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1 Introduction

Calabi conjecture can be stated as follows.

Let M be a compact Kähler manifold with Kähler metric gαβdz
α ⊗ dz̄β. Let R̃αβdz

α ⊗ dz̄β be a tensor whose
associated (1, 1)-form i

2π R̃αβdz
α ∧ dz̄β represents the first Chern class of M. Then we can find a Kähler metric

g̃αβdz
α ⊗ dz̄β which is cohomologous to the original metric and whose Ricci tensor is given by R̃αβdz

α ⊗ dz̄β.

This was proposed by Eugenio Calabi in 1954 and a proof was published in 1978 by S.T. Yau. One
direct consequence of this theorem is the existence of Ricci flat Kähler manifolds, now also called as
Calabi-Yau manifolds. These are Kähler manifolds with trivial canonical line bundle. These special
surfaces find applications in String theory as well. In these notes we go through Yau’s proof in detail.

2 Proof of the Calabi conjecture

The proof can be divided into four steps:

1. Reformulating the statement in terms of a PDE called the complex Monge-Ampere equation.

2. Finding apriori estimates for all derivatives of the solution upto the second order.

3. Finding apriori estimates for the third order derivatives of the solution.

4. Using the method of continuity to solve the PDE.
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The complex Monge-Ampere equation can be written as

det
(
gij̄ +

∂2φ

∂zi∂z̄j

)
= det(gij̄) exp(F)

where the function F ∈ Ck(M) with k > 3 is given and satisfies∫
M

exp(F) = Vol(M)

It can be seen by integrating both sides of the previous equation that this condition on F is necessary.
We will be showing that this indeed is sufficient for the existence of a solution φ. Since the proof as a
whole can be rather disorienting to read all at once, let’s break down the main ideas of each section.

1. Reformulating the statement in terms of a PDE

Observe that the first Chern class of M, by definition, represents the real cohomology class

containing
i

2π
times the Ricci form. So the conjecture now implies that the given tensor differs

from the Ricci tensor of the given metric by an exact form (say ∂∂̄F). For Kaḧler manifolds there

is a simple identity for Ricci tensor given by −
∂2

∂zi∂z̄j
log(det(gij̄)). Since the Kähler metrics

mentioned in the theorem are cohomologous to each other, we can relate them by an exact form
∂∂̄φ, for some scalar-valued function φ. Note that any exact form can be globally written in this
form as a consequence of the ∂∂̄-lemma. So if we were to have the above tensor R̃ as the Ricci
tensor of a the new Kähler metric (say g ′), then it is clear that the following has to be satisfied.

∂2

∂zi∂z̄j

[
log(det

(
gij̄ +

∂2φ

∂zi∂z̄j

)
(det(gij̄))

−1 exp(−F))
]
= 0

This implies that

log(det
(
gij̄ +

∂2φ

∂zi∂z̄j

)
(det(gij̄))

−1 exp(−F)) = C

by maximum principle on a compact manifold. Now the above condition
∫
M exp(F) = Vol(M)

would imply that C = 0, and the resulting expression is the complex Monge-Ampere equation.
We can now see that if there is a function φ satisfying this equation, then the metric g ′ defined

as gij̄ +
∂2φ

∂zi∂z̄j
has all the required properties.

The difficult part of the proof is finding apriori estimates for the derivatives. So we focus on that first.

2.1 Estimates upto the second order

We will be studying the equation

det
(
gij̄ +

∂2φ

∂zi∂z̄j

)
(det(gij̄))

−1 = exp(F) (1)

where F is assumed to be C3(M). We want solutions φ of (1) such that the matrix
(
gij̄ +

∂2φ

∂zi∂z̄j

)
ij

is

positive definite Hermitian. Then this would define another Kähler metric on M. Denote

g ′
ij̄

= gij̄ +
∂2φ

∂zi∂z̄j
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We assume that φ ∈ C5(M). The aim of this section is to obtain estimates on all derivatives of φ upto
the second order. To guarantee that the solutions are unique, we impose the normalization∫

M
φ = 0 (2)

Differentiating (1) wrt zk we have

g ′ij
(
∂gij̄

∂zk
+

∂3φ

∂zi∂z̄j∂zk

)
− gij̄

∂gij̄

∂zk
=
∂F

∂zk
(3)

This differentiation is done by first taking log on both sides and then using the formula for the deriva-
tive of log of determinant of a matrix ?. Differentiating (3) again wrt z̄l

∂2F

∂zk∂z̄l
=− g ′tj̄g ′in̄

(
∂gtj̄

∂z̄l
+

∂3φ

∂zt∂z̄j∂z̄l

)(
∂gij̄

∂zk
+

∂3φ

∂zi∂z̄n∂zk

)
+ g ′ij̄

(
∂2gij̄

∂zk∂z̄l
+

∂4φ

∂zi∂z̄j∂zk∂z̄l

)

+ gtj̄gij̄
∂gtj̄

∂z̄l

∂gij̄

∂zk
− gij̄

∂2gij̄

∂zk∂z̄l

(4)

Here we used the formula
∂g ′ij̄

∂z̄l
= −g ′tj̄g ′ij̄

∂g ′
tj̄

∂z̄l
for the derivative of the inverse of a matrix.

Let ∆ ′ be the Laplacian associated with the metric g ′. Then

∆ ′(∆φ) = g ′kl̄
∂2

∂zk∂z̄l

(
gij̄

∂2φ

∂zi∂z̄j

)
= g ′kl̄gij̄

∂4φ

∂zi∂z̄j∂zk∂z̄l
+ g ′kl̄

∂2gij̄

∂zk∂z̄l
∂2φ

∂zi∂z̄j

+ g ′kl̄
∂gij̄

∂zk
∂3φ

∂zi∂z̄j∂z̄l
+ g ′kl̄

∂gij̄

∂z̄l
∂3φ

∂zi∂z̄j∂zk

(5)

Since LHS is defined independent of the co-ordinate system, we compute the RHS by picking normal

co-ordinates at a point so that gij̄ = δij,
∂gij̄

∂zk
=
∂gij̄

∂z̄l
= 0.

