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1. Introduction

In this project we will prove one of the most fundamental theorems in di�erential
geometry, namely the Gauss-Bonnet Theorem. The theorem is stated as follows. Let
M be an oriented, connected, smoothly triangulated, Riemannian 2-manifold. Then,∫

M

KdV = 2πχ(M)

where χ(M) is the Euler characteristic and K is the curvature of M .
This is one of the early theorems in di�erential geometry that relates the geometry of
a surface to its topology. The left-hand side of the equation seem to depend on the
Riemannian metric given to the surface. But this theorem shows that it does not,
since the right-hand side is independent of the metric de�ned. Similarly, it shows
that the Euler characteristic, which appears to depend on the triangulation given, is
in-fact, independent of the triangulation given to the surface.

2. Background

A smoothly triangulated manifold is a triple (M,K, h), where X is a C∞ manifold,
K is a simplicial complex, and h : [K]→M is a homeomorphism such that for each
simplex s of K, the map h|[s] → X has an extension hs to a neighbourhood U of [s]
in the plane of [s], such that h : U →M is a smooth submanifold.

Remark 2.1. For a triangulated 2-manifold M ,

χ(M) = n0 − n1 + n2

where ni is the number of i-simplices in the triangulation of M .

Let M be a smoothly triangulated 2-manifold and ω be a 2-form on M . Let
h : [K]→M be the smooth triangulation. De�ne the integral of ω over M as,∫

M

ω =
∑
s

∫
〈s〉
hs
∗(ω)

where the sum runs over all the 2-simplices of K.

A Riemannian manifold (M, g) is a smooth manifold M , equipped with an inner
product gp on the tangent space TpM at each point p, that varies smoothly on M , in
the sense that ifX and Y are smooth vector �elds onM , then the map p 7→ gp(Xp, Yp)
is a smooth function.

Let M be an oriented Riemannian 2-manifold. Let U be an open set in M . An
oriented orthonormal frame is a choice of a set of smooth vector �elds {e1, e2} on U
such that {e1(p), e2(p)} forms an oriented orthonormal basis at each point p of U .
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Remark 2.2. Oriented orthonormal frames can be constructed on any co-ordinate
chart U of M . For let {x1, x2} be co-ordinate functions on U . We can use Gram-
Schmidt method on the co-ordinate vector �elds { ∂

∂x1
, ∂
∂x2
} to get an orthonormal

frame {e1, e2} on U .

De�ne the dual frame of {e1, e2} in U to be the set of 1-forms {ω1, ω2} in U such
that {ω1(p), ω2(p)} is the dual basis of {e1(p), e2(p)} at each point p of U .
The 2-form ω1 ∧ ω2 is independent of the co-ordinates used and hence de�nes a

global non-zero 2-form on M called the volume element(dV ) of M .

Theorem 2.3. Let M be a smooth oriented Riemannian 2-manifold. Let {e1, e2} be
an orthonormal frame in a co-ordinate neighbourhood U of M . Let {ω1, ω2} be the
corresponding dual frame. Then there exists a unique 1-form φ on U such that the
following equations hold,

(1) dω1 = φ ∧ ω2

(2) dω2 = −φ ∧ ω1

(3) dφ = −Kω1 ∧ ω2

where K is a smooth function on U which is independent of the co-ordinates used
and hence is a smooth function on all of M . K is called as the curvature and φ the
connection 1-form.

Proof. ω1 ∧ ω2 spans the space of all two forms at each point of U . So we get

dω1 = fω1 ∧ ω2

dω2 = hω1 ∧ ω2

for some smooth functions f and h in U . Taking φ = fω1 + hω2 gives the result. �

Remark 2.4. These equations are called Cartan's structural equations.

Let α : [a, b] → M be a smooth curve parametrized by arc length. Let α′(t) =
(α(t), α̇(t)). Then the geodesic curvature kα(t) of α at t ∈ [a, b] is φ(dα′(d/dt)), where

φ is the connection 1-form. De�ne τ(α) =
∫ b
a
kα(t)dt.

Geodesic curvature measures how far a curve is from being `straight' on a manifold.

3. Proof of the theorem

The theorem is �rst proved for a single 2-simplex, which will then be used to prove
the general case. This proof involves two steps. Intuitively the curvature K of M
measures the rotation obtained by parallel translation of vectors around small closed
curves in M . More precisely, this angle of rotation can be shown to be equal to∫
〈s〉 h

∗(KdV ), which is exactly the left-hand side of Gauss-Bonnet equation for a 2-

simplex. The same angle can be measured in a di�erent way using properties of the
connection 1-form on M and the geodesic curvature of the smooth curve over which
we translate the vector. Equating these two angles gives the result for 2-simplices.

Let M be an oriented Riemannian manifold of dimension 2. Let T (M) denote the
tangent bundle of M . Let

S(M) = {(m, v) ∈ T (m) :< v, v >= 1}
S(M) is called the sphere bundle of M .
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A connection on S(M) is a choice of a two dimensional subspace H(m, v) of
T (S(M)) = ∪x∈s(M)T (S(M), x) at each point (m, v) ∈ S(M) such that the following
hold.

