Friday, Feb 23:
Recap: $G L_{n}(\mathbb{C})$ polynomial reps. - summary
") Every fid. poly rep n of $G L_{m}(\mathbb{C})$ is simisimple missing a piece

$$
\mathbb{Z}_{11}^{m} \geqslant 0
$$

(2) Irreducible poly repn. of $G L_{n}(\mathbb{C}) \leftrightarrow\left\{\lambda=\left(\lambda_{1} \geqslant \ldots \geqslant \lambda_{m}\right)\right\}$ (up to isomorphism)

$$
(n=|\lambda|) \operatorname{Hom}_{S_{n}}\left(V_{\lambda},\left(\mathbb{C}^{m}\right)^{\otimes n}\right)=L_{\lambda} \quad \longleftrightarrow
$$

(3) (Schur)- Wleyl character: Trace of $\left[\begin{array}{ll}x_{1} & 0 \\ 0 & 0 \\ \text { formula } & x_{m}\end{array}\right]$ acting -on $L_{\lambda}=S_{\lambda}\left(x_{1}, \ldots, x_{m}\right)$.

Lie algebra perspective:
Let $\alpha: G L_{m}(\mathbb{C}) \rightarrow G L(V)$ be a polynomial rep. We define $\rho_{i j}: V \rightarrow V$ as follows:
for $i \neq j$
(1) $\alpha\left(\left[\begin{array}{ccc}1 & 0 & \\ \vdots & t & \leftarrow i \\ 0 & & 0 \\ 0 & 1\end{array}\right]\right)$
$\rho_{i}=\operatorname{coeff} \cdot$ of t in \uparrow

$$
\rho_{i j}=\operatorname{cosff} \cdot \text { of } t \text { in } \uparrow
$$

$$
\rho_{i j}=\left.\frac{d}{d t} \alpha\left(I_{m \times m}+t E_{i j}\right)\right|_{t=0}
$$

where $E_{i j}$ is the elementary

$$
\left\{\begin{array}{l}
1 \text { at }(i, j) \\
0 \text { every whir else }
\end{array}\right.
$$

(2) $i=j$

$$
\rho_{i i}=j=\frac{d}{d t} \propto\left(\left.\left[\begin{array}{lllll}
& & & i & \\
& & & \\
& 1 & & & \\
& & e_{1}^{t} & & \\
& & & \ddots & \\
& & & & 1
\end{array}\right]\right|_{t=0}\right.
$$

Eg: if $V=\mathbb{C}^{m}$

$$
\begin{aligned}
\alpha=i d: G L_{m}(\mathbb{C}) & \rightarrow G L\left(\mathbb{C}^{m}\right) \\
\rho_{i j}=E_{i j} \quad \mid j> & \mapsto \mid i>
\end{aligned}
$$

Lemma: Let $\alpha_{l}: G L_{m}(\mathbb{C}) \longrightarrow G L\left(V_{l}\right)$

$$
(l=1,2)
$$

be two polynomial repp. Let $\rho_{i j}^{(l)}: V_{l} \rightarrow V_{l}$ as defined. Let $\alpha=\alpha_{1} \otimes \alpha_{2}: G L_{m}(\mathbb{C}) \rightarrow G L\left(V_{1} \otimes V_{2}\right)$ and $S_{i j}: V_{1} \otimes V_{2} \rightarrow V_{1} \otimes V_{2}$ corresponding operator as defined. Then,

$$
\rho_{i j}\left(v_{1} \otimes v_{2}\right)=\rho_{i j}^{(1)}\left(v_{1}\right) \otimes v_{2}+v_{1} \otimes \rho_{i j}^{(2)}\left(v_{2}\right)
$$

(Reibriz rule)
Proof for $i \neq j$ case:

$$
\begin{array}{r}
\left(I d+t E_{i j}\right) \otimes\left(I d+t E_{i j}\right)=i d \otimes i d+t\left(E_{i j} \otimes i d+\right. \\
\\
\left.i d \otimes E_{i j}\right)+\cdots
\end{array}
$$

