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All ten Einstein field equations are derived from (a) a single equation, the Einstein-Hamilton-Jacobi
equation for general relativity, and (b) the principle of constructive interference of de Broglie waves in
superspace. In this derivation one obtains by introducing Tomonaga’s many-time parametrization the
manifestly covariant Hamiltonian equations of general relativity.

I. INTRODUCTION

HIS work deals with the Hamilton-Jacobi equa-

tion for Einstein’s theory of gravity. The aim is

to show that all ten Einstein field equations are a direct

consequence of the principle of constructive interference

of wave fronts. The propagation of the wave fronts

themselves is determined by the Einstein-Hamilton-

Jacobi equation, an equation which marks in one

formulation (that of Hamilton and Jacobi) perhaps the

furthest step to date in formulating general relativity in
quantum language.

The efforts exerted in trying to put general relativity
within the framework of a quantum theory and thus
obtain answers to a number of problems! (gravitational
collapse, fluctuations in the geometry of space, the rela-
tion between elementary particles and geometrody-
namical excitations, etc.) inherent in geometrodynamics
have been frustrated repeatedly; nevertheless, a great
deal has been learned about the structure of the field
equations.? The present state of geometrodynamics
reminds one of the times when Bohr was trying to
understand why an electron does not collapse into the
nucleus, and when Planck was arguing for the zero-
point fluctuations® in an ensemble of simple harmonic
oscillators at zero temperature. Subsequently the ad hoc
assumptions underlying their explanations were given a
physical basis by associating with a particle de Broglie

* Present address: Battelle Memorial Institute, Columbus,
Ohio.

1 Although there does not yet exist a detailed quantum theory of
geometrodynamics, we already today perceive in broad outline the
qualitative character of quantum geometrodynamics and a number
of its problems. See J. A. Wheeler, in Baitelle Rencontres: 1967
Lectures in M athematics and Physics, edited by J. A. Wheeler and
C. De Witt (W. A. Benjamin, Inc., New York, 1968); J. A.
Wheeler, Einstein’s Vision (Julius Springer-Verlag, Berlin, 1968);
J. A. Wheeler, in Relativity, Groups, and Topology, edited by C. De
Witt and B. De Witt (Gordon and Breach Science Publishers, Inc.,
New York, 1964), p. 507.

2P, G. Bergmann, Phys. Rev. 75, 680 (1949); P. A. M. Dirac,
Can. J. Math. 2, 129 (1950); Proc. Roy. Soc. (London) A246, 326
(1958); Lectures on Quantum Mechawics (Academic Press Inc.,
New York, 1966); Proc. Roy. Soc. (London) A246, 333 (1958);
R. Arnowitt, S. Deser, and C. W. Misner, Phys. Rev. 116, 1322
(1959) ; in The Dynamics of General Relativity, edited by L. Witten
(John Wiley & Sons, Inc., New York, 1962); A. Peres, Bull. Res.
Counc. (Israel) 8F, 179 (1959); Nuovo Cimento 26, 53 (1962).

3 M. Planck, The Theory of Heat Radiation (P. Blakiston’s Son
and Company, Philadelphia, 1914), pp. 142, 164.
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waves that are capable of interference. In the semi-
classical limit, these de Broglie waves are describable in
terms of waves and wave fronts. By writing down his
wave equation, Schrodinger gave mathematical rigor to
these and additional geometrical aspects of motion, such
as phase, wavelength, and frequency. The short-
wavelength limit of wave mechanics is classical me-
chanics. An approximation that stands in between the
two extreme descriptions (wave and ray) is the semi-
classical approximation. Its mathematical basis is the
phase functions .S, the solutions of the Hamilton-Jacobi
(HJ) equation, together with the principle of con-
structive interference of waves,

Weisih,

Once one has a classical theory, it usually is easier to
go to the semiclassical approximation than it is to go to
the wave equation or its equivalent. A necessary condi-
tion that the semiclassical approximation be correct is
that one must be able to deduce the classical equations
of motion from it. This is what we aim to do for the case
of the Einstein field equations. We deal with a scalar
functional S defined on the superspace of three-
geometries; that is, the space in which each “point”
represents one three-geometry (S[®g7).

The proposition that we shall prove is the following:

Given:

(a) The Einstein-Hamilton-Jacobi (EH]J) equation
for general relativlty,*

0=®R+g1(5g::811—girgi1) (6S/88:5) (6S/dgrr). (1)

Here g;; denotes the metric of the spatial hypersurface.
The EH]J equation is defined for each point of this
surface. The curvature invariant on this surface is ®R
and g=detg;;. The equation must be solved for .S
(““HJ function,” “Hamilton’s principal function,” “ac-
tion,” % times the phase of the “Schrddinger” function
in the semiclassical limit). The functional derivative of
S with respect to g;;(x) is defined by

oS
8S= / ogii(x)d%x,
0g+;()

4 The EHJ equation was first written down by A. Peres, Nuovo
Cimento 26, 53 (1962).
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where the integration is performed over the whole
spatial hypersurface.

(b) The functional S is a function of the three-
geometry® only:

S=S[®g], 2

i.e., S is coordinate-independent.

(c) The principle of constructive interference.®

(d) The boundary condition that the spatial hyper-
surface either (i) be finite and have no boundary’ or
(ii) be asymptotically flat.

Conclusion:

(a) There exist four functions® N, N; (=1, 2, 3)
which together with g,; give a space-time metric

8= g (N *da+ d?) (N da0+-dc ) — N2(da)?
= gisdndni+ 2N dx'dad+ (N N i— N?) ()2 (3)

that satisfies the Einstein field equations.
(b) The manifestly covariant equations of geometro-
dynamics,
6g i (x) oH om®d (x) oH
do  oriix)) oo dgii(x)
are a consequence of the semiclassical approximation to
quantum geometrodynamics. Here H is a functional of
g:; and 7=05/8g,;. The Tomonaga-Schwinger® many-
time parameter is denoted by o.

In light of these conclusions, one should emphasize
the utility of the EHJ equation. Its solution is the
fountainhead from which one can, with the help of the
principle of constructive interference, obtain any of the
histories satisfying the ten Einstein vacuum field
equations.!0

5 A three-geometry, denoted by @G, is a class of ®g;;’s whose
members have the property that one can be transformed into any
other by a suitable coordinate transformation.

8 E. A. Power and J. A. Wheeler, in Geometrodynamics, edited by
J. A. Wheeler (Academic Press Inc., New York, 1962), p. 221.

7 A closed three-geometry is assumed here to keep the discussion
in closest accord with Einstein’s ideas about the structure of space
in the large. See A. Einstein, The Meaning of Relativity (Princeton
University Press, Princeton, New Jersey, 1955), pp. 103, 104. See
also J. A. Wheeler, in Mack’s Principle as Boundary Condition for
Einstein’s Equations in Gravitation and Relativity, edited by H. Y.
Chiu and W. F. Hoffman (W. A. Benjamin, Inc., New York,
1964); D. Brill and J. Cohen, Phys. Rev. 143, 1011 (1966).

8 These functions are known as the ‘““lapse” and ‘“‘shift” func-
tions. See second reference in Ref. 7. See also J. A. Wheeler,
in Geometrodynamics and the Issue of the Final State in Relativity
Groups and Topology, edited by C. De Witt and B. De Witt
(Gordon and Breach Science Publishers, Inc., New York, 1964).

