PROBLEMS IN REPRESENTATION THEORY

Representation of finite groups

Problem 1. (10 points) Let G be a finite group acting on a finite set X via group homomorphism $\alpha: G \rightarrow S_{X}$ (here, S_{X} is the group of permutations of elements of X). Let $V=\mathbb{C}[X]$ be the vector space (over \mathbb{C}) of all complex-valued functions on X. We view V as a G-representation, $\rho: G \rightarrow \mathrm{GL}(V)$, by:

$$
(\rho(g)(f))(x):=f\left(\alpha(g)^{-1}(x)\right), \text { for every } g \in G, f \in V, x \in X
$$

(1) Prove that $\operatorname{dim}\left(V^{G}\right)=|X / G|$ (number of G-orbits in X).
(2) For $g \in G$, show that $\operatorname{Tr}(\rho(g))=\left|X^{g}\right|$. Here, $X^{g}:=\{x \in X: \alpha(g)(x)=x\}$.
(3) Consider the averaging operator $P=\frac{1}{|G|} \sum_{g \in G} \rho(g)$, acting on V. Show that $\operatorname{Tr}(P)=$ $\operatorname{dim}\left(V^{G}\right)$. Hence we obtain Burnside's orbit counting formula

$$
|X / G|=\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|
$$

Problem 2. (15 points) Let D_{n} be the dihedral group (symmetries of regular n-gon, thus $\left|D_{n}\right|=2 n$). In the problems below, the representations of D_{n} are over \mathbb{C}.
(1) Count the number of conjugacy classes in D_{n}.
(2) Show that D_{n} has exactly two 1-dimensional representations, if n is odd; and exactly four 1-dimensional representations, if n is even.
(3) Let V be an irreducible representation of D_{n}. Show that $\operatorname{dim}(V) \leq 2$.
(4) Give explicit description of all irreducible D_{n}-representations.

Problem 3. (10 points) Consider the dihedral group D_{3}. It has 3 irreducible representations: two 1-dimensional and one 2-dimensional. Let $V=\mathbb{C}\left[D_{3}\right]$ be the (left) regular representation of D_{3}. Work out (directly, i.e, without using Theorem $\S 3$ of Lecture 2) the decomposition of V into direct sum of irreducible representations.

Problem 4. (10 points) Let S_{n} be the group of permutations of n letters. Let \mathbb{C}^{n} be the standard n-dimensional S_{n}-representation (i.e., in a basis e_{1}, \ldots, e_{n} of $\mathbb{C}^{n}: \sigma \cdot e_{i}=e_{\sigma(i)}$, for every $\sigma \in S_{n}$ and $1 \leq i \leq n$). Show that \mathbb{C}^{n} is a direct sum of two irreducible $S_{n}{ }^{-}$ representations. Give a basis of each of these subrepresentations of \mathbb{C}^{n}.

Problem 5. (10 points) Let G be a finite group and let V_{1}, V_{2}, V_{3} be three finitedimensional G-representations over \mathbb{C}. Show that the following is an isomorphism of G representations.

$$
\alpha: \operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2}\right) \otimes V_{3} \rightarrow \operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2} \otimes V_{3}\right)
$$

Here, α is given as follows. For every $X \in \operatorname{Hom}_{\mathbb{C}}\left(V_{1}, V_{2}\right), v_{3} \in V_{3}$ and $v_{1} \in V_{1}$:

$$
\alpha\left(X \otimes v_{3}\right): v_{1} \longmapsto X\left(v_{1}\right) \otimes v_{3}
$$

Problem 6. (10 points) Let G be a finite group and V a finite-dimensional G-representation over \mathbb{C}. Assume that $\chi_{V}(g)=0$ for every $g \in G \backslash\{e\}$. Prove that $\operatorname{dim}(V)$ is divisible by $|G|$.