(1) T (S(M), (m, v)) = H(m, v) ⊕ dπ−1(0) where π : S(M) → M is the pro-
jection map; that is, the subspace H(m, v) is complementary to the vertical
space(π−1(0)) at (m, v).

(2) dg(H(m, v)) = H(m, gv) for each g ∈ S1.

(3) The choice of H is smooth; that is at each point (m, v) ∈ S(M), there exists
an open set U about (m, v) and smooth vector �elds X and Y de�ned on U
such that X, Y spans H at each point of U .

Connection provides a way for lifting smooth curves in M to S(M) as given by the
next theorem.

Theorem 3.1. Let K be a connection on S(M). Let α : [a, b]→M be a broken C∞

curve in M . Let v ∈ T (M,α(a)) with ||v|| = 1. Then there exists a unique broken
C∞ curve α̃ : [a, b]→ S(M), called horizontal lift of α, through (α(a), v) such that

(1) π ◦ α̃ = α

(2) ˙̃α ∈ K(α̃(t))

(3) α̃(a) = (α(a), v)

The vector α̃(b) ∈ T (M,α(b)) is the parallel translate of v along α to α(b).

We skip the proof here since it is highly technical.

As mentioned before, the rotation of a vector during parallel translation along a
curve α can be measured using the properties of the connection 1-form. In-order to
do this we introduce the following lemma.

Lemma 3.2. Let α : [a, b] → M be a smooth curve in M . Let α̃ : [a, b] → S(M)

and β̃ : [a, b]→ S(M) be smooth curves such that π ◦ α̃ = α and π ◦ β̃ = α. Suppose
α̃ is horizontal relative to some connection K on S(M), that is ˙̃α ∈ K(α̃(t)) for
all t ∈ [a, b]. Let the connection 1-form be φ. Then there exists a smooth function
θ : [a, b]→ R such that

(1) β̃ = eiθ(t)α̃(t)

(2) φ( ˜̇β(t)) = dθ
dt
(t)

Furthermore, if α̃(a) = β̃(a), then θ can be chosen such that θ(a) = 0.

Proof. Since unit vectors on a tangent space only di�er by a rotation, we get

β̃(t) = g(t)α̃(t)

where g : [a, b] → S1 can be veri�ed to be a smooth map. R is a covering space of
S1 with covering map p = eir. Now since [a, b] is simply connected, we can lift g to

a map θ : [a, b] → R such that g(t) = eiθ(t). This proves (1). When α̃(a) = β̃(a), we
can choose θ to be the lift starting at the origin so that θ(a) = 0.
Proof of (2) involves some manipulations of di�erential forms which is skipped here.

�

Now we give the result which relates curvature K on M to the rotation obtained
by parallel translation.
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Theorem 3.3. Let M be an oriented Riemannian 2-manifold. Let 〈s〉 be an oriented
2-simplex in R2 and let h : [s] → M be a map with a smooth extension, mapping a
neighbourhood of [s] into M . Let α be a closed broken C∞ curve in M obtained by
restricting h to ∂〈s〉. Then the rotation obtained by parallel translation around the
closed curve α is

e
∫
〈s〉 h

∗(KdV )

so that the angle of rotation is
∫
〈s〉 h

∗(KdV )

Proof. We give a sketch of the proof here.

Let 〈s〉 = 〈v0, v1, v2〉. Then [s] can be covered by line segments starting at v1 to the
opposite edge. hmaps these line segments to curves inM which cover h([s]). Consider

the horizontal lifts of these curves in S(M) and let h̃ : [s] → S(M) be obtained by
sending each of these line segments to their corresponding lifts in S(M) through a
�xed vector w1 at h(v1). w1 is assumed to be obtained by parallel translation of a

vector w0 at h(v0) over α〈v0,v1〉. Let β̃ = h̃|〈s〉.
It can be shown using Cartan's structural equation and Stoke's theorem that∫

〈s〉
h∗(KdV ) = −

∫
∂s

φ(dβ̃(
d

dt
))dt

Let α̃ be the horizontal lift of α through w0. Then it is clear that α̃ and β̃ coincide
on the sides h〈v1,v0〉 and h〈v1,v2〉 of h〈s〉 by construction. Now on the third side h〈v2,v0〉,
using lemma 3.2 we have

(1) β̃ = eif(t)α̃(t)

(2) φ(dβ̃( d
dt
)) = df

dt

for f : [v2, v0]→ R with f(v2) = 0.

But α̃ is the horizontal lift of α, so that α̃(v0) is the parallel translate of w0 around

α. On the other hand, β̃(v0) = w0. Hence eif(v0) is just the rotation mapping the
parallel translate of w0 around α into w0; that is, e

−if(v0) rotates w0 into its parallel
translate around α. Now combining the two equations above gives,∫

〈s〉
h∗(KdV ) = −f(v0)

= the angle of rotaion from w0 to its parallel translate around α

�

The machinery developed so far can be used to prove the Gauss-Bonnet theorem
for 2-simplices.