? S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 1, 27 (1946); J.
Schwinger, Phys. Rev. 74, 1449 (1948). The first paper is also
reprinted in Quantum Electrodynamics, edited by J. Schwinger
(Dover Publications, Inc., New York, 1958). See also S.
Tomonaga, Phys. Today 19, No. 9, 25 (1966).

10 This state of affairs is in marked contrast to a way of arriving
at the Einstein field equations that merely depends upon the
coordinate covariance of these equations. In this case one’s
starting hypothesis is that the initial value equations of general
relativity, G,o=0, hold on every slice through space-time. By
considering the normals #” to any of these slices, one obtains
G,m*=0. Arbitrary slices are under consideration. Consequently,
the normals #* are arbitrary, and hence the Einstein equations
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Before we address ourselves to proving the above
proposition in geometrodynamics, we recall in Sec. II
how all the dynamics of a free particle arise from its HJ
equation and the principle of constructive interference
in space-time. Section III considers the identities that
the solution to the EHJ equation must satisfy. Section
IV describes the principle of constructive interference in
superspace. In order to be able to use this principle in
Sec. V, we introduce Tomonaga’s “many-time” param-
etrization. Section VI presents the semiclassical ap-
proximation to quantum geometrodynamics. Section
VII gives a method for testing the completeness of the
solution to the EHJ equation, while Sec. VIII gives the
derivation of the covariant-Hamiltonian equations that
describe the history of a three-dimensional spacelike
hypersurface. Section IX shows the consistency of these
equations with the EHJ equation. Section X points out
how one obtains the Einstein vacuum field equations
from the covariant-Hamiltonian equations.

II. AN ANALOGY: A FREE PARTICLE
IN SPACE-TIME

Consider the HJ equation for a particle in an empty
space-time, whose metric is g#* (u, v=0,1, -+, 3),

H=mc+ g+ (3S/dx*) (8S/dx*)=0. 4)

(3¢ is the relativistically invariant “super-Hamil-
tonian”; see, for example, Kramers®! or Landau and
Lifschitz.1?)

The solution to this equation, the phase function .S,
is a function that is defined on all space-time. Different
solutions to the HJ equation are characterized by
different sets of integration constants. Denote the set of
integration constants by a;, =1, 2, 3; they are usually
associated with the energy and the momentum of the
particle. In the semiclassical approximation to quantum
mechanics one associates with a particular solution a
wave function

W~ eiSlh,

The regions in space-time that are characterized by
S(x,a)=19.1, S(x,a)=19.2, etc., are the de Broglie
wave-front histories' of the wave function ¥.

Now consider a slightly different solution to the HJ
equation, say,

S (x, a+da).

Once again one has wave-front histories such as
S(x, a+06a)=19.1, S(x,a+08a)=19.2, etc. The wave

Gu=0 follow. Observe that here no new principles have been
invoked: The demonstration only involves the equations; nothing
has been said about the solution to these equations.

WH. A. Kramers, Quantum Mechanics (Interscience Publishers,
Inc., New York, 1957), pp. 44, 84.

2 L. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields (Addison-Wesley Publishing Co., Inc., Reading, Mass.,
1962), p. 30.

13 Synge calls them ‘“de Broglie three-waves” or the “history of a
de Broglie two-wave.” See J. L. Synge, Geometrical Mechanics and
de Broglie Waves (Cambridge University Press, New York, 1954).
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fronts S=19.1 characterized by slightly different inte-
gration constants interfere constructively at a single
point in space-time determined by

19.1=5(x; anas,03) =S (%; a1 t+dai, as, as)
=S (x; a1, artdaz, as)=S(x; a1, @z astdas)  (5)

(four equations for the four x#). The particle is under-
stood to be located® at this point, according to the
principle of constructive interference. Similarly, wave
fronts S=19.2, etc., interfere constructively at another
point in space-time. The four coordinates of that point
are found by solving the four equations

19.2=S(x+Ax; Qai, 2, 0[3) =S(.’JC+A.’)G; a1-|—6a1, Qag, a3)
=S (x+Ax; a1, axtdas, as)
=S(x+Ax, a1, 02, ag‘l-&xa) . (6)

The set of interference points characterized by S=19.1,
§=19.2, etc., describe the path of a particle through
space-time.

Is it possible to determine the instantaneous direction
of the particle path in space-time? Yes. Subtract Eq. (5)
from Eq. (6) and obtain

Pu (0[1,(12(13)Ax"= Pulart0, s, az)Axk
=Pn(al; a2+6012, OLS)AOC"=P,4(O£1, s, a3+6a3)Ax”. (7)

Here the momentum is defined as the gradient of S:
pu=05/0x~.

Instead of specifying the direction of the particle world
line by the separation Ax* between the two locations of
the wave packet at two nearby instants, it is more
appropriate to introduce a parameter continuous along
the world line and specify the tangent:

Axt— dx+/ds. (8)

Different choices of parametrization will give different
magnitudes for the four-vector dx*/ds, but always the
same direction (at a given point in space-time). Sub-
tracting p,(a1,as,03)Ax* from each term in Eq. (7) and
going to the limit yields

) i 9

Du o ©
Here the variation 8p, in p, is due to arbitrary infini-
tesimal variations in the integration constants i, as,
and as.

The solution S(x; a,as,a3) that we are considering is
by assumption a complete** one (it has the maximum
number of integration constants). Consequently, the
variations 8p, (defined over all space-time) due to the
variations da;, ¢=1, 2, 3, are all those that satisfy

0=35C(p.(a+da))=5C(put+0p,)
=3C(pu)+ (03¢/8pu)opu, (10)

14 R. Courant and D. Hilbert, Methods of Mathematical Physics
IT (Interscience Publishers, Inc., New York, 1962), Chap. 1,
para. 4.
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so that one can consider 3C(x*,p,) as a function of the
independent variables {x*,p,} and characterize the §p,
which enter Eq. (9) by the condition

(93¢/3p,)0pu=0. (11)

Therefore, Eq. (9) can be restated as follows: A neces-
sary condition for dx#/ds to lie on a particle world line is
that there exists a momentum p, such that the quantity

dx®

i

(12)
ds

is an extremum with respect to infinitesimal variations
in p,. Here the typical variation is

pu— Pul=Pu+5Pu°

It is understood, but it does not have to be said, that
the change 6p,(x”) is brought about by a change in the
integration constants a;; neither does one have to know
the precise functional dependence of the p,’s upon the
ay’s. In other words, the variation from the original p,
to the new momentum p,’ can be treated as a quantity
in its own right. The only restriction on this variation is
that it satisfy Eq. (10), i.e., the p, and p,’ must satisfy
the HJ equation (4).

The HJ equation (4), together with the restatement
of the condition for constructive interference as the
extremum condition on expression (12), contains all
the classical equations of motion for the particle in a
nutshell.

The extremum principle is easily put into operation
with the method of Lagrange multipliers:

dx# 93
5p,,<———N—)=0.

(13)
ds 0P,

Arbitrary variations ép, fall into two classes: those that
do and those that do not satisfy

ase
3p—=0.

