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Preface

Mathematics is the science of measurement, of establishing quantitative re-
lationships between the properties of entities. The entities being measured
occupy the whole spectrum of abstractness, from first-level concepts, which
are based on perceptual data obtained by direct observation, to high-level
concepts, which are further up in the edifice of knowledge. Furthermore, be-
ing the science of measurement, mathematics provides the logical glue that
cements and cross-connects the structural components of this edifice.

1. The effectiveness and the power of mathematics (and more generally
of logic) in this regard arises from the most basic fact of nature: to be is to
be something, i.e. to be is to be a thing with certain distinct properties, or:
to exist means to have specific properties. Stated negatively: a thing cannot
have and lack a property at the same time, or: in nature contradictions do
not exist, a fact already identified by the father of logic1 some twenty-four
centuries ago.

Mathematics is based on this fact, and on the existence of a consciousness
(a physicist, an engineer, a mathematician, a philosopher, etc.) capable of
identifying it. Thus mathematics is neither intrinsic to nature (reality), apart
from any relation to man’s mind, nor is it based on a subjective creation of
a man’s consciousness detached from reality. Instead, mathematics furnishes
us with the means by which our consciousness grasps reality in a quantitative
manner. It allows our consciousness to grasp, in numerical terms, the micro-
cosmic world of subatomic particles, the macro-cosmic world of the universe
and everything in between2. In fact, this is what mathematicians are sup-

1Aristotle, the Greek philosopher, 384-322 B.C.
2The objectivity of mathematics and its relation to physics is explicated in “The Role

of Mathematics and Philosophy”, Chapter 7, in THE LOGICAL LEAP: Induction in

Physics by David Harriman (New York: Penguin Group, 2010).
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posed to do, to develop general methods for formulating and solving physical
problems of a given type.

In brief, mathematics highlights the potency of the mind, its cognitive
efficacy in grasping the nature of the world. This potency arises from the
mind ability to form concepts, a process which is made most explicit by the
science of mathematics.3

2. Mathematics is an inductive discipline first and a deductive disci-
pline second. This is because, more generally, induction preceeds deduc-
tion4. Without the former, the latter is impossible. Thus, the validity of the
archetypical deductive reasoning process
“Socrates is a man. All men are mortal. Hence, Socrates is a mortal.”
depends on the major premise “All men are mortal.” It constitutes an iden-
tification of the nature of things. It is arrived at by a process of induction,
which, in essence, consists of observing the facts of reality, of identifying their
essential properties, and of integrating them with what is already known into
new knowledge – here, a relationship between “man” and “mortal”. In math-
ematics, inductively formed conclusions, analogous to this one, are based on
motivating examples and illustrated by applications.

Mathematics thrives on examples and applications. In fact, it owes its
birth and growth to them. This is manifestly evidenced by the thinkers of
Ancient Greece who “measured the earth”, as well as by those of the En-
lightenment, who “calculated the motion of bodies”. It has been rightfully
observed that both logical rigor and applications are crucial to mathemat-
ics. Without the first, one cannot be certain that one’s statements are true.
Without the second it does not matter one way or the other5. These lecture
notes cultivate both. As a consequence they can also be viewed as an at-
tempt to make up for an error committed by mathematicians through most

3Being a philosopher, Leonard Peikoff in his Objectivism: The Philosophy of Ayn Rand

(New York: Penguin books, 1993, p. 90) describes the role of mathematics this way:

“The mathematician is the exemplar of conceptual integration. He does
professionally and in numerical terms what the rest of us do implicitly and
have done ever since childhood, to the extent that we exercise our distinctive
human capacity”.

4“The Structure of Inductive Reasoning”, Section 1.5, in THE LOGICAL LEAP: In-

duction in Physics by David Harriman (New York: Penguin Group, 2010, p. 29-35).
5David Harriman, “Enlightenment Science and Its Fall”, The Objective Standard; 1(1):

83-117, Spring 2006;
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of history – the Platonic error of denigrating applications6.

This Platonic error, which arises from placing mathematical ideas prior to
their physical origin, has metastasized into the invalid notion ‘“pure” math-
ematics’. It is a post-Enlightenment (Kantian) fig leaf7 for the failure of
theoretical mathematicians to justify the rigor and the abstractness of the
concepts they have been developing. The roots of this failure are expressed in
the inadvertent confession of the chairman of a major mathematics depart-
ment: “We are all Platonists in this department.” Plato and his descendants
declared that reality, the physical world, is an imperfect reflection of a purer
and higher mystical dimension with a gulf separating the two. That being
the case, they aver that “pure” mathematics – and more generally the “ a
priori” – deals only with this higher dimension, and not with the physical
world, which they denigrate as gross and imperfect, and dismiss as mere
appearances.

With the acceptance – explicit or implicit – of such a belief system, “pure”
mathematics has served as a license to misrepresent theoretical mathematics
as a set of floating abstractions cognitively disconnected from the real world.
The modifier “pure” has served to intimidate the unwary engineer, physi-
cist or mathematician into accepting that this disconnect is the price that
mathematics must pay if it is to be rigorous and abstract.

Ridding a culture’s mind from impediments to epistemic progress is a
non-trivial task. However, a good first step is to banish detrimental termi-
nology, such as “pure” mathematics, from discourses on mathematics and
replace it with an appropriate term such as theoretical mathematics. Such a
replacement is not only dictated by its nature, but it also tends to reinstate
the intellectual responsibility among those who need to live up to their task
of justifying rigor (i.e. precision) and abstractness.

3. Mathematics is both complex and beautiful. The complexity of math-
ematics is a reflection of the complexity of the relationships that exist in
the universe. The beauty of mathematics is a reflection of the ability of the
human mind to identify them in a unit-economical way8 : the more eco-

6ibid.
7more precisely, a rationalization, i.e. a cover-up, namely a process of providing one’s

emotions with spurious justifications. (“Philosophic Detection” in Ayn Rand, Philosophy:
Who Needs It, New American Library, Penguin Group Inc., New York, 1984.)

8The principle of unit-economy (also known informally as the “crow epistemology”)
according to which perceptual and conceptual data get compressed into fewer units, was
first identified explicitly in “The Cognitive role of Concepts”, Chapter 7 in Ayn Rand,
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nomical the identification of a constellation of relationships, the more man’s
mind admires it. Beauty is not in the eyes of the beholder. Instead it is
giving credit where credit is due – according to an objective standard. In
mathematics that standard is the principle of unit economy. Its purpose is
the condensation of knowledge, from the perceptual level all the way to the
conceptual at the highest level.

4. Linearity is as fundamental to mathematics as it is to our mind in
forming concepts. The transition from recognizing that x+ y = x+ y to the
act of grasping that a+ a = 2a is the explicit starting point of a conceptual
consciousness grasping nature in mathematical terms with linearity at the
center. Thus it is not an accident that linear mathematics plays its pervasive
role in our comprehending the nature of nature around us. In fact, it would
not be an exaggeration to say that “Linearity is the exemplary method –
simple and primitive – for our grasping of nature in conceptual terms”. The
appreciation of this fact is found in that nowadays virtually every college and
university offers a course in linear algebra, with which we assume the reader
is familiar.

5. Twentieth century mathematics is characterized by an inflationary
version of Moore’s Law. Moore’s Law expresses the observation that the
number of transistors that fit onto a microchip doubles every two years.
This achievement has been a boon to everybody. It put a computer into
nearly every household.

