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All ten Einstein field equations are derived from (a) a single equation, the Einstein-Hamilton-Jacobi
equation for general relativity, and (b) the principle of constructive interference of de Broglie waves in
superspace. In this derivation one obtains by introducing Tomonaga s many-time parametrization the
manifestly covariant Hamiltonian equations of general relativity.

I. INTRODUCTION

HIS work deals with the Hamilton-Jacobi equa-
tion for Einstein s theory of gravity. The aim is

to show that all ten Einstein 6eld equations are a direct
consequence of the principle of constructive interference
of wave fronts. The propagation of the wave fronts
themselves is determined by the Einstein-Hamilton-
Jacobi equation, an equation which marks in one
formulation (that of Hamilton and Jacobi) perhaps the
furthest step to date in formulating general relativity in
quantum language.

The eGorts exerted in trying to put general relativity
within the framework of a quantum theory and thus
obtain answers to a number of problems' (gravitational
collapse, fluctuations in the geometry of space, the rela-
tion between elementary particles and geometrody-
namical excitations, etc.) inherent in geometrodynamics
have been frustrated repeatedly; nevertheless, a great
deal has been learned about the structure of the 6eld
equations. ' The present state of geometrodynamics
reminds one of the times when Bohr was trying to
understand why an electron does not collapse into the
nucleus, and when Planck was arguing for the zero-

point Quctuations' in an ensemble of simple harmonic
oscillators at zero temperature. Subsequently the ud hoc

assumptions underlying their explanations were given a
physical basis by associating with a particle de Broglie

*Present address: Battelle Memorial Institute, Columbus,
Ohio.' Although there does not yet exist a detailed quantum theory of
geometrodynamics, we already today perceive in broad outhne the
qualitative character of quantum geometrodynamics and a number
of its problems. See J. A. Wheeler, in 8attelle Eencontres: 1N7
Lectlres in Mathematics and Physics, edited by J. A. Wheeler and
C. De Witt (W. A. Benjamin, Inc. , New York, 1968); J. A.
Wheeler, Einstein s Vision (Julius Springer-Verlag, Berlin, 1968);
J. A. Wheeler, in Relativity, Groups, and Topology, edited by C. De
Witt and B.De Witt (Gordon and Breach Science Publishers, Inc. ,
New York, 1964), p. 507.

~ P. G. Bergmann, Phys. Rev. 75, 680 (1949); P. A. M. Dirac,
Can. J. Math. 2, 129 (1950); Proc. Roy. Soc. (London) A246, 326
(1958); Lectures on QNantlm Mechunics (Academic Press Inc.,
New York, 1966); Proc. Roy. Soc. (London) A246, 333 (1958);
R. Arnowitt, S. Deser, and C. W. Misner, Phys. Rev. 116, 1322
{1959);in The Dynamics of General Relativity, edited by L. Witten
(John Wiley & Sons, Inc. , New York, 1962);A. Peres, Bull. Res.
Counc. (Israel) SF, 179 {1959);Nuovo Cimento 26, 53 (1962).' M. Planck, The Theory of Heat Radeattore iP. Blakiston's Son
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waves that are capable of interference. In the semi-
classical limit, these de Broglie waves are describable in
terms of waves and wave fronts. By writing down his
wave equati. on, Schrodinger gave mathematical rigor to
these and additional geometrical aspects of motion, such
as phase, wavelength, and frequency. The short-
wavelength limit of wave mechanics is classical me-
chanics. An approximation that stands in between the
two extreme descriptions (wave and ray) is the semi-
classical approximation. Its mathematical basis is the
phase functions S, the solutions of the Hamilton-Jacobi
(HJ) equation, together with the principle of cort
strlctiee irsterferertce of waves,

+~g iS/A

Once one has a classical theory, it usually is easier to
go to the semiclassical approximation than it is to go to
the wave equation or its equivalent. A necessary condi-
tion that the semiclassical approximation be correct is
that one must be able to deduce the classical equations
of motion from it. This is what we aim to do for the case
of the Einstein field equations. We deal with a scalar
functional 5 de6ned on the superspace of three-
geometries; that is, the space in which each "point"
represents one three-geometry (SL&s&g).

The proposition that we shall prove is the following:
Given:

(a) The Einstein-Hamilton-Jacobi (EHJ) equation
for general relativity, 4

o='"~+g '(-.g'tgs~ —g'sg t)(»/8g* )(»/bg ) (&)

Here g;; denotes the metric of the spatial hypersurface.
The EHJ equation is defined for each point of this
surface. The curvature invariant on this surface is (3)R

and g—=detg;;. The equation must be solved for S
("HJ function, " "Hamilton's principal function, " "ac-
tion, " h times the phase of the "Schrodinger" function
in the semiclassical limit). The functional derivative of
S with respect to g;;(x) is defined by

bS= bg;;(x)dsx,
bg;, (x)

The KHJ equation was first written down by A. Peres, Nuovo
Cimento 26, 53 {1962).

j.929



1930 UL RICH H. GE RLACH

where the integration is performed over the whole
spatial hypersurface.

(b) The functional S is a function of the three-
geometry' only:

(2)s=sLt'&g],

i.e., S is coordinate-independent.
(c) The principle of constructive interference. o

(d) The boundary condition that the spatial hyper-
surface either (i) be finite and have no boundary' or
(ii) be asymptotically fiat.

Conclusion:

(a) There exist four functions' N, N; (i=1, 2, 3)
which together with g;; give a space-time metric

ds'= g; (N'dx'+dx') (N &dx'+dx') N'(dx'—)'
=g;;dx'dx'+ 2N ~dx~dxo+ (N N ~ No) (dx.o)o (3)

that satis6es the Einstein field equations.
(b) The manifestly covariant equations of geometro-

dynamics,

8g;;(x) oB 57r'&'(x) 8H

are a consequence of the semiclassical approximation to
quantum geometrodynamics. Here B is a functional of
g;; and x"=55/8g;;. The Tomonaga-Schwinger' many-
time parameter is denoted by 0..

In light of these conclusions, one should emphasize
the utility of the EHJ equation. Its solution is the
fountainhead from which one can, with the help of the
principle of constructive interference, obtain any of the
histories satisfying the ten Einstein vacuum 6eld
equations. '

~ A three-geometry, denoted by (3)g, is a class of (3)g;, 's whose
members have the property that one can be transformed into any
other by a suitable coordinate transformation.