With a suitable choice for N, the coefficients of both
classes of variations in Eq. (13) must vanish. Thus we
have the first half of Hamilton’s equations (‘“‘velocity
equations”) of motion

expressed in covariant form. To obtain the other half,
use the fact that the super-Hamiltonian 3¢ of Eq. (4) is
everywhere zero, so that its derivative is also every-
where zero; thus

03¢ 93C dp, 93 A3 Ap,
0= I —_ -

T | .
0x” 0p, 0x* Ox” Op, Ix*
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Now find the rate of change of the momentum; thus
dp, 9p, dx*

ds  ox* ds

or, with the help of the velocity equation,
a3C

axr’

dp,  9p, 93
=N =
ds dx* dp,

thus completing the derivation of the Hamilton equa-
tions of motion from the HJ equation.

To go from the Hamiltonian form to the Lagrangian
form of the equations of motion, solve the velocity
equation for p, and substitute into the last equation,
obtaining

dxm Ogva 0gvs Ofap\dx® dx? N, dx* dx*
0-——+1g{ o =
ds? 0xf  9x* 9x*/ds ds N ds ds
dxr dx*dx® 1 dN da*
= + T opt— b ——
ds? ds ds N ds ds

the equation for the world line of the particle. It is
possible to make the last term vanish by an appropriate
choice of the parameters. This derivation shows that the
classical equations of motion may be obtained from the
semiclassical approximation of quantum mechanics.
Observe that the super-Hamiltonian 3C for the particle
is “constrained” to be zero and that, according to the
equations of motion, it stays zero all along the world line
of the particle.

III. A RESTRICTION ON THE SOLUTION
TO THE EHJ EQUATION

Returning now to the EHJ equation, note that the
dynamical phase S, ostensibly a functional of the six
metric components,

S=38[giil,

we require to be a functional of the three-geometry
alone, regardless of all transformations of coordinates
(and indeed, in principle, regardless of whether we do or
do not choose to use any coordinates at all in describing
this three-geometry); thus

§=5[®g].

In consequence it follows that .S, expressed as a func-
tional of the g;;’s, must everywhere satisfy the three

identities!s
[8S/6g:i(x)]1;=0, (14)

where the vertical bar indicates the three-dimensional
covariant derivative.

15 The essential ideas of this fact were already known to P.
Higgs, Phys. Rev. Letters 1, 373 (1958); 3, 66 (1959). See also E.
Schrodinger, Space-Time Structure (Cambridge University Press,
New York, 1950), Chap. XI.
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Proof. Given the @G expressed in terms of coordinates
x? by the metric coefficients g;;, go to infinitesimally
different coordinates

&= x4 e£?(x)

and have the same three-geometry expressed in terms of
the metric coefficients

gii (0)=gi;(x)+0g:5(x)

ogij=—e(£qi+E514).

The ostensible change in S brought about by this change
in the metric coefficients is

oS
ss= [
0

8 (%X

2] oS £
= L€ ;7%
8gii(x)

2/ &S £
= L€ 176:@°X.
0gi; (%)

However, the ®g itself has not changed at all. Hence 65
must vanish, and vanish, moreover, for arbitrary £;(x),
in consequence of which Eq. (14) follows at once.

with

0gii(x)d®x

IV. PRINCIPLE OF CONSTRUCTIVE
INTERFERENCE. A

Just as the phase function for a single particle is
defined on space-time, so the phase functional of the
EH]J equation is defined on superspace. Superspace!¢ is
the set of equivalence classes of all spacelike g;;(x)’s that
can be transformed into each other by means of spatial
coordinate transformations.

Consider a solution to the EH]J equation satisfying

Eq. (14):
SLOG; au),8(w)]. (15)

Here o and B are integration constants identified by the
parameters #= (#41,42,43). In the linearized theory of
gravitation, & and 8 may be identified with the initial
two polarization amplitudes, (#1,%2,%3) being either the
spatial coordinates or the wave-vector coordinates.
Note, however, that the existence of the constants of
integration depends in no way upon the existence of the
linear approximation to the exact theory. Although the
constants a(#) and B(#) have been explicitly indicated
in the solution S, no attempt is made in this paper to
actually prove the existence of these constants. For the

16 Observe that although superspace is infinite-dimensional, it is
a space of countable dimension. The reason is that to specify a
continuous function g:;(x), one merely has to specify it on the
points of the spatial hypersurface that have rational coordinates.
See L. Streit, in Proceedings of the Fourth Internationale Uni-
versitidtswochen fiir Kernphysik 1965 der Karl Franzens-Universitit
Graz: Quantum Electrodynamics, Acta Physica Austriaca Suppl. I1,
p. 3. Superspace and its relevance to quantum geometrodynamics
are discussed in the first reference of Ref. 1.
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purpose of formulating the principle of constructive
interference, we assume their existence. Observe, on the
other hand, that the deduction of the ten Einstein field
equations (Secs. VIII and X) from this principle is
independent of the knowledge of these constants. The
isograms (subspaces that are characterized by the same
value) of the phase functional are the histories of the de
Broglie wave fronts.

Now consider the phase functionals obtained by
changing slightly each of the 2X «?® constants of
motion:

a(u) = a(u)+da(u),
B(w) — B(u)+08(u).

The de Broglie wave-front histories (isograms with a
fixed phase value, say, S=19.1) of the phase functionals
interfere (intersect) to form a packet of three geometries
such as @Gy, ®Gp @Gy, etc., in Fig. 1. One ®G—say,
®G4—can be described in a given coordinate system x”
by means of a particular set of metric coefficients g;.
However, under a coordinate transformation these
metric coefficients are transformed to other metric
coefficients. The totality of all g;;’s obtainable under the
action of the entire group of three-coordinate trans-
formations corresponds to the @G, and to the one point
in superspace in question.

Similarly, from the de Broglie wave-front histories,
one constructs a stack of wave packets with S=19.2,
19.3, - - -, etc. The set of wave packets thus constructed
lie on a subset set of points in superspace, the history of
a three-geometry. See Fig. 1.

This shows how the principle of constructive inter-
ference together with the EH]J equation yields a classical
history through superspace.

In order to cast the principle into suitable mathe-
matical language, consider a wave packet; such a wave
packet is a superposition of ¥ functions. The phases of
the several individual ¥ waves are given slightly varied
HJ functionals S[®G;a,8]. A three-geometry ®g lies
in this packet if this ®g satisfies the conditions (2X «?
of them!7?)

19.1=S[®G; a(u)+da(u), B(u)+68(u)]
=S[®G; a(u); B(x)] (16a)

for all small variations da(#) and 88(«). In this event we
may say that @G is a “yes” point in superspace, in the
sense that this @G “occurs in the classical history of
space” (Fig. 1). Consider a “nearby’ allowed ®G—that
is to say, a nearby ‘““yes” point in superspace—which we
may denote symbolically by ®G+4-d®g. It satisfies the
equation of constructive interference,*”

19.2=S[@G+dDG; a(u)+da(n), B(u)+86(u)]
=S[OG+d®G; a(u), B(w)],

17 One should note here that there is nothing special about the

value $S=19.1 and $=19.2. A different choice of a solution .S

(different in that S is a different functional of the constants) would
have resulted in different phase values for the wave packet.