The mathematical version of Moore’s Law expresses the observation that,
up to the Age of Enlightenment, all of Man’s mathematical achievements fit
into a four-volume book; the achievements up to, say, 1900 fit into a fourteen-
volume tome, while the mathematical works generated during the twentieth
century take up a whole floor of a typical university library.

Such abundance has its delightful aspects, but it is also characterized
by repetitions and non-essentials. This cannot go on for too long. Such an
increase ultimately chokes itself off.

One day, confronted with an undifferentiated amorphous juxtaposition of
mathematical works, a prospective scientist/engineer/physicist/mathematician
might start wondering: “I know that mathematics is very important, but am
I learning the right kind of mathematics?”

Such a person is looking for orientation as to what is essential, i.e. what is

Introduction to Objectivist Epistemology, 2nd Edition, edited by H. Binswanger and L.
Peikoff. Penguin Books, Inc., New York, 1990
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fundamental, and what is not. It has been said that the value of a book9 , like
that of a definition10, can be gauged by the extent to which it spells out the
essential, but omits the nonessential, which is, however, left implied. With
that in mind, this text develops from a single perspective six mathematical
jewels (in the form of six chapters) which lie at the root twentieth century
science.

Another motivation for making the material of this text accessible to a
wider audience is that it solves a rather pervasive problem. Most books
which the author has tried to use as class texts either lacked the mathe-
matics essential for grasping the nature of waves, signals, and fields, or they
misrepresented it as a sequence of disjoint methods. The student runs the
danger of being left with the idea that the mathematics consists of a set of ad
hoc recipes with an overall structure akin to the proverbial village of squat
one-room bungalows instead of a few towering skyscrapers well-connected by
solid passage ways.

6. We extend and then apply several well-known ideas from finite dimen-
sional linear algebra to infinite dimensions. This allows us to grasp readily
not only the overall landscape but it also motivates the key calculations
whose purpose is to connect and cross-link the various levels of abstraction
in the constructed edifice. Even though the structure of these ideas have been
developed in linear algebra, the motivation for doing so and then using them
comes from engineering and physics. In particular, the goal is to have at one’s
disposal the constellation of mathematical tools for a graduate course in elec-
tromagnetics and vibrations for engineers or electrodynamics and quantum
mechanics for physicists. The benefits to an applied mathematician is the
acquisition of nontrivial mathematics from a cross-disciplinary perspective.

All key ideas of linear mathematics in infinite dimensions are already
present with waves, signals, and fields whose domains are one-dimensional.
The transition to higher dimensional domains is very smooth once these ideas
have been digested. This transition does, however, have a few pleasant sur-
prises. They come in the form of special functions, whose existence and prop-
erties are a simple consequence of the symmetry properties of the Euclidean
plane (or Euclidean three-dimensional space). These properties consist of the

9Question and answer period following “You and Your Research” by Richard Hamming.
http://www.cs.virginia.edu/~robins/YouAndYourResearch.html

Also see the Appendix, page 477.
10“Definitions”, Chapter 5 in Ayn Rand, Introduction to Objectivist Epistemology, 2nd

Edition, edited by H. Binswanger and L. Peikoff. Penguin Books, Inc., New York, 1990



vi

invariance under translations and rotations of distance measurements and of
the shapes of propagating waves.

7. What is the status of the concept “infinite” appearing in the title of
this text? Quite generally the concept “infinite” is invalid metaphysically
but valid mathematically.

In the sense of metaphysics (i.e. pertaining to reality, to the nature
of things, to existence) infinity falls into the category of invalid concepts,
namely attempts to integrate errors, contradictions, or false propositions
into something meaningful. Infinity as a metaphysical idea is an invalid
concept because metaphysically it is only concretes that exist, and concretes
are finite, i.e. have definable properties. An attempt to impart metaphysical
significance to infinity is an attempt to rewrite the nature of reality.

However, in mathematics infinity is a well defined concept. It has a def-
inite purpose in mathematical calculations. It is a mathematical method
which is made precise by means of the familiar δ-ε process of going to the
limit. This text develops only concepts which by their nature are valid. In-
cluded is the concept “infinity”, which, properly speaking, refers to a math-
ematical method.

8. The best way to learn something is to teach it. In order to facilitate
this motto of John A. Wheeler, the material of this book has been divided
into fifty lecture sessions. This means that there is one or two key ideas
between “Lecture n” and “Lecture n + 1”, where n = 1, · · · 50. Often the
distance between n and n+ 1 extends over more pages than can be digested
in a forty-eight minute session. However, the essentials of the nth Lecture
are developed in a small enough time frame. Thus the first four or five pages
following the heading “Lecture n” set the direction of the development, which
is completed before the start of lecture “Lecture n+ 1”.

Such a division can be of help in planning the schedule necessary to learn
everything.

9. It is not necessary to digest the chapters in sequential order. A de-
sirable alternative is to start with Sturm-Liouville theory (chapter 3) before
proceeding systematically with the other chapters. Moreover, there is obvi-
ously nothing wrong with diving in and exploring each chapter according to
one’s background and predilections. The opening remarks of each one point
out how linear algebra relates it to the others.

10. Acknowledgments: The author would like to thank Danai Torrun-
grueng for valuable comments and Wayne King from the Speech and Hearing
Science Department for many fruitful conversations on wavelet theory and
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multiresolution analysis.

Ulrich H. Gerlach
Columbus, Ohio, March 24, 2009

Foreword to the Second Edition (tentative)

TBD
Mathematics is the language of Physics. Why?
Mathematics is beautiful. Why? Is its beauty in “the eyes of the be-

holder”? Is beauty an attribute intrinsic to mathematics? Or is it an objec-
tive attribute?

Does this book address these issues? If so, how?
Columbus, Ohio, January 14, 2016
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Chapter 0

Introduction

Lecture 1

The main focus of the next several chapters is on the mathematical frame-
work that underlies linear systems arising in physics, engineering and applied
mathematics. Roughly speaking, we are making a generalization from the
theory of linear transformation on finite dimensional vector space to the the-
ory of linear operators on infinite dimensional vector spaces as they occur in
the context of homogeneous and inhomogeneous boundary value and initial
value problems.

The key idea is linearity. Its geometrical imagery in terms of vector space,
linear transformation, and so on, is a key ingredient for an efficient compre-
hension and appreciation of the ideas of linear analysis to be developed. Thus
it is very profitable to repeatedly ask the question: What does this correspond
to in the case of a finite dimensional vector space?

Here are some examples of what we shall generalize to the infinite dimen-
sional vector case:

I. Solve each of the following linear algebra problems

1. A~u = 0 “Homogeneous problem”

2. A~u = ~b “Inhomogeneous problem”
3. AG = I “Inverse of A”

These are archetypical problems of linear algebra. (If 1. has a non-trivial
solution, then 2. has infinitely many solutions or none at all, depending on
~b, and 3. has none.)

1



2 CHAPTER 0. INTRODUCTION

More generally we ask: For what values of λ do the following have a
solution (and for what values do they not):

1. (A− λB)~u = 0

2. (A− λB)~u = ~b
3. (A− λB)G = I

Of greatest interest to us is the generalization in which A is (part of) a
differential operator with in general non-constant coefficients.

As we know from linear algebra, these three types of problems are closely
related, and consequently this must also be the case for our generalization to
linear differential equations, ordinary as well as partial. In fact, these three
types are called

1. Homogeneous boundary or initial value problems;
2. Inhomogeneous problems;
3. Green’s function problems.

II. There is another idea which we shall extend from the finite to the
infinite dimensional case. Consider the eigenvalue equation

Au = λIu .

