
Candidacy Report

Mathew George

Advised by Bo Guan

Contents

1 Introduction 1

2 Hermitian metrics 1

3 The Calabi Conjecture 3

4 Kähler-Einstein manifolds 6

5 Gauduchon metrics 8

6 Balanced metrics 9

7 The space of balanced metrics and geodesic equations 10

8 Second order non-linear PDE on hermitian manifolds 13



1 Introduction

At the intersection of complex geometry and PDE we find a set of important and

interesting problems. These are questions in complex geometry that can be trans-

formed into partial differential equations in complex variables. A famous problem

of this type would be the Calabi conjecture, which was solved by S.T. Yau in 1978.

There are other questions of similar flavour, such as finding Kähler-Einstein metrics

on Kähler manifolds. These problems share a feature that they can be transformed

into a PDE called the complex Monge-Ampere equation. This is because of a special

form that the Ricci curvature takes in the complex setting.

We could also ask some variants of these questions. For example, we can look for

metrics that are not necessarily Kähler, but satisfies some weaker assumptions and

solves the Calabi-Yau equation. An example would be the balanced metric, which

is defined by dωn−1 = 0 instead of the condition dω = 0 in the Kähler case. In this

article we pose some of the same questions for balanced metrics.

A recent breakthrough in this area is solving the Calabi-Yau equation for another

non-Kähler metric, called the Gauduchon metric [See Sec 5]. We draw inspiration

from some of the ideas in this paper.

2 Hermitian metrics

Let (X, g) be a compact 2n - dimensional Riemannian manifold and let J be a complex

structure on X. We say that g is a hermitian metric on (X, J) if in addition, it satisfies

g(JX, JY ) = g(X, Y ) for all X, Y ∈ TM . The (1, 1) form ω(X, Y ) := g(JX, Y ) is

the hermitian form associated to g. We will use the word metric for both ω and g.

The most extensively studied class of hermitian manifolds are the Kähler manifolds

which are those with closed hermitian forms (dω = 0). An important problem in

Kähler geometry is showing the existence of Kähler-Einstein metrics (those having

Ricci curvature proportional to the metric itself) on a given Kähler manifold. This

will be discussed in detail in section 3, where we will also find that there are cases

that do not admit Kähler-Einstein metrics. Here is a list some other natural metrics

on hermitian manifolds.

1. Balanced metric: dωn−1 = 0.

2. Gauduchon metric: ∂∂̄ωn−1 = 0.
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3. Strongly Gauduchon metric: ∂̄ωn−1 is ∂-exact.

4. Astheno-Kähler metric: ∂∂̄ωn−2 = 0.

5. Pluriclosed metric or strong KT structure: ∂∂̄ω = 0.

6. k-th Gauduchon metric: ∂∂̄ωk ∧ ωn−k−1 = 0.

7. (l
∣∣k)-strong condition: ∂∂̄ωk ∧ ωl = 0 for 1 ≤ k + l ≤ n− 1.

Remarks :

1. It can be shown that dωk = 0 for 2 ≤ k ≤ n − 2 automatically yields dω = 0

[2].

2. It is easily verified that if ∂∂̄ωk = 0 for k = 1 and k = 2, then ∂∂̄ωk = 0 for any

1 ≤ k ≤ n− 1.

There are specific reasons for considering each of these metrics. For example, one can

use a Gauduchon metric to define the degree and then make sense of the stability

of holomorphic vector bundles over compact non-Kähler manifolds. For more appli-

cations of the different cases above see [2]. It is natural to try to extend the major

theorems in Kähler geometry to the non-Kähler settings described above. In these

notes, we will only consider balanced and Gauduchon metrics. The Calabi-Yau the-

orem, which shows the existence of a Kähler metric with prescribed Ricci curvature,

has been proven for the Gauduchon case in [12]. We will come back to this in section

5. Section 6 explores balanced metrics in detail. Especially we will look at a form of

Calabi-Yau theorem for balanced metrics which is one of the main focus of our study.

Another interesting direction of study would be to understand the space of Kähler

metrics on a given Kähler manifold. In section 7, we will see that the space of all

Kähler potentials in a given Kähler class forms an infinite dimensional Riemannian

manifold. A surprising fact about the geometry of these spaces is that the geodesic

equation for this metric becomes a homogeneous complex Monge-Ampere equation

(HCMA) of one dimension higher than the base manifold. This yields some important

conclusions about the geometry of the space of Kähler potentials (such as geodesic

connectedness) based on the solvability of the corresponding HCMA. This calculation

will be shown in section 7. We will also consider some interesting research directions

in this topic.
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In the last section, we look at a general fully non-linear PDE on hermitian mani-

folds and discuss how this equation can be used to study various geometric problems,

such as the conformal deformations of Chern-Ricci forms.

