
Ehresmann’s Theorem
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Ehresmann’s Theorem states that every proper submersion is a locally-trivial
fibration. In these notes we go through the proof of the theorem. First we discuss
some standard facts from differential geometry that are required for the proof.

1 Preliminaries

Theorem 1 .1 (Rank Theorem) 1 Suppose M and N are smooth manifolds of dimen-
sion m and n respectively, and F : M → N is a smooth map with a constant rank k.
Then given a point p ∈M there exists charts (x1, . . . , xm) centered at p and (v1, . . . , vn)
centered at F(p) in which F has the following coordinate representation:

F(x1, . . . , xm) = (x1, . . . , xk, 0, . . . , 0)

Definition 1 .1 Let X and Y be vector fields onM and N respectively and F :M→ N

a smooth map. Then we say that X and Y are F-related if DF(X|p) = Y|F(p) for all p ∈M
(or DF(X) = Y ◦ F).

Definition 1 .2 Let X be a vector field on M. Then a curve c : [0, 1]→M is called
an integral curve for X if ċ(t) = X|c(t), i.e. X at c(t) forms the tangent vector of the
curve c at t.

Theorem 1 .2 (Fundamental Theorem on Flows) 2 Let X be a vector field on M. For
each p ∈ M there is a unique integral curve cp : Ip → M with cp(0) = p and ċp(t) =

Xcp(t).

Notation: We denote the integral curve for X starting at p at time t by φtX(p).

Proposition 1 .1 X and Y are F-related iff F ◦φtX = φtY ◦ F whenever both sides are
defined.

Proof. (⇐)

1Theorem 5.13 in [2]
2Theorem 12.9 & 12.10 in [2]
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Thus X and Y are F-related.
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From DF(X) = Y ◦ F we get that
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This shows that F ◦φtX is an integral curve of Y. At t = 0 we have

F ◦φtX
∣∣
t=0

= φtY ◦ F
∣∣
t=0

So by uniqueness of integral curves, F ◦ φtX = φtY ◦ F whenever both sides are
defined.

2 Proper Submersions

Definition 2 .1 Let F :M→ N be a smooth map. Then F is called a submersion if
rankp(DF) = dim(N) for all p in M.

Definition 2 .2 A mapping F :M→ N is called proper if F−1(K) is compact for any
compact set K in N.

Theorem 2 .1 Let F :M → N be a submersion. Then given any vector field Y in N,
there are vector fields X in M that are F-related to Y.

Proof. Let dim(M) = m and dim(N) = n. Then by rank theorem, given any p ∈M
there exists local charts x : U→ Rm and y : V → Rn such that p ∈ U and F(p) ∈ V with,

y ◦ F ◦ x−1(x1, . . . , xm) = (x1, . . . , xn)

Note that m > n for a submersion.

We claim that
∂

∂yi
and

∂

∂xi
are F-related vector fields for i = 1, 2, . . . ,n.
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We compute DF in these coordinates:

DF =


∂F1
∂x1

. . .
∂F1
∂xm

... . . . ...
∂Fn

∂x1
. . .

∂Fn

∂xm



=


1 . . . 0 0 . . . 0
... . . . ...

... . . . ...
... . . . ...

... . . . ...
0 . . . 1 0 . . . 0



=
(
In×n O(m−n)×n

)
So,

DF

(
∂

∂xi

)
=


1 . . . 0 0 . . . 0
... . . . ...

... . . . ...
... . . . ...

... . . . ...
0 . . . 1 0 . . . 0




0
...
1
...
0

 ithposition

=
∂

∂yi

for 1 6 i 6 n.

Thus, if Y =
n∑
i=1
Yi
∂

∂yi
is a vector field on N, then X =

n∑
i=1
Yi ◦ F ∂

∂xi
is a vector field on

M that is F-related to Y. This gives the local construction. For a global construction,
we use partition of unity {λα} subordinate to the covering by charts {Uα}. Let Xα be
F-related to Y in each Uα. Then we get the required vector field by defining
X =
∑
α
λαXα.

DF(X) = DF

(∑
α

λαXα

)
=
∑
α

λαDF(Xα)

=
∑
α

λαY ◦ F

= Y ◦ F
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Proposition 2 .1 Let F be proper, X and Y be F-related vector fields. If F(p) = q and
φtY(q) is defined on [0,b), then φtX(p) is also defined on [0,b). That is, F ◦φtX = φtY ◦ F
holds for as long as right hand side is defined.

Proof. We show this by contradiction. Assume φtX is defined on [0,a) for some a < b.
Let K = F−1{φtY(q) : t ∈ [0,a]}. Then K is compact since F is proper. The integral curve
t 7→ φtX(p) is contained in K for all t ∈ [0,a] because of Proposition 1.1. This is not
possible if a is finite because the solutions to a linear ODE cannot be contained in a
compact set.

3 Ehresmann’s Theorem

Definition 3 .1 A locally-trivial fibration F :M→ N is a smooth map such that for
every p ∈ N there is a neighborhood U of p that satisfies the following two conditions:

(i) There is a diffeomorphism Φ : F−1(U)→ U× F−1(p).

(ii) The following diagram commutes,

F−1(U) U× F−1(p)

U

F

Φ

prU

Example 3 .1 Projection π : S1 × S1 → S1 gives a locally-trivial fibration.

