
Calabi-Futaki Invariants

Mathew George

Calabi-Futaki invariants have been found as an obstruction to the existence of
Kähler-Einstein metrics on a given Kähler manifold. In these notes, we define
these invariants and show some of their properties. Most of the material here
is originally due to Gang Tian and Akito Futaki.

1 Definition

Definition 1.1. Given a compact Kähler manifold M, we define its Kähler cone, de-
noted by Ka(M), to be the set of all cohomology classes [ω] ∈ H2(M, R)∩H1,1(M, C)

that can be represented by a Kähler metric.

Definition 1.2. We say that a vector field X is holomorphic if it has a local expression
of the form

X = Xi
∂

∂zi

such that Xi are holomorphic functions i.e.
∂Xi

∂z̄j
= 0 for all i, j.

Let η(M) be the set of all holomorphic vector fields on M. Then we define the
Calabi-Futaki invariant of M to be the function

fM : Ka(M)× η(M)→ C

given by

fM([ω],X) =
∫
M
X(hg)ω

n
g (1)

where we picked some metric g from [ω] and defined hg as follows. Let s(g)

be the scalar curvature of M. Then its easy to see that s(g) −
1

V

∫
M s(g)ωng has
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integral 0. (Here V =
∫
Mωng is the volume of M). Then it’s a well-known fact

that we can construct a function hg such that

s(g) −
1

V

∫
M
s(g)ωng = ∆ghg

This defines fM. But we need to make sure that fM defined this way does not
depend on the choice of the metric g in [ω]. We will show that the RHS in
(1) does not depend on the metric used. This fact was originally proved by
Calabi and Futaki, but we give another proof that is not as simple, but is more
general.
We show that ∂̄(iXωg) = 0.

∂̄(iXωg) = ∂̄

(
i

2
gij̄X

idz̄j
)

=
i

2

(
∂gij̄

∂z̄k
Xi + gij̄

∂Xi

∂z̄k

)
dzz̄k ∧ dz̄j

= 0

where we used the fact that X is holomorphic and ωg is closed. This is be-

cause dωg = 0 in local co-ordinates looks like
∂gij̄

∂z̄k
=
∂gik̄
∂z̄j

and then the
anti-symmetry of the wedge product takes care of the rest.
Now it follows from the ∂̄ version of the Hodge theorem [see these notes] that
we can find a smooth function θX and a harmonic1 1-form α such that this
∂̄-exact form can be decomposed as

iXωg = α− ∂̄θX (2)

In local co-ordinates this can be written as
i

2
Xigij̄dz̄

j = αj̄dz̄
j −

∂θX
∂z̄j

dz̄j and
therefore

Xi = gij̄αj̄ − g
ij̄ ∂θX
∂z̄j

(3)

We also have ∂̄α = 0 and ∂̄∗α = 0. This follows from

0 =

∫
M
〈∆α,α〉 =

∫
M
〈∂̄∂̄∗α+ ∂̄∗∂̄α,α〉 =

∫
M

||∂̄α||2 + ||∂̄∗α||2

So we get that

1∆∂ = ∆∂̄ = 1
2∆ for Kähler manifolds.
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fM([ω],X) =
∫
M
X(hg)ω

n
g

=

∫
M
Xi
∂hg

∂zi
ωng

=

∫
M

(
gij̄αj̄

∂hg

∂zi
− gij̄

∂θX
∂z̄j

∂hg

∂zi

)
ωng

=

∫
M
hg∆gθXω

n
g (4)

where we used (3) in the third line. In the last line we used the following two
equations

∫
M
gij̄αj̄

∂hg

∂zi
=

∫
M
g(∂hg,α)

= 〈∂hg, ᾱ〉 = 〈hg,∂∗ᾱ〉
= 0

and

∫
M
gij̄
∂θX
∂z̄j

∂hg

∂zi
=

∫
M
g(∂hg, ∂̄θX)

=

∫
M
∂g(hg, ∂̄θX) − g(hg,∂∂̄θX)

The first term in the last equation is zero by the Stokes theorem. This is just
integration by parts written out.