Notations: Let G be a finite group, $\mathbb{C}[G]$ its group algebra over \mathbb{C}. Recall the convolution product, for $f_{1}, f_{2} \in \mathbb{C}[G]$:

$$
\left(f_{1} * f_{2}\right)(g)=\sum_{\sigma \in G} f_{1}(\sigma) f_{2}\left(\sigma^{-1} g\right) .
$$

We defined a symmetric, bilinear form $B: \mathbb{C}[G] \times \mathbb{C}[G] \rightarrow \mathbb{C}$ by:

$$
B\left(f_{1}, f_{2}\right)=\frac{1}{|G|}\left(f_{1} * f_{2}\right)(e)=\frac{1}{|G|} \sum_{g \in G} f_{1}\left(g^{-1}\right) f_{2}(g)
$$

Let $\mathbb{C}[G]_{\text {class }}$ denote the (commutative) subalgebra of functions constant on conjugacy classes of G (abbreviated to $\operatorname{Conj}(G))$.

Let $\left\{V_{\lambda}: \lambda \in P(G)\right\}$ be the set of isomorphism classes of finite-dimensional, irreducible G-representations. Let ρ_{λ} denote the group homomorphism $G \rightarrow \mathrm{GL}\left(V_{\lambda}\right)$, or the corresponding algebra homomorphism $\mathbb{C}[G] \rightarrow \operatorname{End}\left(V_{\lambda}\right)$. Also, let χ_{λ} denote the character of the representation V_{λ}.

Problem 7. (20 points) Prove the following formulae:

- Fourier inversion formula: Given $X=\left(X_{\lambda}\right)_{\lambda \in P(G)} \in \oplus_{\lambda \in P(G)} \operatorname{End}_{\mathbb{C}}\left(V_{\lambda}\right)$, show that

$$
\psi^{-1}(X)(g)=\frac{1}{|G|} \sum_{\lambda \in P(G)} \operatorname{dim}\left(V_{\lambda}\right) \operatorname{Tr}\left(\rho_{\lambda}\left(g^{-1}\right) X_{\lambda}\right)
$$

- Plancheral formula: Given $f_{1}, f_{2} \in \mathbb{C}[G]$, show that

$$
B\left(f_{1}, f_{2}\right)=\frac{1}{|G|^{2}} \sum_{\lambda \in P(G)} \operatorname{dim}\left(V_{\lambda}\right) \operatorname{Tr}\left(\rho_{\lambda}\left(f_{1} * f_{2}\right)\right)
$$

(Optional: why are these formulae called as such?)
Problem 8. (15 points) Fix $\lambda \in P(G)$ and let $\varphi: V_{\lambda} \otimes V_{\lambda}^{*} \rightarrow \operatorname{End}\left(V_{\lambda}\right)$ be the Tensor-Hom adjointness isomorphism. Show that, for $v \in V_{\lambda}$ and $\xi \in V_{\lambda}^{*}$, we have

$$
\psi^{-1}(v \otimes \xi)=\sum_{g \in G} \frac{\operatorname{dim}\left(V_{\lambda}\right)}{|G|} \xi\left(\rho_{\lambda}\left(g^{-1}\right) v\right) \delta_{g}
$$

For a G-representation V, and $v \otimes \xi \in V \otimes V^{*}$, the function $c_{v, \xi}: G \rightarrow \mathbb{C}$, defined by $c_{v, \xi}(g)=\xi\left(g^{-1} v\right)$, is called a matrix coefficient of V.

Problem 9. (10 points) Let R_{1}, \ldots, R_{N} be N finite-dimensional representations of G (say over \mathbb{C}). Show that R_{1}, \ldots, R_{N} are pairwise non-isomorphic, irreducible representations of G if, and only if, their matrix coefficients are linearly independent.

Problem 10. (10 points) (Dedekind) Let G be a finite group. Show that the set of all group homomorphisms $\operatorname{Hom}_{\mathrm{gp}}\left(G, \mathbb{C}^{\times}\right.$) is linearly independent (as a subset of the vector space of all \mathbb{C}-valued functions on G).

Problem 11. (15 points) Let Q_{8} be the quaternionic group defined as follows. $Q_{8}=$ $\{ \pm 1, \pm i, \pm j, \pm k\}$ has 8 elements, with the group operation:

- ± 1 commute with every other element and $(-1)^{2}=+1$,
- $(-1) x=-x$, for $x=i, j, k$, and
- $i j=k=-j i, j k=i=-k j, k i=j=-i k, i^{2}=j^{2}=k^{2}=-1$

Show that Q_{8} and dihedral group D_{4} have the same character table, but these groups are not isomorphic.

