GAUSS-BONNET THEOREM

MATHEW GEORGE

1. INTRODUCTION

In this project we will prove one of the most fundamental theorems in differential
geometry, namely the Gauss-Bonnet Theorem. The theorem is stated as follows. Let
M be an oriented, connected, smoothly triangulated, Riemannian 2-manifold. Then,

/M KdV = 2my(M)

where x (M) is the Euler characteristic and K is the curvature of M.
This is one of the early theorems in differential geometry that relates the geometry of
a surface to its topology. The left-hand side of the equation seem to depend on the
Riemannian metric given to the surface. But this theorem shows that it does not,
since the right-hand side is independent of the metric defined. Similarly, it shows
that the Euler characteristic, which appears to depend on the triangulation given, is
in-fact, independent of the triangulation given to the surface.

2. BACKGROUND

A smoothly triangulated manifold is a triple (M, K, h), where X is a C'* manifold,
K is a simplicial complex, and h : [K] — M is a homeomorphism such that for each
simplex s of K, the map h|y — X has an extension A to a neighbourhood U of [s]
in the plane of [s], such that h: U — M is a smooth submanifold.

Remark 2.1. For a triangulated 2-manifold M,

X(M) =ng —ny + no
where n; is the number of i-simplices in the triangulation of M.

Let M be a smoothly triangulated 2-manifold and w be a 2-form on M. Let
h: [K] — M be the smooth triangulation. Define the integral of w over M as,

/M“:Z/<s> B ()

where the sum runs over all the 2-simplices of K.

A Riemannian manifold (M, g) is a smooth manifold M, equipped with an inner
product g, on the tangent space 7T,,M at each point p, that varies smoothly on M, in
the sense that if X and Y are smooth vector fields on M, then the map p — g,(X,,Y,)
is a smooth function.

Let M be an oriented Riemannian 2-manifold. Let U be an open set in M. An
oriented orthonormal frame is a choice of a set of smooth vector fields {e;,es} on U

such that {e;(p), e2(p)} forms an oriented orthonormal basis at each point p of U.
1
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Remark 2.2. Oriented orthonormal frames can be constructed on any co-ordinate
chart U of M. For let {x;, 22} be co-ordinate functions on U. We can use Gram-
Schmidt method on the co-ordinate vector fields {2 82} to get an orthonormal

Oz’ dxa
frame {e1,e3} on U.

Define the dual frame of {e1,e2} in U to be the set of 1-forms {w;,ws} in U such
that {w1(p),w2(p)} is the dual basis of {e1(p), e2(p)} at each point p of U.

The 2-form w; A ws is independent of the co-ordinates used and hence defines a
global non-zero 2-form on M called the volume element(dV') of M.

Theorem 2.3. Let M be a smooth oriented Riemannian 2-manifold. Let {e1,es} be
an orthonormal frame in a co-ordinate neighbourhood U of M. Let {wy,ws} be the
corresponding dual frame. Then there exists a unique 1-form ¢ on U such that the
following equations hold,

(].) dw1 = gb A W9

(2) dCUQ = —gb /\wl

(3) dqb = —le VAN (o))
where K is a smooth function on U which is independent of the co-ordinates used

and hence is a smooth function on all of M. K 1is called as the curvature and ¢ the
connection 1-form.

Proof. wy A ws spans the space of all two forms at each point of U. So we get
dwl == fw1 A W9
dWQ = hw1 N\ Wo
for some smooth functions f and h in U. Taking ¢ = fw; + hwy gives the result. [
Remark 2.4. These equations are called Cartan’s structural equations.
Let « : [a,b] — M be a smooth curve parametrized by arc length. Let o/(t) =
(a(t),&(t)). Then the geodesic curvature ko (t) of o at t € [a,b] is ¢(da/(d/dt)), where

¢ is the connection 1-form. Define 7(a) = f: ko (t)dt.
Geodesic curvature measures how far a curve is from being ‘straight’ on a manifold.

3. PROOF OF THE THEOREM

The theorem is first proved for a single 2-simplex, which will then be used to prove
the general case. This proof involves two steps. Intuitively the curvature K of M
measures the rotation obtained by parallel translation of vectors around small closed
curves in M. More precisely, this angle of rotation can be shown to be equal to
f<s> h*(KdV'), which is exactly the left-hand side of Gauss-Bonnet equation for a 2-
simplex. The same angle can be measured in a different way using properties of the
connection 1-form on M and the geodesic curvature of the smooth curve over which
we translate the vector. Equating these two angles gives the result for 2-simplices.