Eg: $\operatorname{Sym}^{l}\left(\mathbb{C}^{m}\right)=\operatorname{Span}$ of $\left\{x_{i_{1}} \ldots x_{i_{l}}: 1 \leqslant i_{1} \leqslant \ldots \leqslant i_{l} \leqslant m^{2}\right\}$
Then, $\rho_{i j}$ acts by $x_{i} \frac{\partial}{\partial x_{j}}: x_{k} \longmapsto \delta_{j k} x_{i}$
$\underline{g}: \Lambda^{2}\left(\mathbb{C}^{m}\right)=\operatorname{Span}\left\{x_{i_{1}} \wedge x_{i_{2}}: 1 \leqslant i_{1}<i_{2} \leqslant m\right\}$
The rest is the same argument as before.
Remark: if $W \subset V$ is a $G L_{m}(\mathbb{C})$-subrepno, then $\rho_{i j}(v) \in W, \forall v \in W$
Hence, if O and V are the only subspaces invariant under $\left\{\rho_{i j}\right\}_{i, j}$, then V is irreducible.
$\longrightarrow W$ st $S_{i j}(W) \subset W, \forall i, j$
[This a hint for problem 21 -on Homework]

Exercise: Let A be an algebra. A derivation of A is a linear map $\partial: A \rightarrow A$ st

$$
\partial(a b)=2(a) b+a \partial(b) . \quad \text { [Derivation] }
$$

Show that $\partial_{1}, \partial_{2}$ derivations $\Rightarrow \partial_{1} \circ \partial_{2}-\partial_{2} \cdot \partial_{1}$ is again a derivation
Further, assume $\partial: A \rightarrow A$ is a locally nilpotent ${ }^{*}$ derivation. Show that $\exp (\partial): A \rightarrow A$ is an algebra homomorphism.

* means $\forall a \in A, \exists N_{a} \gg a$ st $\partial^{n} a=0$

$$
\forall n \geqslant N_{a}
$$

Eg: $\partial_{x} \mathbb{C} \mathbb{C}[x]$ is locally milpotent but not nilpotent.
Remark: $\left\{\rho_{i j}\right\}_{i, j}$ satisfy relations of $m \times m$ matrix

$$
\left[\rho_{i j}, \rho_{k \ell}\right]=\delta_{j k} \rho_{i l}-\delta_{i \ell} \rho_{k j}
$$

\uparrow Lie algebra $\operatorname{gl}_{m}(\mathbb{C})$

Let's now look at $G l_{2}(\mathbb{C})$ case

$$
e=\rho_{12}, f=\rho_{21}, \quad h=\rho_{11}-\rho_{22},
$$

$$
I=\rho_{11}+\rho_{22}
$$

Lie algebra $g l_{2}(\mathbb{C})$

$$
\begin{aligned}
& {[e, f]=h, \quad[h, e]=2 e,} \\
& {[h, f]=-2 f, \quad[I, x]=0, \forall x}
\end{aligned}
$$

$s l_{2}(\mathbb{C})$: Span of $e, f, h \subset g l_{2}(\mathbb{C})$
Recall, for the case of $G L_{2}(\mathbb{C})$
tArred poly rep. $\leftrightarrow\left\{\lambda_{1} \geqslant \lambda_{2} \mid \lambda_{1}, \lambda_{2} \in \mathbb{Z} \geqslant 0\right\}$

$$
L_{\lambda} \quad \longleftrightarrow \lambda
$$

Trace of $\left[\begin{array}{ll}x_{1} & 0 \\ 0 & x_{2}\end{array}\right]$ acting on L_{λ}

$$
=S_{\lambda}\left(x_{1}, x_{2}\right)
$$

further recall, $S_{\lambda}\left(x_{1} \ldots, x_{m}\right)=\frac{\operatorname{det}\left(x_{i}{ }^{\lambda j+m-j}\right)_{1 \leqslant i, j \leq m}}{\ell(\lambda) \leq m} \quad \operatorname{det}\left(x_{i}{ }^{m-j}\right)_{1 \leqslant i, j \leq m}$
So, in over case $m=2$. so we get

$$
S_{\lambda}\left(x_{1}, x_{2}\right)=\frac{\left|\begin{array}{ll}
x_{1}^{\lambda+1} & x_{1}^{\lambda_{2}} \\
x_{2}^{\lambda_{1}+1} & x_{2}^{\lambda_{2}}
\end{array}\right|}{\left|\begin{array}{ll}
x_{1} & 1 \\
x_{2} & 1
\end{array}\right|} \quad \begin{aligned}
& \lambda_{1} \geqslant \lambda_{2} \\
& \lambda_{1}+1>\lambda_{2}+0
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x_{1}^{\lambda_{1}+1} x_{2}^{\lambda_{2}}-x_{1}^{\lambda_{2}} x_{2}^{\lambda_{1}+1}}{x_{1}-x_{2}} \\
& =x_{1}^{\lambda_{2}} x_{2}^{\lambda_{2}}\left(\frac{x_{1}^{\lambda_{1}+\lambda_{2}+1}-x_{2}^{\lambda_{1}-\lambda_{2}+1}}{x_{1}-x_{2}}\right) \\
& =x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}}\left(\sum x_{1}^{\lambda_{1}-\lambda_{2}+1-j} x_{2}^{j}\right)
\end{aligned}
$$

