PROBLEMS IN REPRESENTATION THEORY

In Problems 1-10, k is a field and A is a unital, associative algebra over k.
Problem 1. [10 points] Let V be a representation of A.
(a) Prove that V is irreducible if, and only if, for every non-zero $v \in V$, we have: $A \cdot v=V$. Here, $A \cdot v:=\{a \cdot v: a \in A\}$.
(b) We say that V is co-cyclic if there exists $0 \neq v \in V$ such that $v \in U$ for every non-zero subrepresentation $U \subset V$. Prove that every co-cyclic representation is indecomposable.
(c) Let $A=\mathbb{C}[x, y] /\left(x^{2}, x y, y^{2}\right)$. Prove that A is indecomposable (as A-representation) and A is not co-cyclic. Consider $\rho: A \rightarrow \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{3}\right)$ given by:

$$
\rho(x)=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad \rho(y)=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Show that ρ a co-cyclic (hence indecomposable) representation of A.

Problem 2. [15 points] Let K be an extension of k (i.e., k is a subfield of K), and let $f_{1}, \ldots, f_{m}: A \rightarrow K$ be m distinct homomorphisms of k-algebras. Prove that f_{1}, \ldots, f_{m} are linearly independent over K.

Problem 3. [10 points] Assume that k is algebraically closed in this problem. Let V be a finite-dimensional representation of A. Prove that V is semisimple if, and only if, for every subrepresentation $U \subset V$, there exists a subrepresentation $W \subset V$ such that $V \cong U \oplus W$.

Problem 4. [10 points] Show that the following representations are irreducible.
(a) $A=\operatorname{Mat}_{n \times n}(k), V=k^{n}$.
(b) $A=\mathbb{C}\langle X, D\rangle /(D X-X D-1), V=\mathbb{C}[x]$ with the action given by $X \cdot f(x)=x f(x)$ and $D \cdot f(x)=f^{\prime}(x)$ (derivative of $\left.f\right)$.

Problem 5. [10 points] (Idempotent decomposition) Assume that there exist $e_{1}, \ldots, e_{n} \in$ A such that

$$
1=e_{1}+\cdots+e_{n}, \quad e_{i} e_{j}=\delta_{i j} e_{i}, \forall 1 \leq i, j \leq n
$$

Prove that for any A-representation V, we have a direct sum decomposition of vector spaces: $V \cong \oplus_{i=1}^{n} e_{i} \cdot V$.

Problem 6. [10 points] (Tensor-Hom adjointness) Let V and W be two vector spaces over k. Write the natural map $\alpha_{V, W}: W \otimes V^{*} \rightarrow \operatorname{Hom}_{k}(V, W)$. Prove that this map is an isomorphism, assuming V is finite-dimensional. Here, $V^{*}=\operatorname{Hom}_{k}(V, k)$ is the dual vector space.

Problem 7. [10 points] Assume that k is algebraically closed. Let V be a finitedimensional, irreducible representation of A. Let D_{1} and D_{2} be two finite-dimensional vector spaces over k. Recall that we have an isomorphism:

$$
\operatorname{Hom}_{k}\left(D_{1}, D_{2}\right) \xrightarrow{\varphi} \operatorname{Hom}_{A}\left(V \otimes_{k} D_{1}, V \otimes_{k} D_{2}\right)
$$

given by: $\varphi(X)(v \otimes \xi)=v \otimes X(\xi)$, for every $X \in \operatorname{Hom}_{k}\left(D_{1}, D_{2}\right), v \in V$ and $\xi \in D_{1}$. Prove that (a) $\operatorname{Ker}(\varphi(X))=V \otimes \operatorname{Ker}(X)$ and (b) Image $(\varphi(X))=V \otimes \operatorname{Image}(X)$.

Problem 8. [10 points] Let V, W be two finite-dimensional representations of A. Assume that there exists a finite extension L of k such that $V \otimes_{k} L$ is isomorphic to $W \otimes_{k} L$, as representations of $A \otimes_{k} L$. Prove that V and W are isomorphic (as representations of A). [Problem 3.8.4 of Pasha's book.]