(16b)
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S['s,0484)=193
s[®s,a]=19.3

5[*'g,a484] =19,2

S[*g,a]=19.2

§[™g,a+24]<19,1

o TOTALITY OF "YES' “k's

o "CLASSICAL HISTORY H"

e SUBSET OF POINTS IN
SUPERSPACE

® SPACELIKE SLICES THROUGH

A "' THAT SATISFIES

EINSTEIN'S FIELD EQUATIONS

SUPERSPACE

F16. 1. de Broglie waves in superspace interfering constructively
to produce a four-geometry. Each history of a de Broglie wave
front is a subspace in superspace on which the phase functional S
is constant. Now focus attention on all those de Broglie wave-
front histories (in single-particle mechanics, Synge calls them de
Broglie three-waves, see Ref. 12) that are characterized by the
phase functionals that have S=19.1. These phase functionals
differ from each other by virtue of the fact that their constants of
motion (2X »3 of them) are different for different phase func-
tionals. In the above figure all these constants have been con-
densed into the letter a. The phase functionals that differ slightly
from each other in o but have the same value S=19.1 intersect
each other in a set of ‘“yes” three-geometries (three typical ones are
labelled by ®G4, @G, ®G¢). Observe that these “yes” points in
superspace are characterized by 2X «? equations such as Eq.
(16a) ; however, a point in superspace is characterized by 3X «3
quantities. It is therefore quite obvious that there is more than one
‘“‘yes” three-geometry characterized by S=19.1. Similarly for
S=19.2, 19.3, etc., one has subsets of points which are ‘“yes”
three-geometries. As indicated in the figure, the totality of subsets
form a four-geometry that satisfies Einstein’s field equations. Each
point on this totality of points is a spacelike slice through this ®gG.
As a solution to the Einstein field equations, this @G is usually
represented as a particular sequence of spacelike slices. In this
figure such a representation is a one-parameter curve through a
particular sequence of “yes” points, such as @G 4 — @G " — ®Gy"’,

again for all choices of the arbitrary small variations
da(u) and 8B(w) in the integration constants. The
difference between the three-geometries associated with
two wave packets is denoted symbolically by

d(s)g'
The difference between Egs. (16a) and (16b) yields

N
5(3)8

8S
(at+da, B+38)dDG=——(,8)d¥G.  (17)
30g
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F16. 2. Tomonaga’s infinite-dimensional parametrization applied
to a three-geometry. In particle dynamics, as shown on the left, a
single parameter is associated with the particle. A mapping from
the real line R into space-time is the curve along which the partlcle
travels. In particular, given two close-by points in space-time
separated by an infinitesimal vector Ax#, one can introduce a curve
parameter by associating with this vector an infinitesimal interval
As. The tangent vector obtained by going to the limit limAx#/As
as As — 0 defines the curve in an infinitesimal neighborhood. This
tangent vector is merely a linear mapping from the tangent space
of R at x, into the tangent space of space-time where the particle
is located. For a clear and succint discussion of this idea, see for
example, J. Milnor, Morse Theory (Princeton University Press,
Princeton, N. J., 1963), p. 45.

Tomonaga’s parametrization as shown on the right is a general-
ization of the above procedure. A classical history of a spatial
hypersurface has to be parametrized by RXRXRXR=R:. A
mapping from R* into superspace is the history along which the
hypersurface travels. A particular hypersurface is labelled by a
particular three-dimensional section through R* (in order not to
strain one’s mind only a two-dimensional section through R?® has
actually been drawn). Such a particular three-dimensional section
is represented as a function of three variables, o (x1,%2,%3). Is it just
as straightforward to define a tangent vector for geometro-
dynamics as for particle dynamics? Not quite. Consider two close-
by geometries that are separated by ®g'—®g=4®g. With d®g
one associates a variation do (x1,%2,%3) which is zero everywhere
except for a small region Vo around {x,%0,%03} on the surface
o (x). Then the tangent is defined as the limit of d®G/ /60 (x)d3x
as shown in the figure. This limit is a distribution. Furthermore,
observe the difference in the nature of the tangent vector in
particle dynamics and in the geometrodynamics. In the former
only the choice of the parameter difference As was arbitrary. The
effect of that arbitrariness resulted in an arbitrariness in the length
of the tangent vector, but not its direction. In geometrodynamics,
on the other hand, the choice of o (x1,%2,%;) at each point on
the hypersurface is arbitrary. The result of this fact is that
S (609G /b0 (x) oo (x)d*x=d®G is arbitrary to the extent that even
though d®g lies on a “classical history H” (see Fig. 1), d®G may
be any one of the vectors d¥G=®G,/—®G; i j=A, B, C, etc.;
in other words, the various d®G resulting from various choices of
80 (x) are not linearly related in general. Observe that the “number”’
of linearly independent d®G’s is w3,

These infinitesimal “vectors” d®G can be described more pre-
cisely as follows: Consider the set of functions {c(x)} from closed
three-dimensional manifolds into the reals. Now consider a func-
tion that takes the space {o(x)} into superspace. Let G[o] be the
image of a particular ¢ (x). To describe the infinitesimal ‘“‘vectors”
d®G focus attention on (1) the tangent space to {s(x)} at o(x),
(2) the tangent space to superspace at 9[«:5, and (3) the mapping,
8®G/50(x), which maps linearly an element 8o (x) in the first
tangent space into an element d®g in the second tangent space.
The appropriate equation for this mapping is Eq. (18a).

Before continuing with the principle of constructive
interference, we must take time to describe the
parametrization of ®g.

V. TOMONAGA’S PARAMETRIZATION

In one-particle dynamics, where Eq. (5) was the
analog of Eq. (16a), a definite choice for the value of .S
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resulted in a definite point ™ along the dynamical
history H of the particle. No corresponding result
applies here. For a given value of the HJ phase function,
S=19.1, there is not a single “yes” ®G, but a whole set
of “yes” ®¢G’s, as indicated symbolically by such
“points of superspace” as 4, B, C, etc., in Fig. 1.
Consequently, no single quantity S is adequate any
longer to parametrize the allowed ®G’s in the dynamical
arena (superspace). Instead, it turns out that we must
use an infinite-dimensional parametrization of a kind
first made familiar to physics by Tomonaga.? See Fig. 2.

How can one see qualitatively that the “yes” ®gG’s
need Tomonaga’s ¢ parametrization to distinguish one
from another? Compare the count of unknowns in a
three-geometry with the count of equations in (16a).
Denote the number of points on a spatial hypersurface
by o3 The function g;;(xixsx;) is determined by
specifying its value for each (x1xsx;). Consequently,
6X ¥ numbers'® must be specified to single out a
particular function g;;j(x). The number of possible
functions is therefore o« ®<<°, Similarly, the number of
coordinate functions that transforms one g;;(x) into an
equivalent one is ©3<<, Consequently, the number of
nonequivalent metrics!8 is oo 8%/ o03X®’= 0 3X=?  Tp
other words, it takes 3)X 3 numbers to specify a
three-geometry.

Furthermore, observe that the phase functional S is
defined on the space of all g;;’s. The dimensionality of
this space is 6X «3. The number of equations for S is
(3+1)X %3, One can see that there are (6—4)X «3
= 2X 3 constants of motion.!® For a particular S value
there are just as many equations [Eq. (16a)] that
determine the set of “yes” points.