E. A. Power and J.A. Wheeler, in Geometrodynamics, edited by
J. A. Wheeler (Academic Press Inc. , New York, 1962), p. 221.

7 A closed three-geometry is assumed here to keep the discussion
in closest accord with Einstein's ideas about the structure of space
in the large. See A. Einstein, The Meaning of Relativity (Princeton
University Press, Princeton, New Jersey, 1955), pp. 103, 104. See
also J. A. Wheeler, in Mach's Principle as Boundary Condition for
Einstein s Eyastions in Gravitation and Relativity, edited by H. Y.
Chiu and W. F. Hoffman (W. A. Benjamin, Inc. , New York,
1964); D. Brill and J. Cohen, Phys. Rev. 143, 1011 (1966).

8 These functions are known as the "lapse" and "shift" func-
tions. See second reference in Ref. 7. See also J. A. Wheeler,
in Geometrodynamics and the Issue of the Final State in Relativity
Groups and Topology, edited by C. De Witt and B. De Witt
(Gordon and Breach Science Publishers, Inc. , New York, 1964).

9 S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 1, 27 (1946); J.
Schwinger, Phys. Rev. 74, 1449 (1948). The first paper is also
reprinted in Quantum Electrodynamics, edited by J. Schwinger
(Dover Publications, Inc. , New York, 1958). See also S.
Tomonaga, Phys. Today 19, No. 9, 25 (1966).

~0 This state of affairs is in marked contrast to a way of arriving
at the Einstein 6eld equations that merely depends upon the
coordinate covariance of these equations. In this case one' s
starting hypothesis is that the initial value equations of general
relativity, G„o——0, hold on every slice through space-time. By
considering the normals n" to any of these slices, one obtains
G„„n&=0.Arbitrary slices are under consideration. Consequently,
the normals n" are arbitrary, and hence the Einstein equations

Before we address ourselves to proving the above
proposition in geometrodynamics, we recall in Sec. II
how all the dynamics of a free particle arise from its HJ
equation and the principle of constructive interference
in space-time. Section III considers the identities that
the solution to the EIIJ equation must satisfy. Section
IV describes the principle of constructive interference in
superspace. In order to be able to use this principle in
Sec. V, we introduce Tomonaga's "many-time" param-
etrization. Section VI presents the semiclassical ap-
proximation to quantum geometrodynamics. Section
VII gives a method for testing the completeness of the
solution to the EHJ equation, while Sec. VIII gives the
derivation of the covariant-Hamiltonian equations that
describe the history of a three-dimensional spacelike
hypersurface. Section IX shows the consistency of these
equations with the EHJ equation. Section X points out
how one obtains the Einstein vacuum field equations
from the covariant-Hamiltonian equations.

II. AN ANALOGY: A FREE PARTICLE
IN SPACE-TIME

Consider the HJ equation for a particle in an empty
space-time, whose metric is g&" (p, v=O, 1, 3)

X=m'c'+—g&"(BS/Bx&) (BS/Bx")=0 . (4)

(R is the relativistically invariant "super-Hamil-
tonian"; see, for example, Kramers" or Landau and
Lifschitz. ")

The solution to this equation, the phase function S,
is a function that is dered on all space-time. Different
solutions to the HJ equation are characterized by
different sets of integration constants. Denote the set of
integration constants by 0.;, i= 1, 2, 3; they are usually
associated with the energy and the momentum of the
particle. In the semiclassical approximation to quantum
mechanics one associates with a particular solution a
wave function

@~g s'S/A

The regions in space-time that are characterized by
S(x,n)=19.1, S(x,n)=19.2, etc., are the de Broglie
wave-front histories" of the wave function %.

Now consider a slightly different solution to the HJ
equation, say,

S(x, n+8n).

Once again one has wave-front histories such as
S(x, n+hn)=19. 1, S(x, n+bn)=19. 2, etc. The wave

G„,=O follow. Observe that here no new principles have been
invoked: The demonstration only involves the equations; nothing
has been said about the solution to these equations."H. A. Kramers, Quantum jIIechanics (Interscience Publishers,
Inc., New York, 1957), pp. 44, 84.

'2L. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields (Addison-Wesley Publishing Co., Inc. , Reading, Mass. ,
1962), p. 30."Synge calls them "de Broglie three-waves" or the "history of a
de Broglie two-wave. "See J.L. Synge, Geometrical Mechanics and
de Broglie 5"aves (Cambridge University Press, New York, 1954).
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dxt"
BP„=O.

dS
(9)

Here the variation Bp„ in p„ is due to arbitrary infini-
tesimal variations in the integration constants n~, n~,
and n3.

The solution S(x; ni, n2, n3) that we are considering is
by assumption a comptete" one (it has the maximum
number of integration constants). Consequently, the
variations Bp„(defined over all space-time) due to the
variations bn;, i= 1, 2, 3, are all those that satisfy

0= X(P„(n+in) )=X(P„+BP„)
=X(p.)+(BX/Bp.)BP., (1o)

'4 R. Courant and D. Hilbert, Methods of Mcthematicat I'hysics
II (Interscience Publishers, Inc. , New York, 1962), Chap. 1,
para. 4.

fronts 5= 19.1 characterized by slightly different inte-
gration constants interfere constructively at a single
point in space-time determined by

19.1=S(x;ni, a2,a3) =S(x;ni+Bni, u2, u3)

S(*jail n2+~n2) n3) S(xj nl& a21 n3+~n3) (S)

(four equations for the four x&). The particle is under-
stood to be located' at this point, according to the
principle of constructive interference. Similarly, wave
fronts 5= 19.2, etc., interfere constructively at another
point in space-time. The four coordinates of that point
are found by solving the four equations

19.2= S(x+Ax j ni) n2, a3) =S(x+tax j ai+ oui, n2) n3)

=S(x+2,x; ni, u2+8n2, n3)
=S(x+Ax; ni, n2, n3+ 8n3) . (6)

The set of interference points characterized by 5= 19.1,
S=19.2, etc., describe the path of a particle through
space-time.

Is it possible to determine the instantaneous direction
of the particle path in space-time? Yes. Subtract Eq. (S)
from Kq. (6) and obtain

py(al, a2n3)kx"= pp(ai+Bai) n21 n3)dx~

=P„(ui, n2+Ba2, n3)hx&=P„(ui) a2, n3+Ba3)hx& (7).

Here the momentum is defined as the gradient of S:
p„:—BS/Bx" .