Problem 9. [15 points] Let $A=\{f: \mathbb{R} \rightarrow \mathbb{R}$ continuous $\mid f(x+1)=f(x)\}$ and let $M=\{g: \mathbb{R} \rightarrow \mathbb{R}$ continuous $\mid g(x+1)=-g(x)\}$. Prove that A and M are non-isomorphic, indecomposable representations of A. Show that $A \oplus A$ is isomorphic to $M \oplus M$.

Problem 10. [10 points] (See Problem 3.9.1 of Pasha's book). Let V, W be two representations of A. Given a linear map $f: A \rightarrow \operatorname{Hom}_{k}(W, V)$, define $\rho_{f}: A \rightarrow \operatorname{End}_{k}(V \oplus W)$ given by:

$$
\rho_{f}(a)=\left[\begin{array}{cc}
\rho_{1}(a) & f(a) \\
0 & \rho_{2}(a)
\end{array}\right] .
$$

(a) Show that ρ_{f} is a representation of A if, and only if $f(a b)=\rho_{1}(a) f(b)+f(a) \rho_{2}(b)$, for every $a, b \in A$. Let the space of all the solutions of this equation be denoted by $Z^{1}(W, V) \subset \operatorname{Hom}_{k}\left(A, \operatorname{Hom}_{k}(W, V)\right)$ (called 1-cocycles).
(b) Given $X \in \operatorname{Hom}_{k}(W, V)$, define the automorphism of the vector space $g \in \operatorname{Aut}_{k}(V \oplus$ $W)$ given by:

$$
g=\left[\begin{array}{cc}
\operatorname{Id}_{V_{1}} & X \\
0 & \operatorname{Id}_{V_{2}}
\end{array}\right] .
$$

Let $f: A \rightarrow \operatorname{Hom}_{k}(W, V)$ be an element of $Z^{1}(W, V)$ as in part (a). Show that g is an isomorphism between ρ_{f} and ρ_{0} if, and only if $f(a)=\rho_{1}(a) X-X \rho_{2}(a)$ for every $a \in A$. Given $X \in \operatorname{Hom}_{k}(W, V)$, let $\delta(X): A \rightarrow \operatorname{Hom}_{k}(W, V)$ be defined as: $\delta(X)(a)=\rho_{1}(a) X-X \rho_{2}(a)$.

Problem 10 cntd.. [20 points] (same notations as in Problem 10 above). Let $B^{1}(W, V)=$ $\left\{\delta(X): X \in \operatorname{Hom}_{k}(W, V)\right\}$. Verify that $B^{1}(W, V) \subset Z^{1}(W, V)$. Define $\operatorname{Ext}_{A}^{1}(W, V):=$ $Z^{1}(W, V) / B^{1}(W, V)$.

Let $0 \rightarrow V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow 0$ be a short exact sequence of A-linear maps between A representations. Show that, for every representation W of A, we get the following long exact sequence of vector spaces (describe the connecting homomorphism δ explicitly):

Problem 11. [15 points] Let G be a finite group acting on a finite set X via group homomorphism $\alpha: G \rightarrow S_{X}$ (here, S_{X} is the group of permutations of elements of X). Let V be the vector space (over \mathbb{C}) of all complex-valued functions on X. We view V as a G-representation, $\rho: G \rightarrow \mathrm{GL}(V)$, by:

$$
(\rho(g)(f))(x):=f\left(\alpha(g)^{-1}(x)\right), \text { for every } g \in G, f \in V, x \in X
$$