3 The Calabi Conjecture

Define the first Chern class to be c1(M) := [Ric(ωg)]. It can be shown that c1(M) is

independent of the metric g. In the 1950’s Calabi conjectured the following:

Theorem 1 (Calabi-Yau). Given a compact Kähler manifold (M,ω) and a real (1, 1)-

form Ψ in c1(M), there is another Kähler metric ω′, uniquely determined in the Kähler

class of ω such that Ric(ω′) = Ψ.

Here Ric(ω′) stands for the Ricci curvature of ω′. This problem was famously

solved by S.T. Yau in 1978. Without going into all the details, we present the main

ingredients of the proof. This will also serve as a general guideline on how such

problems are dealt with.

Step 1: Transform the curvature condition into the complex Monge-Ampere equation

as follows. We look for solutions in the Kähler class of ω. So let ω′ = ω +√
−1∂∂̄φ > 0 where φ is an unknown function. Assuming that this gives the

required metric we can write

Ric(ω′) = Ψ

= Ric(ω)−
√
−1∂∂̄F

for some smooth function F .

−
√
−1∂∂̄ log (ω′n) = −

√
−1∂∂̄ log (ωn)−

√
−1∂∂̄F

Applying maximum principle we get ω′n = eFωn. There should be an additional

constant factor which we get rid of by normalizing F . In local co-ordinates this

equation becomes

det(gij̄ + ∂i∂j̄φ) = eF det(gij̄)
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for ω =
√
−1gij̄dzi ∧ dzj̄. We immediately note that a necessary condition for

this PDE is that
∫
M
eFωn =

∫
M
ωn. This condition is in fact sufficient to solve

it.

Step 2: Solving the equation using the continuity method.

Consider a sequence of equations given by

det(gij̄ + ∂i∂j̄φt) =

∫
M
ωn∫

M
etFωn

etF det(gij̄)

ω′t = ω +
√
−1∂∂̄φt > 0∫

M

etFωn =

∫
M

ωn

for t ∈ [0, 1]. At t = 0, φ0 ≡ 0 is a solution. We show that the set K = {t ∈
[0, 1] : φt ∈ C3(M) solves the above equation at t} is both open and closed.

Hence t = 1 is solvable (This corresponds to the original equation).

For openness, apply the inverse function theorem to the operator G(φ) =

log
(ω +

√
−1∂∂̄φ)n

ωn
. This can be done by showing that the Fréchet derivative

of G is invertible at φt for any t ∈ K.

For closed, we use the above estimates. Let tk be a sequence in K such that

tk → t0 ∈ [0, 1]. Then since the equation is solvable for each tk, we have a

uniform C2α estimate ||φtk ||2,α ≤ C (this will be shown in the upcoming steps).

Now use Arzela’s theorem to extract a uniformly convergent subsequence that

converges to a function φ in C2,α(M). φ satisfies the equation at t0 since the

convergence is in C2,α(M). Thus K is closed.

Step 3: Establishing apriori C0 estimates for the solution.

There are three known ways of doing this [9]. The classical method would be

to use the Moser iteration argument. We outline the rough idea here. Multiply

the PDE by a power of the solution φα+1 and integrate by parts. This would

yield an Lp estimate for the gradient of the solution for all p ≥ 2. Now plugging

in this estimate into the Sobolev inequality gives the following.

||φ||Lpβ ≤ (Cp)
1
p ||φ||Lp
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for all p ≥ 2 and some β > 1. Iterating this inequality for larger and larger p

values gives an L∞ estimate for the solution.

Step 4: Establishing apriori C1 estimates for the solution. This will follow from the

C0 and C2 estimates by general interpolation inequalities (see chapter 6 of [5]).

Yau originally derived C2 estimates first that only depends on the C0 estimates.

This was then used to get the gradient estimates. It is now known that one can

derive C1 estimates (depending on the C0 norm) directly [9].

Step 5: Establishing apriori C2 estimates for the solution.

Let trgg
′ = gjk̄g′

jk̄
, and trg′g = g′jk̄gjk̄ for gij̄, g

′
ij̄ denoting the components of ω

and ω′ respectively. We can write g′ij̄ = gij̄ +φij̄. By direct calculations one can

derive the following elliptic inequality.