Instead of specifying the direction of the particle world
line by the separation Ax& between the two locations of
the wave packet at two nearby instants, it is more
appropriate to introduce a parameter continuous along
the world line and specify the tangent:

d,x' —3 dx"/ds.

Different choices of parametrization will give different
magnitudes for the four-vector dx&/ds, but always the
same direction (at a given point in space-time). Sub-
tracting P„(ni,n2,u3)hx& from each term in Eq. (7) and
going to the limit yields

so that one can consider X(x",p„) as a function of the
independent variables {x",p„) and characterize the Bp„
which enter Eq. (9) by the condition

(BX/Bp„)BP„=0

Therefore, Eq. (9) can be restated as follows: A neces-
sary condition for dx&/ds to lie on a particle world line is
that there exists a momentum p„such that the quantity

(12)

is an extremurn with respect to infinitesimal variations
in p„. Here the typical variation is

P.~ P~'= P.+op'
It is understood, but it does not have to be said, that

the change Bp„(x') is brought about by a change in the
integration constants n;, neither does one have to know
the precise functional dependence of the p„'s upon the
n s. In other words, the variation from the original p„
to the new momentum p„' can be treated. as a quantity
in its own right. The only restriction on this variation is
that it satisfy Kq. (10), i.e., the p„and p„' must satisfy
the HJ equation (4).

The HJ equation (4), together with the restatement
of the condition for constructive interference as the
extremum condition on expression (12), contains all
the classical equations of motion for the particle in a
nutshell.

The extremum principle is easily put into operation
with the method of Lagrange multipliers:

(13)

Arbitrary variations Bp„ fall into two classes: those that
do and those that do not satisfy

axBp„=0.
8 p

With a suitable choice for S, the coefhcients of both
classes of variations in Eq. (13) must vanish. Thus we
have the first half of Hamilton's equations ("velocity
equations") of motion

dx" BX

ds Bpp

expressed in covariant form. To obtain the other half,
use the fact that the super-Hamiltonian X of Eq. (4) is
everywhere zero, so that its derivative is also every-
where zero; thus

BX BX BPp BX BX BPp
+ =-+

Bx Bp Bg Bx Bp Bx"
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Now find the rate of change of the momentum; thus

dp, «jp, dxl'

ds Bx~ ds

or, with the help of the velocity equation,

lpga

Bpp BiX BX
x

8$ l9x~ Bpp Bx

thus completing the derivation of the Hamilton equa-
tions of motion from the HJ equation.

To go from the Hamiltonian form to the Lagrangian
form of the equations of motion, solve the velocity
equation for p„and substitute into the last equation,
obtaining

d x" Bg,~ Bg,p Bg p dx dx& X,e dx dx"
0= +-,'g~" — +- — —+

ds2 Bx~ Bx gx" ds ds E ds ds

with
g" (x) =g' (x)+&g"(x),

&g'~ = «—(k'i~+ 4i')
The ostensible change in S brought about by this change
in the metric coefficients is

bg;;(x)d'x
8g;;(x)

$;)gd x
bg;, (x)

Proof. Given the &@g expressed in terms of coordinates
x' by the metric coefficients g;;, go to infinitesimally
diferent coordinates

x"=x'+ «]'(x)

and have the same three-geometry expressed in terms of
the metric coefficients

d$2

dx dx& 1 dE dx~+r.,~

ds ds S ds ds
=26 (,$,d'x.

bg' (*)
the equation for the world line of the particle. It is
possible to make the last term vanish by an appropriate
choice of the parameters. This derivation shows that the
classical equations of motion may be obtained from the
semiclassical approximation of quantum mechanics.
Observe that the super-Hamiltonian 3C for the particle
is "constrained" to be zero and that, according to the
equations of motion, it stays zero all along the world line
of the particle.

III. A RESTRICTION ON THE SOLUTION
TO THE EHJ EQUATION

Returning now to the EHJ equation, note that the
dynamical phase 5, ostensibly a functional of the six
metric components,

s=s[g;;],
we require to be a functional of the three-geometry
alone, regardless of all transformations of coordinates
(and indeed, in principle, regardless of whether we do or
do not choose to use any coordinates at all in describing
this three-geometry); thus

In consequence it follows that S, expressed as a func-
tional of the g;, 's, must everywhere satisfy the three
identities"

[aS/ag;;(x)]~, =O, (14)

where the vertical bar indicates the three-dimensional
covariant derivative.

"The essential ideas of this fact were already known to P.
Higgs, Phys. Rev. Letters I, 373 (1958);3, 66 (1959).See also K.
Schrodinger, Space-Time Structure (Cambridge University Press,
gew York, 1950), Chap. XI.

However, the &'&g itself has not changed at all. Hence 85
must vanish, and vanish, moreover, for arbitrary $;(x),
in consequence of which Eq. (14) follows at once.

IV. PRINCIPLE OF CONSTRUCTIVE
INTERFERENCE. A

Just as the phase function for a single particle is
de6ned on space-time, so the phase functional of the
KHJ equation is defined on superspace. Superspace" is
the set of equivalence classes of all spacelike g;, (x) 's that
can be transformed into each other by means of spatial
coordinate transformations.

Consider a solution to the EHJ equation satisfying
Eq. (14):

S[&'&g n(u), p(u)]

Here n and p are integration constants identihed by the
parameters u=(ui, u2, u3). In the linearized theory of
gravitation, n and p may be identified with the initial
two polarization amplitudes, (ui, u„u3) being eithe~ the
spatial coordinates or the wave-vector coordinates.
Note, however, that the existence of the constants of
integration depends in no way upon the existence of the
linear approximation to the exact theory. Although the
constants n(u) and p(u) have been explicitly indicated
in the solution S, no attempt is made in this paper to
actually prove the existence of these constants. For the

'6 Observe that although superspace is infinite-dimensional, it is
a space of countable dimension. The reason is that to specify a
continuous function g;;(x), one merely has to specify it on the
points of the spatial hypersurface that have rational coordinates.
See L. Streit, in I'roceedings of the Fourth Internationale Uni-
eersitatsmochen fur Intern physi k 1965der Karl Franzens-Universitat
Graz: Quantum E/ectrodynamzcs, Acta Physica Austriaca Suppl. II,
p. 3.Superspace and its relevance to quantum geometrodynamics
are discussed in the first reference of Ref. 1.
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19.1=S[&'&g;n(u)+()n(u), P(u)+i&P(u)]
=S[('&g; n(u); p(u)] (16a)

for all small variations hn(u) and isP(u). In this event we

may say that &'&g is a "yes" point in superspace, in the
sense that this &'&g "occurs in the classical history of
space" (Fig. 1).Consider a "nearby" allowed &'&g—that
is to say, a nearby "yes" point in superspac- which we
may denote symbolically by (8)g+d(3)g. It satisfies the
equation of constructive interference, "
1 9=2[S' g(+&. d ' g(&n(u)+bn(u) p(u)+()p(u)5