(1) Prove that $\operatorname{dim}\left(V^{G}\right)=|X / G|$ (number of G-orbits in X).
(2) For $g \in G$, show that $\operatorname{Tr}(\rho(g))=\left|X^{g}\right|$. Here, $X^{g}:=\{x \in X: \alpha(g)(x)=x\}$.
(3) Consider the averaging operator $P=\frac{1}{|G|} \sum_{g \in G} \rho(g)$, acting on V. Show that $\operatorname{Tr}(P)=$ $\operatorname{dim}\left(V^{G}\right)$. Hence we obtain Burnside's orbit counting formula

$$
|X / G|=\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|
$$

Problem 12. [10 points] Let G be a finite group and V a finite-dimensional G-representation over \mathbb{C}. Assume that $\chi_{V}(g)=0$ for every $g \in G \backslash\{e\}$. Prove that $\operatorname{dim}(V)$ is divisible by $|G|$.

Problem 13. [20 points] Let D_{n} be the dihedral group (symmetries of regular n-gon, thus $\left.\left|D_{n}\right|=2 n\right)$. In the problems below, the representations of D_{n} are over \mathbb{C}.
(1) Count the number of conjugacy classes in D_{n}.
(2) Show that D_{n} has exactly two 1-dimensional representations, if n is odd; and exactly four 1 -dimensional representations, if n is even.
(3) Let V be an irreducible representation of D_{n}. Show that $\operatorname{dim}(V) \leq 2$.
(4) Give explicit description of all irreducible D_{n}-representations.

Problem 14. [10 points] Let S_{n} be the group of permutations of n letters. Let \mathbb{C}^{n} be the standard n-dimensional S_{n}-representation (i.e., in a basis e_{1}, \ldots, e_{n} of $\mathbb{C}^{n}: \sigma \cdot e_{i}=e_{\sigma(i)}$, for every $\sigma \in S_{n}$ and $1 \leq i \leq n$). Show that \mathbb{C}^{n} is a direct sum of two irreducible $S_{n}{ }^{-}$ representations. Give a basis of each of these subrepresentations of \mathbb{C}^{n}.

Notations for Problems 15 and 16: Let G be a finite group, $\mathbb{C}[G]$ its group algebra over \mathbb{C}. Recall the convolution product, for $f_{1}, f_{2} \in \mathbb{C}[G]$:

$$
\left(f_{1} * f_{2}\right)(g)=\sum_{\sigma \in G} f_{1}(\sigma) f_{2}\left(\sigma^{-1} g\right)
$$

We defined a symmetric, bilinear form $\beta: \mathbb{C}[G] \times \mathbb{C}[G] \rightarrow \mathbb{C}$ by:

$$
\beta\left(f_{1}, f_{2}\right)=\frac{1}{|G|}\left(f_{1} * f_{2}\right)(e)=\frac{1}{|G|} \sum_{g \in G} f_{1}\left(g^{-1}\right) f_{2}(g)
$$

Let $\mathbb{C}[G]_{\text {class }}$ denote the (commutative) subalgebra of functions constant on conjugacy classes of G (abbreviated to $\operatorname{Conj}(() G))$.

Let $\left\{V_{\lambda}: \lambda \in P(G)\right\}$ be the set of isomorphism classes of finite-dimensional, irreducible G-representations. Let ρ_{λ} denote the group homomorphism $G \rightarrow \mathrm{GL}\left(V_{\lambda}\right)$, or the corresponding algebra homomorphism $\mathbb{C}[G] \rightarrow \operatorname{End}\left(V_{\lambda}\right)$. Also, let χ_{λ} denote the character of the
representation V_{λ}.
Problem 15. [10 points] Write the change of bases formulae for the following three bases for $\mathbb{C}[G]_{\text {class }}:$ (i) $\left\{\delta_{C}: C \in \operatorname{Conj}(G)\right\}$, (ii) $\left\{\chi_{\lambda}: \lambda \in P(G)\right\}$, and (iii) $\left\{P_{\lambda}: \lambda \in P(G)\right\}$, where

$$
P_{\lambda}:=\frac{\operatorname{dim}\left(V_{\lambda}\right)}{|G|} \sum_{g \in G} \chi_{\lambda}\left(g^{-1}\right) \delta_{g} \in \mathbb{C}[G]_{\text {class }}
$$

