Ehresmann’s Theorem
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Ehresmann’s Theorem states that every proper submersion is a locally-trivial
fibration. In these notes we go through the proof of the theorem. First we discuss
some standard facts from differential geometry that are required for the proof.

1  Preliminaries

THEOREM 1.1 (Rank Theorem) * Suppose M and N are smooth manifolds of dimen-
sion m and n respectively, and F: M — N is a smooth map with a constant rank k.
Then given a point p € M there exists charts (x'!,...,x™) centered at p and (v',...,v")
centered at F(p) in which F has the following coordinate representation:

F(x', ..., x™) = (x,...,%5,0,...,0)

DEFINITION 1.1 Let Xand Y be vector fields on M and N respectively and F: M — N
a smooth map. Then we say that X and Y are F-related if DF(X[,) = Yl¢(,) for allp € M
(or DF(X) =YoF).

DEFINITION 1.2 Let X be a vector field on M. Then a curve c: [0,1] — M is called
an integral curve for X if ¢(t) = X|.), i.e. X at c(t) forms the tangent vector of the
curve c at t.

THEOREM 1.2 (Fundamental Theorem on Flows) 2 Let X be a vector field on M. For
each p € M there is a unique integral curve c,: I, = M with ¢,(0) = p and ¢,(t) =

ch (t] .
Notation: We denote the integral curve for X starting at p at time t by ¢ (p).

ProrosIiTION 1.1 X and Y are F-related iff Fo ¢p§ = ¢! o F whenever both sides are
defined.

Proof. (<)

Theorem 5.13 in [2]
2Theorem 12.9 & 12.10 in [2]



Thus X and Y are F-related.
(=)

From DF(X) =Y oF we get that

d t d
S Fodk = DF(dt(bX)
— DF <X‘¢;<>

= Y|F0¢;‘(

This shows that Fo ¢ is an integral curve of Y. At t =0 we have

Fodx|i_o=dvoF|
So by uniqueness of integral curves, Fo ¢ = ¢! o F whenever both sides are
defined.

2 Proper Submersions

DEFINITION 2.1 Let F: M — N be a smooth map. Then F is called a submersion if
rank, (DF) = dim(N) for all p in M.

DEFINITION 2.2 A mapping F: M — N is called proper if F~'(K) is compact for any
compact set K in N.

THEOREM 2.1 Let F: M — N be a submersion. Then given any vector field Y in N,
there are vector fields X in M that are F-related to Y.

Proof. Let dim(M) = m and dim(N) = n. Then by rank theorem, given any p ¢ M
there exists local charts x : U — R™ and y : V — IR™ such that p € U and F(p) € V with,

yoFqu(X],...,Xm)

Note that m > n for a submersion.

We claim that i and i are F-related vector fields fori=1,2,...,n.
oyt oxt



We compute DF in these coordinates:

Clal of
ox! oxm
DF = : :
OFn OFn
ox! oxm
1 00 0
0 1 0 0
= (Inxn O(m—n)xn)
So,
1 0 0 0 0
0
DF i) : 1 +——— it"position
0 1 0 0 0
_ 0
= 3

for1 <i<n.

no 9 noo d

Thus, if Y=)_ Yla—yi is a vector field on N, then X =) Y'o Fﬁ is a vector field on
i=1 i=1 X

M that is F-related to Y. This gives the local construction. For a global construction,

we use partition of unity {A4} subordinate to the covering by charts {U,}. Let X, be

F-related to Y in each Uy. Then we get the required vector field by defining

X =Y AaXa
04

DF(X) = DF < Z }\“X“>
= AaDF(Xy)

:ZA“YOF
X

=YoF



PrROPOSITION 2.1 Let F be proper, X and Y be F-related vector fields. If F(p) = q and
$Y(q) is defined on [0,b), then ¢} (p) is also defined on [0,b). That is, Fo ¢} = Y oF
holds for as long as right hand side is defined.

Proof. We show this by contradiction. Assume ¢} is defined on [0, a) for some a < b.
Let K =F {¢pY(q) : t € [0,al}. Then K is compact since F is proper. The integral curve
t — ¢%(p) is contained in K for all t € [0, a] because of Proposition 1.1. This is not
possible if a is finite because the solutions to a linear ODE cannot be contained in a
compact set.

3 Ehresmann’s Theorem

DEFINITION 3.1 A locally-trivial fibration F: M — N is a smooth map such that for
every p € N there is a neighborhood U of p that satisfies the following two conditions:

(i) There is a diffeomorphism @ : F~'(U) — U x F~!(p).

(ii) The following diagram commutes,

FlU) —2— UuxF'(p)

\/

EXAMPLE 3.1 Projection 7t:S! x ST — S gives a locally-trivial fibration.