∆′(log trgg
′ − Aφ) ≥ trg′g − An

Here ∆′ = g′ij̄∂i∂j̄ is the Laplacian associated to the metric ω′. Now if log trgg
′−

Aφ attains maximum at a point p, then the LHS of the inequality above is non-

positive at p. This provides the estimate trg′g(p) ≤ An. Combining this with

the original PDE gives a uniform bound

sup
M

log(trgg
′) ≤ C

where C depends on sup |φ| (which has been estimated). This combined with

the original PDE gives upper and lower bounds on all eigenvalues of g′. This is

enough since trgg
′ = n+ ∆φ in normal coordinates and the latter estimates all

the terms in
√
−1∂∂̄φ.

Step 6: Establishing apriori C3 estimates for the solution.

For the third order estimates we work with the tensor Sijk = Γijk − Γ̂ijk, where

Γkij and Γ̂kij denote the Christoffel symbols of ω′ and ω respectively. As in the

case of second order estimates, we derive an elliptic inequality for the tensor S,

given by

∆(|S|2 + Atrgg
′) ≥ |S|2 − C2
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for some C2. Then by the same method as in step 2 we get an estimate |S|2 ≤ C3,

that depends on sup |trgg′| (which has been estimated). Since the Christoffel

symbol Γkij is equal to g′kl̄∂ig
′
jl̄

, C3 estimates are obtained from here.

Historically, the third order estimates were obtained by Yau using the ’Calabi

computations’. Now we can also derive this by making use of the Evans-Krylov

theorem which was proved in the early 1980s. This theorem gives C2,α estimates

for fully non-linear uniformly elliptic PDE’s of the form F (x, u,Du,D2u) = f ,

assuming that F is concave and that we have second order estimates.

So far we have shown the existence of solutions with C2,α regularity. For higher

regularity, differentiate the PDE and use bootstrapping method. This is done

with the standard Schauder estimates for linear elliptic PDEs.

This technique is called the continuity method. We have skipped many details

that are routine in this method and could be found in the references. Yau’s original

paper [15] does not use this language of tensors and relative endomorphisms. But

this approach greatly reduces the calculations required and makes the idea clearer.

For more details, see this almost comprehensive survey on complex Monge-Ampere

equations [9] and also [11].

4 Kähler-Einstein manifolds

A Kähler manifold is said to be Kähler-Einstein if the Ricci curvature tensor is equal

to a constant times the metric.

Ric(ωg) = λg

The problem of finding a Kähler Einstein metric on a given Kähler manifold (M,ω)

is very similar to the Calabi-Yau theorem. In fact, the cases when c1(M) < 0 and

c1(M) = 0 are completely solved by the same technique. It is worth pointing out

that in the case when c1(M) < 0, the C0 apriori estimate is obtained much more

easily. This is because the corresponding complex Monge-Ampere equation has the

following form.

(ω +
√
−1∂∂̄φ)n = eF+φωn

Assume that φ attains maximum at a point p. Then since the Hessian matrix of φ
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is negative definite at that point, it follows that (ω+
√
−1∂∂̄φ)n ≤ ωn. Applying this

to the above equation gives an upper bound on φ. In a similar way we can estimate

inf(φ) as well. This does not work when c1(M) > 0 since we have eF−φ in the RHS

of that equation.

So the only case left is when c1(M) > 0. As mentioned above the C0 estimate is

not straightforward now because of the e−φ term, although the higher order estimates

can be obtained by same techniques. It turns out that it is not true in general that

every Kähler manifold with positive Chern class admits a Kähler-Einstein metric.

Some explicit counter examples are known [13].

The next question was to identify and categorize all the obstructions to solving

this equation. Here we present one of these. Define

h := {holomorphic sections v of T 1,0M , such that vj = gjk̄∂k̄f for some f : M → C}

The function f is called the holomorphy potential for v. These are unique up to

addition of constants. A short argument shows that h only depends on the Kähler

class [ω]. In fact, it has been shown that h does not even depend on the choice of

Kähler class [7].

Theorem 2. Let (M,ω) be a compact Kähler manifold. Let us define the functional

F : h→ C, called the Futaki invariant, by

F (v) =

∫
M

f(S − Ŝ)ωn

where f is a holomorphy potential for v, and S, Ŝ are scalar curvature and its average

over the manifold respectively. Then F is independent of the choice of metric in

the Kähler class [ω]. In particular, if [ω] admits a constant scalar curvature metric

(cscK), then F (v) = 0.