Problem 16. [15 points] Plancheral formula. For $f_{1}, f_{2} \in \mathbb{C}[G]$, show that:

$$
\beta\left(f_{1}, f_{2}\right)=\frac{1}{|G|^{2}} \sum_{\lambda \in P(G)} \operatorname{dim}\left(V_{\lambda}\right) \operatorname{Tr}\left(\rho_{\lambda}\left(f_{1} * f_{2}\right)\right) .
$$

Problem 17. [15 points] Consider the following isomorphisms:

$$
\psi: \mathbb{C}[G] \rightarrow \bigoplus_{\lambda \in P(G)} \operatorname{End}\left(V_{\lambda}\right), \quad \varphi: \bigoplus_{\lambda \in P(G)} V_{\lambda} \otimes V_{\lambda}^{*} \rightarrow \bigoplus_{\lambda \in P(G)} \operatorname{End}\left(V_{\lambda}\right) .
$$

(1) Show that ψ and φ are $G \times G$-intertwiners.
(2) For $v \in V_{\lambda}$ and $\xi \in V_{\lambda}^{*}$, consider the following function on G (called matrix coefficient $): c_{v, \xi}(g)=\xi\left(g^{-1} \cdot v\right)$.

$$
\text { Show that } \psi^{-1}(\varphi(v \otimes \xi))=\frac{\operatorname{dim}\left(V_{\lambda}\right)}{|G|} c_{v, \xi}
$$

Problem 18. [10 points] Let G, H be two finite groups. Prove that irreducible, finitedimensional $G \times H$-representations are precisely $V \otimes W$, where V and W are irreducible, finite-dimensional representations of G and H respectively.

Problem 19. [20 points] Compute the character table of S_{5}.

Problem 20. [15 points] Let $f(t)=\sum_{n=0}^{\infty} f_{n} \frac{t^{n}}{n!}$ and $g(t)=\sum_{\ell=1}^{\infty} g_{\ell} t^{\ell}$ be two formal power series with coefficients from an arbitrary commutative algebra over \mathbb{Q}. Note that $g(0)=0$. Prove that:

$$
f(g(t))=\sum_{n=0}^{\infty} f_{n} \frac{g(t)^{n}}{n!}=f_{0}+\sum_{N=1}^{\infty} t^{N}\left(\sum_{k=1}^{N} f_{k}\left(\sum_{\substack{\lambda \vdash N \\ \ell(\lambda)=k}} \frac{g_{\lambda}}{\prod_{i \geq 1} l_{i}!}\right)\right)
$$

where $\ell_{i}=\left|\left\{r: \lambda_{r}=i\right\}\right|$ and $g_{\lambda}=g_{\lambda_{1}} \cdots g_{\lambda_{k}}$.
Problem 21. [15 points] Recall the definition of elementary, complete and power sum symmetric polynomials, in N variable. Convention: $e_{0}=h_{0}=1$.

$$
e_{r}:=\sum_{1 \leq i_{1}<\ldots<i_{r} \leq N} x_{i_{1}} \cdots x_{i_{r}}, \quad p_{r}:=\sum_{i=1}^{N} x_{i}^{r}, \quad h_{r}:=\sum_{1 \leq i_{1} \leq \ldots \leq i_{r} \leq N} x_{i_{1}} \cdots x_{i_{r}} .
$$

Consider the generating series:

$$
E(t)=\sum_{r=0}^{N} e_{r} t^{r}, \quad H(t)=\sum_{r=0}^{\infty} h_{r} t^{r}, \quad P(t)=\sum_{n=1}^{\infty} p_{n} \frac{t^{n}}{n} .
$$

(a) Show that $H(t) E(-t)=1$ and $H(t)=\exp (P(t))$.
(b) Prove Newton's identities:

$$
n h_{n}=\sum_{r=1}^{n} p_{r} h_{n-r}, \quad n e_{n}=\sum_{r=1}^{n}(-1)^{r-1} p_{r} e_{n-r}
$$