The final formula for fM given by (4) does not contain α. So we will assume
without loss of generality that α = 0 and iXωg = −∂̄θX. This is possible since
we can always modify X so that α disappears. Although X might then depend
on α, there is exactly one harmonic form α in each cohomology class (as a
consequence of the Hodge theorem) and fM calculated by using the new X

would be same as the one calculated using the unmodified X, because of the
independence of α in (4).
Define the auxiliary function

F(g,X) = (n+ 1)2n+1
∫
M
hg∆gθXω

n
g (5)

We will show that this function does not depend on the choice of g in the
class.

Remark 1.3. Note that F does not change if we replace hg by hg+C or θX by θX+C.
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Lemma 1.4. Let
Γ = −∆gθX + Ric(g)

and
Λj = (n− 2j)(θX +ωg)

where Ric(g) is the Ricci form associated with the metric g. Then we have the follow-
ing identity.

F(g,X) =
n∑
j=0

(−1)j
1

j!(n− j)!

∫
M

[
(Λj + Γ)

n+1 − (Λj − Γ)
n+1

]
− µ2n+1

∫
M
(θX +ωg)

n+1 (6)

where µ =
1

V

∫
M s(g)ωng .

Remark 1.5. This formula makes sense because the integral of a differential form of
order less than 2n is zero by definition.

Proof. We need the following combinatorial identity to prove this lemma.

l∑
j=0

(−1)j
(
l

j

)
(l− 2j)k =

{
0 if k < l or k = l+ 1

2ll! if k+ l
(7)

The derivation of this identity will be given at the end of the notes.
Now we expand the first term in the RHS of (6).

(Λj + Γ)
n+1 − (Λj − Γ)

n+1 =

(
n+ 1

k

)
ΓnΛn−k+1j −

(
n+ 1

k

)
(−1)(n+k−1)

×ΓnΛn−k+1j

The combinatorial identity above shows that all the terms in the expansion of

n∑
j=0

(−1)j
1

j!(n− j)!

[
(Λj + Γ)

n+1 − (Λj − Γ)
n+1

]
except the ones that contain (n− 2j)n are zero.
From these two observations, we get that this sum is equal to

n∑
j=0

(−1)j
1

j!(n− j)!

[(
n+ 1

n

)
ΓnΛj −

(
n+ 1

n

)
(−1)ΓnΛj

]

=

n∑
j=0

(−1)j
(n+ 1)

j!(n− j)!
2ΓnΛj (8)

4



Now

ΓnΛj = (n− 2j)n(θx +ωg)
n(−∆gθX + Ric(g))

Its easy to see that the only order 2n terms in the expansion of RHS are
nωn−1g Ric(g) and −ωng∆gθX each multiplied by (n− 2j)n. But we know that∫
M ∆gθXω

n
g = 0. Plugging these terms into (8) gives

n∑
j=0

(−1)j
(n+ 1)

j!(n− j)!
2(n− 2j)nnωn−1g Ric(g)

= 2n+1(n+ 1)nωn−1g Ric(g)

(9)

where we used the identity (7) in the last line.
The second integrand in the RHS of (6) contains θXωng as the only order 2n
term. Rest of the terms do not contribute to the integral. So finally we get that
the RHS of (6) equals

(n+ 1)2n+1
∫
M

(
nθXRic(g)∧ω

n−1
g − θXµω

n
g

)
On the other hand we can write (5) as follows

F(g,X) = (n+ 1)2n+1
∫
M
θX∆gfgω

n
g

= (n+ 1)2n+1
∫
M
θX(sg − µ)ω

n
g

= (n+ 1)2n+1
∫
(nθXRic(g)∧ω

n−1
g − θXµω

n
g )

where in the last line we used sgωng = nRic(g)∧ωn−1g . This is true because

nRic(g)∧ωn−1g =
i

2
n(n− 1)!Rij̄Gij̄

(
i

2

)n−1
dz1 ∧ dz̄1 ∧ . . .∧ dzn ∧ dz̄n

=

(
i

2

)n
n(n− 1)!Rij̄g

ij̄ det(gij̄)dz
1 ∧ dz̄1 ∧ . . .∧ dzn ∧ dz̄n

= s(g)

(
i

2

)n
n! det(gij̄)dz

1 ∧ dz̄1 ∧ . . .∧ dzn ∧ dz̄n

= s(g)ωng

where Gij̄ denotes the corresponding cofactors of the matrix (gij̄).