Multiplying (4) by gkl̄ and adding over k, l gives

∆F+ g ′tj̄g ′in̄gkl̄φtn̄l̄φij̄k = gkl̄gij̄φij̄kl̄ + g
kl̄g ′ij̄

∂2gi j̄

∂zk∂z̄l
− gij̄gkl̄

∂2gij̄

∂zk∂z̄l
(6)

Plugging this in (5) gives

∆ ′(∆φ) = ∆F+ g ′kj̄g ′in̄φkn̄l̄φij̄l + g
′kl̄ ∂

2gij̄

∂zk∂z̄l
∂2φ

∂zi∂z̄j
+ gkl̄g ′ij̄

∂2gij̄

∂zk∂z̄l
− gij̄gkl̄

∂2gij̄

∂zk∂z̄l

= ∆F+ g ′kj̄g ′in̄φkn̄l̄φij̄l +
∑
i,j

g ′kl̄Rij̄kl̄φij̄ +
∑
l

g ′ij̄Rij̄ll̄ −
∑
i,l

Riīll̄ (7)

In the last step we used the fact that gij̄ = δij and Rij̄kl̄ =
∂2gij̄

∂zk∂z̄l
.

Now choose a co-ordinate system so that in addition to gij̄ = δij, we also have φij̄ = δijφiī. This is
possible because these are symmetric matrices and hence are simultaneously diagonalizable. Then we
have

g ′ij̄ = δij
1

(1+φiī)
(8)

and
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∑
l

g ′ij̄Rij̄ll̄ −
∑
i,l

Riīll̄ +
∑
i,j

g ′kl̄Rij̄kl̄φij̄

= −
∑
i,l

Riīll̄
φiī

1+φiī
+
∑
i,l

Riīll̄
φiī

1+φll̄

= −
∑
i,l

Riīll̄
φiī(φll̄ −φiī)

(1+φiī)(1+φll̄)
(9)

Now using the symmetry of this expression wrt i and l,

=
1

2

−∑
i,l

Riīll̄
φiī(φll̄ −φiī)

(1+φiī)(1+φll̄)
−
∑
i,l

Riīll̄
φll̄(φiī −φll̄)

(1+φiī)(1+φll̄)


=
1

2

∑
i,l

Riīll̄
(φll̄ −φiī)

2

(1+φiī)(1+φll̄)

From (9) and (7) we see that

∆ ′(∆φ) > ∆F+
∑
l

g ′kj̄g ′in̄φkn̄l̄φij̄l + (inf
i 6=l

Riīll̄)

∑
i,l

1+φiī
1+φll̄

−m2

 (10)

This is true because

−
φiī(φll̄ −φiī)

(1+φiī)(1+φll̄)
=
1+φ2

iī
+φll̄ +φiī

(1+φiī)(1+φll̄)
− 1

When
∑
i,l

is taken, we get terms of the form

φ2
iī
+φ2

ll̄
+ 1+ 1+φll̄ +φiī +φiī +φll̄
(1+φiī)(1+φll̄)

Then we rearrange and factor this as needed.
On the other hand

∆ ′φ =
∑
i

φiī
1+φiī

= m−
∑
i

1

1+φiī
(11)

Let C be a positive constant. Then we have

∆ ′(exp(−Cφ)(m+∆φ)) = C2 exp(−Cφ)(g ′ij̄φiφj̄)(m+∆φ) −C exp(−Cφ)g ′ij̄φij̄(m+∆φ)

−C exp(−Cφ)g ′ij̄φj̄(∆φ)i (12)

−C exp(−Cφ)g ′ij̄φi(∆φ)j̄ (13)

+ exp(−Cφ)∆ ′(∆φ)

Now using g ′ij̄φi(∆φ)j̄ 6
√
g ′ij̄φiφj̄

√
g ′ij̄(∆φ)i(∆φ)j̄ on (12) and (13), followed by

ab 6
εa2

2
+
b2

2ε
with ε = C(m+∆φ), we get a cancellation with the first term. We are left with

∆ ′(exp(−Cφ)(m+∆φ)) >−
exp(−Cφ)g ′ij̄(∆φ)i(∆φ)j̄

m+∆φ
−C exp(−Cφ)∆ ′φ(m+∆φ)

+ exp(−Cφ)∆ ′(∆φ) (14)
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Using gij̄ = δij and φij̄ = φiīδij at a point, (14) can be simplified using (10)

−(m+∆φ)−1g ′ij̄(∆φ)i(∆φ)j̄ +∆
′(∆φ) > −(m+∆φ)−1

∑
i

(1+φiī)
−1|
∑
k

φkk̄i|
2

+∆F+
∑
i,j,k

(1+φkk̄)
−1(1+φiī)

−1φkīj̄φik̄j

+ (inf
i 6=l

Riīll̄)

∑
i,l

1+φll̄
1+φiī

−m2

 (15)

Here we used

(∆φ)i(∆φ)j̄ = (gkl̄φkl̄)i(g
kl̄φkl̄)j

= (gkl̄φkl̄i)(g
kl̄φkl̄j) =

∑
i,j,k

φkk̄iφkk̄j

since
∂gkl̄

∂zi
= 0.