Problem 12. (25 points) Prove Frobenius' Theorem 2 (slide 18 from Lecture 6) using the fundamental theorem of representation theory of finite groups (Theorem $\S 3$ of Lecture 2).

Symmetric group

Problem 13. (10 points) Let p_{1}, p_{2}, \ldots be pairwise commuting variables, and for a partition $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\ell}>0\right)$, let $p_{\lambda}:=p_{\lambda_{1}} \cdots p_{\lambda_{\ell}}$. Prove the following identity, in $\left(\mathbb{Q}\left[p_{1}, p_{2}, \ldots\right]\right) \llbracket t \rrbracket$

$$
1+\sum_{\lambda} \frac{p_{\lambda}}{z_{\lambda}} t^{|\lambda|}=\exp \left(\sum_{r=1}^{\infty} \frac{p_{r} t^{r}}{r}\right)
$$

where, if λ has r_{j} parts equal to j, then $z_{\lambda}=\prod_{j \geq 1} j^{r_{j}} r_{j}!$.
Problem 14. (15 points) Recall the definition of elementary, complete and power sum symmetric polynomials, in N variables. Convention: $e_{0}=h_{0}=1$.

$$
e_{r}:=\sum_{1 \leq i_{1}<\ldots<i_{r} \leq N} x_{i_{1}} \cdots x_{i_{r}}, \quad p_{r}:=\sum_{i=1}^{N} x_{i}^{r}, \quad h_{r}:=\sum_{1 \leq i_{1} \leq \ldots \leq i_{r} \leq N} x_{i_{1}} \cdots x_{i_{r}} .
$$

Consider the generating series:

$$
E(t)=\sum_{r=0}^{N} e_{r} t^{r}, \quad H(t)=\sum_{r=0}^{\infty} h_{r} t^{r}, \quad P(t)=\sum_{n=1}^{\infty} p_{n} \frac{t^{n}}{n} .
$$

(a) Show that $H(t) E(-t)=1$ and $H(t)=\exp (P(t))$.
(b) Prove Newton's identities:

$$
n h_{n}=\sum_{r=1}^{n} p_{r} h_{n-r}, \quad n e_{n}=\sum_{r=1}^{n}(-1)^{r-1} p_{r} e_{n-r}
$$

Problem 15. (10 points) Let G be a finite group and $f: G \rightarrow \mathbb{C}$ a class function. Show that $f=\chi_{V}$ for an irreducible representation V if, and only if the following three conditions hold: (i) f can be written as a linear combination, over \mathbb{Z}, of characters of finite-dimensional representations; (ii) $B(f, f)=1$; and (iii) $f(e)>0$.

Problem 16. (10 points) Recall the notation, for $\lambda \vdash n$:

$$
X_{\lambda}=\left\{\left(I_{1}, \ldots, I_{\ell}\right):\{1, \ldots, n\}=\bigsqcup_{i=1}^{\ell} I_{i} \text { and }\left|I_{j}\right|=\lambda_{j}, \forall j\right\}
$$

(a) Show that X_{λ} is in bijection with S_{n} / S_{λ}, where $S_{\lambda}=S_{\lambda_{1}} \times \cdots S_{\lambda_{\ell}}<S_{n}$.
(b) Show that there is a bijection between the following three sets:
(1) $\left(X_{\lambda} \times X_{\mu}\right) / S_{n}$,
(2) $X_{\mu}^{S_{\lambda}}:=\left\{a \in X_{\mu}: w \cdot a=a, \forall w \in S_{\lambda}\right\}$,
(3) $\left\{A=\left(a_{i j}\right) \in \mathrm{M}_{n \times n}\left(\mathbb{Z}_{\geq 0}\right): \sum_{j} a_{i j}=\lambda_{i}, \forall i\right.$ and $\left.\sum_{i} a_{i j}=\mu_{j}, \forall j\right\}$.

