Calabi-Futaki Invariants

Mathew George

Calabi-Futaki invariants have been found as an obstruction to the existence of
Ké&hler-Einstein metrics on a given Kihler manifold. In these notes, we define
these invariants and show some of their properties. Most of the material here
is originally due to Gang Tian and Akito Futaki.

1 Definition

Definition 1.1. Given a compact Kihler manifold M, we define its Kihler cone, de-
noted by Ka(M), to be the set of all cohomology classes [w] € H*(M,R) nH'1 (M, C)
that can be represented by a Kihler metric.

Definition 1.2. We say that a vector field X is holomorphic if it has a local expression
of the form
; 0
X - Xli.
ozt
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such that X* are holomorphic functions i.e. . 0 forall i, j.
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Let n(M) be the set of all holomorphic vector fields on M. Then we define the
Calabi-Futaki invariant of M to be the function

fm : Ka(M) xn(M) —- C
given by
falle) X) = | X(hglw (1)

where we picked some metric g from [w] and defined hg as follows. Let s(g)

. 1
be the scalar curvature of M. Then its easy to see that s(g) — v I'm s(g)wg1 has



integral 0. (Here V = [, wy is the volume of M). Then it’s a well-known fact
that we can construct a function hg such that

1

sl9) = | s(9)w] = aghg

This defines fj1. But we need to make sure that f, defined this way does not
depend on the choice of the metric g in [w]. We will show that the RHS in
does not depend on the metric used. This fact was originally proved by
Calabi and Futaki, but we give another proof that is not as simple, but is more
general.

We show that d(ixwg) = 0.
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d(ixwg) =0 (zgﬁxidzi)
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where we used the fact that X is holomorphic and wyg is closed. This is be-
3g:s g
cause dwg = 0 in local co-ordinates looks like 6?2 = ag_‘jk and then the
Z z

anti-symmetry of the wedge product takes care of the rest.

Now it follows from the 0 version of the Hodge theorem [see these notes] that
we can find a smooth function 0x and a harmonidl] 1-form « such that this
0-exact form can be decomposed as

ixwg = (X*aex (2)
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In local co-ordinates this can be written as 3

L 0% .
X'g;jd2) = o5d2) — a—zjdzl and
therefore

) - - 00x
LA . § |
X' =g —g" o= (3)

We also have doc = 0 and 9*« = 0. This follows from
0= J (Ao, o) = J (38" o + 3B, 1) — J 13edP? + 113 o2
M M M

So we get that

YAy = Az = 1A for Kahler manifolds.


https://people.math.osu.edu/george.924/Hodge_Theorem.pdf

fm(lw], X) =] X(hg)wg
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= thgexwg (4)
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where we used (3) in the third line. In the last line we used the following two
equations

- oh
— (Ohg, &) = (hg, 8" &)
=0

and

;500x Oh L
R dhg, 30
JMQ 37 27t JMQ( g, 00x)

- JM 3g(hg, 30x) — glhy, 230x)

The first term in the last equation is zero by the Stokes theorem. This is just
integration by parts written out.

The final formula for fyq given by (4) does not contain a. So we will assume
without loss of generality that o« = 0 and ixwg = —06x. This is possible since
we can always modify X so that « disappears. Although X might then depend
on «, there is exactly one harmonic form « in each cohomology class (as a
consequence of the Hodge theorem) and fp calculated by using the new X
would be same as the one calculated using the unmodified X, because of the
independence of « in (g).

Define the auxiliary function

F(g,X) = (n+1)2n+! JM hgAgOxwy (5)

We will show that this function does not depend on the choice of g in the
class.

Remark 1.3. Note that F does not change if we replace hg by hg + C or 0x by 6x + C.



Lemma 1.4. Let
I'=—A40x + Ric(g)

and
Aj = (n—2j)(0x + wg)

where Ric(q) is the Ricci form associated with the metric g. Then we have the follow-
ing identity.

where u = %IM s(g)wl.

Remark 1.5. This formula makes sense because the integral of a differential form of
order less than 2n is zero by definition.

Proof. We need the following combinatorial identity to prove this lemma.

1 .
0 ifk<lork=1+1
(1—2j)¥
; < ) 2)) {2‘1' if k+1 @)

The derivation of this identity will be given at the end of the notes.
Now we expand the first term in the RHS of (6).

(A) +r)n+1 _ (/\] _r)n—H _ (n:1)rn/\]n—k+1 _ (n:1>(_1)(n+k—1)
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The combinatorial identity above shows that all the terms in the expansion of

n

;)(ni),(nl]) (A 7™ = (g =]
j=

except the ones that contain (n —2j)™ are zero.
From these two observations, we get that this sum is equal to

ks o +1\ on +1 N
§ o (3= e



Now

TMAj = (n—2j)™(0x + wg)™ (—Ag0x + Ric(g))

Its easy to see that the only order 2n terms in the expansion of RHS are
an*1 Ric(g) and —wgyAg0x each multiplied by (n —2j)™. But we know that
ImAgOxwy = 0. Plugging these terms into (8) gives

Y (—1) Hz(n —2j)"nw? "Ric(g)
)

j=0
=2 (n+ 1)nwg*1 Ric(g)

)

where we used the identity (7) in the last line.