(16b)=S['g+d'g a(u) p(u)]
'7 One should note here that there is nothing special about the

value S=19.1 and S=19.2, A diGerent choice of a solution S
(diGerent in that S is a diGerent functional of the constants) would
have resulted in diGerent phase valises for the wave packet.

purpose of formulating the principle of constructive
interference, we assume their existence. Observe, on the
other hand, that the deduction of the ten Einstein Geld
equations (Secs. VIII and X) from this principle is
independent of the knowledge of these constants. The
isograms (subspaces that are characterized by the same
value) of the phase functional are the histories of the de
Broglie wave fronts.

Now consider the phase functionals obtained by
changing slightly each of the 2X' constants of
motion:

n(u) -+ a(u)+bn(u),

p(u) ~ p(u)+~p(u)

The de Broglie wave-front histories (isograms with a
fixed phase value, say, S=19.1) of the phase functionals
interfere (intersect) to form a packet of three geometries
such as ('&g~, "&gs, &"go, etc., in Fig. 1. One (3)g—say,
(3)gz—can be described in a given coordinate system x"

by means of a particular set of metric coefBcients g;;.
However, under a coordinate transformation these
metric coefficients are transformed to other metric
coefficients. The totality of all g; s obtainable under the
action of the entire group of three-coordinate trans-
formations corresponds to the &"g~ and to the one point
in superspace in question.

Similarly, from the de Broglie wave-front histories,
one constructs a stack of wave packets with S=19.2,
19.3, , etc. The set of wave packets thus constructed
lie on a subset set of points in superspace, the history of
a three-geometry. See Fig. 1.

This shows how the principle of constructive inter-
ference together with the EHJ equation yields a classical
history through superspace.

In order to cast the principle into suitable mathe-
matical language, consider a wave packet; such a wave
packet is a superposition of C functions. The phases of
the several individual 0 waves are given slightly varied
HJ functionals S[&'&g; n,P]. A three-geometry &'&g lies
in this packet if this &'&g satisfies the conditions (2X ~ '
of them'r)

NS

FIG. i. de Broglie waves in superspace interfering constructively
to produce a four-geometry. Each history of a de Broglie wave
front is a subspace in superspace on which the phase functional S
is constant. Now focus attention on all those de Broglie wave-
front histories (in single-particle mechanics, Synge calls them de
Broglie three-waves, see Ref. 12) that are characterized by the
phase functionals that have S=19.1. These phase functionals
differ from each other by virtue of the fact that their constants of
motion (2g ~3 of them) are diGerent for different phase func-
tionals. In the above figure all these constants have been con-
densed into the letter o.. The phase functionals that diGer slightly
from each other in 0. but have the same value S=19.1 intersect
each other in a set of "yes" three-geometries (three typical ones are
labelled by (')g~, (3)gz, (')gt.-}.Observe that these "yes" points in
superspace are characterized by 2P ~3 equations such as Eq.
(16a); however, a point in superspace is characterized by 3&( ~'
quantities. It is therefore quite obvious that there is more than one
"yes" three-geometry characterized by S=19.1. Similarly for
S=19.2, 19.3, etc., one has subsets of points which are "yes"
three-geometries. As indicated in the figure, the totality of subsets
form a four-geometry that satisfies Einstein's field equations. Each
point on this totality of points is a spacelike slice through this (4)g.
As a solution to the Einstein field equations, this (4)8 is usually
represented as a particular sequence of spacelike slices. In this
figure such a representation is a one-parameter curve through a
particular sequence of "yes" points, such as (3)gz —& (')8&' —+ (8)gz".

again for all choices of the arbitrary small variations
i&n(u) and l)P(u) in the integration constants. The
difference between the three-geometries associated with
two wave packets is denoted symbolically by

d(3) g

The difference between Eqs. (16a) and (16b) yields

bS 8S
(a+an, P+ l)P)d("g= (n,P)d"&g. (1'I)

()o))g ()(3)g
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0

dx -Lim Ax
db hd ~o hb 3 4—

3&r &x)

I

rk
r

Scr ~o
V ~o fScr&x)d x

Before continuing with the principle of constructive
interference, we must take time to describe the
parametrization of &"b.

V. TOMONAGA'S PARAMETRIZATlON

In one-particle dynamics, where Eq. (5) was the
analog of Eq. (16a), a definite choice for the value of S

FIG. 2.Tomonaga's infinite-dimensional parametrization applied
to a three-geometry. In particle dynamics, as shown on the left, a
single parameter is associated with the particle. A mapping from
the real line E into space-time is the curve along which the particie
travels. In particular, given two close-by points in space-time
separated by an in6nitesimal vector Ax&, one can introduce a curve
parameter by associating with this vector an in6nitesimal interval
as. The tangent vector obtained by going to the limit 1imax»/as
as ds —+ 0 defines the curve in an in6nitesimal neighborhood. This
tangent vector is merely a linear mapping from the tangent space
of E at xo into the tangent space of space-time where the particle
is located. For a clear and succint discussion of this idea, see for
example, J. Milnor, Jj/Iorse Theory (Princeton University Press,
Princeton, ¹ J., 1963), p. 45.