Problem 17. (15 points) Recall the definition of (\cdot, \cdot) on $\Lambda_{n}=\mathbb{Z}\left[x_{1}, \ldots, x_{N}\right]_{\operatorname{deg}=n}^{S_{N}}$.
(1) For $\lambda \vdash n$, let $h_{\lambda}=h_{\lambda_{1}} \cdots h_{\lambda_{\ell}}$ and $e_{\lambda}=e_{\lambda_{1}} \cdots e_{\lambda_{\ell}}$, where h_{r} and e_{r} are defined above (Problem 14). Show that $\left(h_{\lambda}, e_{\mu}\right)$ is the number of matrices with 0,1 entries whose row sums equal λ and column sums equal μ.

$$
\left(h_{\lambda}, e_{\mu}\right)=\mid\left\{A=\left(a_{i j}\right): a_{i j} \in\{0,1\} \forall i, j \text { and } \sum_{j} a_{i j}=\lambda_{i}, \forall i ; \sum_{i} a_{i j}=\mu_{j}, \forall j\right\} \mid
$$

(2) Let s_{λ} be the Schur polynomial, and m_{μ} be the monomial symmetric polynomial. Let $\rho=(N-1, N-2, \ldots, 0)$. Show that:

$$
\left(s_{\lambda}, m_{\mu}\right)=\sum_{\substack{w \in S_{N}: \\ \lambda+\rho-w(\rho) \in S_{N} \cdot \mu}} \varepsilon(w)
$$

Problem 18. (10 points) Let $\mu \vdash(n-1)$. Prove the following (Pieri's rule):

$$
s_{\mu} s_{(1)}=\sum s_{\lambda}
$$

where the sum is over all $\lambda \vdash n$ which can be obtained from μ by adding exactly one box (i.e., $\exists j: \lambda_{i}=\mu_{i}, \forall i \neq j$, and $\lambda_{j}=\mu_{j}+1$).

Problem 19. (10 points) Let G be a finite group, $H<G$ a subgroup and let $\mathbf{1}$ denote the one dimensional, trivial representation of H. Prove that:

$$
\chi_{\operatorname{Ind}_{H}^{G} \mathbf{1}}(g)=\left|(G / H)^{g}\right|=\frac{|C \cap H| \cdot\left|Z_{G}(g)\right|}{|H|}
$$

where $C=\left\{x g x^{-1}: x \in G\right\}$ is the conjugacy class containing g, and $Z_{G}(g)=\{x \in G: x g=$ $g x\}$ is its centralizer.

Problem 20. (10 points) Let $\lambda \vdash n$ and let ι_{λ} is the character of the induced representation U_{λ} of S_{n}. Let $\mu \vdash n$ be another partition and let $r_{i}=\left|\left\{j: \mu_{j}=i\right\}\right|$. Use the previous exercise to prove the following formula:

$$
\iota_{\lambda}(\mu)=\sum_{\left(s_{i j}\right)} \prod_{i \geq 1} \frac{r_{i}!}{\prod_{j} s_{i j}!}
$$

where the sum is over all matrices with $\mathbb{Z}_{\geq 0}$ entries such that $\sum_{j} s_{i j}=r_{i}$ and $\sum_{i} i s_{i j}=\lambda_{i}$.

Problem 21. (15 points) Prove directly that the following are irreducible representations of $\mathrm{GL}_{m}(\mathbb{C})$:

$$
\operatorname{Sym}^{\ell}\left(\mathbb{C}^{m}\right), \ell \geq 0, \quad \text { and } \quad \wedge^{k}\left(\mathbb{C}^{m}\right), 0 \leq k \leq m
$$

Problem 22. (15 points) Recall that, for a graded vector space $U=\oplus_{n=0}^{\infty} U[n]$, such that $\operatorname{dim}(U[n])<\infty$, for every $n \geq 0$, we define:

$$
\text { (Hilbert series) } \quad P(U ; t)=\sum_{n \geq 0} \operatorname{dim}(U[n]) t^{n} .
$$

Let V be a finite-dimensional vector space, and let $T^{\bullet}(V)=\oplus_{n \geq 0} T^{n}(V)$, and similarly $\operatorname{Sym}^{\bullet}(V), \wedge^{\bullet}(V)$. Prove that:

$$
\begin{gathered}
P\left(T^{\bullet}(V) ; t\right)=\frac{1}{1-\operatorname{dim}(V) t}, \quad P(\operatorname{Sym} \cdot(V) ; t)=\frac{1}{(1-t)^{\operatorname{dim}(V)}}, \\
P\left(\wedge^{\bullet}(V) ; t\right)=(1+t)^{\operatorname{dim}(V)} .
\end{gathered}
$$