Let M be an oriented Riemannian manifold of dimension 2. Let T'(M) denote the
tangent bundle of M. Let

S(M) ={(m,v) € T(m) :<v,v>=1}
S(M) is called the sphere bundle of M.
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A connection on S(M) is a choice of a two dimensional subspace H(m,v) of
T(S(M)) = UpesanyT(S(M), x) at each point (m,v) € S(M) such that the following
hold.

(1) T(S(M),(m,v)) = H(m,v) & dr*(0) where 7 : S(M) — M is the pro-
jection map; that is, the subspace H(m,v) is complementary to the vertical
space(r71(0)) at (m,v).

(2) dg(H(m,v)) = H(m, gv) for each g € SL.

(3) The choice of H is smooth; that is at each point (m,v) € S(M), there exists

an open set U about (m,v) and smooth vector fields X and Y defined on U
such that X,Y spans H at each point of U.

Connection provides a way for lifting smooth curves in M to S(M) as given by the
next theorem.

Theorem 3.1. Let K be a connection on S(M). Let o : [a,b] — M be a broken C*
curve in M. Let v € T(M,a(a)) with ||[v|| = 1. Then there erists a unique broken
C> curve & : [a,b] — S(M), called horizontal lift of a, through (a(a),v) such that

(1) Toa =«
(2) a € X(a(t))
(3) a(a) = (a(a),v)
The vector &(b) € T(M, (b)) is the parallel translate of v along a to a(b).
We skip the proof here since it is highly technical.

As mentioned before, the rotation of a vector during parallel translation along a
curve « can be measured using the properties of the connection 1-form. In-order to
do this we introduce the following lemma.

Lemma 3.2. Let « : [a,b] — M be a smooth curve in M. Let & : [a,b] — S(M)
and f3 : la,b] — S(M) be smooth curves such that mo & = « and o B = . Suppose
& is horizontal relative to some connection K on S(M), that is & € K(a(t)) for
all t € [a,b]. Let the connection 1-form be ¢. Then there erxists a smooth function

0 : la,b] - R such that
(1) 6 =e"Ma(t)

() 6(3(t) = % (1)
Furthermore, if &(a) = B(a), then 0 can be chosen such that 6(a) = 0.

Proof. Since unit vectors on a tangent space only differ by a rotation, we get

B(t) = g(t)a(t)
where ¢ : [a,b] — S! can be verified to be a smooth map. R is a covering space of
St with covering map p = . Now since [a, b] is simply connected, we can lift g to
amap 6 : [a,b] — R such that g(t) = ®). This proves (1). When &(a) = ((a), we
can choose 0 to be the lift starting at the origin so that 6(a) = 0.

Proof of (2) involves some manipulations of differential forms which is skipped here.
O

Now we give the result which relates curvature K on M to the rotation obtained
by parallel translation.
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Theorem 3.3. Let M be an oriented Riemannian 2-manifold. Let (s) be an oriented
2-simplex in R? and let h : [s] — M be a map with a smooth extension, mapping a
neighbourhood of [s] into M. Let « be a closed broken C*° curve in M obtained by
restricting h to 0(s). Then the rotation obtained by parallel translation around the

closed curve o is
ooy W (KAV)

so that the angle of rotation is f<5> h*(KdV)

Proof. We give a sketch of the proof here.

Let (s) = (vg, v1,v9). Then [s]| can be covered by line segments starting at v; to the
opposite edge. h maps these line segments to curves in M which cover h([s]). Consider
the horizontal lifts of these curves in S(M) and let h : [s] — S(M) be obtained by
sending each of these line segments to their corresponding lifts in S(M) through a
fixed vector w; at h(v;). w; is assumed to be obtained by parallel translation of a
vector wy at h(vy) over ayy vy. Let = k.

It can be shown using Cartan’s structural equation and Stoke’s theorem that

. B - d
/<S> W) = = [ ola

Let & be the horizontal lift of a through wy. Then it is clear that & and S coincide
on the sides hy, o) and Ay, v, of h(sy by construction. Now on the third side Ay, ),
using lemma 3.2 we have

(1) B =elDa(t)
(2) ¢p(dB(L)) =4

for f: [ve,v0] — R with f(vy) = 0.

But & is the horizontal lift of «, so that &(vg) is the parallel translate of wy around
a. On the other hand, B(vo) = wy. Hence /(") is just the rotation mapping the
parallel translate of w, around « into wy; that is, e /() rotates wy into its parallel
translate around a. Now combining the two equations above gives,

/( WRAV) = (o)

= the angle of rotaton from wy to its parallel translate around o

O

The machinery developed so far can be used to prove the Gauss-Bonnet theorem
for 2-simplices.

