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1 INTRODUCTION

In this project, we try to construct minimal surfaces using the method of mean curvature
flow. In recent years, the theory of manifolds evolving by geometric flows has been devel-
oped extensively. Mean curvature flow is one such PDE, that occurs naturally as the gradient
flow for the area functional of a surface. It is easy to see that equilibrium points of MCF are
minimal surfaces. This motivates us to use evolution of surfaces by MCF as an intricate but
effective method for constructing minimal surfaces.

2 BACKGROUND

2.1 MINIMAL SURFACES

Let Ω be a domain in R2 and X (u, v) :Ω→ R3 be a smooth surface embedded in R3. Let the
induced metric on the surface be denoted by the matrix g and the second fundamental form
by the matrix h. Then the mean curvature H of the surface at a given point (u, v) is given by
the following equation,

H(u, v) = tr (hg−1)(u, v)

where tr stands for the trace of the matrix. We say that X (u, v) is a minimal surface if H(u, v) =
0 for all (u, v) ∈Ω.

2.2 MEAN CURVATURE FLOW

Definition 2.1. Let X t (u, v) be a one-parameter family of smooth surfaces immersed in R3.
Then we say that these surfaces evolve by mean curvature flow if X t satisfies the following PDE
for all u, v in its domain,

∂X t

∂t
= H N̄ (2.1)

where H is the mean curvature and N̄ is the outward normal to the surface at a given point.

Example 2.1.1. Given a sphere SR ⊂ R3 of radius R, we will show that it shrinks to a point
through a family of spheres Sr of decreasing radius r (t ), under MCF.

Sr .Sr = r 2

Differentiating wrt t ,

dSr

d t
.Sr = r

dr

d t

H N̄ .Sr = r
dr

d t

− 2

r

Srp
Sr .Sr

.Sr = r
dr

d t
dr

d t
=−2

r
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which can easily be solved to get r (t ) =
p

R2 −2t . Thus SR shrinks to a point at time t = R2

2 .

It is clear that the equilibrium points of the mean curvature flow are minimal surfaces.

3 CONSTRUCTING MINIMAL SURFACES USING MCF

We will analyze how surfaces of revolution evolve under mean curvature flow. We intend to
show that initial surfaces can be chosen so that the flow will converge to a minimal surface.
Because of the rotational symmetry of MCF, it is clear that the initial surface will preserve its
symmetry throughout the evolution. Thus, assuming that a solution exists, we can represent
it by the following parametrization,

X (u, v, t ) = (φ(u, t )cos(v),φ(u, t )sin(v),ψ(u, t ))

We assume that φ and ψ are smooth functions. For a given time t , this represents a surface
obtained by revolving the curve (φ(u, t ),ψ(u, t )) in the xz plane around the y−axis.

The normal vector and the mean curvature to this surface are given by the following equa-
tions,

N̄ = sg n(φ)√
φ′2 +ψ′2

 −ψ′ cos(v)
−ψ′ sin(v)

φ′


H = sg n(φ)√

φ′2 +ψ′2

(
ψ′

φ
+ ψ′′φ′−φ′′ψ′

φ′2 +ψ′2

)

Here the derivatives of φ and ψ are taken with respect to the u variable. Substituting these
in Eq. 2.1 gives the following set of differential equations,

∂φ

∂t
= −ψ′

φ′2 +ψ′2

(
ψ′

φ
+ ψ′′φ′−φ′′ψ′

φ′2 +ψ′2

)
= F1(φ,φ′,ψ′,φ′′,ψ′′)

∂ψ

∂t
= φ′

φ′2 +ψ′2

(
ψ′

φ
+ ψ′′φ′−φ′′ψ′

φ′2 +ψ′2

)
= F2(φ,φ′,ψ′,φ′′,ψ′′)

(3.1)

The initial surface at t = 0 will be represented by X0(u, v) = (φ0(u)cos(v),φ0(u)sin(v),ψ0(u)).
From Huisken’s work on mean curvature flow, we know that any convex compact surface

will deform to a sphere very rapidly under MCF. In particular, he shows that no singularities
are formed during this process. As we have seen, a sphere will evolve through a family of
spheres of decreasing radius that shrinks to a point in finite time. So taking all these into
consideration, for obtaining a minimal surface through MCF, we choose a concave surface of
revolution as our initial surface.
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3.1 EXISTENCE AND UNIQUENESS OF SOLUTION

We use Picard’s iteration method to show that a solution exists for Eq. 3.1 for a short time.