Lemma 3.4. (The Gauss-Bonnet Theorem for 2-simplices) Let M be an oriented
Riemannian 2-manifold. Let 〈s〉 be an oriented 2-simplex in R2, and let h : [s]→M
be a map which has a smooth non-singular extension mapping a neighbourhood of [s]
into M . Let α be the closed broken C∞ curve in M obtained by restricting h to ∂〈s〉.
Then ∫

〈s〉
h∗(KdV ) = −τ(α) +

∑
interior angles of h[s]− π
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Proof. Suppose α is broken up into three of its smooth components, α0, α1, α2 so that
τ(α) =

∑
τ(αi) and αi : [ai, ai+1]→M with a0 = a and a3 = b. We claim that eiτ(αi)

is the rotation from the parallel translate of α̇i(ai) to α̇i(ai+1). If βi is the horizontal
lift of αi with βi(ai) = α̇i(ai) then by Lemma 3.2, there exists a smooth function
θ : [ai, ai+1]→ R with θ(ai) = 0 and φ(α̇′i(t)) =

dθ
dt
(t). Then,∫ ai+1

ai

φ(dα′i(
d

dt
))dt =

∫ ai+1

ai

φ(α̇′i(t))dt = θ(ai+1)

This veri�es the claim using Lemma 3.2.1.
Adding the exterior angles around each vertex (by which α̇i(ai+1) is rotated to

α̇i+1(ai+1)), we get total rotation by parallel translation around α to be equal to
e−τ(α)−

∑
exterior angles. Hence, by taking logarithms, we get∫

〈s〉
h∗(KdV ) = −τ(α)−

∑
exterior angles+ 2πl

where l is an integer. Now suppose ρ0 is a �at Riemannian metric in a neighbourhood
of h[s] (say transferred from R2 via h). Then K = 0, τ(α) = 0, and

∑
exterior

angles is 2π. Hence l = 1 for �at metrics. Suppose ρ is the given metric, and let
ρt = tρ0 + (1 − t)ρ be a family of metrics, t ∈ [0, 1]. l is a continuous function of t
since Kt, τt(α) and exterior angles of ρt are continuous. Since l is an integer for all t
and equal to 1 for t = 0, we obtain l = 1.
Since interior angle+ exterior angle = π, the lemma is proved.

�

Now we give the proof of Gauss-Bonnet theorem using the previous result.

Theorem 3.5. (Gauss-Bonnet Theorem) Let M be an oriented, connected, smoothly
triangulated, Riemannian 2-manifold. Then∫

M

KdV = 2πχ(M)

where χ(M) is the Euler characteristic of M .

Proof. It can be easily veri�ed that each 1-simplex in M is an edge of exactly two 2-
simplices inM . Thus the total number number n1 of 1-simplices inM is given by n1 =
3n2/2, where n2 is the number of 2-simplices in M . Hence the Euler characteristic is
given by

X(M) = n0 − n1 + n2 = n0 − n2/2

where n0 is the number of vertices in the triangulation of M .∫
M

KdV =
∑
s

∫
〈s〉
h∗(KdV )

=
∑
s

(−τ(∂〈s〉) +
∑

interior angles of h[s]− π)

= −τ(
∑

∂s) +
∑
s

(∑
interior angles of h[s]− n2π

)
But

∑
∂s is zero since each 1-simplex in the boundary lies in exactly two 2-simplices

which are coherently oriented and hence has opposite orientations. So they cancel

in pairs in the sum.
∑

s

(∑
interior angles of h[s]

)
equals the sum over all vertices
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v in M of the sum of the interior angles at v of all 2-simplices with v as a vertex.
Taking a coordinate neighbourhood of v contained in Star(v), we see that the sum
of the interior angles at v is exactly 2π. Hence∫

M

KdV = 2πn0 − n2π

= 2π(n0 −
n2

2
) = χ(M)

�

4. Some Consequences of Gauss-Bonnet Theorem

(1) S2 cannot admit a Riemannian metric with curvature K ≤ 0 everywhere.
This follows from the fact that χ(S2) = 2.

(2) The 2-dimensional torus cannot admit a Riemannian metric with K < 0 ev-
erywhere or K > 0 everywhere. If K ≥ 0 everywhere or if K ≤ 0 everywhere,
then K = 0 identically. This follows from the fact that χ(T 2) = 0.

(3) An orientable surface of genus g ≥ 2 cannot admit a Riemannian metric with
curvature K ≥ 0 everywhere. This is because χ(M) = 2−2g for an orientable
surface of genus g.

(4) Let M be as in the theorem. Suppose on M there exists a smooth vector
�eld which is never zero. Then χ(M) = 0. In particular, there exist no
non-vanishing vector �eld on any even dimensional sphere.

Proof. Let X be a non-vanishing vector �eld on M . Then we can take
e1 = X/||X|| and e2 to be the unique vector �eld such that {e1, e2} forms
an orthonormal frame on all of M . So we can de�ne the corresponding dual
frame {ω1, ω2} globally on M . Now as in the proof of Cartan's equations
we can �nd a unique 1-form φ de�ned globally on M , such that dφ = KdV .
Hence KdV becomes an exact form on M . So we get∫

M

KdV =

∫
M

dφ =

∫
∂M

φ = 0

using Stoke's Theorem.
�
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