Lemma 3.4. (The Gauss-Bonnet Theorem for 2-simplices) Let M be an oriented
Riemannian 2-manifold. Let (s) be an oriented 2-simplex in R?, and let h : [s] — M
be a map which has a smooth non-singular extension mapping a neighbourhood of [s]
into M. Let « be the closed broken C* curve in M obtained by restricting h to O(s).
Then

/ R (KdV) = —7(a) + Z interior angles of h[s] —
(s)
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Proof. Suppose « is broken up into three of its smooth components, «g, ay, as so that
7(a) = Y. 7(a;) and a; : [a;, a41] — M with ag = a and a3 = b. We claim that, ¢7(*?)
is the rotation from the parallel translate of d;(a;) to @;(a;4+1). If B; is the horizontal
lift of oy with §;(a;) = a;(a;) then by Lemma 3.2, there exists a smooth function
0 : [a;, aiy1] — R with 6(a;) = 0 and ¢(&/i(t)) = %(t). Then,

/fli+1 qﬁ(da;(%))dt _ /aH—1 qﬁ(oglz(t))dt = 9(ai+1)

a;
This verifies the claim using Lemma 3.2.1.
Adding the exterior angles around each vertex (by which &;(a;41) is rotated to
&iy1(air1)), we get total rotation by parallel translation around « to be equal to
e T(@)=X exteriorangles  Honce by taking logarithms, we get

/ R*(KdV) = —7(a) — Z exterior angles + 27l
(s)

where [ is an integer. Now suppose pg is a flat Riemannian metric in a neighbourhood
of h[s] (say transferred from R? via h). Then K = 0, 7(a) = 0, and ) exterior
angles is 2m. Hence [ = 1 for flat metrics. Suppose p is the given metric, and let
pr = tpo+ (1 —t)p be a family of metrics, t € [0,1]. [ is a continuous function of ¢
since K, 7:(«) and exterior angles of p; are continuous. Since [ is an integer for all ¢
and equal to 1 for ¢t = 0, we obtain [ = 1.

Since interior angle + exterior angle = 7, the lemma is proved.

O
Now we give the proof of Gauss-Bonnet theorem using the previous result.

Theorem 3.5. (Gauss-Bonnet Theorem) Let M be an oriented, connected, smoothly
triangulated, Riemannian 2-manifold. Then

/ KdV =2mx(M)
M
where x (M) is the Fuler characteristic of M.

Proof. It can be easily verified that each 1-simplex in M is an edge of exactly two 2-
simplices in M. Thus the total number number n; of 1-simplices in M is given by n, =
3ny/2, where ny is the number of 2-simplices in M. Hence the Euler characteristic is
given by

X(M) = ng—n1+n2 :TLO—TLQ/2
where ng is the number of vertices in the triangulation of M.

/ KdV =) / h*(KdV)
M s J(s)
= Z(—T(@(S)) + Zinterior angles of hls| — )
= _T(Z Js) + Z (Z interior angles of h[s] — nzﬂ')

But ) 0s is zero since each 1-simplex in the boundary lies in exactly two 2-simplices
which are coherently oriented and hence has opposite orientations. So they cancel

in pairs in the sum. >, (Z interior angles of h[s]) equals the sum over all vertices
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v in M of the sum of the interior angles at v of all 2-simplices with v as a vertex.
Taking a coordinate neighbourhood of v contained in Star(v), we see that the sum
of the interior angles at v is exactly 27. Hence

(1)
(2)

(3)

(4)

/ KdV = 27'('71/0 — NaoT
M

= 2r(ng — ) = X(M)

4. SOME CONSEQUENCES OF (GAUSS-BONNET THEOREM

S? cannot admit a Riemannian metric with curvature K < 0 everywhere.
This follows from the fact that x(S?) = 2.

The 2-dimensional torus cannot admit a Riemannian metric with K < 0 ev-
erywhere or K > 0 everywhere. If K > 0 everywhere or if K < 0 everywhere,
then K = 0 identically. This follows from the fact that x(7?) = 0.

An orientable surface of genus g > 2 cannot admit a Riemannian metric with
curvature K > 0 everywhere. This is because y(M) = 2— 2¢ for an orientable
surface of genus g.

Let M be as in the theorem. Suppose on M there exists a smooth vector

field which is never zero. Then x(M) = 0. In particular, there exist no
non-vanishing vector field on any even dimensional sphere.

Proof. Let X be a non-vanishing vector field on M. Then we can take
er = X/||X]| and es to be the unique vector field such that {e;,es} forms
an orthonormal frame on all of M. So we can define the corresponding dual
frame {wy,ws} globally on M. Now as in the proof of Cartan’s equations
we can find a unique 1-form ¢ defined globally on M, such that d¢ = KdV'.
Hence KdV becomes an exact form on M. So we get

/MKdV:/Mchb: | 6=0

using Stoke’s Theorem.
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