Let us suppose that there are enough eigenvectors to span the whole vector
space, but that at least one eigenvalue is degenerate, i.e., it has more than
one eigenvector. In that case, the vector space has an eigenbasis, but it
is not unique. Eigenvectors, including those used for a basis, derive their
physical and geometrical significance from eigenvalues. Indeed, eigenvalues
serve as labels for eigenvectors. Consequently, the lack of enough eigenvalues
to distinguish between different eigenvectors in a particular eigensubspace
introduces an intolerable ambiguity in our physical and geometrical picture
of the inhabitants of this subspace.

In order to remedy this deficiency one introduces another matrix, say T ,
whose eigenvectors are also eigenvectors of A, but whose eigenvalues are non-
degenerate. The virtue of this introduction is that the matrix T recognizes
explicitly and highlights, by means of its eigenvalues, a fundamental physical
and geometrical property of the linear system characterized by the matrix A.

This explicit recognition is stated mathematically by the fact that T
commutes with A

AT − TA = 0 .
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In general, the matrix T is not unique. Suppose there are two of them, say
T1, which highlights property 1 and T2, which highlights a different property
of the system. Thus

AT1 − T1A = 0

and
AT2 − T2A = 0 ,

but
T1T2 − T2T1 6= 0 .

Consequently, for hermitian matrices, the matrix A is characterized by two
alternative orthonormal eigenbases, one due to T1, the other due to T2, and
there is a unitary transformation which relates the two bases.

The matrix A does not determine the choice of eigenbasis. Instead, this
choice is determined by which of the two physical properties we are told to
(or choose to) examine, that of T1 or that of T2.

In the extension of these ideas to differential equations, we shall find that

A = Laplace operator

T1 = translation operator

T2 = rotation operator

and that the T1-induced eigenbasis consists of plane wave solutions, the T2-
induced eigenbasis consists of the cylinder wave solutions, and the unitary
transformation between them is a Fourier transform.

III. A further idea which these notes extend to infinite dimensions is that
of an inhomogeneous four-dimensional system,

A~u = ~b ,

which is overdetermined: the matrix A is 4×4, but singular with a one-
dimensional null space.

The extension consists of the statement that (a) this equation is a vec-
torial wave equation which is equivalent to Maxwell’s field equation, (b) the

four-dimensional vectors ~u and ~b are 4-d vector fields, and (c) the matrix A
has entries which are second order partial derivatives.

One solves this system using the method of eigenvectors and eigenvalues.
The eigenvectors have entries which are first order derivatives. The nonzero
eigenvalues are scalar (D’Alembertian) wave operators acting on scalar wave
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functions. For Maxwell’s equations there are exactly three of them, and they
are the scalars from which one obtains the three respective types of Maxweell
fields,

• transverse electric (TE),

• transverse magnetic (TM),

• transverse electric magnetic (TEM).

The power of this linear algebra method is that it yields success in a vari-
ety of curvilinear coordinate systems, including cartesian, cylindrical, and
spherical.



Chapter 1

Sturm-Liouville Theory

Lecture 2

1.1 Three Archetypical Linear Problems

We shall now take our newly gained geometrical familiarity with infinite
dimensional vector spaces and apply it to each of three fundamental problems
which, in linear algebra, have the form

1. (A− λB)~u = 0

2. (A− λB)G = I

3. (A− λB)~u = ~b,

i.e., the eigenvalue problem, the problem of inverting the matrix A − λB,
and the inhomogeneous problem.

The most important of these three is the eigenvalue problem because once
it has been solved, the solutions to the others follow directly.

Indeed, assume that we found for the vector space a basis of eigenvectors,
say

{~u1, . . . , ~uN}

as determined by

A~u = λB~u

5
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(We are assuming that the matrices A and B are such that an eigenbasis
does indeed exist.) In that case, the solutions to problems 2 and 3 are given
by

G =
N∑

i=1

~ui~u
H
i

λi − λ
and

~u =
N∑

i=1

~ui〈~ui,~b〉
λi − λ

respectively, as one can readily verify. Here ~uHi refers to the Hermitian adjoint
of the vector ~ui.

On the other hand, suppose we somehow solved problem 2 and found its
solution to be

G = Gλ .

Then it turns out that the complex contour integral of that solution, namely

1

2πi

∮

Gλdλ = −
N∑

i=1

~ui~u
H
i ,

yields the sum of the products

−
N∑

i=1

~ui~u
H
i

of the eigenvectors ~ui (i = 1, . . . , N) of the eigenvalue problem 1. Thus
solving problem 2 yields the solution to problem 1. It also, of course, yields
the solution to problem 3, namely

~u = G~b .

Thus, in a sense, problem 1 and problem 2 are equally important.
We shall extend our considerations of problems 1-3 from finite dimensional

to infinite dimensional vector spaces. We shall do this by letting A be a
second order differential operator and B a positive definite function. In this
case, problem 1 becomes a homogeneous boundary value problem, most often
a so-called Sturm-Liouville problem, which we shall formulate and solve.
Problem 2 becomes the problem of finding the so-called Green’s function.
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This will be done in the next chapter. There we shall also formulate and
solve the inhomogeneous boundary value problem corresponding to problem
3.

We extend problems 1-3 to infinite dimensions by focussing on second
order linear ordinary differential equations and their solutions. They are the
most important and they illustrate most of the key ideas.

It is difficult to overstate the importance of Sturm-Liouville theory. Not
only does it provide a practical means for dealing with those phenomena
(namely wave propagation and vibrations) that underly twentieth century
science and technology, but it also provides a very powerful way of reasoning
which deals with the qualitative essentials, and not only with the quantitative
details.

A Sturm-Liouville eigenvalue problem gives rise to eigenfunctions. It
is extremely beneficial to view them as basis vectors which span an inner
product space. Doing so places the theory of linear d.e.’s into the framework
of Linear Algebra, thus yielding an easy panoramic view of the field. In
particular, it allows us to apply our geometrical mode of reasoning to the
Sturm-Liouville problem.

1.2 The Homogeneous Problem

The most basic linear problem consists of finding the null space of

A~u = 0 .

The simplest nontrivial extension to differential equations consists of the
homogeneous boundary value problem based on the second order differential
equation

[
d2

dx2
+Q(x, λ)

d

dx
+R(x, λ)

]

u(x) = 0

where a < x < b and λ is a parameter, with one of the following end point
conditions:

1. u(a) = 0 Dirichlet conditions
u(b) = 0

2. u′(a) = 0 Neumann conditions
u′(b) = 0
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3.
αu(a) + α′u′(a) = 0
βu(b) + β′u′(b) = 0

}

Mixed D. and N. conditions

4.
u(a)− u(b) = 0
u′(a)− u′(b) = 0

}

Periodic boundary conditions

More generally one has

B1(u) ≡ α1u(a) + α′
1u

′(a) + β1u(b) + β′
1u

′(b) = 0

B2(u) ≡ α2u(a) + α′
2u

′(a) + β2u(b) + β′
2u

′(b) = 0 ,

which are the most general end point conditions as determined by the given
α’s, α′’s, β’s, and β′’s, which are constants. These two boundary conditions
B1 and B2 are supposed to be independent, i.e., there do not exist any non-
zero numbers c1 and c2 such that

c1B1(u) + c2B2(u) = 0 ∀u(x) .