Theorem 3.1. (Picard’s theorem) Let y, f ∈ Rd ; f (t , y) continuous on a parallelepiped R =
{(t , y) : t0 ≤ t ≤ t0+a, |y − y0| ≤ b} and uniformly Lipschitz continuous wrt y. Let M be a bound
for | f (t , y)| on R; α= min(a, b

M ). Then

y ′ = f (t , y), y(t0) = y0

has a unique solution y = y(t ) on [t0, t0 +α].

Proof: The proof follows by successive approximations of the solution, by functions of the
form

yn+1(t ) = y0 +
∫ t

t0

f (s, yn(s))d s

with y0(t ) = y0. It can be shown that these approximations will uniformly converge to a
unique solution for the given differential equation.

Theorem 3.2. Given Eq. 3.1 with (φ(u,0),ψ(u,0)) = (φ0(u),ψ0(u)) representing a hyperboloid.
Then there exists a unique solution for some time t ∈ [0,ε].

Let y = (φ,ψ), F = (F1,F2, ) and y0 = (φ0,ψ0). Then Eq. 3.1 can be written as

y ′ = F (t , y), y(t0) = y0

The idea is to show that F is uniformly Lipschitz wrt each of the variables and hence a unique
solution exists for a short time by Picard’s theorem.

4 THREAD KEPT ON A CATENOID

4.1 INTRODUCTION

We try to find the shape assumed by a thin thread kept on a catenoidal soap bubble. The
thread will assume the shape that minimizes its total bending energy. Assuming that the
equation representing the thread as a smooth curve in R3 is parametrized by arc-length, the
energy functional is given by the following equation,

E =
∫ L

0
k2(t )d t (4.1)

where k(t ) is the curvature of the curve at t and L is the total length of the thread. We try to
minimize this functional subject to the constraint that the curve should always remain on the
catenoid. We neglect the effects of gravity in this equation for energy.
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4.2 MINIMIZING THE ENERGY

Let the equation of a catenoid embedded in R3 be given by,

x(u, v) = (cosh(v)cos(u),cosh(v)sin(u), v)

Let α(t ) = x(u(t ), v(t )) be the equation of the curve on the catenoid that minimizes the
energy functional given by 4.1. We will calculate the curvature of α(t ) at a given point.

α̇= xuu̇ +xv v̇

α̈= xuuu̇2 +2xuv v̇ u̇ +xv v v̇2 +xuü +xv v̈
(4.2)

Let Γk
i j denote the i , j ,k th Christoffel symbol. Then we have the following set of basic equa-

tions from differential geometry,

xuu = Γ1
11xu +Γ2

11xv +eN

xuv = Γ1
12xu +Γ2

12xv + f N

xv v = Γ1
22xu +Γ2

22xv + g N

(4.3)

where N is the normal to the surface and e, f , g are the components of the second fundamen-
tal form. Substituting Eq. 4.3 in Eq. 4.2 gives,

α̈= (Γ1
11u̇2 +2Γ1

12u̇v̇ +Γ1
22v̇2 + ü)xu + (Γ2

11u̇2 +2Γ2
12u̇v̇ +Γ2

22v̇2 + v̈)xv + (eu̇2 +2 f u̇v̇ + g v̇2)N

= Axu +B xv +C N

(4.4)

For the above parametrization of the catenoid, u, v are isothermal co-ordinates. Therefore
the components of the first and second fundamental forms are given by,

xu .xu = xv .xv = E =G = cosh2(v)

xu .xv = F = 0

e =−1 f = 0 g = 1

So

k2 = |α̈|2 = E(A2 +B 2)+C 2

= (2tanh(v)u̇v̇ + ü)2 cosh2(v)+ (tanh(v)(v̇2 − u̇2)+ v̈)2 cosh2(v)+ (v̇2 − u̇2)2

= cosh2(v)u̇4 + (−2+2sinh2(v))u̇2v̇2 +cosh2(v)v̇4 +cosh2(v)ü2 +cosh2(v)v̈2+
2sinh(2v)u̇üv̇ − sinh(2v)u̇2v̈ + sin(2v)v̇2v̈ = F (u, v)