But

(m+∆φ)−1
∑
i

(1+φiī)
−1|
∑
k

φkk̄i|
2 = (m+∆φ)−1

∑
i

(1+φiī)
−1

∣∣∣∣∣∑
k

φkk̄i
(1+φkk̄)

1/2
(1+φkk̄)

1/2

∣∣∣∣∣
6 (m+∆φ)−1

∑
i,k

(1+φiī)
−1(1+φkk̄)

−1φkk̄iφk̄kī

(∑
k

(1+φkk̄)

)

=
∑
i,k

(1+φiī)
−1(1+φkk̄)

−1φkk̄iφk̄kī

=
∑
i,k

(1+φiī)
−1(1+φkk̄)

−1φik̄kφkīk̄ (16)

The second line is using the Cauchy-Schwarz inequality and in the third line we just wrote
∑
k

(1 +

φkk̄) = m+∆φ. The last two lines follow from

φkk̄i = φk̄ki = φk̄ik = φik̄k

and

φk̄kī = φkk̄ī = φkīk̄

As a side note, the third covariant derivatives of a function commute with the second one only if they
are of the same type. When these derivatives are of the opposite type an extra curvature term will
appear. This does not happen with first and second covariant derivatives though. Continuing the
computation above

6
∑
i,j,k

(1+φkk̄)
−1(1+φiī)

−1φkīj̄φik̄j (17)

since we are just adding extra positive stuff with (1+φiī)
−1 = g ′iī > 0 and φkīj̄ = φik̄j.

So plugging this into (15) gives (after cancellation)

−(m+∆φ)−1g ′ij̄(∆φ)i(∆φ)j̄ +∆
′(∆φ) > ∆F+

(
inf
i 6=l

Riīll̄

)∑
i,l

1+φll̄
1+φiī

−m2

 (18)
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Inserting this into (14) we get

∆ ′(exp(−Cφ)(m+∆φ)) > exp(−Cφ)

∆F+(inf
i 6=l

Riīll̄

)∑
i,l

1+φll̄
1+φiī

−m2


−C exp(−Cφ)(∆ ′φ)(m+∆φ) (19)

Inserting (11) into this gives

∆ ′(exp(−Cφ)(m+∆φ)) > exp(−Cφ)
(
∆F−m2 inf

i 6=l
Riīll̄

)
+ exp(−Cφ) inf

i 6=l
Riīll̄

∑
i,l

1+φiī
1+φll̄


−C exp(−Cφ)m(m+∆φ) +C exp(−Cφ)(m+∆φ)

(∑
i

1

1+φiī

)

= exp(−Cφ)
(
∆F−m2 inf

i 6=l
Riīll̄

)
−C exp(−Cφ)m(m+∆φ)

+ (C+ inf
i 6=l

Riīll̄) exp(−Cφ)(m+∆φ)

(∑
i

1

1+φiī

)
(20)

where we used
∑
i

1+φiī = m+∆φ.

Notice that the expansion of
(∑
i

1

1+φiī

)m−1

would contain

∑
i

(1+φiī)∏
i

(1+φiī)
and everything else is posi-

tive. This gives the following inequality

∑
i

1

1+φiī
>


∑
i

(1+φiī)∏
i

(1+φiī)


1

m−1

Therefore

∑
i

1

1+φiī
> (m+∆φ)

1
m−1 exp

(
−F

m− 1

)
(21)

where we have used

det(g ′
ij̄
) = exp(F)det(gij̄)∏

i

(1+φiī) = exp(F)

(∏
i

(1+φiī)

)− 1
m−1

= exp
(
−

F

m− 1

)
Choose C so that

C+ inf
i 6=l

Riīll̄ > 1

Then it follows from the previous computation that

∆ ′(exp(−Cφ)(m+∆φ)) > exp(−Cφ)(∆F−m2 inf
i 6=l

Riīll̄) + (C+ inf
i 6=l

Riīll̄) exp(−Cφ)

× exp
(
−

F

m− 1

)
(m+∆φ)1+

1
m−1 −C exp(−Cφ)m(m+∆φ) (22)
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Now we use this to estimate exp(−Cφ)(m+∆φ). In fact it must achieve its maximum at some point p
so that the RHS of (22) is non-positive (since ∆ ′(. . .) has to be non-positive. This does no depend on
the metric used to compute the Laplacian). At this point

0 > ∆F−m2 inf
i 6=l

Riīll̄ −Cm(m+∆φ) + (C+ inf
i 6=l

Riīll̄) exp
(
−

F

m− 1

)
(m+∆φ)1+

1
m−1

This implies that (m+∆φ)(p) has an upper bound C1 depending only on sup
M

{−∆F}, sup
M

| inf
i 6=l

Riīll̄|, Cm

and sup
M

F. This is because y1+
1

m−1 6 ay+ b would imply that either y1+
1

m−1 6 2ay or y1+
1

m−1 6 2b.

Since exp(−Cφ)(m+∆φ) achieves its maximum at p, we have the following inequality

0 < m+∆φ 6 C1 exp(C(φ− inf
M
φ)) (23)

The first inequality is true because (1+φiī) > 0 for all i.
We use this to estimate sup

M

|φ|. Since ∆φ +m =
∑
i

1 + φiī = gij̄g ′
ij̄
> 0, we can estimate sup

M

φ as

follows.
Let G(p,q) be the Green’s function of the operator ∆ on M. Let K be a constant such that

G(p,q) +K > 0

Then

φ(p) = −

∫
M
G(p,q)∆φ(q)dq

= −

∫
M
(G(p,q) +K)∆φ(q)dq (24)

since
∫
M ∆φ = 0.