Tomonaga's parametrization as shown on the right is a general-
ization of the above procedure. A classical history of a spatial
hypersurface has to be parametrized by E){,'RXEXE—=E'. A
mapping from E4 into superspace is the history along which the
hypersurface travels. A particular hypersurface is labelled by a
particular three-dimensional section through E' {in order not to
strain one's mind only a two-dimensional section through R' has
actually been drawn}. Such a particular three-dimensional section
is represented as a function of three variables, e (x1,x&,x3). Is it just
as straightforward to define a tangent vector for geometro-
dynamics as for particle dynamics' Not quite. Consider two close-
by geometries that are separated by &»g' —&»g=d&»g. ith d&»g
one associates a variation 80.(xi,x2,x3) which is zero everywhere
except for a small region Vo around fxoi, @0~,x03) on the surface
~{x).Then the tangent is de6ned as the limit of d&»gjJ'bo. (x)d'x
as shown in the 6gure. This limit is a distribution. Furthermore,
observe the difference in the nature of the tangent vector in
particle dynamics and in the geometrodynamics. In the former
only the choice of the parameter difference hs was arbitrary. The
effect of that arbitrariness resulted in an arbitrariness in the length
of the tangent vector, but not its direction. In geometrodynamics,
on the other hand, the choice of br(xi, x2,x3) at each point on
the hypersurface is arbitrary. The result of this fact is that
J'(8&'&g/her(x) )ba (x)d'x =d&»g is arbitrary to the extent that even
though d&»g lies on a "classical history H" (see Fig. 1), d&3)g may
be any one of the vectors d&»g=&»g —&»g;, i j=A 8, C, etc. ;
in other words, the various d&»g resulting from various choices of
Bo (x) are not linearly related in general. Observe that the "number"
of linearly independent d&»g's is ~'.

These in6nitesimal "vectors" d&»g can be described more pre-
cisely as follows: Consider the set of functions fo(x)f from closed
three-dimensional manifolds into the reals. Now consider a func-
tion that takes the space {r(all into snperspace Let QLrj .be the
image of a particular o.(x).To describe the in6nitesimal "vectors"
d&»g focus attention on (1) the tangent space to fa (x)) at ~(x),
(2) the tangent space to superspace at gfo j, and (3) the mapping,
b&»gjba(g}, which maps linearly an element 8~(x) in the first
tangent space into an element d&»g in the second tangent space.
The appropriate equation for this mapping is Eq. (18a}.

resulted in a definite point x along the dynamical
history H of the particle. No corresponding result
applies here. For a given value of the HJ phase function,
S=19.1, there is not a single "yes" &sip, but a whole set
of "yes" &s&b's, as indicated symbolically by such
"points of superspace" as A, 8, C, etc., in Fig. 1.
Consequently, no single quantity S is adequate any
longer to parametrize the allowed &sip's in the dynamical
arena (superspace). Instead, it turns out that we must
use an infinite-dimensional parametrization of a kind
first made familiar to physics by Tomonaga. ' See Fig. 2.

How can one see qualitatively that the "yes" &"&i's
need Tomonaga's 0 parametrization to distinguish one
from another' Compare the coullt of unknowns ln R

three-geometry with the count of equations in (16a).
Denote the number of points on a spatial hypersurface
by oo'. The function g;;(xixsxs) is determined by
specifying its value for each (xtxsxs). Consequently,
6)&003 numbers' must be specified to single out a
particular function g,;(x). The number of possible
functions is therefore ~'x"'. Similarly, the number of
coordinate functions that transforms one g, ,(x) into an
equivalent one is ~'x"'. Consequently, the number of
nonequivalent metrics" is ~' "'/~'x"'= ~'x"'. In
other words, it takes 3X00' numbers to specify a
three-geometry.

Furthermore, observe that the phase functional S is
defined on the space of all g; s. The dimensionality of
this space is 6)( ~'. The number of equations for 5 is
(3+1)Xoos. One can see that there are (6—4)&& ~'
=2g ~' constants of motion. '8 For a particular 5 value
there are just as many equations [Eq. (16a)g that
determine the set of "yes" points.

Using the fact that it takes 3& ~ ' numbers to specify
a three-geometry, one concludes that the number of
"yes" points for a particular S value is (3—2))& cos

=1X'.
For two values, say, 5=19.1 and 19.2 in Fig. 1, one

has two sets of "yes" points in superspace: &
&'&g~, &'&&in,

&sire c, etc.) and &&s&g~', &'&&in', &@&ic', etc.).Consequently,
the number of vectors connecting an unprimed &sib with
any one of the primed &sinai's is ~'. This is precisely the
number of parameters &r(x) (Tomonaga's parametriza-
tion) necessary to label a classical history.

Before leaving the subject of parametrization, we
can appropriately remind ourselves again that the
item of physical concern in one-particle dynamics
ls nevel R par ametr$2'GAOs-dependent quRntlty such
as dp"/ds or dx»/ds by itself, but always such a
parametrsza{son-independent (parameter-dependent!)
quantity as (dp»/ds)ds or (dx»/ds)ds.

'8 The counting processes here are by no means mathematically
rigorous. In particular: (1) Finite multiples and powers of the
same cardinal number still have the same cardinality. (2) The
division of cardinal numbers is an undefined process. See G.
BirkhoG and S. MacI.ane, 3 Survey of 3fodern A/gebra (The
MacMillan Company, New York, 1961), p. 366. However, no
better-defined counting procedure seems to exist, and this pro-
cedure allows one to communicate what one is talking about.
Consequently, we shall use it. See also Ref. 16.
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ometries.
An easy way of obtaining the ten Einstein field

equations is to use the language of classical tensor
calculus. In that case the tangent vector in Kq. (19)
becomes

(i(»g
80.d'x

80
(&(»g=

Similarly, in geometrodynamics we are not concerned De Witt metric") counterpart of the vector
with the parametrization-dependent quantity 5(»g/8o.

SS/S(»g
(or with hg;;/bo), but with such a parametrization-
independent quantity as defined on superspace, the space of three-ge

or, equivalently, with any particular member of the
equivalence class 1)(»g,

8g;;
80.d'x.

80.
(18b)

Note that the definition of the infinitesimal test function
bo- is such that bad'x is the volume generated by the
displacement ba imparted to the spatial hypersurface
element d'x, See Fig. 2. Thus the appropriate focus of
attention is hg„ itself, rather than 6g, ,/bo This c.ircum-
stance means that one can forego getting into all
the details of this or that conceivable scheme of
parametrization.