Lemma 1.6. ∂̄∆gθX = iXRic(g)
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Proof.

iXRic(g) = −Xi
∂2

∂zi∂z̄j
log(det(gkl̄))dz̄

j

= −∂̄

(
Xi

∂

∂zi
log(det(gkl̄))

) (
X holomorphic implies

∂Xi

∂z̄j
= 0

)
= −∂̄

(
Xigkl̄

∂gkl̄
∂zi

)
= −∂̄

(
Xigkl̄

∂gil̄
∂zk

) (
dωg = 0 implies

∂gkl̄
∂zi

=
∂gil̄
∂zk

)
= −∂̄

(
gkl̄

∂

∂zk
(Xigil̄) − g

kl̄gil̄
∂Xi

∂zk

)
= −∂̄

(
gkl̄

∂

∂zk
(Xigil̄)

)
= ∂̄

(
gkl̄

∂

∂zk
(
∂

∂z̄l
θX)

)
(since ∂̄θX = −iXωg)

= ∂̄∆gθX

where we have used

∂̄

(
gkl̄gil̄

∂Xi

∂Zk

)
= ∂̄

∂Xi

∂zi
= 0

Now we can finally show that fM is well defined.

Theorem 1.7. The Calabi-Futaki invariant

fM([ω],X) =
∫
M
X(hg)ω

n
g

is independent of the choice of ωg in [ω].

Proof. Since the space of Kähler metrics is path connected, its enough to show
that

∂F

∂t
(gt,X)

∣∣
t=0

= 0

for any family of metrics {gt} in a particular Kähler class. Now

∂̄θX,t = −iXωgt

= −iX(ωg + ∂∂̄φt)

= ∂̄θX,0 − ∂̄X(φt)

The last line is true because
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∂̄X(φt) = ∂̄

(
Xi
∂φt

∂zi

)
= Xi

∂2φt

∂zi∂z̄j
dz̄j +

∂Xi

∂z̄j
∂φt

∂zi
dz̄j

= Xi
∂2φt

∂zi∂z̄j
dz̄j = iX(∂∂̄φt)

Remember that there are no non-constant holomorphic functions on a com-
pact manifold. Therefore we can write

θX,t = θX,0 −X(φt)

where we can omit the constant because of Remark 1.3. Now for the ease of
computation we introduce the following notations.

ψX,t = −∆gtθX,t + (n− 2j)θX,t

ψ̃X,t = ∆gtθX,t + (n− 2j)θX,t

R(gt) = Ric(gt) + (n− 2j)ωgt

We use this notation and Lemma 1.4 to write

F(gt,X) =
n∑
j=0

(−1)j
1

j!(n− j)!

∫
M
(ψX,t + R(gt))

n+1

−

n∑
j=0

(−1)j
1

j!(n− j)!

∫
M
(ψ̃X,t − Ric(gt) + (n− 2j)ωgt)

n+1

− µ2n+1
∫
M
(θX,t +ωgt)

n+1

Now we compute the derivative of the first integral with respect to t and show
that its zero. The other two computations are pretty much the same (a slightly
different notation would make it look exactly the same as this computation).

∂F

∂t
(gt,X) =

n∑
j=0

(−1)j
n+ 1

j!(n− j)!

∫
M
(ψ̇X,t + Ṙ(gt))(ψX,t + R(gt))

n + . . .