By contrast, if there does exist a non-zero solution c1 and c2 to this equation,
then B1 and B2 are dependent.
Question: Can one give a clear vector space formulation of

B1(u) = 0

B2(u) = 0

in terms of subspaces?
Question: What geometrical circumstance is expressed by “independence”?
Answer: The vector 4-tuples {α1, α

′
1, β1, β

′
1} and {α2, α

′
2, β2, β

′
2} point into

different directions.
Question: What, if any, is the (or a) solution to the homogeneous boundary
value problem?
Answer: The general solution to the d.e. is

u(x) = eu1(x, λ) + fu2(x, λ)

where e and f are integration constants. Let us consider the circumstance
where u(x) satisfies the mixed D.-N. boundary conditions (3.) at each end
point. These conditions imply

0 = e[αu1(a, λ) + α′u′1(a, λ)] + f [αu2(a, λ) + α′u′2(a, λ)]
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and
0 = e[βu1(b, λ) + β′u′1(b, λ)] + f [βu2(b, λ) + β′u′2(b, λ)] .

The content of the square brackets is known because ui(x, λ), α, α
′, and

β, β′ are known or given. The unknowns are e and f , or rather their ratio.
Note that the trivial solution

e = f = 0⇔ u(x) = 0 ∀ x

is always a solution to the homogeneous system. Our interest lies in a non-
trivial solution. For certain values of λ this is possible. This happens when

0 = D(λ) =

∣
∣
∣
∣

[αu1(a, λ) + α′u′1(a, λ)] [αu2(a, λ) + α′u′2(a, λ)]
[βu1(b, λ) + β′u′1(b, λ)] [βu2(b, λ) + β′u′2(b, λ)]

∣
∣
∣
∣
.

Values of λ, if any, satisfying D(λ) = 0 are called eigenvalues.
KEY PRINCIPLE: A differential equation is never solved until boundary
conditions have been imposed.
We note that the allowed value(s) of λ, and hence the nature of the solution
is determined by these boundary conditions.
Example (Simple vibrating string): Solve

u′′ + λu = 0

subject to the boundary conditions

u(a, λ) = 0

u(b, λ) = 0 .

Solution: Two independent solutions to the d.e. are

u1(x) = sin
√
λx

u2(x) = cos
√
λx .

Consequently, the solution in its most general form is

u(x) = e sin
√
λx+ f cos

√
λx .

The boundary conditions yield two equations in two unknowns:

e sin a
√
λ+ f cos a

√
λ = 0

e sin b
√
λ+ f cos b

√
λ = 0 .
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In order to obtain a nontrivial solution, it is necessary that

0 =

∣
∣
∣
∣

sin a
√
λ cos a

√
λ

sin b
√
λ cos b

√
λ

∣
∣
∣
∣

or
sin(a− b)

√
λ = 0

which implies

λn =

(
πn

a− b

)2

n = 1, 2, . . . .

Note that n = 0 yields a trivial solution only. Why? Negative integers yield
nothing different, as seen below.
What are the solutions corresponding to each λn? The boundary conditions
demand that e be related to f , namely,

e sin a
√

λn + f cos a
√

λn = 0 ,

or

f = −e sin a
√
λn

cos a
√
λn

.

Thus

u(x) =
e

cos a
√
λn

(cos a
√

λn sin
√

λnx− sin a
√

λn cos
√

λnx)

or
un(x) = cn sin

√

λn(x− a) .

Here we have introduced subscript n to distinguish the solutions associated
with the different allowed values

λn =

(
nπ

a− b

)2

n = 1, 2, . . . .

The negative integers give nothing new. (Why?)
Comment: For n = 0, i.e. λ = 0, there does not exist a non-trivial solution.
Why? Because the application of the boundary conditions to the n = 0
solution,

u(x) = ex+ f

yields only e = f = 0.

Lecture 3
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a b

x

u
u2

1

Figure 1.1: First two eigenfunctions of an eigenvalue problem based on
Dirichlet boundary conditions.

1.3 Sturm-Liouville Systems

One of the most important and best understood eigenvalue problems in linear
algebra is

(A− λB)u = 0 ,

where A is a symmetric matrix and B is a symmetric positive definite matrix.
For this problem we know that

1. its eigenvalues form a finite sequence of real numbers

2. the eigenvectors form a B-orthogonal basis for the vector space; in other
words,

UT
i BUj = δij .

A Sturm-Liouville system extends this eigenvalue problem to the frame-
work of 2nd order linear ordinary differential equations (o.d.e.’s) where the
vector space is infinite dimensional, as we shall see.

1.3.1 Sturm-Liouville Differential Equation

One of the original purposes of the Sturm-Liouville differential equation is
the mathematical formulation of the vibration frequency and the amplitude
profile of a vibrating string. Such a string has generally a space dependent
tension and mass density:

T (x) = tension [force]

ρ(x) = density

[
mass

length

]
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x

v(x,t)

Figure 1.2: Instantaneous amplitude profile of a suspended cable with vari-
able tension and variable mass density.

A cable of variable mass density, say ρ(x), suspended vertically from a fixed
support is a good example. Because of its weight, this cable is under variable
tension, say T (x), along its length. Let v(x, t) be the instantaneous transverse
displacement of the string.

Application of Newton’s law of motion, mass×acceleration=force, to the
mass ρ(x)∆x of each segment ∆x leads to the wave equation for the trans-
verse amplitude v(x, t),

ρ(x)
∂2v(x, t)

∂t2
=

∂

∂x
T (x)

∂v(x, t)

∂x
.

The force (per unit length) on the right hand side is due to the bending of the
cable. Suppose the cable is imbedded in an elastic medium. The presence
of such a medium is taken into account by augmenting the force density on
the right-hand side. Being linear in the amplitude v(x, t), the additional
restoring force density [force/length] is

−k(x)v(x, t) .

Here k(x)∆x is the position dependent Hooke’s constant experienced by the
cable segment ∆x. Consequently, the augmented wave equation is

ρ(x)
∂2v(x, t)

∂t2
=

∂

∂x
T (x)

∂v(x, t)

∂x
− k(x)v(x, t) . (1.1)

This is the equation of motion for a string imbedded in an elastic medium.
Being linear and time-independent, the system has normal modes. They
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have vibrational frequencies ω and amplitudes

v(x, t) = u(x) cosω(t− t0) .

Thus the spatial amplitude profile u(x) of such a mode satisfies

[
d

dx
T (x)

d

dx
+ λρ(x)− k(x)

]

u(x) = 0 , λ = ω2 . (1.2)

For the purpose of mathematical analysis one writes this 2nd order linear
o.d.e. in terms of the standard mathematical notation

p(x) = T (x)

ρ(x) = ρ(x)

q(x) = k(x) ,

and thereby obtains what is known as the Sturm-Liouville (S-L) equation1,

d

dx

(

p(x)
du

dx

)

+ [λρ(x)− q(x)]u = 0 .

However, it is appropriate to point out that actually any 2nd order linear
o.d.e. can be brought into this “Sturm-Liouville” form. Indeed, consider the
typical 2nd order homogeneous differential equation

P (x)u′′ +Q(x)u′ + (R(x) + λ)u = 0 .

We wish to make the first two terms into a total derivative of something. In
that case, the d.e. will have its S-L form. To achieve this, divide by P (x)
and then multiply by

e
∫ x Q

P
dt = p(x) .