Therefore

sup
M

(φ) 6 m sup
p∈M

∫
M
(G(p,q) +K)dq

| sup
M

φ| 6 m sup
p∈M

∫
M

|G(p,q) +K|dq (25)

since ∆φ > −m. So we get

∫
M

|φ| 6
∫
M

| sup
M

(φ) −φ|+

∫
M

| sup
M

(φ)|

6 (sup
M

φ)Vol(M) + | sup
M

(φ)|Vol(M) −

∫
M
φ

6 2mVol(M) sup
p∈M

∫
M
(G(p,q) +K)dq (26)

Note that the right hand sides of the above estimate does not depend on φ, since the Green’s function
is prescribed for the manifold independent of φ. So far we have estimated sup

M

(φ) and ||φ||L1(M). To

estimate inf
M

(φ) two different proofs are offered. The first one works for the case when m = 2 and the

second one works in general. We show both the proofs here.
?
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For m = 2, we renormalize (by adding a constant) φ so that sup
M

(φ) 6 −1. This is possible because of

(25). Let p be any positive number greater than or equal to 1. Then

∆ ′(−φ)p = p(p− 1)
∑
i

|φi|
2

1+φiī
− p(−φ)p−1∆ ′φ

= p(p− 1)(−φ)p−2
∑
i

|φi|
2

1+φiī
− p(−φ)p−1

(
m−

∑
i

1

1+φiī

)
(27)

When m = 2 we find that

∆ ′(−φ)p = p(p− 1)(−φ)p−2
∑
i

|φi|
2

1+φiī
− 2p(−φ)p−1 + p(−φ)p−1(1+φ11̄)

−1(1+φ22̄)
−1(2+∆φ)

= p(p− 1)(−φ)p−2
∑
i

|φi|
2

1+φiī
− 2p(−φ)p−1 + 2p(−φ)p−1 + 2p(φ)p−1 exp(−F)

+ exp(−F)(−∆(−φ)p + p(p− 1)(−φ)p−2|∇φ|2) (28)

since

p(−φ)p−1∆φ = −∆(−φ)p + p(p− 1)(−φ)p−2|∇φ|2

(1+φ11̄)(1+φ22̄) = det(g ′) = exp(F)

Multiplying (28) by exp(F) and integrating wrt the volume form of the original metric g we have

2p

∫
M
(−φ)p−1(1− exp(F)) = p(p− 1)

∫
M
(−φ)p−2

(
|φi|

2

1+φiī
exp(F)

)
−

∫
M
∆(−φ)p + p(p− 1)

∫
M
(−φ)p−2|∇φ|2

= p(p− 1)

∫
M
(−φ)p−2

(
|φi|

2

1+φiī
exp(F)

)
exp(F) +

4(p− 1)

p

∫
M

|∇(−φ)
p
2 |2

Since φ is negative this implies that for p > 2

∫
M

|∇(−φ)
p
2 |2 6

p2

2(p− 1)

∣∣∣∣∫
M
(1− exp(F))(−φ)p−1

∣∣∣∣
6 pC2

∫
M

|φ|p−1 (29)

where C2 depends only on sup
M

(F).

Now we use the Sobolev inequality. It states that for any g ∈ W1,r with r < dim(M) = n, we have the
following inequality

||g||Lq(M) 6 C(||g||Lr(M) + ||∇g||Lr(M))

for some constant C that depend only on M. Here q can be any number in [p, nrn−r ]. Observing that
the real dimension of M is 2m = 4 and then applying Sobolev inequality to the function g = |φ|

p
2 with

r = 2 and q = 4, we can find a constant C3 depending only on M such that

(∫
M

|φ|2p
) 1
2

6 C3

∫
M

|φ|p +C3

∫
M

|∇(−φ)
p
2 |2

6 C3

∫
M

|φ|p + pC2C3

∫
M

|φ|p−1 (30)

The last line follows from
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∫
M

|∇(−φ)
p
2 |2 = −

∫
M
∆(−φ)

p
2 (−φ)

p
2 (Green’s identity)

and
∆(−φ)

p
2 .(−φ)

p
2 =

p

2

(p
2
− 1
)
(−φ)p−2|∇φ|2 − p

2
(−φ)p−1∆φ

Since φ 6 −1, we derive another constant C4 depending only on M such that

∫
M

|φ|2p 6 C4p
2

(∫
M

|φ|p
)2

(31)

In order to use (31), we need another estimate of
∫
M |φ|2. But this follows from the estimate of

∫
M |φ|

combined with the Poincare inequality and (29) as follows

∫
M

|φ|2 =

∫
M
(−φ)2

6 C
∫
M

|∇(−φ)|2

6 2CC2

∫
M

|φ| (32)

We now claim that we can find a constant C5 depending only on M such that

∫
M

|φ|p 6 Cp5

(p
2

)p
2 for all integers p > 1 (33)

In fact, let p0 be the first integer such that for p > p0

C4(1+ Vol(M))

(
p+ 2

4

)p+1
2

6

(
p+ 1

2

)p−3
2

(34)

This is possible because lim
p→∞

(
p+1
2

)p−3
2

(
p+2
4

)p+1
2

=∞.

Notice there are only finitely many values that p cannot assume. So we can choose a constant C5 such
that (33) is valid for all 1 6 p 6 2p0. This can be done because ||φ||L1(M) and ||φ||L2(M) are estimated
above and ||φ||Lp(M) can be bounded by using (31) repeatedly with Hölder inequality.
We prove (33) for all integers p > 1 by induction. There are two cases. If p+ 1 is divisible by two, then
from (31) we have

∫
M

|φ|p+1 6 C4

(
p+ 1

2

)2(∫
M

|φ|
p+1
2

)2
6 C4

(
p+ 1

2

)2
C
p+1
5

(
p+ 1

4

)p+1
2

by induction hypothesis

Now apply (34) to this to get

∫
M

|φ|p+1 6 Cp+15

(
p+ 1

2

)p+1
2

which is (33) for p+ 1.
On the other hand, if p+ 1 is not divisible by two, then by (31)

9



∫
M

|φ|p+1 6 C4

(
p+ 1

2

)2(∫
M

|φ|
p+1
2

)2
since (31) is true for non-integers as well

6 C4

(
p+ 1

2

)2(∫
M

|φ|
p+2
2

) 2(p+1)
p+2

(Vol(M))
2
p+2

6 C4

(
p+ 1

2

)2
C
p+1
5

(
p+ 2

4

)p+1
2

(Vol(M))
2
p+2

6 Cp+15

(
p+ 2

4

)p+1
2

The second inequality is using Hölder inequality with conjugate exponents
p+ 2

p+ 1
and p+2. The second

to last line follows by induction hypothesis since (Vol(M))
2
p+2 6 Vol(M) if Vol(M) > 1. So we get (33)

for all p.
Using this we have the following

∫
M

exp(kφ2) 6
∞∑
p=0

kp

p!