Using the fact that it takes 3X «® numbers to specify
a three-geometry, one concludes that the number of
“yes” points for a particular S value is (3—2)X 3
=1X 3,

For two values, say, $=19.1 and 19.2 in Fig. 1, one
has two sets of “yes” points in superspace: {¥G4, G,
®Ge, etc.} and {®G,', OGp’, @G/, etc.}. Consequently,
the number of vectors connecting an unprimed ®G with
any one of the primed ®¢’s is 3. This is precisely the
number of parameters ¢(x) (Tomonaga’s parametriza-
tion) necessary to label a classical history.

Before leaving the subject of parametrization, we
can appropriately remind ourselves again that the
item of physical concern in one-particle dynamics
is never a parametrization-dependent quantity such
as dp*/ds or dx*/ds by itself, but always such a
parametrization-independent  (parameter-dependent!)
quantity as (dp*/ds)ds or (dx*/ds)ds.

18 The counting processes here are by no means mathematically
rigorous. In particular: (1) Finite multiples and powers of the
same cardinal number still have the same cardinality. (2) The
division of cardinal numbers is an undefined process. See G.
Birkhoff and S. MacLane, A Survey of Modern Algebra (The
MacMillan Company, New York, 1961), p. 366. However, no
better-defined counting procedure seems to exist, and this pro-

cedure allows one to communicate what one is talking about.
Consequently, we shall use it. See also Ref. 16.
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Similarly, in geometrodynamics we are not concerned
with the parametrization-dependent quantity §®G/éc
(or with 8g;;/és), but with such a parametrization-
independent quantity as

(3)
o= / dod3x
oo

or, equivalently, with any particular member of the
equivalence class 6®G,

5g,"
6g,~,~=/—]60d3x.
oo

Note that the definition of the infinitesimal test function
00 is such that dod® is the volume generated by the
displacement do imparted to the spatial hypersurface
element d®x. See Fig. 2. Thus the appropriate focus of
attention is dg,; itself, rather than 8g,;/6c. This circum-
stance means that one can forego getting into all
the details of this or that conceivable scheme of
parametrization.

(18a)

(18b)

VI. PRINCIPLE OF CONSTRUCTIVE
INTERFERENCE. B

Instead of specifying two close-by geometries by
(3)g’ = (3)g+d(3)g ,

introduce Tomonaga’s parametrization and thus con-
sider 6®G/ds (x) instead of d®G. Then subtracting the
right side of Eq. (17) from both sides of Eq. (17) yields
to first order a necessary condition for the ‘“vector”

d®G/80 (x)
to be tangent to a history through ®g:

35 \6®g
e
g/ ba

oS
5)
5(3)9

denotes the change in 65/6®G due to an arbitrary
infinitesimal variation in

{a(u),8(u)}.

The EH]J equation together with the principle of
constructive interference as exhibited in Eq. (19),

(3)9 and

(19)
Here

3S \/ 85 \*
S R

5(3)9 3(3)9

05 \6®
()=, (19)

g/ g

contains all of general relativity in a nutshell. The
starred vector (85/6®G)* is the dual (with respect to the
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De Witt metric!®) counterpart of the vector
8S/6®g

defined on superspace, the space of three-geometries.
An easy way of obtaining the ten Einstein field

equations is to use the language of classical tensor

calculus. In that case the tangent vector in Eq. (19)

becomes ( )
o® 0gii(x;o(a’
g - 8 ij (x") ' 1)
da (') da (")
The derivative of S with respect to ®G becomes
s 8
— = 7"“(‘%) ’
PG 8gi;(x)
where 7% (x) must satisfy
;=0 (22)
in order for S to depend only on ®g [Eq. (2)].
With this notation, Egs. (19) and (20) become
0gj(x)
/ 89 (o) — =0, (23)
o (x')
OR+g7 (3giigkr— gurg i) r*=0. (24)

In order to make the principle of constructive inter-
ference as stated in Eq. (23) more amenable to mathe-
matical treatment, let us restate it as follows: In order
that a change égy;, or, equivalently, that ég.;/és, be a
vector tangent to a history, it is necessary that there
exist a w%/(x) with the property that

0g:j(x)
/ () 7 dh=extremum (25)
do (x'
if one changes the integration constants a(#) and 8(u)

slightly.

Since there are six functions 7% (x) and only two
independent functions a (%) and 8(#), the 7%/(x) cannot
be varied arbitrarily. This nonarbitrariness is also re-
flected in the fact that #¥/(x) must satisfy Egs. (23) and
(24). Although these equations put restrictions on the
allowable momentum densities 7%(x) at each point in
the space of g;;(x)’s, there is still a copious amount of
freedom for having this, that, or the other 7% (x). This
freedom in the choice of the momentum density can be
associated with the freedom that one has in adjusting
the integration constants that result from solving the
EH]J equation.

VII. COMPLETENESS OF THE SOLUTION
OF THE EHJ EQUATION

In order to clarify the connection between these two
freedoms, it is appropriate to ask and answer the follow-
ing question: Given a solution to Egs. (1) and (14)

¥ The geometry and topology implied by this metric [i.e.,

®g=112(30:;0x1— girgj1) ] have been analyzed by B. De Witt, Phys.
Rev. 160, 1113 (1967).
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Slgij; aw),8(w)], (26)

the possibility may arise that this solution is a patho-
logical one, since, although it ostensibly depends upon
two free functions @ and B (“‘constants of integration”),
it might turn out that for some (#o1,%02,%03) this
given solution in reality is independent of a(#) for
u= (Uo1,%09,%03) - What assurance does one have that the
solution is a complete one in the sense that the solution .S
is a functional of the maximum number of independent
constants possible?

To answer that question, denote for the time being
the momentum density obtained from Eq. (26) by

7i(x) = 27)

[a (w),8(u)].
0gij

Then consider the linearly mdependent variations in 7%
due to infinitesimal variations in each constant a(u)
and B(u):

o &S
o (x)_(/(ig“(x)&a(u)aa(u)

S

+———————6ﬁ(u))du. (28)

8g:i(%)36 (u)
It is clear that both #*/ and #%/+6# % satisfy Eqs. (22)
and (24). The problem that we are faced with now is
this: Do we get a maximum number of independent
solutions
wii4-owii

by slightly varying the integration constants {a(%),8(1)}?
In other words, how do we test the solutions

-7t

to see that we have a complele set?
First, we must consider the variation equations as-
sociated with Egs. (22) and (24),

or#);=0, (29)
K iprii=0. (30)

Here K;; is the “extrinsic curvature”® of a three-
dimensional manifold imbedded in a four-dimensional
one:

K= (®g) 2 (hgimi*—mi;).

Since we are examining the completeness of the solution
in Eq. (27), we set

i (x) = 79(x)

and examine all the solutions that differ infinitesimally
from #*/(x). This means that we must examine the
solutions to the Egs. (29) and (30), which are linear in
the unknown én%. The result of this examination (see

20 See Ref. 8. K; is also called the ‘“‘second fundamental form”
[R. Arnowitt, S. Deser, and C. W. Misner, Phys. Rev 116, 1322
(1959)7]. See also L. Eisenhart, Riem G (Prmceton
University Press, Princeton, New Jersey, 1964), p. 343
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the Appendix) will be that Eq. (29) has a solution that
is parametrized by three functions, and that, as a
consequence of Eq. (30), ér*/ depends upon only two
arbitrary functions da(x) and 6b(x) defined on the three-
dimensional submanifold :

5 (i) = b 416 (x),36 () ]. (31)

Consequently, the question of the completeness of the
solution S, Eq. (26), reduces merely to the existence of
a one-to-one correspondence between all possible §r %,
Eq. (31), and the 67% in Eq. (28).