1The minus sign in front of q(x) is a reflection of the fact that the S-L equation had
its origin in the mathematization of vibrating systems. There

[
1

2
p(u′)2 +

1

2
qu2
]

dx

is the total potential energy stored in a string element of width dx: 1
2pu

2 is the bending
energy/length and 1

2qu
2 is the energy/length stored in the string due to having pushed by

an amount u against the elastic medium in which it is imbedded.
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The result is

e
∫ x Q

P
dtu′′ +

Q

P
e
∫ x Q

P
dtu′ +

(
R

P
e
∫ x Q

P
dt +

λ

P
e
∫ x Q

P
dt

)

u = 0

or
p(x)u′′ + p′(x)u′ + (λρ(x)− q(x))u = 0

in terms of newly defined coefficients. Combining the first two terms one has

d

dx

(

p(x)
du

dx

)

+ [λρ(x)− q(x)]u = 0 . (1.3)

This is known as the Sturm-Liouville equation. In considering this equation,
we shall make two assumptions about its coefficients.

The first one is

ρ(x) > 0

p(x) > 0

in the domain of definition, a < x < b. We make this assumption because
nature demands it in the problems that arise in engineering and physics.

The second assumption we shall make is that the coefficients q(x), ρ(x),
p(x) and p′(x) are continuous on a < x < b. We make this assumption be-
cause it entails less work. It does happen, though, that p′(x), q(x), or ρ(x)
are discontinuous. This usually expresses an abrupt change in the propa-
gation medium of a wave, for example, the tension or the mass density of
string, or the refractive index in a wave propagation medium. This disconti-
nuity can be handled by applying “junction conditions” for u(x) across the
discontinuity.

1.3.2 Homogeneous Boundary Conditions

We can now state the S-L problem. If the endpoint conditions are of the
mixed Dirichlet-Neumann type,

αu(a) + α′u′(a) = 0 (1.4)

βu(b) + β′u′(b) = 0 ,

with the α’s and β’s independent of λ, then the boxed Eq. (1.3) together
with Eq.(1.4) constitute a regular Sturm-Liouville system.
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If, by contrast,

u(a)− u(b) = 0 and p(a) = p(b) (1.5)

u′(a)− u′(b) = 0

then Eqs.(1.3) and (1.5) constitute a periodic Sturm-Liouville system.

If p(a) = 0 and the 1st b.c. in Eq.(1.4) is dropped, then we have a singular S-L
system. We shall consider the properties of these S-L systems in a subsequent
section.

It is difficult to overstate the pervasiveness of these S-L systems in nature.
Indeed, natural phenomena subsumed under the regular S-L problem, for
example, are quite diverse. Heat conduction and the vibration of bodies
illustrate the point.

A. Heat conduction in one dimension.

Consider the temperature profile u(x) of a conducting bar of unit length
which is

1. insulated at x = 0 (no temperature gradient), and satisfies

2. radiative boundary condition at x = 1

Separation of variables applied to the heat equation yields the following S-L
system:

u′′ + λu = 0 (1.6)

with

u′(0) = 0 (1.7)

−u′(1) = hu(1). (1.8)

Here h is a non-negative constant. Note that at x = 1

h = 0 ⇒ no radiation

h > 0 ⇒ finite heat loss due to radiation (Newton’s law of cooling).

B. Vibrations in one dimension.

Alternatively, consider a vibrating string whose transverse amplitude u(x)
satisfies the following homogeneous endpoint conditions:
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1. At x = 0 there is no transverse force to influence the string’s motion.
The tension produces only a longitudinal force component. In this
circumstance the string is said to be free at x = 0. This free boundary
condition is expressed by the statement

u′(0) = 0 .

2. At x = 1 the string is tied to a spring so that the vertical spring
displacement coincides with the displacement of the string away from
equilibrium. Even though the tail end of the string gets accelerated up
and down, the total transverse force on it vanishes because it has no
mass. Consequently,

−u′(1)T − ku(1) = 0 ,

or

−u′(1) = hu(1) ,

where

h =
k

T
=

spring constant

string tension

The transverse amplitude profile of the string is governed by Eq.(1.2). For
constant tension and uniform mass density this equation becomes

u′′ + λu = 0

We see that the S-L system for the heat conduction problem, Eqs.(1.6)- (1.8),
coincides with that for the vibration problem.

The task of solving this regular S-L system consists of finding all possible
values of λ for which the solution u(x, λ) is non-trivial. Consequently, there
are four distinct cases to consider:

1. λ = 0,

2. λ > 0,

3. λ < 0, and

4. λ = complex.
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We shall have to consider cases 1.-3. only. This is because the next subsection
(1.3.3) will furnish us with some very powerful theorems about the nature of
the allowed values of λ and the corresponding non-trivial solutions u(x, λ).

1. λ = 0 leads to u = c1 + c2x

h > 0 ⇒ c1 = c2 = 0 i.e., u(x) = 0 for all 0 < x < 1

h = 0 ⇒ u(x) = c1

constant solution. (What physical circumstance is expressed by u(x) =
c1?)

2. λ = α2 > 0, α > 0
The general solution to the differential equation is

u(x) = c1 cosαx+ c2 sinαx .

Now consider the boundary conditions.

(a) Eq.(1.7) ⇒ c2 = 0. Consequently, u(x) = c1 cosαx .

(b) Eq.(1.8) ⇒ −αc1 sinα + hc1 cosα = 0. Consequently,

tanα =
h

α
. (1.9)

This transcendental equation determines the allowed values of α and
hence of λ. How do we find them? A very illuminating way is based
on graphs. Draw the two graphs (Figure 1.3)

y = tanα

and

y =
h

α
.

Where they intersect gives the allowed values of α, and hence λ = α2,
the eigenvalues of the S-L problem. We see that there are an infinite
number of intersection points

α1, α2, α3, . . . , αn, . . . .
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απ 3π 5π 7π−π
2 2 2 2 2

α
h tan α

Figure 1.3: There are two graphs in this figure: that of tan α and that of the
two hyperbolas h/α. The intersection of these two graphs is the solution set
to the transcendental eigenvalue Eq.(1.9). The α-values of the heavy dots
are the desired solutions. Note that if α is a solution, then −α is another
solution, but it yields the same eigenvalue λ = α2.

For large n we have αn ≃ (n− 1)π. The corresponding eigenvalues are

λn = α2
n n = 1, 2, 3, · · · .

Comment: One important question is this: how do the allowed eigen-
values and eigenfunctions depend on boundary conditions? More on
that later.

3. λ = −β2 < 0 . This leads to the general solution

u(x) = c1 cosh βx+ c2 sinh βx .

The boundary conditions yield

tanh β = −h
β

.

The graph of the hyperbolic tangent does not intersect the graph of the
two equilateral hyberbolas. Consequently, the set of solutions for β is
the empty set. Thus the S-L system has no solution, except the trivial
one u(x) = 0.
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4. What about complex λ?
We shall see in the next section that the eigenvalues of a S-L problem
are necessarily real.

Lecture 4

1.3.3 Basic Properties of a Sturm-Liouville Eigenvalue
Problem

It is surprising how much useful information one can infer about the eigenval-
ues and eigenfunctions of a S-L problem without actually solving the differ-
ential equation explicitly. Thus from very general and simple considerations
we shall discover that the eigenvalues are real, are discrete if the domain
is finite, have a lowest member, increase without limit, and that the cor-
responding eigenfunctions are orthogonal to each other, oscillate, oscillate
more rapidly the larger the eigenvalue, to mention just a few pieces of useful
information.

In practice this kind of information is quite often the primary thing of
interest. In other words, the philosophy quite often is that one verifies that
a certain system is of the S-L types, thus having at one’s immediate disposal
a concomitant list of properties of the system, properties whose qualitative
nature is quite sufficient to answer the questions one had about the system
in the first place.