∫
M

|φ|2p

6
∞∑
p=0

kp

p!
(C25)

ppp (35)

By Stirling’s formula

p! >
√
2πpp+

1
2 e−p

for all positive integers p. This implies that

∫
M

exp(kφ2) 6
∞∑
p=1

(kC25e)
pp−

1
2 (36)

When

k < C−2
5 e−1 (37)

the RHS of (36) is finite and we have thus obtained an estimate of
∫
M exp(kφ2) with any k satisfying

(37).
We can now estimate sup

M

|φ|. Rewrite

∆φ = f (38)

where

−m 6 f 6 C1 exp(sup
M

(φ)) exp(−C inf
M

(φ)) (39)

We will now use Schauder estimates which essentially gives gradient estimates for the solution of
(38) in terms of C(M)-norm of f and ||φ||L1(M). So there is a constant C6 depending only on M and
C1 exp(C sup

M

(φ)) such that

sup
M

|∇φ| 6 C6
(

exp(−C inf
M
φ) +

∫
M

|φ|

)
(40)

10



Since we have already proved estimates for sup
M

(φ) and
∫
M |φ|, we have a constant C7 depending only

on M and C such that

sup
M

|∇φ| 6 C7(exp(−C inf
M

(φ)) + 1) (41)

Let q be a point in M where φ(q) = inf
M

(φ). Then in the geodesic ball, with center q and radius

−
1

2
inf
M

(φ)C−1
7 (exp(−C inf

M
(φ)) + 1)−1, φ is not greater that

1

2
inf
M

(φ), because of the mean value theorem

applied with (41).
Since we may assume that − inf

M
(φ) to be large, we can take the radius of the geodesic ball to be smaller

than the injectivity radius of M. If − inf
M

(φ) was too small for this, then we have an estimate in terms

of the injectivity radius anyway. Therefore the integral of exp(kφ2) in this ball is not less than

C8 exp(
1

4
k inf
M

(φ)2)

(
−
1

2
inf
M

(φ)

)2m
C−2m
7 (inf

M
(φ) + 1)−2m

where C8 is a positive constant depending only onM. Here we have used exp(kφ2) 6 exp
(
k
4 (inf
M

(φ))2
)

and comparing to the volume of the corresponding ball in TqM. Since we have estimated
∫
M exp(kφ2),

the last quantity is estimated. This, of course gives an estimate for | inf
M
φ|.

?

Now we give an estimate of | inf
M

(φ)| without assuming m = 2. Let N be any positive number. Then

(20) shows that

∆ ′(exp(−Nφ)(m+∆φ)) > exp(−Nφ)(∆F−m2 inf
i 6=l

)Riīll̄ −N exp(−Nφ)m(m+∆φ)

+ (N+ inf
i 6=l

Riīll̄) exp(−Nφ)(m+∆φ)

(∑
i

1

1+φiī

)
(42)

Choose N so that

N+ inf
i 6=l

Riīll̄ >
1

2
N (43)

Then by (21)

(N+ inf
i 6=l

Riīll̄)(m+∆φ)

(
1

1+φiī

)
>
N

2
exp

(
−

F

m− 1

)
(m+∆φ)

m
m−1 (44)

There is a constant C9 depending only on sup
M

(F) and m such that

1

2
N exp

(
−

F

m− 1

)
(m+∆φ)

m
m−1 > 2Nm(m+∆φ) −NC9 (45)

since the function (any− by
n
n−1 ) attains a minimum that depends only on n, a and b. Inserting (43),

(44) and (45) into (42) we find

∆ ′(exp(−Nφ)(m+∆φ)) > exp(−Nφ)(∆F−m2 inf
i 6=l

Riīll̄ −NC9) +N exp(−Nφ)m(m+∆φ) (46)

Therefore
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exp(F)∆ ′(exp(−Nφ)(m+∆φ)) > exp(−Nφ) exp(F)(∆F−m2 inf
i 6=l

Riīll̄ −NC9) +N exp(−Nφ)

× exp(inf
M
F)m(m+∆φ)

= exp(−Nφ)
[

exp(F)(∆F−m2 inf
i 6=l

Riīll̄ −NC9) +m
2N exp(inf

M
F)

]
−mN exp(inf

M
F) exp(−Nφ)∆φ

= exp(−Nφ)
[

exp(F)(∆F−m2 inf
i 6=l

Riīll̄ −NC9) +m
2N exp(inf

M
F)

]
+m exp(inf

M
F)(−∆ exp(−Nφ) +N2 exp(−Nφ)|∇φ|2)

> −C10 exp(−Nφ) +m exp(inf
M
F)(−∆ exp(−Nφ)

+N2 exp(−Nφ)|∇φ|2)

(47)

where C10 depends only on N, F and M. In the second to last line we used

∆ exp(−Nφ) = exp(−Nφ)N2|∇φ|2 +N exp(−Nφ)∆φ

Integrating we obtain∫
M

|∇ exp
(
−
1

2
Nφ

)
|2 =

1

4
N2
∫
M

exp(−Nφ)|∇φ|2

6
1

4
C10m

−1 exp(− inf
M
F)

∫
M

exp(−Nφ) (48)

since
∫
M ∆ ′ =

∫
M ∆ = 0 and exp(F− inf

M
F) > 1.