Problem 22. [10 points] Let $n \in \mathbb{Z}_{\geq 2}$ and $\lambda \vdash n$. Let V_{λ} be the finite-dimensional, irreducible representation of the symmetric group S_{n}, labelled by λ, as in Frobenius' theorem. Let $w=\left(\begin{array}{ll}1 & 2 \ldots n\end{array}\right) \in S_{n}$. Prove that

$$
\text { Trace }\left(w \text { acting on } V_{\lambda}\right)= \begin{cases}(-1)^{k}, & \text { if } \lambda=(n-k, 1, \ldots, 1) \\ 0 & \text { otherwise }\end{cases}
$$

Problem 23. [$\mathbf{1 0}$ points] Let $\lambda, \mu \vdash n$. Recall the notation:

$$
X_{\lambda}=\left\{\left(I_{1}, \ldots, I_{\ell}\right):\{1, \ldots, n\}=\bigsqcup_{i=1}^{\ell} I_{i} \text { and }\left|I_{j}\right|=\lambda_{j}, \forall j\right\}
$$

(a) Show that X_{λ} is in bijection with S_{n} / S_{λ}, where $S_{\lambda}=S_{\lambda_{1}} \times \cdots S_{\lambda_{\ell}}<S_{n}$.
(b) Show that there is a bijection between the following three sets:
(1) $\left(X_{\lambda} \times X_{\mu}\right) / S_{n}$,
(2) $X_{\mu}^{S_{\lambda}}:=\left\{a \in X_{\mu}: w \cdot a=a, \forall w \in S_{\lambda}\right\}$,
(3) $\left\{A=\left(a_{i j}\right) \in \mathrm{M}_{n \times n}\left(\mathbb{Z}_{\geq 0}\right): \sum_{j} a_{i j}=\lambda_{i}, \forall i\right.$ and $\left.\sum_{i} a_{i j}=\mu_{j}, \forall j\right\}$.

Problem 24. [15 points] Recall the definition of (\cdot, \cdot) on $\Lambda_{n}=\mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]_{\text {deg }=n}^{S_{N}}$.
(1) For $\lambda \vdash n$, let $h_{\lambda}=h_{\lambda_{1}} \cdots h_{\lambda_{\ell}}$ and $e_{\lambda}=e_{\lambda_{1}} \cdots e_{\lambda_{\ell}}$, where h_{r} and e_{r} are defined above (Problem 21). Show that $\left(h_{\lambda}, e_{\mu}\right)$ is the number of matrices with 0,1 entries whose row sums equal λ and column sums equal μ.

$$
\left(h_{\lambda}, e_{\mu}\right)=\mid\left\{A=\left(a_{i j}\right): a_{i j} \in\{0,1\} \forall i, j \text { and } \sum_{j} a_{i j}=\lambda_{i}, \forall i ; \sum_{i} a_{i j}=\mu_{j}, \forall j\right\} \mid
$$

(2) Let s_{λ} be the Schur polynomial, and m_{μ} be the monomial symmetric polynomial. Let $\rho=(N-1, N-2, \ldots, 0)$. Show that:

$$
\left(s_{\lambda}, m_{\mu}\right)=\sum_{\substack{w \in S_{N}: \\ \lambda+\rho-w(\rho) \in S_{N} \cdot \mu}} \varepsilon(w)
$$

Problem 25. [10 points] Let $\mu \vdash(n-1)$. Prove the following (Pieri's rule):

$$
s_{\mu} s_{(1)}=\sum s_{\lambda}
$$

where the sum is over all $\lambda \vdash n$ which can be obtained from μ by adding exactly one box (i.e., $\exists j: \lambda_{i}=\mu_{i}, \forall i \neq j$, and $\lambda_{j}=\mu_{j}+1$).