In other words, in order that the solution S be a
complete solution, it is necessary and sufficient that there
exist a nonsingular linear transformation

Gk,l,‘i(x,x')

that maps the set of linearly independent variations,
Eq. (31), onto the set 7% (x):

o ti(x)= f Grov 9w, )0V (a) A%

In general, Gx;%(x,x’) is not the identity transformation,
because 7%/ may be a variation in a “collective mode”
[in this case, (u1,%2,43) in Eq. (15) is a wave vector],
whereas o %/ is a spatially localized function.

If S is not a complete solution, the Gy %(x,x") is
singular. This means that some 87 *'¥ (x’)0 is mapped
into zero. The existence of a nonsingular transformation
assures us that the number of constants {a(u),ﬁ(u)},
Eq. (27), is equal the number of degrees of freedom in
{da(x),06(x)}, Eq. (31), which are responsible for all
possible variations in the ¢/ that satisfy Egs. (22)
and (24).

Consequently, if one has found a complete solution of
the EHJ equation, then the variations of the momentum
density [in Eq. (19)] are equivalent to variations in 7%/
that satisfy Egs. (22) and (24).

VIII. DERIVATION OF THE DYNAMICAL
EQUATIONS

Let us return our attention. to proving the proposition
relating the EHJ equation to the ten Einstein field
equations. As a first step, it is necessary to obtain a
relationship between 8g;;/6c and /. According to our
previous discussion, we replace Eq. (25) with the help of

Eq. (18b) by
/r“&g.—jdsx.

This expression must be an extremum with respect to
variations in w%(x) subject to the restrictions

(32)

Ro= (V[ PR+g(3giigui—gargi)mrk]=0, (33)
77'”] i= 0 ) (22)

where
wti(x)=08S/5g:;(x). (34)
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The restrictions on the phase functional S can be taken
into account in the extremum principle. Multiply them
by yet-to-be-determined functions 6M (x) and 26M ;(x),
respectively, and add the product to the integrand in
Eq. (32):

[ (wi98g.j+0M Ro+26M i) 5)dPx.

Now consider the changes in this integral due to
arbitrary variations in 7%7;

AR,
f[&g,,b’w”-I-BM( ) rii— 26M.1,51r”]d3x
o,

+ f SM $niidS;.  (35)
]

Here we performed an integration by parts. The surface
term vanishes because of the boundary conditions. Be-
fore proceeding further, it may be appropriate to remind
ourselves again that the change in g;;, 8g;; has nothing
to do with the variations in 7%/, d7 %/, As a matter of fact,
while we are considerlng arbitrary ér*7, the change 8g;
stays fixed. The arbitrary variations in 7#/ fall into two
classes: (a) those that do satisfy the variation equations
of Egs. (24) and (22) and (b) those that do not satisfy
these equations.

The principle of constructive interference requires
that the variations of the integral, Eq. (35), vanish for
class-(a) variations. Consequently, the coefficients of
these variations must vanish. Now adjust the functions
8M (x) and 8M ;(x) so that the coefficients of the class-(b)
variations also vanish. Evidently the result of these
considerations is

Ogij=—20M () V2(3gim it —mij)+20M 515y  (36)

Here 5M(;|,')=§(5M4|j+5Mj| ,'), and 8ij lowers the
indices of the tensor denmsity =*!, so that w=m"
Equation (36) relates the change in g;; between two
close-by three-geometries to the “momentum” 7¢%, The
second term on the right-hand side is the change in g;;
due to a mere coordinate transformation, while the first
term is the change due to an actual motion in superspace.
The mﬁmtesnnal quantities 6 and 0My; are the
“proper” parameter differences that separate two close-
by three-geometries. (In particle dynamics the quantity
corresponding to 6M and 8M;; is Nds.) Observe that
Eq. (36) holds on some spatial hypersurface, and that
this equation is covariant with respect to coordinate
transformations in space-time.
In order to cast Eq. (36) into a more familiar form
observe that

M = 0"3

oM = f _iaa(x')dsx'.
do (%)
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Consequently,
6gt' '(xxa') oM (x;o')
‘ =—2 (2 (Bgimit—msj)
80 (") 50 () .
+2 (il5) (3 7a)
o (x')
or
M (x,0)
(Ggimit—ms;)
oo (%)
6M1|] 6M111 531:
~ ( @, (7h)
aa(x') do(x') do(x')

These equations are still manifestly covariant. By
introducing

Hy(x")= —/ &T(i ))Ro(x)d"x, (38a)
M (%)
Hy(x)=—2 —-——w”(x)ud%, (38b)
o (!
we can rewrite Eq. (37a) as
0gij(x,0) _ S(Ho(x")+Ha(x")) (39)

da (x) omii(x)
Observe that gi;(x,0) is a functional of o (x').
Now introduce a particular parameter for the
hypersurface, say,
a(a)=t.
In that event we have

/ 0gij (x’a)dax'= 9g:j (x:t) .
do(x') ot

This equation relates (a) the change in g;; at point x due
to pushing “forward in time” the whole hypersurface
o(x)=t to (b) the change in g;; at point x* due to
pushing ‘“‘“forward in time” each small hypersurface
element around each point «'%.

Upon integrating Eqgs. (37a) and (37b) with respect
to x'%, we have

(40)

9gi;

"at—“—zN(g) 2(Ggsme*—mi)+2Ny;  (41a)

or
= (g)llﬁ(Nil:i'i‘Nﬂ i

where we set

dgii/9t)/2N, (41b)

1
3gimit—
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Two conclusions can be drawn from Eq. (36), and
hence from Eqs. (41):

(a) The term N;j; transforms like a three-tensor, i.e.,
N;is a covariant three-vector.
(b) The factor N transforms like a three-scalar.

In addition, the two equations serve two purposes:

(a) Equation (36) reveals how a “tangent vector”
8®G/60(x") must be related to

Tii= 55/5g,'j
if this vector is tangent to a history.

(b) Equation (41) serves as a definition of the
extrinsic curvature? if one sets
(g)~V2(3gijm it —mi;)= K ;= extrinsic curvature,

provided that one identifies the hypersurface parameter
¢ with the fourth coordinate and the functions V (x) and
Ni(x) with the “lapse” and “‘shift” functions® in the
metric, Eq. (3).