As promised, we shall develop these and other properties by means of a
collection of theorems. But before doing so, we remind ourselves about what
is meant by a “Sturm-Liouville system”, by a “solution”, and by “orthogo-
nality”. The Sturm-Liouville system we shall consider consists of (i) the S-L
differential equation

[
d

dx
p(x)

d

dx
+ λρ(x)− q(x)

]

u(x) = 0 , (1.10)

where q, ρ, p, and p′ are continuous and ρ and p are positive definite functions
on the open interval (a, b) together with (ii) the boundary conditions

1. αu(a) + α′u′(a) = 0 (1.11)

2. βu(b) + β′u′(b) = 0
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where the given constants α, α′, β and β′ are independent of the parameter
λ.

Corresponding to an eigenvalue of this S-L system, an eigenfunction un(x)
is understood to be that solution which is “regular”, i.e.,

un(x) and
dun(x)

dx
are continuous

and hence finite, on the closed interval [a, b]. In particular, an eigenfunction
must not have any finite jump discontinuities anywhere in [a, b].

Orthogonality, Reality, and Uniqueness

Two eigenfunctions um(x) and un(x) are said to be orthogonal relative to the
weight function ρ(x) if

∫ b

a

um(x)un(x)ρ(x)dx = 0 whenever m 6= n .

They are said to be orthonormal with respect to ρ(x) if

∫ b

a

um(x)un(x)ρ(x)dx = δmn . (1.12)

With these reminders at hand, one can now identify the two most impor-
tant properties of a S-L system, the orthonormality of its eigenfunctions and
the reality of its eigenvalues. The statement and the proof of these properties
parallel those of the familiar eigenvalue problem from linear algebra,

A~u = λB~u

where A is a Hermitian and B is a positive definite matrix.

Theorem 1 (Orthogonality) Let λm and λn be any two distinct eigenvalues
of the S-L problem 1.10 and 1.11 with corresponding eigenfunctions um and
un. Then um and un are orthogonal with respect to the weight ρ(x).

Orthogonality also holds in the following cases

1. when p(a) = 0 and the first (1) of the boundary conditions 1.11 is
dropped. This is equivalent to setting α = α′ = 0
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2. when p(b) = 0 and the second (2) of the conditions 1.11 is dropped.
This is equivalent to setting β = β′ = 0

3. when p(a) = p(b) and 1.11 are replaced by

u(a) = u(b) (1.13)

u′(a) = u′(b) .

Remarks:

1. In case (1.) or (2.), the S-L problem is said to be singular.

2. The S-L problem with mixed Dirichlet-Neumann conditions at both
ends is said to be regular.

3. The same terminology, (“singular”) is also used when

ρ(x) vanishes at an endpoint,

q(x) is singular at an endpoint,

(a, b) is unbounded .

In other words, we are not interested in the actual value of u(x), just
that it stays finite. This is sufficient to select (a multiple of the correct)
one of two independent solutions to the differential equation.

4. The boundary conditions 1.13 are those of a periodic S-L problem, for
example, the one where x is the angle ϕ in cylindrical coordinates.
(More on that later.)

5. This theorem is analogous to the orthogonality 〈um, Bun〉 = 0, of the
eigenvectors um and un of the familiar eigenvalue problem A~u = λB~u.

6. The physical significance of the orthogonality of the eigenfunctions is
exemplified by the energy of a vibrating system governed by, say the
wave equation, Eq.(1.1). Its total energy,

T.E. =
1

2

∫ b

a

[

ρ(x)

(
∂v

∂t

)2

+ T (x)

(
∂v

∂x

)2

+ k(x)v2

]

dx , (1.14)

is the sum of its kinetic energy and its combined potential energies
due to the tension in the string and due to the elasticity of the ambient



22 CHAPTER 1. STURM-LIOUVILLE THEORY

medium in which the string makes its transverse excursions. Performing
an integration by parts on the second term, dropping the endpoint
terms due to the imposed homogeneous boundary conditions, and using
the governing wave equation, Eq.(1.1), one finds that the total energy
is

T.E. =
1

2

∫ b

a

[

ρ(x)

(
∂v

∂t

)2

+

(

− ∂

∂x
T (x)

∂v

∂x
+ k(x)v

)

v

]

dx

=
1

2

∫ b

a

[(
∂v

∂t

)2

− ∂2v

∂t2
v

]

ρ(x) dx

Suppose the total vibrational amplitude is a superposition of the am-
plitudes associated with with each eigenfrequency ωn,

v(x, t) =
∑

n

cnun(x) cos(ωnt+ δn) .

Then the total energy becomes

T.E. =
1

2

∑

m

∑

n

[ωmωn sin(ωmt+ δm) sin(ωnt+ δn)

+ ω2
m cos(ωmt+ δm) cos(ωnt+ δn)

]
c̄mcn

∫ b

a

ūm(x)un(x)ρ(x) dx

The orthonormality, Eq.(1.12), implies that

T.E. =
1

2

∑

n

ω2
n|cn|2 .

Thus we see that the orthonormality of the S-L eigenfunctions ex-
presses the fundamental fact that the total energy, a constant inde-
pendent of time, is composed of the mutually exclusive and constant
energies residing in each normal mode (“vibratory degree of freedom”).

Proof in 3 Steps: In analogy to Aum = λmBum and Aun = λnBun one
first considers
Step (1) −(pu′m)′ + qum

︸ ︷︷ ︸

‖
Lum

= λmρum; −(pu′n)′ + qun
︸ ︷︷ ︸

‖
Lun

= λnρun.
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Then multiply the equations respectively by un and um and subtract
them. The left hand side becomes

l.h.s. = unLum − umLun ≡
d

dx
p(umu

′
n − unu′m) (1.15)

We now interrupt the three-step proof to remark that this is an important
identity known as Lagrange’s Identity . We shall meet it and refer to it in
several subsequent sections. This identity generalizes to higher dimensions
by means of the vector identity un∇2um−um∇2un = ∇· (un~∇um−um~∇un).
The integral version of Lagrange’s Identity is known as Green’s identity

∫ b

a

(unLum − umLun)dx = p(x)(umu
′
n − unu′m)

∣
∣
∣
∣
∣

b

a

(1.16)

in 1 dimension. Observe the parallel of this with Green’s Identity in three
dimensions:

∫ ∫ ∫

volume

(un∇2um − um∇2un)d
3x =

∫ ∫

boundary

(un~∇um − um~∇un) · ~dS .

We now continue the three-step proof by considering the right hand side of

the above subtraction result,

r.h.s. = (λm − λn)ρumun .

Step (2) Both sides are equal. Upon integrating them, one obtains

(λm − λn)
∫ b

a

umunρ(x)dx = p(x)W [um, un](x)

∣
∣
∣
∣
∣

b

a

where

W [um, un] =

∣
∣
∣
∣

um u′m
un u′n

∣
∣
∣
∣
.

This would be called the Wronskian of um and un if λm and λn were equal.
The right hand side of this one-dimensional Green’s identity depends only
on the boundary (end) points. The idea is to point out that this right hand
side vanishes for any one of the boundary conditions under consideration.
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Step (3a) If one has D-N conditions

αu(a) + α′u′(a) = 0

βu(b) + β′u′(b) = 0 ,

then these D-N conditions imply

W (a) = 0

W (b) = 0

because 1st = 2nd columns are proportional. Thus for a regular S-L problem

(λm − λn)
∫ b

a

um(x)un(x)ρ(x)dx = 0 ,

i.e., one has orthogonality whenever λm 6= λn.
Step (3b) If one has a periodic S-L problem

p(b) = p(a)

u(a) = u(b)
u′(a) = u′(b)

}

⇒ W (a) = W (b) .

i.e., one again has orthogonality whenever λm 6= λn.
Setp (3c) If one has a singular S-L problem

p(b) = 0
W (b) = finite

}

⇒ p(b)W (b) = 0 .