Problem 26. [10 points] Let G be a finite group, $H<G$ a subgroup and let $\mathbf{1}$ denote the one dimensional, trivial representation of H. Prove that:

$$
\chi_{\operatorname{Ind}_{H}^{G} 1}^{1}(g)=\left|(G / H)^{g}\right|=\frac{|C \cap H| \cdot\left|Z_{G}(g)\right|}{|H|},
$$

where $C=\left\{x g x^{-1}: x \in G\right\}$ is the conjugacy class containing g, and $Z_{G}(g)=\{x \in G: x g=$ $g x\}$ is its centralizer.

Problem 27. [10 points] Let $\lambda \vdash n$ and let ι_{λ} is the character of the induced representation U_{λ} of S_{n}. Let $\mu \vdash n$ be another partition and let $r_{i}=\left|\left\{j: \mu_{j}=i\right\}\right|$. Use the previous exercise to prove the following formula:

$$
\iota_{\lambda}(\mu)=\sum_{\left(s_{i j}\right)} \prod_{i \geq 1} \frac{r_{i}!}{\prod_{j} s_{i j}!},
$$

where the sum is over all matrices with $\mathbb{Z}_{\geq 0}$ entries such that $\sum_{j} s_{i j}=r_{i}$ and $\sum_{i} i s_{i j}=\lambda_{i}$.
Problem 28. [10 points] (Reciprocity formula) Let G be a finite group and $H<G$ a subgroup. Let $\phi \in \mathbb{C}[G]_{\text {class }}$ and $\psi \in \mathbb{C}[H]_{\text {class }}$. Prove that

$$
\left(\operatorname{Res}_{H}^{G} \phi, \psi\right)_{H}=\left(\phi, \operatorname{Ind}_{H}^{G} \psi\right)_{G}
$$

Problem 29. [10 points] Let $m \in \mathbb{Z}_{\geq 2}$. Prove directly that, for any $r \in \mathbb{Z}_{\geq 0}, \operatorname{Sym}^{r}\left(\mathbb{C}^{m}\right)$ is an irreducible representation on $\mathrm{GL}_{m}(\mathbb{C})$.

Problem 30. [10 points] Let $\left\{R_{1}, \ldots, R_{N}\right\}$ be finite-dimensional representations of a group G. Show that these are pairwise non-isomorphic, irreducible representations of G if, and only if, the matrix coefficients of R_{1}, \ldots, R_{N} are linearly independent.

Problem 31. [15 points] Recall that, for a graded vector space $U=\oplus_{n=0}^{\infty} U[n]$, such that $\operatorname{dim}(U[n])<\infty$, for every $n \geq 0$, we define:

$$
\text { (Hilbert polynomial) } \quad P(U ; t)=\sum_{n \geq 0} \operatorname{dim}(U[n]) t^{n} .
$$

Let V be a finite-dimensional vector space, and let $T^{\bullet}(V)=\oplus_{n \geq 0} T^{n}(V)$, and similarly $\operatorname{Sym}^{\bullet}(V), \wedge^{\bullet}(V)$. Prove that:

$$
\begin{gathered}
P\left(T^{\bullet}(V) ; t\right)=\frac{1}{1-\operatorname{dim}(V) t}, \quad P\left(\operatorname{Sym}^{\bullet}(V) ; t\right)=\frac{1}{(1-t)^{\operatorname{dim}(V)}}, \\
P\left(\wedge^{\bullet}(V) ; t\right)=(1+t)^{\operatorname{dim}(V)} .
\end{gathered}
$$

Problem 32. [10 points] Let $\lambda=\left(\lambda_{1} \geq \ldots \geq \lambda_{\ell}\right)$ be a partition, and let $m \geq \ell$. Show that we have an isomorphism of $\mathrm{GL}_{m}(\mathbb{C})$-representations:

$$
L_{\lambda+\left(1^{\ell}\right)} \cong L_{\lambda} \otimes \wedge^{\ell}\left(\mathbb{C}^{m}\right)
$$