\rightarrow set $x_{1}=x_{2}=1, \operatorname{dim} L_{\lambda}=\lambda_{1}-\lambda_{2}+1$
using the fact $\lim _{t \rightarrow 1} \frac{t^{N}-1}{t-1}=N$
For $S L_{2}(\mathbb{C})$, we get that the irreducible polynomial rep ${ }^{\circ} \longleftrightarrow \mathbb{Z} \geqslant 0$

$$
\frac{L_{n}}{\operatorname{dim} L_{n}=n+1} \longleftrightarrow n\left(\lambda_{1}-\lambda_{2}\right)
$$

A concrete model for L_{n}
$L_{n}=$ degree n polynomials in $\mathbb{C}[x, y]$

$$
=\operatorname{span}\{\underbrace{x^{n}, x^{n-1} y, \ldots, y^{n}}_{n+1}\}
$$

So, $\operatorname{dim} L_{n}=n+1$

$$
\begin{aligned}
& s l_{2}(\mathbb{C}) \text { - action on } L_{n} \\
& e=x \frac{\partial}{\partial y}, \quad f=y \frac{\partial}{\partial x} \\
& h=x \partial_{x}-y \partial_{y}=\operatorname{deg} \text { wet } x \text { - deg wert } y
\end{aligned}
$$

So in this basis:

Exercise: This representation is irreducible.

Geometric perspective:

$$
\begin{aligned}
& G L_{2}(\mathbb{C}) \subset \mathbb{P}^{1}(\mathbb{C}) \\
& L_{n}=\Gamma\left(\mathbb{P}^{1}, \mathscr{L}_{n}\right)
\end{aligned}
$$

$$
\begin{gather*}
\mathbb{P}^{1}=(\mathbb{C} \times \mathbb{C}) \backslash\{0\} \tag{1}\\
\mathbb{P}^{1}=(\mathbb{C}, z) \mathbb{C}^{x} \tag{2}\\
\begin{array}{c}
z \leftrightarrow \omega^{-1} \\
\text { on } \mathbb{C}^{*}
\end{array}
\end{gather*}
$$

In model (2) of \mathbb{P}^{1},
\mathcal{L}_{n} is a sheaf on \mathbb{P}^{1},

$$
u \longmapsto\left\{f: u \rightarrow \mathbb{C} \mid \sum_{a} v_{f}(a)+n[\infty] \geqslant 0\right\}
$$

We are looking al functions,
$\Gamma\left(\mathbb{P}^{1}, \mathscr{L}_{n}\right)=\{f: \mathbb{C} \rightarrow \mathbb{C}$ st f has at most pole of ord n at $\infty\}$
$=\{$ poly's of deg $\leqslant n\} n+1$ dim e
In model (1) of \mathbb{P}^{1},

$$
\begin{aligned}
& \mathbb{C}^{\times} \mathbb{C} \mathbb{C} \text { by } \\
& z \mapsto z^{n}{ }^{\prime} \mathscr{I}_{n} \\
&(\mathbb{C} \times \mathbb{C} \backslash\{0\}) \times \mathbb{C} \rightarrow(\mathbb{C} \times \mathbb{C} \mid\{\underline{0}\})^{\prime \prime} \times_{\mathbb{C}} \times \mathbb{C} \\
& \downarrow \\
& \mathbb{C} \times \mathbb{C} \backslash \underline{O} \longrightarrow \mathbb{P}^{1}
\end{aligned}
$$

Borel-Weil-Bott Theorem
If $n \geqslant 0$, then $H^{\circ}\left(\mathbb{P}^{\prime}, \mathcal{A}_{n}\right)$ is irreducible

$$
H^{1}\left(\mathbb{P}^{1}, \mathscr{L}_{n}\right)=0 \text {. If } n<0, M^{0}\left(\mathbb{P}^{1}, \mathscr{L}_{n}\right)=0 \text {, }
$$

$H^{1}\left(\mathbb{P}^{1}, \mathcal{L}_{n}\right) \cong L_{-n}$ irreducible.