Consequently, since Kähler-Einstein metrics are cscK as well, vanishing of the

Futaki invariant is necessary for their existence. Futaki invariants are difficult to

compute directly. But some localization formulae have been derived by analyzing

the zero set of v. Examples of non-vanishing F are blow up of CP 2 in one or two

points. See [13] for the formula and details of this calculation. Futaki invariants

are important in the study of cscK metrics in general and relate to other algebraic

obstructions such as K-stability [11].
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5 Gauduchon metrics

Gauduchon metrics are those hermitian metrics for which ∂∂̄ωn−1 = 0. It was shown

by Gauduchon that such a metric always exist in the conformal class of any hermitian

metric and is unique up to constants [4]. In addition for Gauduchon metrics, it still

holds that ∫
∆uωn = 0.

In fact, ∫
∆uωn =

∫ √
−1∂∂̄u ∧ ωn−1

=

∫ √
−1∂(∂̄u ∧ ωn−1) +

∫ √
−1∂̄u ∧ ∂ωn−1

=

∫ √
−1∂̄(u∂ωn−1)−

∫ √
−1u∂̄∂ωn−1

= −
∫ √

−1u∂̄∂ωn−1 = 0

provided that ∂̄∂ωn−1 = 0

Motivated by Yau’s theorem, in 1984 Gauduchon posed the following question.

Given a compact Kähler manifold M and a real (1, 1) form Ψ in the first Bott-Chern

class cBC1 [M ], does there exist a Gauduchon metric ω on M such that

Ric(ω) = Ψ

This conjecture was solved fully only recently by Szekelyhidi, Tosatti and Weinkove

[12]. The exact theorem is stated as follows.

Theorem 3. Let M be a compact complex manifold with a Gauduchon metric α0,

and Ψ a closed real (1, 1) form on M with [Ψ] = cBC1 (M) ∈ H1,1
BC(M,R). Then there

exists a Gauduchon metric ω satisfying [ωn−1] = [αn−1
0 ] in Hn−1,n−1

A (M,R) and

Ric(ω) = Ψ

where Hn−1,n−1
A (M,R) =

{∂∂̄-closed real (n− 1, n− 1) forms}
{∂γ + ∂γ | γ ∈ Λn−2,n−1(M)}

is the Aeppli coho-

mology group and H1,1
BC(M,R) =

{d-closed real (1, 1) forms}
{
√
−1∂∂̄ψ | ψ ∈ C∞(M,R)}

is the Bott-Chern co-

homology group.

Some elements of this proof are as follows. Let α be a background Gauduchon
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metric. Then by choosing ωn−1 = αn−1
0 + ∂γ + ∂γ where γ =

√
−1
2
∂̄u ∧ αn−2, we can

transform the above theorem to answering the following question. Given a smooth

function F , does there exist a function u and a constant b such that there is a hermitian

metric ω defined by

ωn−1 = αn−1
0 +

√
−1∂∂̄u ∧ αn−2 + Re(

√
−1∂u ∧ ∂̄αn−2) > 0

that satisfies ωn = eF+bαn?

By a previous work of two of the authors [14], this question can be reduced to

showing the following apriori C2 estimate for the solution u.

sup
M
|
√
−1∂∂̄u|α ≤ C(1 + sup

M
|∇u|2α)

This is precisely the estimate proved in the paper. We find this paper interesting

because the equation in this case is very similar to the one that we will encounter in

the next section. There is a possibility that the C2 estimates for that equation can

be obtained by modifying the proof from above.

6 Balanced metrics

Balanced metrics were first studied extensively by M. L. Michelsohn in the 80’s [8].

Here balanced metrics are defined as having τω = 0, where τω denotes the trace of

the torsion endomorphism of the metric ω. This is weaker than the Kähler case

where torsion is identically zero. For n = 2, the Kähler and balanced condition are

the same. For all dimensions n ≥ 3, there are compact balanced manifolds which

carry no Kähler metrics. See Michelsohn’s paper for details of this construction. Not

every complex manifold X admits a balanced metric. This is because the balanced

condition (dωn−1 = 0) would imply that the homology group H2n−2(M,R) is non-

trivial. Complex manifolds which violate this condition, say for example the Calabi-

Eckmann manifolds S2p+1 × S2q+1, p+ q > 0, are not balanced.