Bonus 10 points: Take $U=\oplus_{\lambda} \mathbb{S}^{\lambda}(V)$. What is the corresponding Hilbert series?
Problem 23. (10 points) Let $\lambda=\left(\lambda_{1} \geq \ldots \geq \lambda_{\ell}\right)$ be a partition, and let $m \geq \ell$. Show that we have an isomorphism of $\mathrm{GL}_{m}(\mathbb{C})$-representations:

$$
L_{\lambda+\left(1^{\ell}\right)} \cong L_{\lambda} \otimes \wedge^{\ell}\left(\mathbb{C}^{m}\right)
$$

Problem 24. (10 points) Branching rule for general linear group. Let λ be a partition of length ℓ, and $m \geq \ell$. Let $L_{\lambda}^{(m)}$ denote the corresponding representation of $\mathrm{GL}_{m}(\mathbb{C})$. Consider $\mathrm{GL}_{m-1}(\mathbb{C})$ as the subgroup of $\mathrm{GL}_{m}(\mathbb{C})$ via $g \mapsto\left(\begin{array}{ll}g & 0 \\ 0 & 1\end{array}\right)$. Show that:

$$
\left.L_{\lambda}^{(m)}\right|_{\mathrm{GL}_{m-1}(\mathbb{C})} \cong \bigoplus_{\mu} L_{\mu}^{(m-1)}
$$

where the direct sum is over all $\mu=\left(\mu_{1} \geq \ldots \geq \mu_{\ell} \geq 0\right)$ satisfying the interlacing condition:

$$
\lambda_{1} \geq \mu_{1} \geq \lambda_{2} \geq \mu_{2} \geq \cdots \geq \lambda_{\ell} \geq \mu_{\ell} .
$$

In other words, the Young diagram of μ is contained in the Young diagram of λ and its complement consists entirely of horizontal strips.

Problem 25. (20 points) Solve Problem 2.15 .1 of Pasha's book ${ }^{1}$, (a)-(f).
Problem 26. (20 points) Solve Problem 2.15.1, (g)-(k).
Problem 27. (20 points) Solve Problem 2.15.1, (1)-(n).
Problem 28. (30 points) Solve Problem 2.16.5 of Pasha's book.

[^0]Problem 29. (10 points) Prove that V is an irreducible A-representation for (a) $A=$ $\operatorname{Mat}_{n \times n}(K)$ and $V=K^{n}$, (b) $A=K<x, d>/(d x-x d=1)$ and $V=K[X]$ where x acts as multiplication by X and d acts as $d / d X$ (assuming characteristic of K is 0).

Problem 30. (15 points) Let $A=\{f: \mathbb{R} \rightarrow \mathbb{R}$ continuous $\mid f(x+1)=f(x)\}$ and let $M=\{g: \mathbb{R} \rightarrow \mathbb{R}$ continuous $\mid g(x+1)=-g(x)\}$. Prove that A and M are non-isomorphic, indecomposable representations of A. Show that $A \oplus A$ is isomorphic to $M \oplus M$.

Problem 31. (10 points) (See Problem 3.9.1 of Pasha's book). Let V, W be two representations of A. Given a linear map $f: A \rightarrow \operatorname{Hom}_{k}(W, V)$, define $\rho_{f}: A \rightarrow \operatorname{End}_{k}(V \oplus W)$ given by:

$$
\rho_{f}(a)=\left(\begin{array}{cc}
\rho_{1}(a) & f(a) \\
0 & \rho_{2}(a)
\end{array}\right) .
$$

(a) Show that ρ_{f} is a representation of A if, and only if $f(a b)=\rho_{1}(a) f(b)+f(a) \rho_{2}(b)$, for every $a, b \in A$. Let the space of all the solutions of this equation be denoted by $Z^{1}(W, V) \subset \operatorname{Hom}_{k}\left(A, \operatorname{Hom}_{k}(W, V)\right)$ (called 1-cocycles).
(b) Given $X \in \operatorname{Hom}_{k}(W, V)$, define the automorphism of the vector space $g \in \operatorname{Aut}_{k}(V \oplus$ $W)$ given by:

$$
g=\left(\begin{array}{cc}
\mathrm{Id}_{V_{1}} & X \\
0 & \mathrm{Id}_{V_{2}}
\end{array}\right)
$$

Let $f: A \rightarrow \operatorname{Hom}_{k}(W, V)$ be an element of $Z^{1}(W, V)$ as in part (a). Show that g is an isomorphism between ρ_{f} and ρ_{0} if, and only if $f(a)=\rho_{1}(a) X-X \rho_{2}(a)$ for every $a \in A$.