Here
(

IIS )8'g

(,
")

(19)

denotes the change in 1)S/(&(»g due to an arbitrary
infinitesimal variation in

{n(u),p(u) }.
The EHJ equation together with the principle of

constructive interference as exhibited in Kq. (19),

bS y 1&S y*
(»E— —

/ /
=0,

(i(»g&& 1&(»y

(,")".". =

(20)

(19)

contains all of general relativity in a nutshell. The
starred vector (()S/()(»g)* is the dual (with respect to the

VI. PRINCIPLE OF CONSTRUCTIVE
INTERFERENCE. B

Instead of specifying two close-by geometries by

(3)g and (3)g' —(3)gy d(»g

introduce Tomonaga's parametrization and thus con-
sider b(»g/1&o (x) instead of d('&g. Then subtracting the
right side of Eq. (17) from both sides of Eq. (17) yields
to first order a necessary condition for the "vector"

S(»g/So(x)

to be tangent to a history through (»g:

()(»g (&g;, (x; o (x'))

bo. (x') 8a(x')

The derivative of S with respect to "&g becomes

bS 55 —=x'&(x)
1&(»g 1&g,, (x)

where 7r'&(x) must satisfy

x'~(;=0

(21)

(22)

in order for S to depend only on (»g [Eq. (2)].
With this notation, Eqs. (19) and (20) become

bg, ;(x)
1)x"(x) d'x =0, (23)

(&o (x')

(»E+g '(-'g, ,g~&
—g, &g;&))r'&x~'=0 (24)

In order to make the principle of constructive inter-
ference as stated in Kq. (23) more amenable to mathe-
matical treatment, let us restate it as follows: In order
that a change 5g;, , or, equivalently, that bg;;/()o. , be a
vector tangent to a history, it is necessary that there
exist a 7r"(x) with the property that

bg;;(x)
&r"(x) d'x= extremum (25)

bo (x')

if one changes the integration constants n(u) and P(u)
slightly.

Since there are six functions x"(x) and only two
independent functions n(u) and P (u), the x"(x) cannot
be varied arbitrarily. This nonarbitrariness is also re-
flected in the fact that x"(x) must satisfy Eqs. (23) and
(24). Although these equations put restrictions on the
allowable momentum densities m '&'(x) at each point in
the space of g;, (x)'s, there is still a copious amount of
freedom for having this, that, or the other )r"(x). This
freedom in the choice of the momentum density can be
associated with the freedom that one has in adjusting
the integration constants that result from solving the
EHJ equation.

VII. COMPLETENESS OF THE SOLUTION
OF THE EHJ EQUATION

In order to clarify the connection between these two
freedoms, it is appropriate to ask and answer the follow-
ing question: Given a solution to Eqs. (1) and (14)

'9The geometry and topology implied by this metric fi.e.,
(3)g "'(-,'gzjgp$ gshgj)) j have been analyzed by B.De Witt, Phys.
Rev. 160, 1113 (1967).
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S[g;,; n(u), P (u)), (26)

the possibility may arise that this solution is a patho-
logical one, since, although it ostensibly depends upon
two free functions n and P ("constants of integration"),
it might turn out that for some (upi, ups, ups) this
given solution in reality is independent of rr(u) for
u= (upi ups ups): What assurance does one have that the
solution is a comp/ete one in the sense that the solution S
is a functional of the maximum number of independent
constants possible?

To answer that question, denote for the time being
the momentum density obtained from Eq. (26) by

pr't(x) = [n(u),p(u)).
i)g;, (x)

(27)

Then consider the linearly independent variations in x'&

due to infinitesimal variations in each constant n(u)
and P(u):

AS
brr'&(x) =

i
&n(u)

bg;;(x)bu(u)
PS

+ &P(~))« V8)
bg;;(*)bP( )

7r"+H".
by slightly varying the integration constants (a(u),P(u) }?
In other words, how do we test the solutions

7r"+bpr"

to see that we have a comp/ete set?
First, we must consider the variation equations as-

sociated with Eqs. (22) and (24),

It is clear that both rr" and pr "+bn" satisfy Eqs. (22)
and (24). The problem that we are faced with now is
this: Do we get a muximlm number of independent
solutions

the Appendix) will be that Eq. (29) has a solution that
is paramctrized by three functions, and that, as a
consequence of Eq. (30), bs 't depends upon only two
arbitrary functions ba (x) and bb (x) defined on the three-
dimensional submanifold:

b~' (x) = bw "[ba(x),bb(x)). (31)

Consequently, the question of the completeness of the
solution S, Eq. (26), reduces merely to the existence of
a one-to-one correspondence between all possible bx'&,

Eq. (31), and the 3pr'& in Eq. (28).
In other words, in order that the solution S be a

comp/ete solution, it is necessary and sufficient that there
exist a nonsingular linear transformation

Gs. i. '&(x,x')

that maps the set of linearly independent variations,
Eq. (31), onto the set brr"(x):

8 "(x) fa=& "(x,x,.)I. "(x')d'
In general, Gs i'&'(x, x') is not the identity transformation,
because 5m'& may be a variation in a "collective mode"
[in this case, (ur, us, us) in Eq. (15) is a wave vector),
whereas bx'&' is a spatially localized function.

If S is not a complete solution, the Gp i "(x,x') is
singular. This means that some hrr"" (x') WO is mapped
into zero. The existence of a nonsingular transformation
assures us that the number of constants (n(u), P(u)},
Eq. (27), is equal the number of degrees of freedom in
(ha(x), bb(x)}, Eq. (31), which are responsible for all
possible variations in the w" that satisfy Eqs. (22)
and (24).

Consequently, if one has found a complete solution of
the EHJ equation, then the variations of the momentum
density [in Eq. (19))are equivalent to variations in x'&'

that satisfy Eqs. (22) and (24).

bx'&) =0
E "8m '&'=0

(29)

(30)

VIII. DERIVATION OF THE DYNAMICAL
EQUATIONS

Here E;; is the "extrinsic curvature"" of a three-
dimensional manifold imbedded in a four-dimensional
one:

E"=('s)g) "'(-'g "ns' —m. ").
Since we are examining the completeness of the solution
in Eq. (27), we set

7r'j x =Ã'7 x

and examine all the solutions that diGer infinitesimally
from pr't(x). This means that we must examine the
solutions to the Eqs. (29) and (30), which are linear in
the unknown bw". The result of this examination (see

I.et us return our attention: to proving the proposition
relating the EHJ equation to the ten Einstein field
equations. As a 6rst step, it is necessary to obtain a
relationship between bg;;/bo and 7r". According to our
previous discussion, we replace Eq. (25) with the help of
Eq. (18b) by

x'&bg "d'x (32)

This expression must be an extremum with respect to
variations in pr'~'(x) subject to the restrictions

/? p
=—(g)"'['"&+g '(-'g;;gsi —grsg&i)rr "w"')=0, (33)

I See Ref. 8. E;; is also called the "second fundamental form"
LR. Arnowitt, S. Deser, and C. W. Misner, Phys. Rev. 116, 1322
(1959)].See also L. Eisenhart, Riemannian Geometry (Princeton
'university Press, Princeton, New Jersey, 1964), p. 343,

~' ),——0,

pr'&(x) =bS/bg;;(x) .