Apart from being a natural metric to consider, balanced metrics have become

significant because of their applications in mathematical physics. For example, in

superstring theory the internal space X3 is a complex three-dimensional manifold with

a non-vanishing holomorphic three-form Ω. The supersymmetry condition requires

d(||Ω||ωω2) = 0
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for some hermitian metric ω. The above equation in mathematics says that the metric

ω is conformally balanced. Thus it is interesting to look for balanced metrics ω such

that ||Ω||ω = C for some constant C. This problem has been solved on complex torus

[3]. In the case of a general Kähler manifold, the openness part of the continuity

method is also shown in the same paper.

We wish to consider other interesting questions for balanced metrics such as the

Calabi-Yau theorem. Given a compact complex manifold M with a hermitian metric

α0 one could ask the following. Does there exist a hermitian form ω defined by

ωn−1 = αn−1
0 +

√
−1∂∂̄(φαn−2) (1)

such that ωn = eF+bαn? Here α is a fixed background hermitian metric and φ is the

unknown function. F and b are a known function and a constant respectively. Again

this equation is equivalent to prescribing the Ricci curvature of the metric ω. By

choosing α0 to be balanced (i.e. dαn−1
0 = 0), we get that ω is balanced as well. If

the metric α is chosen to be astheno-Kähler (i.e. ∂∂̄αn−2 = 0), then this problem is

fully solved. This is because it reduces to the same equation (upto a constant) as in

finding Gauduchon metrics with a prescribed volume form [12].

One of the main aims in our study is to consider the same problem after only

assuming that α is balanced. The main difference in this case is an extra
√
−1φ∂∂̄αn−2

term in the expansion of (1). This will be difficult to solve since the resulting PDE in

this case resembles the equation for finding Kähler-Einstein metrics when the Chern

class is positive. But there are some additional good terms here that might make it

solvable. As mentioned before, we would like to approach this problem using some of

the ideas discussed in [12].

7 The space of balanced metrics and geodesic equa-

tions

Let (X,ω0) be a compact Kähler manifold without boundary of dimension n. Then

define the space of Kähler potentials.

K = {φ ∈ C∞(X) : ωφ > 0}

where ωφ := ω0 + i
2
∂∂̄φ. Then K is an infinite dimensional Riemannian manifold with
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tangent space at φ given by TφK ∼= {δφ ∈ C∞(X)}. The Riemannian metric is given

by

||δφ||2 =

∫
X

|δφ|2ωnφ

Our aim is to find the geodesic equation for (K, ||.||) and show that this is a

complex Monge-Ampere equation. For this purpose, we find the variation of the

following energy functional.

E =

T∫
0

∫
X

φ̇t
2
ωnφdt

for a path φt : [0, T )→ K. Let φ(t, s) be an end-point fixing variation of paths such

that φ := φ(t, 0) and ψ =
∂φ

∂s

∣∣
s=0

.

Differentiating E wrt s-variable gives,

δE =

T∫
0

∫
X

(
2φ̇ψ̇ + φ̇2∆φψ

)
ωnφdt

Integrating by parts using ψ(0) = ψ(T ) = 0 we get,

δE = −2

T∫
0

∫
X

ψ
(
φ̈− |∇φ̇|2ωφ

)
ωnφdt

Thus we deduce the following geodesic equation.

φ̈− |∇φ̇|2ωφ = 0

An interesting observation due to Donaldson [1] and Semmes [10] is that this

geodesic equation is equivalent to a homogeneous complex Monge-Ampere equation

(HCMA) of one dimension higher.

(π∗ω0 +
i

2
∂∂̄Φ)n+1 = 0

for Φ(z, w) = φ(z, log |w|). This is defined on the manifold M = X × A with A =

{w ∈ C : e−T < |w| < 1}. Here ∂∂̄Φ is taken wrt all the (n+ 1) variables (z, w), and

π∗ω0 is the pull-back of ω0 to M under the natural projection map π : X × A→ X.
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Thus solutions of this HCMA would correspond to geodesics in K and vice-versa.

Consequently, to find a geodesic segment connecting φ0 to φ1 in K, it is enough to

solve HCMA with the following boundary data.Φb(z, w) = φ0 , |w| = 1

Φb(z, w) = φ1 , |w| = e−T

This can be solved with C1,α(M̄) solutions for any 0 < α < 1 as a consequence of

the following theorem [9].

Theorem 4. Let (X,ω) be a smooth Kähler manifold with smooth boundary. Then

the Dirichlet problem (ω0 + i
2
∂∂̄φ)n = 0 , on M

φ ≡ 0 , on ∂M

admits a unique solution, which is of class C1,α(M̄) for each 0 < α < 1.