The second integrand in the RHS of (6) contains 6xwy as the only order 2n

term. Rest of the terms do not contribute to the integral. So finally we get that
the RHS of (6) equals

(n+1)2n+1 J (nGxRiC(g)/\wg*1 —Gxuwg)
M

On the other hand we can write @ as follows

F(g,X) = (n+1)2n+‘J OxAgfgwy
M
= (n41)2n+! J Ox(sg —Hwy
M

= (n+1)2™! J(nSXRiC(g)/\wg_] —pr.wg)

where in the last line we used sqw§g =nRic(g) A ng“] . This is true because
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where G5 denotes the corresponding cofactors of the matrix (g;;). O

Lemma 1.6. 0A40x = ixRic(g)
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Now we can finally show that fa; is well defined.

Theorem 1.7. The Calabi-Futaki invariant

e X) = | Xnglw}

is independent of the choice of wg in [w].

Proof. Since the space of Kidhler metrics is path connected, its enough to show
that

oF

590X o =0

for any family of metrics {g¢} in a particular Kahler class. Now

66X,t = 71',)((1)9{
= _iX(wg + aaq)t)
= 00x,0 — 0X(dt)

The last line is true because
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Remember that there are no non-constant holomorphic functions on a com-
pact manifold. Therefore we can write

Ox,t = 0x,0 — X(dt)

where we can omit the constant because of Remark Now for the ease of
computation we introduce the following notations.

Px,t = —Ag Ox ¢ + (N —2j)0x ¢
Px,t = Ag,Ox,¢ + (N —2§)0x ¢
R(gt) = Ric(gt) + (n—2j)wg,

We use this notation and Lemma [1.4] to write

FlguX) = 3 (1 5t | (e + Riga) ™!

- Z(—nij!(n]—_w |, e Riclgo) + (n = Z)awg !

_ uzn—o—] JM(eXrt + wgt)n—H

Now we compute the derivative of the first integral with respect to t and show
that its zero. The other two computations are pretty much the same (a slightly
different notation would make it look exactly the same as this computation).

JF = i n+1 , : n
o) =21 J, (s + Rlg b+ Rigo)™ +-..

Now using Lemma |1.6/and —iywg = 00x ¢, we get that
0Pyt = —ixR(gt) (10)
We know that both Ric(g¢) and dg, = —09¢ are d-exact. So we can define a

1-form oy by dot = R(gt). Then we have

Mpx ¢ = —ixR(gt) = —ix0ot = —0d(ixat) (11)



In the last line we used

- oxt - 0(ot ) s
3lixace) = (g(cxt)i +x1%) a7
0(axt)i

0z
= ixa(xt

=Xt dz

So again {x = —ixay, again because of the Remark adding a constant
times t to 6x ¢ will not affect F(g, X).
Now we have

—

(e + R(ge)) (bxo + R(ge))™ =J (—ixate + 30 (W 1 + R(ge)™
M M

- jM(—ixcxt)(wx,t +R(ge)™ + (Bore) (Wt + Rlge))™
- jM(—ixoct)(wx,t 1 RgO)™ — now (e + Rge)™ (B + IR(ge))
- JM(—ixoct)(wx,t T R(ge))™ — o (xe + Rge)™ (ix(Wx.o + Rge))

_ —J ixc (ot (W + R(ge))™) (12)
M

In the third line we used integration by parts with the d operator. In the fourth
line we used that 0Rg, = 0 (since wy and Ric(g) are closed) and that

0px ¢ = —ixR(ge) = —ix(Wx,¢ + R(ge))

where ixx ¢ = 0 since ix always lowers the order. In the last line we used
the following Leibniz rule for ix.

ix(eAB) =ix(c) AB— o Aix(B)

for one and two forms « and 3 respectively.
Denote n = a(Px + + R(ge))™. Now it follows easily that the integral above
is zero, since there are no forms of order 2n in ixn. For, if there was a form
of order 2n in the expansion of ixn, then that would imply that there are
non-zero forms of order 2n+1 in 7.

O

Now we deduce some important corollaries.

Corollary 1.8.

1. fm is a holomorphic invariant of M i.e. remains unchanged under any biholo-
morphism form M to itself.



2. There is a Kihler metric in [w) with constant scalar curvature only if fam ([w), ) =
0.

Proof.

1. Follows from the fact that holomorphic automorphisms preserve the
Kéhler class of a metric and also the set of all holomorphic functions
on M.

2. Constant scalar curvature implies that hy = constant. Hence fa ([w], -) =
0.

O

In particular, Calabi-Futaki invariants vanish for Kdhler-Einstein metrics. Now
we see another application of these invariants to extremal Kihler metrics.

Definition 1.9. A Kihler metric g is called extremal if the scalar curvature s(g)
satisfies

s(gl =

Extremal metrics naturally arise as the critical points of the Calabi functional,
which is defined by

CalM) = | 59w}

M
Clearly, all metrics of constant scalar curvature are extremal. But does the
converse also hold under certain conditions? The following corollary answers

this question.

Corollary 1.10. If fpm([w], ) = O, then any extremal Kihler metric g in [w] has
constant scalar curvature.

Proof. 1f g is extremal, then X = gﬁs(g))v aazi is a holomorphic vector field. So
we get
ohy
fm([w], X) :JM 9”s(9); 2 9
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Hence s(g) = p.
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