Now using Lemma 1.6 and −ixωg = ∂̄θX,t, we get that

∂̄ψx,t = −iXR(gt) (10)

We know that both Ric(gt) and ω̇gt = −∂̄∂φ̇t are ∂̄-exact. So we can define a
1-form αt by ∂̄αt = Ṙ(gt). Then we have

∂̄ψ̇X,t = −iXṘ(gt) = −iX∂̄αt = −∂̄(iXαt) (11)
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In the last line we used

∂̄(iXαt) =

(
∂Xi

∂z̄j
(αt)i +X

i ∂(αt)i
∂z̄j

)
dz̄j

= Xi
∂(αt)i
∂z̄j

dz̄j

= iX∂̄αt

So again ψ̇X,t = −iXαt, again because of the Remark 1.3, adding a constant
times t to θX,t will not affect F(gt,X).
Now we have

∫
M
(ψ̇X,t + Ṙ(gt))(ψX,t + R(gt))

n =

∫
M
(−iXαt + ∂̄α)(ψX,t + R(gt))

n

=

∫
M
(−iXαt)(ψX,t + R(gt))

n + (∂̄αt)(ψX,t + R(gt))
n

=

∫
M
(−iXαt)(ψX,t + R(gt))

n −nαt(ψX,t + R(gt))
n−1(∂̄ψX,t + ∂̄R(gt))

=

∫
M
(−iXαt)(ψX,t + R(gt))

n −nαt(ψX,t + R(gt))
n−1(iX(ψX,t + R(gt)))

= −

∫
M
iX(αt(ψX,t + R(gt))

n) (12)

In the third line we used integration by parts with the ∂̄ operator. In the fourth
line we used that ∂̄Rgt = 0 (since ωg and Ric(g) are closed) and that

∂̄ψX,t = −iXR(gt) = −iX(ψX,t + R(gt))

where iXψX,t = 0 since iX always lowers the order. In the last line we used
the following Leibniz rule for iX.

iX(α∧β) = iX(α)∧β−α∧ iX(β)

for one and two forms α and β respectively.
Denote η = αt(ψX,t + R(gt))

n. Now it follows easily that the integral above
is zero, since there are no forms of order 2n in iXη. For, if there was a form
of order 2n in the expansion of iXη, then that would imply that there are
non-zero forms of order 2n+ 1 in η.

Now we deduce some important corollaries.

Corollary 1.8.

1. fM is a holomorphic invariant of M i.e. remains unchanged under any biholo-
morphism form M to itself.
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2. There is a Kähler metric in [ω] with constant scalar curvature only if fM([ω], ) =

0.

Proof.

1. Follows from the fact that holomorphic automorphisms preserve the
Kähler class of a metric and also the set of all holomorphic functions
on M.

2. Constant scalar curvature implies that hg = constant. Hence fM([ω], ) =

0.

In particular, Calabi-Futaki invariants vanish for Kähler-Einstein metrics. Now
we see another application of these invariants to extremal Kähler metrics.

Definition 1.9. A Kähler metric g is called extremal if the scalar curvature s(g)
satisfies

s(g)īj̄ = 0

Extremal metrics naturally arise as the critical points of the Calabi functional,
which is defined by

Ca(M) =

∫
M
s(g)2ωng

Clearly, all metrics of constant scalar curvature are extremal. But does the
converse also hold under certain conditions? The following corollary answers
this question.

Corollary 1.10. If fM([ω], ) = 0, then any extremal Kähler metric g in [ω] has
constant scalar curvature.

Proof. If g is extremal, then X = gij̄s(g)j̄
∂
∂zi

is a holomorphic vector field. So
we get

fM([ω],X) =
∫
M
gij̄s(g)j̄

∂hg

∂zi
ωng

= −

∫
M
gij̄s(g)

∂2hg

∂zi∂z̄j
ωng

= −

∫
M
s(g)∆ghgω

n
g

= −

∫
(s(g) − µ)∆ghgω

n
g

= −

∫
(s(g) − µ)2ωng

Hence s(g) = µ.
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