Problem 33. [15 points] Branching rule for general linear group. Let λ be a partition of length ℓ, and $m \geq \ell$. Let $L_{\lambda}^{(m)}$ denote the corresponding representation of $\mathrm{GL}_{m}(\mathbb{C})$. Consider
$\mathrm{GL}_{m-1}(\mathbb{C})$ as the subgroup of $\mathrm{GL}_{m}(\mathbb{C})$ via $g \mapsto\left[\begin{array}{ll}g & 0 \\ 0 & 1\end{array}\right]$. Show that:

$$
\left.L_{\lambda}^{(m)}\right|_{\mathrm{GL}_{m-1}(\mathbb{C})} \cong \bigoplus_{\mu} L_{\mu}^{(m-1)}
$$

where the direct sum is over all $\mu=\left(\mu_{1} \geq \ldots \geq \mu_{\ell} \geq 0\right)$ satisfying the interlacing condition:

$$
\lambda_{1} \geq \mu_{1} \geq \lambda_{2} \geq \mu_{2} \geq \cdots \geq \lambda_{\ell} \geq \mu_{\ell}
$$

In other words, the Young diagram of μ is contained in the Young diagram of λ and its complement consists entirely of horizontal strips.

Problem 34. [10 points] Let $m \geq \mathbb{Z}_{\geq 2}$ and assume that $\left\{d_{n}\right\}_{n=1}^{\infty} \subset \mathbb{Z}_{\geq 0}$ are defined by the following identity:

$$
(1-m t)=\prod_{n=1}^{\infty}\left(1-t^{n}\right)^{d_{n}}
$$

Show that $d_{n}=\frac{1}{n} \sum_{d \mid n} \mu(d) m^{\frac{n}{d}}$. Here $\mu: \mathbb{Z}_{\geq 1} \rightarrow\{0, \pm 1\}$ is the Möbius function defined as: $\mu(1)=1, \mu(r)=0$ if there is a prime p such that p^{2} divides r, and for distinct primes p_{1}, \ldots, p_{k}, we have $\mu\left(p_{1} \cdots p_{k}\right)=(-1)^{k}$.

Notations: The following problems are about representation theory of $\mathfrak{s l}_{2}$ (over \mathbb{C}). Recall that for every $n \in \mathbb{Z}_{\geq 0}, L_{n}$ denotes the irreducible $n+1$-dimensional representation of $\mathfrak{s l}_{2}$ described explicitly as follows. L_{n} has a basis $\left\{v_{0}, \ldots, v_{n}\right\}$ such that:

$$
h \cdot v_{\ell}=(n-2 \ell) v_{\ell}, \quad e \cdot v_{\ell}=(n-\ell+1) v_{\ell-1}, \quad f \cdot v_{\ell}=(\ell+1) v_{\ell+1},
$$

with the understanding that $v_{-1}=v_{n+1}=0$.
Problem 39. [10 points] Prove that $L_{n} \otimes L_{1} \cong L_{n+1} \oplus L_{n-1}$ as $\mathfrak{s l}_{2}$-representations.
Problem 40. [50 points] Exercise 2.15.1 of Pasha's book.
Problem 41. [30 points] Exercise 2.16.4 of Pasha's book. Classify all finite-dimensional, irreducible representations of $\mathfrak{s l}_{2}$ over an algebraically closed field of characteristic $p>2$.