Similar considerations at the other end point also yield zero. Once again one
has orthogonality whenever λm 6= λn. To summarize, the eigenfunctions of
different eigenvalues of regular, periodic, and singular Sturm-Liouville sys-
tems are orthogonal.

Lecture 5

Theorem 2 (Reality of Eigenvalues) For a regular, periodic, and singular
S-L system the eigenvalues are real.
Proof: Step (1) Let u be an eigenfunction corresponding to the complex
eigenvalue λ = µ+ iν. The eigenfunctions are allowed to be complex. Thus

Lu = λρ(x)u and Lu = λρu

αu(a) + α′u′(a) = 0 αu(a) + α′u′(a) = 0

βu(a) + β′u′(a) = 0 βu(a) + β′u′(a) = 0
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because
L = L, ρ(x) = ρ(x)
α, α′ = α, α′

β, β′ = β, β′






are real .

Step (2) We have, therefore,

∫ b

a

(uLu− uLu)dx
︸ ︷︷ ︸

0 = p(x)W [u, u]

∣
∣
∣
∣
∣

b

a

= (λ− λ)
∫ b

a

uuρ(x)dx

0 = (λ− λ)
∫ b

a

|u|2ρ(x)dx .

This implies that λ = λ, i.e., that λ is real.

We now inquire as to the number of independent eigenfunctions corre-
sponding to each eigenvalue. This is a question of uniqueness. The examples
on page 15 have only one such eigenfunction for each eigenvalue. Consider,
however, the following

Example (Periodic S-L system)

u′′ + λu = 0 − 1 < x < 1

u(−1) = u(1)

u′(−1) = u′(1) .

We note that p(−1) = p(1). Consequently, this is a periodic S-L system.

The form of the solution can be written down by inspection. Letting
λ = α2, one obtains

u(x) = c1 cosαx+ c2 sinαx

without loss of generality we assume α > 0. The two boundary conditions
imply

2c2 sinα = 0

and

−2αc1 sinα = 0 .
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Both conditions yield non-zero solutions whenever α = 0, π, 2π, . . . . Conse-
quently, the eigenvalues are

λn = n2π2 n = 0, 1, 2, · · · .

Note that for every eigenvalue (except λ0) there are two eigenfunctions

λ0 :
1

2
λ1 : cos πx , sin πx
...

λn : cosnπx , sinnπx .

Such nonuniqueness is expressed by saying that each of the eigenvalues
λ1, λ2, . . . is degenerate, in this example doubly degenerate because there are
two independent eigenfunctions for each eigenvalue.

The next theorem states that this cannot happen for a regular S-L system.
Its eigenvalues are simple, which is to say they are nondegenerate.
Note that the theorem below uses Abel’s Theorem, namely Theorem 4.
Theorem 3 (Uniqueness of solutions to the regular S-L system.) An eigen-
function of a regular Sturm-Liouville system is unique except for a constant
factor, i.e., the eigenvalues of a regular S-L problem are simple.
Proof : For the same eigenvalue λ, let u1 and u2 be two eigenfunctions of
the regular S-L system. For a regular S-L system the b.c. are

αu1(a) + α′u′1(a) = 0

αu2(a) + α′u′2(a) = 0 .

In other words, both solutions satisfy the D-N mixed boundary conditions
at the left hand endpoint. The value of the Wronskian at x = a is

W [u1, u2](a) =

∣
∣
∣
∣

u1 u′1
u2 u′2

∣
∣
∣
∣
x=a

= 0 ,

(
columns are

proportional

)

.

Using Abel’s Theorem: p(x)W [u1, u2](x) = constant, we obtain

u′1(x)

u1(x)
− u′2(x)

u2(x)
= 0⇒ u1(x) = ku2(x) .

This conclusion says that the solution u1(x) is unique (up to a constant
multiplicative factor).



1.3. STURM-LIOUVILLE SYSTEMS 27

NOTE: If the endpoint condition had been the periodic boundary condition,
then one cannot conclude that the eigenvalues are simple. This is because

u(a) = u(b)
u′(a) = u′(b)

does not imply [u1(x)u
′
2(x)− u′1(x)u2(x)]x=a = 0 .

The previous uniqueness theorem used Abel’s theorem, which applies
to a second order linear differential equation regardless of any boundary
conditions imposed on its solutions.
Theorem 4 (Abel) If u1 and u2 are two solutions to the same differential
equation [

− d

dx
p
d

dx
+ q

]

u = λρu

(i.e., Lu = λρu), then

p(x)[u1(x)u
′
2(x)− u2(x)u′1(x)] = constant . (1.17)

Remark. The expression in square brackets,

W = u1u
′
2 − u2u′1

is called the “Wronskian” or the “Wronskian determinant”.
Proof: Start with Lagrange’s identity

u2Lu1 − u1Lu2 =
d

dx
p(u1u

′
2 − u2u′1) ≡

d

dx
p(x)W [u1, u2] .

Use the given differential equation to conclude that the left hand side van-
ishes, i.e.

0 =
d

dx
p(x)W [u1, u2] .

Thus p(x)W [u1, u2](x) is indeed a constant, independent of x.
A nice application of this theorem is that it gives us a way of obtaining

a second solution to the given differential equation, if the first one is already
known.

Using Abel’s theorem, the Wronskian determinant can be rewritten in
the form

u21

(
u′2
u1
− u2

u′1
u21

)

=
const.

p
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or

u21
d

dx

(
u2
u1

)

=
const.

p
.

Integration yields the following
Corollary (Second solution)

u2 = u1(x)

∫ x dx′

p(x′)u21(x
′)
+ c1u1 .

Thus one is always guaranteed a second solution if a first solution is known.

Exercise 1.3.1 (SCHRÖDINGER FORM: NO FIRST DERIVATIVES)
(a) SHOW that any equation of the form

u′′ + b(x)u′ + c(x)u = 0

can always be brought into the Schrödinger form (”no first derivatives”)

v′′ +Q(x)v = 0

Apply this result to obtain the Schrödinger form for

(b)

u′′ − 2xu′ + λu = 0 (HERMITE EQUATION)

(c)

x2u′′ + xu′ + (x2 − ν2)u = 0 (BESSEL’S EQUATION)

(d)

xu′′ + (1− x)u′ + λu = 0 (LAGUERRE’S EQUATION)

(e)

(1− x2)u′′ − xu′ + α2u = 0 (TSHEBYCHEFF’S EQUATION)

(f)

(pu′)′ + (q + λr)u = 0 (STURM-LIOUVILLE EQUATION)

(g)

[
1

sin θ

d

dθ
sin θ

d

dθ
+ ℓ(ℓ+ 1)− m2

sin2 θ

]

u = 0 (LEGENDRE EQUATION)
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Exercise 1.3.2 (NONDEGENERATE EIGENVALUES)
Consider the S-L eigenvalue problem

[Lun](x) ≡
(

− d2

dx2
+ x2

)

un(x) = λnun(x) ; lim
x→±∞

u(x) = 0 ; (1.18)

on the infinite interval (−∞,∞).
Show that the eigenvalues λn are nondegenerate, i.e. show that, except for a
constant multiplicative factor, the corresponding eigenfunctions are unique.