We claim that for each N satisfying (43), the inequalities (48) and (26) furnish an estimate of∫
M

exp(−Nφ)

that depends only on N, F and M. We are going to prove this statement by contradiction.
Suppose that there exists a sequence {φi} satisfying (26) and (48) such that lim

i→∞
∫
M exp(−Nφi) =∞.

Then we define

exp(−Nφ̃i) = exp(−Nφi)
[∫
M

exp(−Nφi)
]−1

(49)

It follows from (48) that the sequence ∫
M

∣∣∣∣∇ exp
(
−
1

2
Nφ̃i

)∣∣∣∣2
is uniformly bounded from above by a constant depending only on N, F andM. Since

∫
M exp(−Nφ̃i) =

1 for all i, this last fact implies that a subsequence of {exp
(
−12Nφ̃

)
} converges in L2(M) to some function

f ∈ L2(M). This is a consequence of W1,2 ⊂⊂ L2(M). We assume that this subsequence is denoted
using the same indices.
On the other hand, we know that, for any λ > 0

Vol

{
x

∣∣∣∣λ 6 exp
(
−
1

2
Nφ̃i

)}
= Vol

{
x

∣∣∣∣ 2N log(λ) +
1

N
log

(∫
M

exp(−Nφi)
)

6 −φi

}
(50)

Since lim
i→∞

∫
M exp

(
−12Nφ̃i

)
=∞ we conclude that for i large enough

Vol

{
x

∣∣∣∣λ 6 exp
(
−
1

2
Nφ̃i

)}
6 Vol

{
x

∣∣∣∣0 < 2

N
log(λ) +

1

N
log

(∫
M

exp(−Nφi)
)

6 |φi|

}
(51)
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By (26)
{∫
M |φi|

}
is uniformly bounded and the inequality (51) implies that

lim
i→∞Vol

{
x

∣∣∣∣λ 6 exp
(
−
1

2
Nφ̃i

)}
= 0 (52)

for all λ > 0. Clearly

Vol
{
x
∣∣λ 6 f

}
6 Vol

{
x

∣∣∣∣12 6

∣∣∣∣f− exp
(
−
1

2
Nφ̃i

)∣∣∣∣}+ Vol

{
x
∣∣1
2
6 exp

(
−
1

2
Nφ̃i

)}
6
4

λ2

∫
M

∣∣∣∣f− exp
(
−
1

2
Nφ̃i

)∣∣∣∣2 + Vol{x∣∣∣∣12 6 exp
(
−
1

2
Nφ̃i

)}
(53)

First inequality is true because if λ 6 f, then 1
2λ can lie either between f and exp

(
−12Nφ̃i

)
or be less

than exp
(
−12Nφ̃i

)
. The last line is just the Chebyshev’s inequality.

Since exp
(
−12Nφ̃i

)
converges to f in L2(M), (52) and (53) shows that

Vol
{
x
∣∣λ 6 f

}
= 0 (54)

Since f is the L2-limit of exp
(
−12Nφ̃i

)
, this implies that f = 0 almost everywhere. This is a contradiction

because
∫
M f2 = 1.

So we get the conclusion that whenever N satisfies (43),
∫
M exp(−Nφ) has an estimate above that

depends only on N, F and M.
We can now repeat the previous argument to find an estimate for | inf

M
(φ)|. (41) is valid for any dimen-

sion. As before, we find a geodesic ball with radius −
1

2
inf
M

(φ)C−1
7 (exp(−C inf

M
(φ)) + 1)−1 (which is not

greater than the injectivity radius), such that φ is not greater than 1
2 inf
M

(φ) in this ball. Then we choose

N so large that (43) is satisfied. Now the integral of exp(−Nφ) in the above geodesic ball is not less
than

C12 exp
(
−
1

2
N inf
M

(φ)

)(
−
1

2
inf
M

(φ)

)2m
(C7)

−1(exp(−C inf
M

(φ)) + 1)−2m

since φ 6 −1 and φ 6 1
2 inf
M

(φ) in this ball. Here C12 is a positive constant depending only on M. Now

if we make N larger than 4mC, this gives an estimate for − inf
M

(φ). Since we had already found an

estimate for sup
M

(φ), we combine this to get an estimate for sup
M

|φ|. (41) and (23) then gives estimates

for sup
M

|∇φ| and sup
M

(m + ∆φ). on the other hand, since (δij + φij̄) is a positive-definite Hermitian

matrix, we can find upper estimates for 1+ φiī for each i. The equation
m∏
i=1

(1+ φiī) = exp(F) then

gives a positive lower estimate for 1+φiī for each i. In conclusion, we have proved the following:

Proposition 2.1. Let M be a compact Kähler manifold with the metric gij̄dzi ⊗ dz̄j. Let φ be a real-valued

function in C4(M) such that
∫
M φ = 0 and

(
gij̄ +

∂2φ

∂zi∂z̄j

)
(det(gij̄))−1dzi ⊗ dz̄j defines another metric on

M. Suppose that φ satisfies (
gij̄ +

∂2φ

∂zi∂z̄j

)
(det(gij̄))

−1 = exp(F)

Then there are positive constants C1, C2, C3 and C4 depending only on inf
M
F, sup

M

F, inf
M
∆F and M such that

sup
M

|φ| 6 C1

sup
M

|∇φ| 6 C2

0 < C3 6 1+φiī 6 C4

for all i.
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2.2 Third order estimates

In this section we find estimates for third order derivatives, φij̄k of the solution φ. We assume that
F ∈ C3(M). Consider the following function

S = g ′ir̄g ′sj̄g ′kt̄φij̄kφr̄st̄ (55)