(4.5)

The idea is to use variational calculus to minimize the functional E = ∫ L
0 k2(t )d t . Since α(t )

is the energy minimizing curve, we argue that it has to be a critical point of the energy func-
tional. Therefore, the functional derivative of E should vanish at α(t ) = x(u(t ), v(t )). Using
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this idea we can generate a set of differential equations that represents the solution to the
minimization problem.

Let (u(t ), v(t )) be the smooth curve in the uv-plane whose image under the map x is the
curve α(t ). Define

Qh1 = lim
λ→0

∫ L

0

F (u +λh1, v)−F (u, v)

λ
d t (4.6)

and

Qh2 = lim
λ→0

∫ L

0

F (u, v +λh2)−F (u, v)

λ
d t (4.7)

where h1 and h2 are arbitrary smooth functions defined on [0,L]. From calculus of variations,
we know that α(t ) minimizes E if and only if Qh1 = Qh1 = 0, for all possible h1 and h2 within
its range. Expanding the above expression for Qh1 using Eq. 4.5 and taking limits gives

Qh1 =
∫ L

0
A1(t )ḣ1(t )d t +

∫ L

0
A2(t )ḧ1(t )d t (4.8)

where,

A1(t ) = 2ü(t )v̇(t )sinh(2v(t ))−2(̇u)(t )v̈(t )sinh(2v(t ))+
2u̇(t )v̇(t )2 (

2sinh2(v(t ))−2
)+4u̇(t )3 (

sinh2(v(t ))+1
)

A2(t ) = 2ü(t )cosh2(v(t ))+2u̇(t )v̇(t )sinh(2v(t ))

Integrating the second term in Eq. 4.8 by parts,

Qh1 =
∫ L

0

(
A1(t )− Ȧ2(t )

)
ḣ1(t )d t + (

A2(L)ḣ1(L)− A2(0)ḣ1(0)
)

= 0
(4.9)

This equality should hold for all smooth functions h1 defined on [0,L]. It is easy to see that h1

can be chosen appropriately to show that,

A1 − Ȧ2 ≡ 0

A2(0) = A2(L) = 0
(4.10)

Doing similar calculations for Qh2 yields

Qh2 =
∫ L

0
B1(t )h2(t )d t +

∫ L

0
B2(t )ḣ2(t )d t +

∫ L

0
B3(t )ḧ2(t )d t

where

B1(t ) =2ü(t )2 sinh(v(t ))cosh(v(t ))−2u̇(t )2v̈(t )cosh(2v(t ))+4u̇(t )2v̇(t )2 sinh(v(t ))cosh(v(t ))+
2u̇(t )4 sinh(v(t ))cosh(v(t ))+4u̇(t )ü(t )v̇(t )cosh(2v(t ))+2v̈(t )2 sinh(v(t ))cosh(v(t ))+
2v̇(t )4 sinh(v(t ))cosh(v(t ))+2v̇(t )2v̈(t )cosh(2v(t ))

(4.11)
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B2(t ) =2
(
u̇(t )2v̇(t )(cosh(2v(t ))−3)+ u̇(t )ü(t )sinh(2v(t ))+2v̇(t )3 cosh2(v(t ))+ v̇(t )v̈(t )sinh(2v(t ))

)
(4.12)

B3(t ) =−u̇(t )2 sinh(2v(t ))+2v̈(t )cosh2(v(t ))+ v̇(t )2 sinh(2v(t ))
(4.13)

Integrating by parts and by using the same argument as before, we obtain the following set of
differential equations and initial conditions.

B1(t )− Ḃ2(t )+ B̈3(t ) = 0

B3(0) = B3(L)

B2(L) = Ḃ3(L)

B2(0) = Ḃ3(0)

(4.14)

This set of differential equations and initial conditions given by Eq. 4.10 and Eq. 4.14, can
be solved numerically.
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