Having determined how g;; varies along a classical
history (half the dynamical equations), we proceed now
to do the same thing for 7%/ (the other half of the
dynamical equations). The change in 7%/ as one goes
from one three-geometry to another is

okt (%) / dm* (x) dgss(x")
= d3x
o 0gii(ax’)  bo
[,
dgri(x) oo

The EHJ equation (1) holds for all ®¥G’s. Consequently,
the functional derivatives of Eqs. (1) and (14) with
respect to g;;(x) must vanish at all functions gi;:

6Ho 67r“(x’) 5Ho
0= / — S’ , (43a)
omii(x’) Ogra(x) ogr1(%)
SHy orii(x!) H
°=f — o, (43D)
omi(x’) dgri(x) ogia(x)

respectively. To evaluate the expression on the right-
hand side of Eq. (42), substitute Eq. (39) for 8g:;/d0:

6rk‘(x)~/57‘j(x')/ 0H, ' 0H, )d“‘ ,
s 8gkl(x)\61r“(x’) l omti(x) v

(42)

However, according to Egs. (42), the right-hand side of
this equation reduces to (the second half of the dy-
namical equations)

57"“(90)_ 5(H0+H1)

oo dgra(x)
Consequently, the change in 7 %! for a given test function

(44)
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do () 1
y );Skt( ) /‘5[Hg(x')+H1(x’)]
wkl(x) = —
dgr(x)

Observe that, like Egs. (36) and (37), the “momentum”
equations (44) and (45) are also manifestly covariant.

S (x)d%’.  (45)

IX. CONSISTENCY REQUIREMENTS

Starting with (a) the EH]J equation (1), (b) the re-
quirement that its solutions be only functions of the
three-geometry [Eq. (2)], and (c) the condition of
constructive interference [Eq. (19)], we have obtained
three constraint conditions [Eq. (14)] and two sets of
equations [Eqgs. (39) and (44)]. It now only remains to
be shown that all of these equations, including the EH]J
equation, are equivalent to the ten Einstein field equa-
tions. However, before pursuing this goal it is ap-
propriate to answer a possible objection that may
be raised about the equations for &r?. Will the
“momentum”

wiitomti

as computed according to Eq. (45) still satisfy Eqgs. (1)
and (14)? In other words, is it true that

8H o(x)/60=0 (46)

and
8H,(x)/80=07? @n

The affirmative answer to these questions follows from
a direct computation. For example, using Egs. (39) and
(44), one has

o (e

_ 6(Hot+Hy) o
B / ( briin) ogii(a)
6(Ho+H,y)
e i)
Now consider the scalar functionals

)d“x. (48)

x= / Tk
Y= / Ho(x")oo (x")d%,

V1= / Hy(x)oo (') d%

where £;(x') and 8o are a vector and a scalar field on the
three-dimensional hypersurface, respectively. The func-
tional derivatives of the first expression are

80X /8g:i(x) =mhiEd jt-mw kS j— i kR
—w ik = —Lrii(x),
OX /bmii(x) = — 28 »=Legi;(¥) .
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The operator £; may be identified with the Lie deriva-
tive associated with the infinitesimal transformation
xt— x4 eki(x). (49)

Consequently, upon substituting X into Eq. (48),% one

has
oX (Y ot+7y)

X= Vg L T— —_— ﬂ.’t'f

? /50(95)6 (W —/< omi(x) G

0(Yot+73)

ogii(%)
The right-hand side of this equation,

£ggij(x))d3x. (50)

e (Vo T+ / [(—6M Ro— 26M gri3,£] 4,

is the rate of change (Lie derivative??) in ¥+ ¥; due to
the transformation (49). Since Yo and ¥; are inde-
pendent of the coordinates on the three-dimensional
hypersurface, the right-hand side of Eq. (50) vanishes
(Noether’s theorem??), i.e.,

££(Y0+ Y1)=O

Since both £i(x) and do(x) are arbitrary, we have,
finally,
dmti(x), /00 (x)=0.

To show that Eq. (46) holds, substitute Ro(x’), Eq.
(33), into Eq. (48) and calculate the Poisson bracket

BRo(x’)/&r——- [H0+H1,Ro(x’)]
=[Ho,Ro(a") J+[Hy,Ro(x") ]

By considering the scalar functional

(51)

Z= / Ro(x") o (x")d?x’,

where ¢(x') is a scalar function, and by using the same
arguments as above, one obtains

[YI,Z:|= —[Zyyl:lz —£5M5(Z)=0.

The second equals sign follows from Eq. (38b) and the
definition of 6M ;. Since ¢(x’) and do(x) are arbitrary,
we have

[H:(x),Ro(x")]=0.

The other Poisson bracket is obtained by calculating
first

LY o,Ro(2") J= —28M ,s(a")rr %) (x") — M3y 15 (2)
- / [8M (x),Ro(x") JRo(x)d?x.

21 As pointed out by P. W. Higgs [Phys. Rev. Letters 1, 373
(1958)] X is the generator of spatial coordinate transformations.

2 A, Trautman, Brandeis Summer Institute, Lectures on General
Relativity, 1964 (Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1965), Vol. I, Chap. 7.6.

2 A, Trautman, in Gravitation: An Introduction to Current Re-
search, edited by L. Witten (John Wiley & Sons, Inc., New York,
1962), Chap. S; see also Ref. 22.
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This result can be obtained by explicit functional
differentiation. It is useful in this process to use

3(g"*R) = g'°g7mg" (3 jim—0gimi )11 -
+ (Rij—3gi;R)g"*0g"

and to observe that terms in ¥ or Ro(x") that have
undifferentiated #%’s and g;;’s commute with each
other. Since the test function do (x) in ¥ is arbitrary, we
have

[H(x),Ro(x")]=0.

Consequently, the right-hand side of Eq. (51) vanishes.

The lesson to be learned from the above exercise in
functional differentiation is this: The EHJ equation and
the coordinate invariance of its solution hold if the
gii’s and 77s (along a classical history in superspace)
are calculated from Eqs. (36) and (45), respectively.
One must be sure, however, that the EHJ equation and
the coordinate invariance are satisfied at the initial
point in superspace.

X. TEN VACUUM FIELD EQUATIONS

Returning now to the derivation of the ten Einstein
field equations, we observe that the equations at our
disposal are

@R+g (384581~ gargi)miw =0, (24)
79;=0, (22)
5gij(x)=5[H0(x')+H1(x')] , (39)
o (%) o ti(x)
51r“(x)= _5[Ho(x')+H1(x')] _ (44)
da (x') 6g:3(%)

Observe, however, that, as shown in Sec. IX, the first
two equations are “essentially’” contained in the last
two equations already. “Essentially” here means that,
when using Eqs. (39) and (44), we must make sure
that Eqs. (24) and (22) are satisfied at the initial point
in superspace.

Equations (37) and (44) are covariant and hold on
every three-dimensional slice through space-time. They
are the covariant-Hamiltonian equations of the 3+1
formulation of general relativity?* It is interesting to
note that these equations have the structure of a many-
particle generalization of the single-particle problem
treated in Sec. IT. That the above four equations imply
the ten Einstein field equations can be seen best by
observing that these equations can be derived from a

# R, Arnowitt, S. Deser, and C. W. Misner, in Gravitation: An

Introduction to Current Research, edited by L. Witten (John Wiley
& Sons, Inc., New York, 1962), Chap. 7.
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variational principle whose Lagrangian density is

5g,'j X 8M
L
o (%) oo (x')

oM ;
X[ O R+¢ (o stryi— i) H-2— iy

oo (x")
_OM; oM oM:*
__2(,”.“ L,k g2 ) ]dsxl
o () o (x') da(x)/ ;

= (3gsi/dUym i+ NG OR+g ¥ (b =)
— AN = 2N = N ok g ) .