We are going to compute the Laplacian of S. For convenience, we shall introduce the following
convention. We say that A ' B if |A− B| 6 C1

√
S+ C2 where C1 and C2 are constants that can be

estimated. We also say that A ∼= B if |A−B| 6 C3S+C4
√
S+C5 where C3, C4 and C5 are constants that

can be estimated.
As before, we diagonalize the metric and the Hessian (φij̄) at a point under consideration. Then by
computation ? we have

∆ ′S ∼=
∑

(1+φiī)
−1(1+φjj̄)

−1(1+φkk̄)
−1(1+φαᾱ)

−1

×

∣∣∣∣∣φījk̄α −
∑
p

φīpk̄φp̄jα(1+φpp̄)
−1

∣∣∣∣∣
2

+

∣∣∣∣∣φījkα −
∑
p

(φp̄iαφpj̄k +φp̄ikφpj̄α)(1+φpp̄)
−1

∣∣∣∣∣
2
 (56)

where the first summation is over all the indices.
On the other hand by (10)

∆ ′(∆φ) >
∑

(1+φkk̄)
−1(1+φiī)

−1|φkīj̄|
2 −C6 (57)

where C6 is a constant that can be estimated. Therefore, by letting C7 be a large positive constant we
find

∆ ′(S+C7∆φ) > C8S−C9 (58)

where C7, C8 and C9 are positive constants that could be estimated. This is true because the first term
in the RHS of (57) is greater than S and

√
S can be estimated by S itself (S+ b2 > 2b

√
S for any positive

constant b).
Observe that at the point where S+C7∆φ achieves its maximum, (58) shows that C8S 6 C9 and hence

C8(S+C7∆φ) 6 C9 +C8C7∆φ (59)

Since we already have estimates for ∆φ, this gives an estimate for the quantity sup
M

(S+ C7∆φ) and

hence of sup
M

(S). This in turn gives estimates of φij̄k for all i, j and k. So we have proved the following

proposition.

Proposition 2.2. Let M be a compact Kähler manifold with metric gij̄dzi ⊗ dz̄j. Let φ be a real-valued funtion

in C5(M) such that
∫
M φ = 0 and

(
gij̄ +

∂2φ

∂zi∂z̄j

)
dzi ⊗ dz̄j defines another metric on M. Suppose that

(
gij̄ +

∂2φ

∂zi∂z̄j

)
(det(gij̄))

−1 = exp(F)

Then there are estimates for the derivatives φij̄k in terms of gij̄dzi ⊗ dz̄j, sup
M

|F|, sup
M

|∇M|, sup
M

sup
i

|Fiī| and

sup
M

sup
i,j,k

|Fij̄k|.

Note that the last two factors in the proposition comes from the computation of ∆ ′S.
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2.3 Solution of the equation

With the estimates so far we can now solve the equation(
gij̄ +

∂2φ

∂zi∂z̄j

)
(det(gij̄))

−1 = exp(F)

where F ∈ C3(M).
If Ω is the Kähler form of M, then the above equation is equivalent to

(Ω+ ∂∂̄φ)m = (exp(F))Ωm (60)

Hence integrating (60) we immediately see that

∫
M

exp(F) = Vol(M) (61)

Conversely, we shall now prove that if F ∈ Ck(M) with k > 3 satisfies (61), then we can find a solution
φ of (60) with φ ∈ Ck+1,α(M) for any 0 6 α < 1.
For this we use the continuity method. Let

S =

{
t ∈ [0, 1]

∣∣∣∣det
(
gij̄ +

∂2φ

∂zi∂z̄j

)
(det(gij̄))

−1 = Vol(M)

[∫
M

exp(tF)
]−1

exp(tF)

has a solution in Ck+1,α(M) and (1+φiī) > 0 ∀i
}

(62)

Note that 0 ∈ S, since φ ≡ 0 is a solution in this case. Hence we need to only show that S is both closed
and open in [0, 1]. This will imply that 1 ∈ S and that our original equation has a solution in Ck+1,α.
To see that S is open, we use the inverse function theorem. Let

A =

{
φ ∈ Ck+1,α(M)

∣∣∣∣(1+φiī) > 0 ∀i and
∫
M
φ = 0

}
(63)

B =

{
f ∈ Ck−1,α(M)

∣∣∣∣ ∫
M
f = Vol(M)

}
(64)

Then A is open in the Banach space Ck+1,α(M) and B is an affine subspace of the Banach space
Ck−1,α(M). We have a map G : A→ B given by

G(φ) = det
(
gij̄ +

∂2φ

∂zi∂z̄j

)
(det(gij̄))

−1 (65)

Its clear that G maps to B since all the metrics in the same cohomology class has the same volume.The
differential of G at a point φ0 is given by

det
(
gij̄ +

∂2φ0
∂zi∂z̄j

)
(det(gij̄))

−1∆φ0 (66)

This can be seen as follows. Let φt = φ0 + tη. Then

d

dt
G(φt)

∣∣∣∣
t=0

=
d

dt
det

(
gij̄ +

∂2φ

∂zi∂z̄j

)
(det(gij̄))

−1

= det
(
gij̄ +

∂2φ0
∂zi∂z̄j

)
(det(gij̄))

−1 ∂
2φ̇t

∂zi∂z̄j
g ′φ0

ij̄

∣∣∣∣
t=0

= ∆φ0η
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where the subscript φ0 is used to denote quantities defined using the metric det
(
gij̄ +

∂2φ0
∂zi∂z̄j

)
.