(22)

(34)
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x'-+ x'+ o('(x) . (49)

Consequently, upon substituting X into Eq. (48),"one
has

The operator Z~ may be identified with the Lie deriva-
tive associated with the infinitesimal transformation

This result can be obtained by explicit functional
differentiation. It is useful in this process to use

b(g loR)=g ~og~ go'(bg [
—bg ( )[o

+ (R;,—-,'g;;R)g"'bg"

(
~(&o+I'i)

2p '&(x)
b&' (*)

b(r ops', )+ Zog;;(x) ~d'x.
bg;, (x)

The right-hand side of this equation,

and to observe that terms in I"p or Rp(x') that have
undifferentiated m'&'s and g; s commute with each
other. Since the test function bo (x) in Vp is arbitrary, we

(5o)
[IIp (x),Rp(x') 7=0.

—&)(&o+&i)+ [( RVRp 2—RV~w"~—,)g'7 od'x,

is the rate of change (Lie derivative") in I'o+ I'~ due to
the transformation (49). Since I'o and I'~ are inde-
pendent of the coordinates on the three-dimensional
hypersurface, the right-hand side of Eq. (50) vanishes
(Noether's theorem"), i.e.,

Z((I'p+ I'g) =0.
Since both $'(x) and bo(x) are arbitrary, we have,
finally,

b ' (x)~,/b (*')=0.
To show that Eq. (46) holds, substitute Ro(x'), Eq.

(33), into Eq. (48) and calculate the Poisson bracket

&Ro(x')/ho = [Ho+H&, Ro(x') 7
= [Hp, Rp(x')7+[H~, Rp(x')7. (51)

X. TEN VACUUM FIELD EQUATIONS

Returning now to the derivation of the ten Einstein
field equations, we observe that the equations at our

disposal are

'"R+g '(-'g;,go~ g'og —~)~"&"=0 (24)

(22)

Consequently, the right-hand side of Eq. (51) vanishes.
The lesson to be learned from the above exercise in

functional differentiation is this: The EHJ equation and
the coordinate invariance of its solution hold if the

g;, 's and vr"'s (along a classical history in superspace)
are calculated from Eqs. (36) and (45), respectively.
One must be sure, however, that the EHJ equation and
the coordinate invariance are satisfied at the initial

point in superspace.

By considering the scalar functional

Z= Eps +$ dS)

bg, , (x) b[Ho(x')+H, (")7
bo (x') bn '&'(x)

(39)

where q (x') is a scalar function, and by using the same
arguments as above, one obtains

bor "(x)

bo (x')

b[Hp(x')+Hi(x')7

bg, , (x)

[I &,Z7= —[Z,V&7= —&oor,.(Z) =0.
The second equals sign follows from Eq. (38b) and the
definition of bM;. Since oo(x') and ba(x) are arbitrary,
we have

[H, (x),Rp(x') 7=0.
The other Poisson bracket is obtained by calculating
Grst

[I'p,Rp(x') 7= —2bM „.(x')or'J) g(x') —boor'&(, );(x')

[bM (x),Rp(x') 7Rp(x) d'x.

"As pointed out by P. W. Higgs I Phys. Rev. Letters 1, 373
(1958)j X is the generator of spatial coordinate transformations."A. Trautman, Brandeis Summer Institute, Lectures on General
Relativity, 1964 {Prentice-Hall, Inc., Englewood CliGs, New Jersey,
1965), Vol. I, Chap. 7.6.

~ A. Trautman, in Gravitation: An Introduction to Current Re-
search, edited by L. Witten (John Wiley R Sons, Inc. , New York,
1962), Chap. 5; see also Ref. 22.

Observe, however, that, as shown in Sec. IX, the 6rst
two equations are "essentially" contained in the last
two equations already. "Essentially" here means that,
when using Eqs. (39) and (44), we must make sure

that Eqs. (24) and (22) are satisfied at the initial point
in superspace

Equations (37) and (44) are covariant and hold on

every three-dimensional slice through space-time. They
are the covariant-Hamiltonian equations of the 3+1
formulation of general relativity. '4 It is interesting to
note that these equations have the structure of a many-

particle generalization of the single-particle problem

treated in Sec. II. That the above four equations imply
the ten Einstein field equations can be seen best by
observing that these equations can be derived from a

"R.Arnowitt, S. Deser, and C. W. Misner, in Gravitation: An
Introduction to Current Research, edited by L. Witten (John Wiley
R Sons, Inc. , New York, 1962), Chap. 7.
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vR1'latloDR1 prlnclplc whose Lagrangian density ls

Qf;
XLg'/2 &»&+g i/'(-,'s si/ —s;,~'/) j+2 s.'&'(;

B&T(x')

Qf; Qf' QE"—2 x'& —-'xk~ — g'I' — d'x'
//o (x') //0 (x') ha (x') „

= (Bg;;/8/)s "+N hagi/2 &»8+g '/2(x2s w
—s;,~'/) j

—2N m "(—2 (s "N —m/, 'N'+-gi/'N ')

This Lagrangian has been written down for the 3+1
formulation of general relativity. '4 It is equal to

g= (—&4)g)i/& &4)g.

The necessary identi6cations with the four-geometry
are Lsee Eq. (3)j

g, = &»g, N= ( &»goo)i/2 N,.—&»go;

~i j g{&4)r 0
g &4)r Ogk/)&4)gim &4)g ja

(Ng)'"= (—"'g)'"

Denote the Einstein 6eld equations by

G„,=O, p, v=o, j., 2, 3.
Then Eqs. {24) and (22) are

G'v=o

and Eq. (44) is a linear combination of these equations
together with the remaining six Einstein 6eld equa-
tions, 2' with Eq. (39) serving as the definition of
m "(x).QED.

XI. CONCLUSION

By considering %'aves

in superspace, we derived the ten Einstein field equa-
tions. Thc %'Rvc fUnctlon 0" ls the scmlclasslcal Rp-
proximation to quantum mechanics. Its phase functional
S is the solution to the KHJ equation

/ BSq)bS
&»8—

i ii
-- =0.

I ~&»g) I b&»g

The history of a three-dimensional hypersurface is the
set of three-geometries which is the locus of points in
sUpcl'space whcl c vax'ious wRvcs 0 Intcrf cx'c con-
structively; the diGcrent waves 4 are associated with
different solutions of the EHJ equation.