Problem 32. (10 points) Prove Weyl's dimension formula: if L_{λ} is the unique irreducible representation of $\mathrm{GL}_{m}(\mathbb{C})$, for a partition λ with $\ell(\lambda) \leq m$, then

$$
\operatorname{dim}\left(L_{\lambda}\right)=\prod_{1 \leq i<j \leq m} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i} .
$$

Problem 33. (15 points) For any $\lambda \in \mathbb{C}$, define M_{λ} to be (infinite-dimensional) $\mathfrak{s l}_{2}{ }^{-}$ representation as follows: M_{λ} has a basis $\left\{m_{r}: r \in \mathbb{Z}_{\geq 0}\right\}$ with $\mathfrak{s l}_{2}$-action given by (with the understanding that $m_{-1}=0$):

$$
h \cdot m_{\ell}=(\lambda-2 \ell) m_{\ell}, \quad e \cdot m_{\ell}=(\lambda-\ell+1) m_{\ell-1}, \quad f \cdot m_{\ell}=(\ell+1) m_{\ell+1} .
$$

Show that M_{λ} (called Verma module) is irreducible for $\lambda \notin \mathbb{Z}_{\geq 0}$. For $\lambda \in \mathbb{Z}_{\geq 0}$, show that M_{λ} has a subrepresentation isomorphic to $M_{-\lambda-2}$, so that we have the following non-split short exact sequence of $\mathfrak{s l}_{2}-$ representations:

$$
0 \rightarrow M_{-\lambda-2} \rightarrow M_{\lambda} \rightarrow L_{\lambda} \rightarrow 0
$$

Here, L_{λ} is $\lambda+1$-dimensional, irreducible representation of $\mathfrak{s l}_{2}$.

Problem 34. (15 points) For a linear operator $X \in \operatorname{End}_{\mathbb{C}}(V)$ acting on a finitedimensional vector space, let $\exp (X)=\sum_{n=0}^{\infty} \frac{1}{n!} X^{n}$.
(a) Show that $\operatorname{det}(\exp (X))=e^{\operatorname{Tr}(X)}$.
(b) For $X \in \operatorname{End}(V)$ and $A \in \mathrm{GL}(V)$, consider the linear operators on $\operatorname{End}_{\mathbb{C}}(V)$:

$$
\operatorname{ad}(X): Y \mapsto X Y-Y X, \quad \operatorname{Ad}(A): Y \mapsto A Y A^{-1}
$$

Show that $\exp (\operatorname{ad}(X))=\operatorname{Ad}(\exp (X))$.
(c) Let A be an algebra over \mathbb{C} and $\partial: A \rightarrow A$ be a nilpotent derivation. Show that $\exp (\partial): A \rightarrow A$ is an algebra isomorphism.

Problem 35. (15 points) Let $m \geq 2$ and let L be the free Lie algebra over a vector space of dimension m. Recall that L is $\mathbb{Z}_{\geq 1}$-graded: $L=\oplus_{n=1}^{\infty} L[n]$. Let $d_{n}:=\operatorname{dim}(L[n])$. Show that the following identity holds:

$$
1-m t=\prod_{n=1}^{\infty}\left(1-t^{n}\right)^{d_{n}}
$$

Use this identity to prove that $d_{n}=\frac{1}{n} \sum_{d \mid n} \mu(d) m^{n / d}$.
Here, $\mu: \mathbb{Z}_{\geq 1} \rightarrow\{-1,0,+1\}$ is the Möbius function defined as follows. $\mu(1)=1, \mu(n)=0$ if there exists a prime p such that p^{2} divides n, and $\mu\left(p_{1} \cdots p_{k}\right)=(-1)^{k}$ for distinct primes p_{1}, \ldots, p_{k}.