Problem 42. [30 points] Exercise 2.16.5 of Pasha's book.
Problem 43. [20 points] Note that the action of e and f on L_{n} is nilpotent. For any nilpotent operator X, the following is a well-defined invertible operator:

$$
\exp (X)=1+X+\frac{X^{2}}{2!}+\ldots
$$

Let $\mathrm{s}:=\exp (e) \exp (-f) \exp (e)$, considered as a operator on L_{n}. Show that:

$$
\mathrm{s} \cdot v_{\ell}=(-1)^{n-\ell} v_{n-\ell}
$$

Problem 44. [20 points] For any $\lambda \in \mathbb{C}$, define M_{λ} to be (infinite-dimensional) $\mathfrak{s l}_{2}{ }^{-}$ representation as follows: M_{λ} has a basis $\left\{m_{r}: r \in \mathbb{Z}_{\geq 0}\right\}$ with $\mathfrak{s l}_{2}$-action given by (with the understanding that $m_{-1}=0$):

$$
h \cdot m_{\ell}=(\lambda-2 \ell) m_{\ell}, \quad e \cdot m_{\ell}=(\lambda-\ell+1) m_{\ell-1}, \quad f \cdot m_{\ell}=(\ell+1) m_{\ell+1}
$$

Show that M_{λ} is irreducible for $\lambda \notin \mathbb{Z}_{\geq 0}$. For $\lambda \in \mathbb{Z}_{\geq 0}$, show that M_{λ} has a subrepresentation isomorphic to $M_{-\lambda-2}$, so that we have the following non-split short exact sequence of $\mathfrak{s l}_{2}{ }^{-}$ representations:

$$
0 \rightarrow M_{-\lambda-2} \rightarrow M_{\lambda} \rightarrow L_{\lambda} \rightarrow 0
$$

Problems 45 and 46 are inspired by the following beautiful paper by Etingof and Varchenko: Dynamical Weyl group and applications, Advances in Mathematics, 167 (2002) pp. 74-127.

Problem 45. [30 points] Let $\lambda \in \mathbb{C}$ and $n \in \mathbb{Z}_{\geq 0}$. Let M_{λ} be the Verma module (see Problem 44) with basis denoted by $\left\{m_{r}^{(\lambda)}: r \in \mathbb{Z}_{\geq 0}\right\}$. Let L_{n} be the $n+1$-dimensional irreducible representation of $\mathfrak{s l}_{2}$, with basis denoted by $\left\{v_{0}, \ldots, v_{n}\right\}$. Let $0 \leq k \leq n$.

Show that, for all but finitely many $\lambda \in \mathbb{C}$, there is a unique $\mathfrak{s l}_{2}$-intertwiner:

$$
\Psi_{\lambda}^{(n, k)}: M_{\lambda} \rightarrow M_{\mu} \otimes L_{n}
$$

where $\mu=\lambda-(n-2 k)$, whose value on $m_{0}^{(\lambda)}$ is of the following form, for uniquely determined $c_{r} \in \mathbb{C}$:

$$
\Psi_{\lambda}^{(n, k)}: m_{0}^{(\lambda)} \mapsto m_{0}^{(\mu)} \otimes v_{k}+\sum_{r=1}^{k} c_{r} m_{r}^{(\mu)} \otimes v_{k-r}
$$

Deduce that we have the following isomorphism (generically in λ):

$$
\operatorname{Hom}_{\mathfrak{s l}_{2}}\left(M_{\lambda}, M_{\mu} \otimes V\right) \rightarrow V[\lambda-\mu]
$$

sending an intertwiner ψ to the coefficient of $m_{0}^{(\mu)}$ in $\psi\left(m_{0}^{(\lambda)}\right)$.
Problem 46. [30 points] (continued from Problems 44, 45). Now assume that $\lambda \in \mathbb{Z}_{\geq 0}$ and $\lambda \gg 0$. Let n, k and $\Psi_{\lambda}^{(n, k)}$ be as in Problem 45 above. Show that:

$$
\Psi_{\lambda}^{(n, k)}\left(m_{\lambda+1}^{(\lambda)}\right)=m_{\mu+1}^{(\mu)} \otimes\left(a(\lambda) v_{n-k}\right)+\sum_{r \geq 1} b_{r}(\lambda) m_{\mu+1+r}^{(\mu)} \otimes v_{n-k-r}
$$

for some $a(\lambda), b_{r}(\lambda)$. Compute $a(\lambda)$ explicitly.