This Lagrangian has been written down for the 3+41
formulation of general relativity.? It is equal to
L= (—@g1z WR,

The necessary identifications with the four-geometry
are [see Eq. (3)]

gii=Wgij, N=(—@g0)2, Ni=Wg,
7rij= g((A)Pmnﬁ_gmn (4)I‘klogkl)(4)gim (4)gjn,
(W= (— gy,
Denote the Einstein field equations by

Gu=0, u,v=0,1,2,3.
Then Egs. (24) and (22) are
G%=0

and Eq. (44) is a linear combination of these equations
together with the remaining six Einstein field equa-
tions, with Eq. (39) serving as the definition of
mi(x). QED.

XI. CONCLUSION
By considering waves
YV~ eiSih

in superspace, we derived the ten Einstein field equa-
tions. The wave function ¥ is the semiclassical ap-
proximation to quantum mechanics. Its phase functional
S is the solution to the EHJ equation

85 \/ 85 \*
®R— =0.
(7))

The history of a three-dimensional hypersurface is the
set of three-geometries which is the locus of points in
superspace where various waves ¥ interfere con-
structively; the different waves ¥ are associated with
different solutions of the EHJ equation.

The set of equations directly obtained from (a) the
EH]J equation and (b) the principle of constructive
interference are the covariant-Hamiltonian equations of
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motion with Tomonaga’s many-time taking the place
of a timelike parameter. The form of these Hamiltonian
equations is independent of one’s choice of the three-
dimensional spatial hypersurface. Consequently, these
equations are more general than the usual equations
that arise in the 3-+1 formulation of general relativity.?
The usual equations can be obtained from the covariant-
Hamiltonian equations by integrating the former on
some special three-dimensional hypersurface as was
done in Eq. (40).

As a by-product of the derivation of the ten Einstein
field equations, from the EH]J equation we gave a
prescription that one can use to test the completeness of
the solution to the EHJ equation.

XII. DISCUSSION

Although the principle of constructive interference
and the EH]J equation could be brought into operation
only by resorting to the language of classical tensor
calculus, it would be highly desirable to eliminate ‘‘les
débauches d’indices?® and give an “‘intrinsic” proof in
which it would not be necessary to refer to the coordi-
nate components of a tensor field at all.?é In such a proof
an immediate payoff would be the fact that it would no
longer be necessary to refer to the coordinate invariance
condition, Eq. (22), explicitly; one could focus one’s
attention solely on the fundamental concept in geo-
metrodynamics, the three-geometry.

Quantum geometrodynamics in its classical approxi-
mation, exhibited by the wave functional

W~ eiSih

and Egs. (19) and (20), contains all of classical
geometrodynamics, the ten Einstein field equations.
Using the semiclassical approximation in particle quan-
tum mechanics, one can describe such quantum phe-
nomena as zero-point fluctuation, elementary excitations
in solids, and an electron not spiraling into a hydrogen
atom, to name a few. Can one describe quantum
geometrodynamical phenomena! such as fluctuation in
the geometry, elementary particles (“‘geometrodynami-
cal excitations”), or a star “not collapsing’’?

To obtain an exact theory of quantum geometro-
dynamics it is necessary to formulate—and solve—the
appropriate “Einstein-Schrodinger” equation. We have
written the EHJ equation

8S oS
@R—g ' (girgs1—3gisgr) — —=0
. 0g; 0g
in the symbolic form

85\ 765\ *
x- (O e
3g/\6g

2% E. Cartan, Legons sur la géoméirie des espaces de Riemann
(Gauthier Villars, Paris, 1963), preface.

26 For an “intrinsic’’ formulation of infinite-dimensional Hamil-
tonian systems, see J. E. Marsden, Arch. Ratl. Mech. Anal. 28,
362 (1968).

(20)
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In the HJ equation in the form (1), one can use what
coordinates one pleases and still get, as we have seen, the
same physical results. The form (20) dramatizes this
coordinate independence by eliminating all reference to
coordinates [as one today uses the notation VS-VS
in place of the old-fashioned (3S/dx)*4(8S/dy)?
+(35/02)7].

In the same spirit, it is tempting to symbolize the
desired—and today not yet definitely formulated—
Einstein-Schrédinger equation by the formula

® R+ V2 (5G)2=0. (52)

However, objections have been raised?” to taking (1)
as the prototype for a suitable Hamiltonian operator
because the ‘“‘Hamiltonian” is constrained to be zero
(“frozen formalism”). The objection traces back in the
last analysis, it would appear, to the well-justified con-
clusion that zero Hamiltonian implies zero dynamics.

However, according to the considerations of Secs. II,
VI, and VIII we have to do here, not with a Hamil-
tonian, but a super-Hamiltonian.?® Moreover, wehappily
have enough experience by now with the formalism of
the super-Hamiltonian (Sec. IT and Refs. 10, 11, and 12)
to recognize that in particle physics it does give dy-
namics—and all the dynamics there is. Similarly we find
that all of classical geometrodynamics falls out of the
super-Hamiltonian of general relativity, or the HJ Eq.
(1). Therefore, it is hard to escape the conclusion that all
of quantum geometrodynamics must come out of an
“Einstein-Schrédinger” or “Einstein-Klein-Gordon”
equation of the form (52). If one can introduce spinors,
one may go even one step further and convert the
Einstein-Klein-Gordon equation into an Einstein-Dirac
equation.

APPENDIX

To complete the prescription for testing the com-
pleteness of the functional .S in Sec. VII, we must

27 A. Komar, Phys. Rev. 153, 1385 (1966) ; P. G. Bergmann and
A. Komar, Status Report on the Quantization of the Gravitational
Field in Recent Developments in General Relativity (Pergamon
Press, Inc., New York, 1962).

28 An analogous situation exists for a free particle in space-time;
its “Hamiltonian” also vanishes, JC=m22+g#* (3S/dx*) (3S/dx")
=0, However, the appropriate wave equation is the Klein-Gordon
equation, or rather the Dirac equation if one introduces spinors.
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examine the existence and uniqueness of the solution
émti to the two equations

i =0, (29)
K prii=0, (30)

and demonstrate the existence of the two arbitrary
functions da(x) and 8b(x) that label the solution to
Eqgs. (29) and (30).

Equation (29) is a differential equation, whose solu-
tions Deser?® has found by a covariant decomposition of
a symmetric tensor field. One considers an arbitrary
symmetric tensor 87°%/ which one decomposes uniquely
into

ST¥i=§rr tiit-grp(i1D) |

where dw? is a vector field that satisfies

6Tij]j= dw(il j)]j- (53)

"This equation is an elliptic system that has a unique

solution. Consequently,
Sartii= §Ti— (il 9

satisfies Eq. (29).

Observe that the solutions to Eq. (29) are labelled by
874, which has six degrees of freedom at each point of
the spacelike manifold. Because of Eq. (53), éw(9 has
only three degrees of freedom. Therefore, 67t/ Eq. (54),
has only 6—3=3 degrees of freedom. From the set of
solutions {87 %7} to Eq. (29) it is necessary to select the
subset {éw7}, each member of which satisfies also Eq.
(30). It follows that the solutions é7%/ to Egs. (29) and
(30) are labelled by only two parameters at each point
of the spacelike manifold on which Eqgs. (29) and (30)
are defined. These two parameters we call da(x) and

8b(x).

(54)
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