π

T2

S1

U

π−1(U)

π−1(U) ∼= U × S1 ∼= U × π−1(p)

p

1

Figure 1: Fibration of S1 by T2

Theorem 3 .1 (Ehresmann) If F :M→ N is a proper submersion, then it is a locally-
trivial fibration.
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Remark: Consider the special case when the locally-trivial fibration F :M→ N is a
vector bundle. Then it is not too difficult to show that, for F :M→ N, the existence of
local-trivializations is equivalent to the existence of locally-trivializing sections 3. So it
is enough to construct such sections to show that the bundle is locally trivial. For
example, we can show that the tangent bundle of a manifold is locally trivial by using

the local sections
{ ∂

∂x1
, . . . ,

∂

∂xn

}
on charts4. But this is not possible for surjective

submersions, as there is no additional structure on the fibers.

Proof. Since the fibration is defined locally with respect to N, we can assume without
loss of generality that N = Rn. Then we need to show that F−1(Rn) ∼= Rn × F−1(0).

x1

x3

x2

F -related

∂

∂x2

∂

∂x1

X2

X1

Integral curves

M

R3

1

Figure 2: F-related vector fields

We can map the fibers in F−1(Rn) to the single fiber F−1(0) in a diffeomorphic way.
This is done by moving the fibers along integral curves of some set of vector fields, in
such a way that the flow takes each fiber to F−1(0). These vector fields are chosen to
be F-related to some locally trivial sections of TN, so as to satisfy all the requirements.

3set of smooth sections that spans the vector spaces of the bundle point-wise.
4The corresponding local trivialization is given by

Φ :π−1(U)→ U×Rn(
x, fi(x)

∂

∂xi

)
7→
(
x, f1(x), f2(x), . . . , fn(x)

)
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From Theorem 2.1 we know that there exists vector fields Xi that are F-related to
∂

∂xi

for each 1 6 i 6 n. Let φtX1 ,φtX2 , . . . ,φtXn denote the integral curves of X1, . . . ,Xn. From
Proposition 2.1, we know that these integral curves are defined for all time t ∈ [0,∞).

Define G : F−1(Rn)→ Rn × F−1(0) by,

G(z) =
(
F(z),φ−tn

Xn
◦ · · · ◦φ−t1

X1
(z)
)

where F(z) = (t1, . . . , tn).

We now show that G is a diffeomorphism:

• Bijective: Since G has a well-defined inverse given by G−1(t1, . . . , tn, x) = φt1X1 ◦ · · · ◦
φtnXn(x).

• Smooth: Since φtX(z) depends smoothly on z and since F is smooth.5

So G is a diffeomorphism. The commutativity of the diagram is immediate from the
way G is defined. Thus F is a locally-trivial fibration.

4 Applications and Examples

Following are some immediate consequences of the Ehresmann’s theorem.

Corollary 4 .1 Any two fibers of a proper submersion are diffeomorphic.

Corollary 4 .2 (Basic Lemma in Morse Theory) Let F :M→ R be a proper map. If F
is regular on (a,b) ⊂ R, then F−1((a,b)) ∼= (a,b)× F−1(c) for all c ∈ (a,b).

Corollary 4 .3 (Reeb’s Sphere theorem) Let M be a closed6 manifold that admits a
map with two non-degenerate critical points. Then M is homeomorphic to a sphere.

Sketch of the proof. Let dim(M) = n.
Let p1 and p2 be the critical points where the mapping f : M → [a,b] attains its
maximum and minimum respectively. Then by Morse theorem, f(x) = x21 + · · ·+ x2n
and f(y) = −y21 − · · ·− y2n in some charts x and y near p2 and p1 respectively.

5solutions of linear ODE depends smoothly on the initial data
6compact manifold with no boundary
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p1

p2

p1

p2

f−1((b− ε, b))

f−1((a+ ε, b− ε))

f−1((a, a+ ε))

M

∼=

1

Figure 3: Top and bottom sections are disks with boundaries Sn−1

We can see that f−1((b− ε,b)) and f−1((a,a+ ε)) has to look like disks. The function f
has to be regular on (a+ ε,b− ε), as there are only two critical points on M. So, by
Cor 4.2 f−1((a+ ε,b− ε)) ∼= (a+ ε,b− ε)× f−1(a+ ε). The right hand side here is
homeomorphic to an n-dim cylinder, since f−1(a+ ε) is an (n− 1)-sphere (being the
boundary of an n-disk). So combining all these, we get M as two disks attached to the
boundary of a cylinder. Hence M is homeomorphic to a sphere.

Ehresmann’s theorem can be used to show that projection of spheres onto projective
spaces are fibrations:

Example 4 .1 Consider the projection map p : S3 → CP1. p is proper since both S3

and CP1 are compact, Hausdorff spaces. Hence, by Ehresmann’s theorem, p : S3 →
CP1 is a locally-trivial fibration.

We see an example showing that F being proper is necessary:

Example 4 .2 Consider the projection map to the first co-ordinate p : Rn − {0}→ R.
This is a surjective submersion. But it is not locally trivial because p−1(0)×U is not
simply connected for any open ball U around zero. This map is not proper.

Vector bundles are locally-trivial fibrations that are not proper. So the converse of
Ehresmann’s theorem is not true. One last remark is that locally-trivial fibrations
satisfy the homotopy lifting property. This allows us to compute topological
invariants of the manifolds involved.
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