U

7 W U)X U x S'=U x 7 1(p)

Figure 1: Fibration of S! by T?

THEOREM 3.1 (Ehresmann) If F: M — N is a proper submersion, then it is a locally-
trivial fibration.



Remark: Consider the special case when the locally-trivial fibration F: M — N is a
vector bundle. Then it is not too difficult to show that, for F: M — N, the existence of
local-trivializations is equivalent to the existence of locally-trivializing sections 3. So it
is enough to construct such sections to show that the bundle is locally trivial. For
example, we can show that the tangent bundle of a manifold is locally trivial by using

the local sections { } on charts*. But this is not possible for surjective

ox!’ T oxn
submersions, as there is no additional structure on the fibers.

Proof. Since the fibration is defined locally with respect to N, we can assume without
loss of generality that N = R™. Then we need to show that F~'(R") = R™ x F~1(0).

Figure 2: F-related vector fields

We can map the fibers in F~(R™) to the single fiber F~'(0) in a diffeomorphic way.
This is done by moving the fibers along integral curves of some set of vector fields, in
such a way that the flow takes each fiber to F~'(0). These vector fields are chosen to
be F-related to some locally trivial sections of TN, so as to satisfy all the requirements.

3set of smooth sections that spans the vector spaces of the bundle point-wise.
4The corresponding local trivialization is given by

O (U) -5 UxR™

(x, £ (x) aii) = (% ), P (), 7 0)




. . 0
From Theorem 2.1 we know that there exists vector fields X; that are F-related to It
X

for each 1 <1 < n. Let ¢>;‘<1 , cl)')‘(z, ..., bk  denote the integral curves of X, ..., X,. From
Proposition 2.1, we know that these integral curves are defined for all time t € [0, c0).

Define G : F'(R™) — R™ x F~'(0) by,

G(z) = (F(z), bx.m 0+~ 0 by ' (2))
where F(z) = (t1,...,tn).
We now show that G is a diffeomorphism:

t

e Bijective: Since G has a well-defined inverse given by G (ty,..., th,x) = by,

b3 ().

O+++0

e Smooth: Since ¢} (z) depends smoothly on z and since F is smooth.>

So G is a diffeomorphism. The commutativity of the diagram is immediate from the
way G is defined. Thus F is a locally-trivial fibration.

4 Applications and Examples

Following are some immediate consequences of the Ehresmann’s theorem.

COROLLARY 4.1 Any two fibers of a proper submersion are diffeomorphic.

COROLLARY 4.2 (Basic Lemma in Morse Theory) Let F: M — R be a proper map. If F
is regular on (a,b) C R, then F'((a,b)) = (a,b) x F'(c) forall c € (a,b).

COROLLARY 4.3 (Reeb’s Sphere theorem) Let M be a closed® manifold that admits a
map with two non-degenerate critical points. Then M is homeomorphic to a sphere.

Sketch of the proof. Let dim(M) =n.

Let p; and p; be the critical points where the mapping f : M — [a,b] attains its
maximum and minimum respectively. Then by Morse theorem, f(x) = x§ + - + x4
and f(y) = —y3 —--- —y2 in some charts x and y near p, and p; respectively.

5solutions of linear ODE depends smoothly on the initial data
compact manifold with no boundary
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Figure 3: Top and bottom sections are disks with boundaries S™!

We can see that f'((b—¢,b)) and f'((a, a + €)) has to look like disks. The function f
has to be regular on (a+€,b —€), as there are only two critical points on M. So, by
Cor 4.2 f'((a+e,b—€)) = (a+e,b—¢)xf(a+e). The right hand side here is
homeomorphic to an n-dim cylinder, since f~'(a + €) is an (n — 1)-sphere (being the
boundary of an n-disk). So combining all these, we get M as two disks attached to the
boundary of a cylinder. Hence M is homeomorphic to a sphere.

Ehresmann’s theorem can be used to show that projection of spheres onto projective
spaces are fibrations:

EXAMPLE 4.1 Consider the projection map p : $> — CIP'. p is proper since both $3
and CIP' are compact, Hausdorff spaces. Hence, by Ehresmann’s theorem, p : $3 —
CP' is a locally-trivial fibration.

We see an example showing that F being proper is necessary:

ExAaMPLE 4.2 Consider the projection map to the first co-ordinate p : R™ — {0} — RR.
This is a surjective submersion. But it is not locally trivial because p*1 (0) x U is not
simply connected for any open ball U around zero. This map is not proper.

Vector bundles are locally-trivial fibrations that are not proper. So the converse of
Ehresmann’s theorem is not true. One last remark is that locally-trivial fibrations
satisfy the homotopy lifting property. This allows us to compute topological
invariants of the manifolds involved.
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