As a consequence we have the following.

Theorem 5. Let φ0, φ1 be two points in K. Then there exists a unique geodesic of

class C1,α, for any 0 < α < 1, joining φ0 and φ1.

Remark: It has been shown that the regularity can be improved up to C1,1.

Question: What is the geodesic equation for the space of balanced metrics?

There are two possible approaches one could take here. Assume ω0 is balanced.

1. Define B1 = {Φ ∈ Λ(n−2,n−2)M : ωn−1
Φ = ωn−1

0 +
√
−1∂∂̄Φ > 0} and perform the

same computations as above. These computations become very complicated

and long because we are dealing with (n−2, n−2) forms rather than functions.

2. Define B2 = {φ ∈ C∞(M) : ωn−1
φ = ωn−1

0 +
√
−1∂∂̄φαn−2 > 0}. This is simpler

compared to case 1, but not as general.

It would be interesting to see if we can get some important equation in this case.

Relatively less is known about this theory. So more interesting questions could be

raised.
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8 Second order non-linear PDE on hermitian man-

ifolds

The treatment of equations in sections 5 and 6 motivates us to examine the following

general non-linear PDE. Let (M,ω) be a hermitian manifold. Consider the fully

non-linear PDE on M of the form

F (ω−1U [u]) = ψ(z, u, ∂u, ∂̄u) (2)

where U [u] = γω∆u − β∂∂̄u + χ(z, u, ∂u, ∂̄u). Some important progress has been

made in [6] for this equation when γ = 1 and β < 1(6= 0). In this paper, the authors

assume that F satisfies the following conditions.

1. F is defined in an open convex cone A with vertex at 0 which is contained in

the space of real (1, 1) forms H, and contains the positive cone H+ in H.

2. F (X + Y ) ≥ F (X), ∀ X ∈ A, Y ∈ H+
.

3. F is a concave function in A.

4. lim
R→+∞

F (Rω)− sup
M

ψ[u] ≥ c0 > 0 for all admissible (U [u] ∈ A) solutions u.

From these four conditions, it is possible to show that the non-linear PDE above

is elliptic (i.e. the linearization is elliptic). In [6], the manifold is allowed to have

boundary. Both interior and boundary estimates up to second order are obtained

after assuming a few additional growth rate conditions on ψ and χ. From here it can

be shown by continuity method that the Dirichlet problem given byF (U [u]) = ψ[u] in M

u = φ on ∂M

for φ ∈ C∞(∂M), has an admissible solution with a global apriori estimate |u|C2(M) ≤
C.

The authors then go on to use this method to study conformal deformations of

the Chern-Ricci curvature of a hermitian metric ω. Indeed, for a hermitian metric

ω there are four possible Ricci forms based on the indices we contract on the (4, 0)

curvature tensor. These are denoted by
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R
(1)

ij̄
= gkl̄Rij̄kl̄, R

(2)

kl̄
= gij̄Rij̄kl̄

R
(3)

il̄
= gkj̄Rij̄kl̄, R

(4)

kj̄
= gil̄Rij̄kl̄

Let Rc(k) =
√
−1R

(k)

ij̄
dzi ∧ dzj̄ denotes the k-th Chern-Ricci form. Then the

(α, β, γ)-Chern Ricci form is defined as the linear combination

Rc〈α,β,γ〉 := αRc(1) + βRc(2) + γ(Rc(3) +Rc(4))

Let ω̃ = e−auω be a conformal metric for some function u on M and a is some

constant. In connection to (2), we consider the equation

F (ω̃−1Ric
〈α,β,γ〉
ω̃ ) = ψ

The Ricci form for the conformal metric ω̃ can be computed as

Ric
〈α,β,γ〉
ω̃ = Ric〈α,β,γ〉ω + aβ(∆u)ω + a(nα + 2γ)

√
−1∂∂̄u

This shows that the above equation falls into the general category of equation (2)

and can be used to study such deformations.

It is also worth noting that in (2), we can choose F to be a symmetric function

of the eigenvalues of U [u]. This, in particular yields the complex Monge-Ampere

equation (letting F to be the product of eigenvalues and γ = 0). However, the theory

developed here does not apply to these cases due to constraints on γ and β.

In our research project, we would like to consider more general fully non-linear

equations. Over the recent years, such equations are becoming more significant in

different areas of geometry.
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