Problem 36. (20 points) Recall that for an $\mathfrak{s l}_{2}$-representation V such that e, f act locally nilpotently on V, we defined:

$$
\mathrm{S}_{V}:=\exp (e) \exp (-f) \exp (e): V \xrightarrow{\sim} V
$$

Take $V=L_{n}$, irreducible representation of dimension $n+1$ (see Problem 33 above). Thus, we have a basis $\left\{v_{0}, \ldots, v_{n}\right\}$ with $\mathfrak{s l}_{2}$-action given as in Problem 33.

Below, you will prove that $\mathrm{S}_{L_{n}}\left(v_{\ell}\right)=(-1)^{n-\ell} v_{n-\ell}$.
(a) Prove that, taking $V=\mathfrak{s l}_{2}$ via adjoint action, we have

$$
\begin{aligned}
e & \mapsto
\end{aligned} \mathrm{~S}_{\mathfrak{s l}_{2}}: \begin{aligned}
& f \\
& h
\end{aligned} \mapsto-e
$$

(b) Now, let $V=L_{n}$ as above. Show that $\mathrm{S}_{L_{n}} v_{0}=(-1)^{n} v_{n}$. Use this, and the previous part to conclude that $\mathrm{S}_{L_{n}} v_{\ell}=(-1)^{n-\ell} v_{n-\ell}$, for all $0 \leq \ell \leq n$.

Problems 37, 38 are inspired by the following beautiful paper by Etingof and Varchenko:
Dynamical Weyl group and applications, Advances in Mathematics, 167 (2002) pp. 74-127.
Problem 37. (20 points) Let $\lambda \in \mathbb{C}$ and $n \in \mathbb{Z}_{\geq 0}$. Let M_{λ} be the Verma module (see Problem 33) with basis denoted by $\left\{m_{r}^{(\lambda)}: r \in \mathbb{Z}_{\geq 0}\right\}$. Let L_{n} be the $n+1$-dimensional irreducible representation of $\mathfrak{s l}_{2}$, with basis denoted by $\left\{v_{0}, \ldots, v_{n}\right\}$. Let $0 \leq k \leq n$.

Show that, for all but finitely many $\lambda \in \mathbb{C}$, there is a unique $\mathfrak{s l}_{2}$-intertwiner:

$$
\Psi_{\lambda}^{(n, k)}: M_{\lambda} \rightarrow M_{\mu} \otimes L_{n}
$$

where $\mu=\lambda-(n-2 k)$, whose value on $m_{0}^{(\lambda)}$ is of the following form, for uniquely determined $c_{r} \in \mathbb{C}$:

$$
\Psi_{\lambda}^{(n, k)}: m_{0}^{(\lambda)} \mapsto m_{0}^{(\mu)} \otimes v_{k}+\sum_{r=1}^{k} c_{r} m_{r}^{(\mu)} \otimes v_{k-r}
$$

Deduce that we have the following isomorphism (generically in λ):

$$
\operatorname{Hom}_{\mathfrak{s l}_{2}}\left(M_{\lambda}, M_{\mu} \otimes V\right) \rightarrow V[\lambda-\mu]
$$

sending an intertwiner ψ to the coefficient of $m_{0}^{(\mu)}$ in $\psi\left(m_{0}^{(\lambda)}\right)$.
Problem 38. (20 points) Now assume that $\lambda \in \mathbb{Z}_{\geq 0}$ and $\lambda \gg 0$. Let n, k and $\Psi_{\lambda}^{(n, k)}$ be as in Problem 37 above. Show that:

$$
\Psi_{\lambda}^{(n, k)}\left(m_{\lambda+1}^{(\lambda)}\right)=m_{\mu+1}^{(\mu)} \otimes\left(a(\lambda) v_{n-k}\right)+\sum_{r \geq 1} b_{r}(\lambda) m_{\mu+1+r}^{(\mu)} \otimes v_{n-k-r}
$$

for some $a(\lambda), b_{r}(\lambda)$. Compute $a(\lambda)$ explicitly.

[^0]: ${ }^{1}$ Pavel Etingof et al Introduction to representation theory