The set of equations directly obtained from (a) the
EHJ equation and (b) the principle of constructive
interference are the covariant-Hamiltonian equations of

Inotion with Tomonaga's many-time taking the place
of a timelike parameter. The form of these Hamiltonian
equations is independent of one's choice of the three-
dimcnsional spatial hypersurface. Consequently, these
equations are more genera1 than the usual equations
that arise in the 3+1formulation of general relativity. "
The usual equations can be obtained from the covarlant-
Hamiltonian equations by integrating the former on
some special three-dlmcnslona1 hypersurface as was
done in Eq. (40).

As a by-product of the derivation of the ten Einstein
field equations, from the EHJ equation we gave a
prescription that one can use to test the completeness of
the solution to the EHJ equation.

XII. MSCUSSION

Although the principle of constructive intcrferencc
and the EHJ equation could be brought into operation
only by resorting to the language of classical tensor
calculus, it mould be highly desirable to eliminate "les
ddbemhes d'~mdices''25 and give an "intrinsic" proof in
which it would not be necessary to refer to the coordi-
nate components of a tensor field at R11.26 In such a proof
an immediate payoG would be the fact that it would no
longer be necessary to refer to the coordinate invariance
condition, Eq. (22), explicitly; one could focus one' s
attention solely on the fundamental concept in geo-
metrodynamics, the three-geometry.

Quantum geometrodynamics in its classical approxi-
mation, exhibited by the wave functional

and Kqs. (19) and (20), contains all of classical
geometrodynamics, the ten Einstein field equations.
Using the semiclassical approximation in particle quan-
tum mechanics, one can describe such quantum phe-
nomena as zero-point Quctuation, elementary excitations
in solids, and an electron not spiraling into a hydrogen
RtoID to DRIQc R few. CRQ ODc describe quRntUID

geometrodynamical phenomena' such as Quctuation in
the geometry, elementary particles ("geometrodynami-
cal excitations"), or a star "not collapsing" P

To obtain an exact theory of quantum geometro-
dynamics it is necessary to formulat" and solv- -the

appl opl 1Rtc Einstein-Schrodinger cqURtloD. Wc hRvc
written the EHJ equation

85 85
&»+—g (g sg i—~g&'g/ i)

Bg;; 8gI, ~

in the symbohc form

~' E. tartan, Iegoes sgr le geom@rie des esPaces de Rientuww
(Gauthier pillars, Paris, 1963), preface.

'6 For an "intrinsic" formulation of infinite-dimensional Hamil-
tonian systems, see J. K. Marsden, Arch. Ratl. Mech. Anal. 28,
362 (1968).



In the HJ equation in the form (1), one can use what
coordinates one pleases and still get, as we have seen, the
same physical results. The form (20) dramatizes this
coordinate independence by eliminating all reference to
coordinates gas one today uses the notation VS V'S

111 place of tile old-fashioned (BS/8$) + (c)S/8$)
+ (BS/Bs)sj.

In the same spirit, it is tempting to symbolize the
desired —and today not yet de6nitely formulated-
Elnsteln-Schrodinger equation by the formula

&'&M +P+(bg)'= 0. (52)

However, objections have been raisedsr to taking {1)
as the prototype for a suitable Hamiltonian operator
because the "Hamiltonian" i.s constrained to be zero
{"frozen formalism" ). The objection traces back in the
last analysis, it would appear, to the well-justi6ed con-
clusion that zero Hamiltonian implies zero dynamics.

However, according to the considerations of Secs. II,
VI, and VIII we have to do here, not with a Hamil-
tonian, but a super-Hamiltonian. 28 Moreover, wehappily
have enough experience by now with the formalism of
the super-Hamiltonian (Sec. II and Refs. 10, 11,and 12)
to recognize that in particle physics it does give dy-
namics —and all the dynamics there is. Similarly we 6nd
that all of classical geometrodynamics falls out of the
super-Hamiltonian of general relativity, or the HJ Eq.
(1).Therefore, it is hard to escape the conclusion that all
of quantum geometrodynamics must come out of an
"Einstein-Schrodinger" or "Einstein-Klein-Gordon"
equation of the form (52). If one can introduce spinors,
one may go even one step further and convert the
Einstein-Klein-Gordon equation into an Einstein-Dirac
equation.

APPENDIX

To complete the prescription for testing the com-
pleteness of the functional 5 in Sec. VII, we must

» A. Komar, Phys. Rev. 153, 1385 I,'1966); P. G. Bergmann and
A. Komar, Statgs Report ol the Qggetisation of the Gravita&onak
Field je EecerIt Deeeloprrients jN General Relativity (Pergamon
Press, Inc. , New York, 1962}.

'8 An analo"ous situation exists for a free particle in space-time;
its "Harniltonian" also vanishes, X=msc'+gi'"(85/sr~)(85/Ss")
=0.However, the appropriate wave equation is the Klein-Gordon
equation, or rather the Dirac equation if one introduces spinors.

examine the existence and uniqueness of the solution
Bm'~ to the two equations

8x'&) =0

E,,4vr"=0, (30)

8m "~=ST'&—8w '~» (54)

satisfies Eq. (29).
Observe that the solutions to Eq. (29) are labelled by

8T'&, which has six degrees of freedom at each point of
the spacelike manifold. Because of Eq. (53), hto&'~» has
only three degrees of freedom. Therefore, brr "',Eq. (54),
has only 6—3=3 degrees of freedom. From the set of
solutions {err "~}to Eq. (29) it is necessary to select the
subset {brr'&}, each member of which satisfies also Eq.
(30). It follows that the solutions err'& to Eqs. (29) and
(30) are labelled by only two parameters at each point
of the spacelike manifold on which Eqs. (29) and (30)
are defined. These two parameters we call ba(x) and
bb(z).
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and demonstrate the existence of the two arbitrary
functions 8a(z) and 8b(z) that label the solution to
Eqs. (29) and (30).

Equation (29) is a differential equation, whose solu-
tions Deser" has found by a covariant decomposition of
a symmetric tensor Geld. One considers an arbitrary
symmetric tensor 5T'& which one decomposes uniquely
into

bT"=brr'"+8w&'~»,

where 8m' is a vector Geld that satis6es

ST"~);——S~&'~ ~&(;. (53)

This equation is an elliptic system that has a unique
solution. Consequently,


