show that we have an isomorphism of $\operatorname{GL}_m(\mathbb{C})$ -representations:

$$L_{\lambda+(1^{\ell})} \cong L_{\lambda} \otimes \wedge^{\ell}(\mathbb{C}^m).$$

Problem 33. [15 points] Branching rule for general linear group. Let λ be a partition of length ℓ , and $m \geq \ell$. Let $L_{\lambda}^{(m)}$ denote the corresponding representation of $\operatorname{GL}_m(\mathbb{C})$. Consider

 $\operatorname{GL}_{m-1}(\mathbb{C})$ as the subgroup of $\operatorname{GL}_m(\mathbb{C})$ via $g \mapsto \begin{bmatrix} g & 0 \\ 0 & 1 \end{bmatrix}$. Show that:

$$L_{\lambda}^{(m)}\Big|_{\mathrm{GL}_{m-1}(\mathbb{C})} \cong \bigoplus_{\mu} L_{\mu}^{(m-1)} ,$$

where the direct sum is over all $\mu = (\mu_1 \ge \ldots \ge \mu_\ell \ge 0)$ satisfying the interlacing condition:

 $\lambda_1 \ge \mu_1 \ge \lambda_2 \ge \mu_2 \ge \cdots \ge \lambda_\ell \ge \mu_\ell$.

In other words, the Young diagram of μ is contained in the Young diagram of λ and its complement consists entirely of horizontal strips.

Problem 34. [10 points] Let $m \geq \mathbb{Z}_{\geq 2}$ and assume that $\{d_n\}_{n=1}^{\infty} \subset \mathbb{Z}_{\geq 0}$ are defined by the following identity:

$$(1 - mt) = \prod_{n=1}^{\infty} (1 - t^n)^{d_n}$$

Show that $d_n = \frac{1}{n} \sum_{d|n} \mu(d) m^{\frac{n}{d}}$. Here $\mu : \mathbb{Z}_{\geq 1} \to \{0, \pm 1\}$ is the Möbius function defined

as: $\mu(1) = 1$, $\mu(r) = 0$ if there is a prime p such that p^2 divides r, and for distinct primes p_1, \ldots, p_k , we have $\mu(p_1 \cdots p_k) = (-1)^k$.

Notations: The following problems are about representation theory of \mathfrak{sl}_2 (over \mathbb{C}). Recall that for every $n \in \mathbb{Z}_{\geq 0}$, L_n denotes the irreducible n + 1-dimensional representation of \mathfrak{sl}_2 described explicitly as follows. L_n has a basis $\{v_0, \ldots, v_n\}$ such that:

$$h \cdot v_{\ell} = (n - 2\ell)v_{\ell}, \qquad e \cdot v_{\ell} = (n - \ell + 1)v_{\ell-1}, \qquad f \cdot v_{\ell} = (\ell + 1)v_{\ell+1},$$

with the understanding that $v_{-1} = v_{n+1} = 0$.

Problem 39. [10 points] Prove that $L_n \otimes L_1 \cong L_{n+1} \oplus L_{n-1}$ as \mathfrak{sl}_2 -representations.

Problem 40. [50 points] Exercise 2.15.1 of Pasha's book.

Problem 41. [30 points] Exercise 2.16.4 of Pasha's book. Classify all finite-dimensional, irreducible representations of \mathfrak{sl}_2 over an algebraically closed field of characteristic p > 2.

Problem 42. [30 points] Exercise 2.16.5 of Pasha's book.

Problem 43. [20 points] Note that the action of e and f on L_n is nilpotent. For any nilpotent operator X, the following is a well-defined invertible operator:

$$\exp(X) = 1 + X + \frac{X^2}{2!} + \dots$$

Let $s := \exp(e) \exp(-f) \exp(e)$, considered as a operator on L_n . Show that:

$$\mathbf{s} \cdot v_{\ell} = (-1)^{n-\ell} v_{n-\ell}$$

Problem 44. [20 points] For any $\lambda \in \mathbb{C}$, define M_{λ} to be (infinite-dimensional) \mathfrak{sl}_{2} representation as follows: M_{λ} has a basis $\{m_r : r \in \mathbb{Z}_{\geq 0}\}$ with \mathfrak{sl}_2 -action given by (with the
understanding that $m_{-1} = 0$):

$$h \cdot m_{\ell} = (\lambda - 2\ell)m_{\ell}, \qquad e \cdot m_{\ell} = (\lambda - \ell + 1)m_{\ell-1}, \qquad f \cdot m_{\ell} = (\ell + 1)m_{\ell+1}.$$

Show that M_{λ} is irreducible for $\lambda \notin \mathbb{Z}_{\geq 0}$. For $\lambda \in \mathbb{Z}_{\geq 0}$, show that M_{λ} has a subrepresentation isomorphic to $M_{-\lambda-2}$, so that we have the following non-split short exact sequence of \mathfrak{sl}_{2} -representations:

$$0 \to M_{-\lambda-2} \to M_{\lambda} \to L_{\lambda} \to 0$$
.

Problems 45 and 46 are inspired by the following beautiful paper by Etingof and Varchenko: Dynamical Weyl group and applications, Advances in Mathematics, **167** (2002) pp. 74–127.

Problem 45. [30 points] Let $\lambda \in \mathbb{C}$ and $n \in \mathbb{Z}_{\geq 0}$. Let M_{λ} be the Verma module (see Problem 44) with basis denoted by $\{m_r^{(\lambda)} : r \in \mathbb{Z}_{\geq 0}\}$. Let L_n be the n + 1-dimensional irreducible representation of \mathfrak{sl}_2 , with basis denoted by $\{v_0, \ldots, v_n\}$. Let $0 \leq k \leq n$.

Show that, for all but finitely many $\lambda \in \mathbb{C}$, there is a unique \mathfrak{sl}_2 -intertwiner:

$$\Psi_{\lambda}^{(n,k)}: M_{\lambda} \to M_{\mu} \otimes L_n$$

where $\mu = \lambda - (n - 2k)$, whose value on $m_0^{(\lambda)}$ is of the following form, for uniquely determined $c_r \in \mathbb{C}$:

$$\Psi_{\lambda}^{(n,k)}: m_0^{(\lambda)} \mapsto m_0^{(\mu)} \otimes v_k + \sum_{r=1}^k c_r m_r^{(\mu)} \otimes v_{k-r} .$$

Deduce that we have the following isomorphism (generically in λ):

$$\operatorname{Hom}_{\mathfrak{sl}_2}(M_{\lambda}, M_{\mu} \otimes V) \to V[\lambda - \mu]$$

sending an intertwiner ψ to the coefficient of $m_0^{(\mu)}$ in $\psi(m_0^{(\lambda)})$.

Problem 46. [30 points] (continued from Problems 44, 45). Now assume that $\lambda \in \mathbb{Z}_{\geq 0}$ and $\lambda \gg 0$. Let n, k and $\Psi_{\lambda}^{(n,k)}$ be as in Problem 45 above. Show that:

$$\Psi_{\lambda}^{(n,k)}\left(m_{\lambda+1}^{(\lambda)}\right) = m_{\mu+1}^{(\mu)} \otimes \left(a(\lambda)v_{n-k}\right) + \sum_{r\geq 1} b_r(\lambda)m_{\mu+1+r}^{(\mu)} \otimes v_{n-k-r}$$

for some $a(\lambda), b_r(\lambda)$. Compute $a(\lambda)$ explicitly.