Note that B is the affine space corresponding to the vector space
{
f ∈ Ck−1,α(M)

∣∣∣∣ ∫M f = 0

}
. So the

tangent space of B is same as this vector space.
It is well-known (using Fredholm alternative for instance) that the condition for ∆φ0φ = g to have a
weak solution on M is that

∫
M gdVφ0 = 0. Hence the condition for

det
(
gij̄ +

∂2φ0
∂zi∂z̄j

)
(det(gij̄))

−1∆φ0 = f

to have a weak solution is that
∫
M f = 0, since ∆φ0φ = (det(gφ0))

−1fdet(gij̄) is solvable if and only if
0 =
∫
M(det(gφ0))

−1fdet(gij̄)dVφ0 =
∫
M fdVg.

Schauder theory makes sure that φ ∈ Ck+1,α(M) when f ∈ Ck−1,α(M). The solution is clearly unique
if we require that

∫
M φ = 0 (by maximum principle two solutions will always differ by a constant).

Hence the differential of G at φ0 is bijective and hence invertible. So G maps an open neighborhood
of φ0 to an open neighborhood of G(φ0) in B. All solutions φ described in the set S that also satisfy∫
M φ = 0 are contained in the set A, since we can write Vol(M)

[∫
M exp(tF)

]−1 exp(tF) as ft ∈ B. Let
t0 ∈ S and φ0 be the corresponding solution with f0 = Vol(M)

[∫
M exp(t0F)

]−1 exp(t0F). All functions
ft with |t − t0| < ε denote an open set in B around f0 and hence is the image of an open set in A

around φ0 under G. This shows that |t− t0| < ε is contained in S and S is open.
It remains to prove that the set S is closed. For this, we will set up a well-known bootstrapping
technique in PDE, whereby we successively improve the regularity of the solution. If {tq} is a sequence
in S, then we have a sequence φq ∈ Ck+1,α(M) such that

det
(
gij̄ +

∂2φq

∂zi∂z̄j

)
(det(gij̄))

−1 = Vol(M)

[∫
M

exp(tqF)
]−1

exp(tqqF)

Normalizing we can assume that
∫
M φq = 0. Differentiating the above equation we have

det
(
gij̄ +

∂2φq

∂zi∂z̄j

)
g ′q
ij̄ ∂2

∂zi∂z̄j

(
∂φq

∂zp

)
= Vol(M)

[∫
M

exp(tqF)
]−1

∂

∂zp

[
exp(tqF)(det(gij̄))

]
(67)

where (g ′ij̄q ) is the inverse matrix of
(
gij̄ +

∂2φq

∂zi∂z̄j

)
for each q.

Proposition 2.1 shows that (φq)ij̄’s are uniformly bounded and hence the operator on the LHS of (67)
is uniformly elliptic. Proposition 2.2 shows that the coefficients are Hölder continuous with exponent

0 6 α 6 1. Then the Schauder estimate gives an estimate on the C2,α-norm of
∂φq

∂zp
. Similarly we can

estimate the C2,α-norm of
∂φq

∂z̄p
. From this information, we deduce that the coefficients of the LHS of

(67) are C1,α. The Schauder estimate again provides better differentiability for
∂φq

∂zp
and

∂φq

∂z̄p
. Iterating

this, one finds Ck+1,α-estimates of φq. Therefore, the sequence is uniformly bounded with a uniform
bound on its derivatives. So it (a subsequence to be precise) converges in Ck+1,α-norm to a function
φ by the Arzela-Ascoli theorem. Now taking limit as q→∞ on the equation gives

det
(
gij̄ +

∂2φ

∂zi∂z̄j

)
(det(gij̄))

−1 = Vol(M)

[∫
M

exp(t0F)
]−1

exp(t0F) (68)

where t0 = lim
q→∞ tq. This proves that S is closed. So we have proved the following theorem.

Theorem 2.3. Assume that M is a compact Kähler manifold with metric gij̄dzi ⊗ dz̄j. Let F ∈ Ck(M) with
k > 3 and

∫
M exp(F) = Vol(M). Then there is a function φ ∈ Ck+1,α(M) for any 0 6 α < 1 such that(

gij̄ +
∂2φ

∂zi∂z̄j

)
dzi ⊗ dz̄j defines a Kähler metric and
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det

(
gij̄ +

∂2φ

∂zi∂z̄j

)
= exp(F)det(gij̄)

As a consequence of Theorem 2.3, we can prove the Calabi conjecture. We restate it here

Let M be a compact Kähler manifold with Kähler metric gαβdz
α ⊗ dz̄β. Let R̃αβdz

α ⊗ dz̄β be a tensor whose
associated (1, 1)-form i

2π R̃αβdz
α ∧ dz̄β represents the first Chern class of M. Then we can find a Kähler metric

g̃αβdz
α ⊗ dz̄β which is cohomologous to the original metric and whose Ricci tensor is given by R̃αβdz

α ⊗ dz̄β.

To see this, notice the following well-known formula for Ricci curvature

Rαβ̄ = −
∂2

∂zα∂z̄β
log(det(gij̄)) (69)

Since the given tensor
i

2π
R̃αβ̄dz

α ∧ dz̄β represents the first Chern class of M, we can conclude that

R̃αβ̄ = Rαβ̄ −
∂2

∂zα∂z̄β
f (70)

for some smooth real-valued function f. This is because the first Chern class of M is the real cohomol-
ogy class represented by the Ricci form of M. Now using Theorem 2.3, we can find a smooth function

φ so that
(
gαβ̄ +

∂2φ

∂zα∂z̄β

)
dzα ⊗ dz̄β defines a Kähler metric with

det

(
gij̄ +

∂2φ

∂zi∂z̄j

)
(det(gij̄))

−1 = C exp(F)

where
∫
M C exp(f) = Vol(M).

Now the Ricci tensor of this metric is given by

R ′
αβ̄

= −
∂2

∂zα∂z̄β
log(C exp(f)det(gαβ̄))

= Rαβ̄ −
∂2f

∂zα∂z̄β

= R̃αβ̄

This proves the theorem.
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