Nota bene:

(i) The eigenfunctions are known as the Hermite-Gaussian polynomials. They
are known to professionals in Fourier optics who work with laser beams
passing through optical systems. A laser beam which is launched with cross-
sectional amplitude profile un(x) one focal length away from a lens, passes
through the lens, and is then observed (on, say, a screen) one focal length
after that lens, has an amplitude profile identical to the initial profile un(x).

(ii) These eigenfunctions are also known to physicists who work with simple har-
monic oscillators (e.g. vibrating molecules), in which case the eigenfunctions
are the quantum states of an oscillator and the eigenvalues are its allowed
energies.

Exercise 1.3.3 (EVEN AND ODD EIGENFUNCTIONS)
Consider the “parity” operator P : L2(−∞,∞)→ L2(−∞,∞) defined by

Pψ(x) ≡ ψ(−x)

(i) For a given function ψ(x), what are the eigenvalues and eigen functions of
P?

(ii) Show that the eigenfunctions of the operator L defined by Eq.(1.18) are
eigenfunctions of P . Do this by first computing

P−1LPψ(x)

for ψ ∈ L2(−∞,∞) and then pointing out how P−1LP is related to L.

Next point out how this relationship applied to an eigenfunction un of the
previous problem leads to the result Pun = µun.

Exercise 1.3.4 (EIGENBASIS OF THE FOURIER TRANSFORM F)
Consider the S-L eigenvalue problem

[Lun](x) ≡
(

− d2

dx2
+ x2

)

un(x) = λnun(x) ; lim
x→±∞

u(x) = 0 ;
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on the infinite interval (−∞,∞). We know that the eigenvalues are nondegenerate
and are

λn = 2n+ 1 , n = 0, 1, . . . .

Consider now the Fourier transform on L2(−∞,∞):

F [u](k) ≡
∫ ∞

−∞

e−ikx√
2π

u(x)dx .

(a) By computing
FLF−1ψ̂(k)

for arbitrary ψ̂ ∈ L2(−∞,∞), determine the Fourier representation

FLF−1 ≡ L̂ .

of the operator

L = − d2

dx2
+ x2

(b) By viewing F as a map L2(−∞,∞)→ L2(−∞,∞), compare the operators
L̂ and L.

State your result in a single English sentence and also as a mathematical
equation.

(c) Use the result obtained in (b) to show that each eigenfunction un of the S-L
operator L is also an eigenfunction of F :

Fun = µ un .

By applying the result (e) of the Fourier eigenvector Exercise on page 149
to the previous Exercise determine the only allowed values for µ. What is

the Fourier transform of a Hermite-Gauss polynomial un(x)?

CONGRATULATIONS, you have just found an orthonormal eigenbasis of
the Fourier transform operator F (in terms of the eigenbasis of the S-L
operator L)!

Exercise 1.3.5 (HOW TO NORMALIZE AN EIGENFUNCTION)
Consider the S-L system

[
d

dx
p
d

dx
− q + λρ

]

u = 0 a < x < b

αu(a) + α′u′(a) = 0 ; βu(b) + β′u′(b) = 0 .
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Let w(x, λ) be that unique solution to d
dxp

dw
dx + (λρ − q)w = 0 which satisfies

αw(a, λ) + α′w′(a, λ) = 0. i.e. it satisfies the left hand boundary condition. Then
wn(x) ≡ w(x, λn) is an eigenfunction of the above S-L system corresponding to
the eigenvalue λn.

Calculate the normalization integral
b∫

a
w2
n ρ dx as follows:

(a) Obtain the preliminary formula

(λ− λn)
∫ b

a
wn(x)w(x, λ)ρ(x)dx = p(b)W (w,wn)|x=b .

(b) By taking the limit λ→ λn show that

∫ b

a
w2
n ρ dx = p(b)

[

w′
n(b)

dw(b, λ)

dλ

∣
∣
∣
∣
∣
λ=λn

− wn(b)
d

dλ
w′(b, λ)

∣
∣
∣
∣
∣
λ=λn

]

,

where prime denotes differentiation w.r.t. x.

Exercise 1.3.6 (ORTHONORMALIZED BESSEL FUNCTIONS)
Consider the Sturm-Liouville (S-L) problem

[

− d

dx
x
d

dx
+
ν2

x

]

u = λxu .

Here u,
du

dx
bounded as x→ 0, u(1) = 0 where ν is a real number.

(a) Using the substitution t =
√
λ x, show that the above differential equation

reduces to Bessel’s equation of order ν. One solution which is bounded as
t → 0 is Jν(t); a second linearly independent solution, denoted by Yν(t), is
unbounded as t→ 0.

(b) Show that the eigenvalues λ1, λ2, . . . of the given problem are the squares
of the positive zeroes of Jν(

√
λ ), and that the corresponding eigenfunctions

are
un(x) = Jν(

√

λn x) .

(c) Show that the eigenfunctions un(x) satisfy the orthogonality relation

1∫

0

x um(x) un(x) dx = 0 m 6= n .
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(d) For the case ν = 0, apply the method of the previous problem to exhibit the
set of orthonormalized eigenfunctions {u0(x), u1(x), u2(x), · · · }.

(e) Determine the coefficients in the Fourier-Bessel series expansion

f(x)
.
=

∞∑

n=1

cn un(x) .

Exercise 1.3.7 (ORTHOGONALITY OF LEGENDRE POLYNOMIALS)
Consider the S-L problem

[

− d

dx
(1− x2) d

dx
+

m2

1− x2
]

u = λu

Here u,
du

dx
bounded as x → ±1. Here m = integer. The solutions to this S-L

problem are un = Pmn (x), the “associated Legendre polynomials”, corresponding
to λn = n(n+ 1), n = integer. Show that

1∫

−1

Pmn (x)Pmn′ (x) dx = 0 λn 6= λn′ .

Lecture 6

Sturm’s Comparison Theorem

When confronted with the regular boundary value problem

[
d

dx
p(x)

d

dx
− q(x) + λρ(x)

]

u(x) = 0 (1.19)

αu(a) + α′u′(a) = 0 (1.20)

βu(b) + β′u′(b) = 0

we must ask

1. How does the oscillatory nature of u(x;λ), a solution to Eq. 1.19, de-
pend on λ?
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2. Why do the values of λ permitted by (1.19) and (1.20) form a discrete
and semi-infinite sequence

λ0 < λ1 < · · · < λn < · · ·

with a smallest eigenvalue λ0 and with λn →∞ as n→∞?

The “oscillatory nature” of a solution u(x, λ) is expressed qualitatively
by the location of the zeroes of its graph. One could also inquire about its
behaviour between successive zeroes. However, we shall see that such an
inquiry always leads to the same answer: Provided q(x) + λρ(x) is positive
between a pair of successive zeroes, the graph of u(x;λ) has only a single
maximum (or minimum). This means that u(x, λ) can not oscillate between
two of its successive zeroes.

Thus the most important issue is the existence and location of the zeroes,
which are controlled entirely by the phase of a given solution u(x, λ). This
phase is a scalar function from which one directly constructs the solution. It
is preferrable to discuss the behavior of the solution u(x;λ) in terms of its
phase because the key qualitative properties of the latter are very easy to
come by. As we shall see, one only needs to solve a first order differential
equation, not the second order S-L equation.

However, before establishing and solving this differential equation, let us
use the second order S-L differential equation directly to determine how the
zeroes of u(xλ) are affected if the parameter λ is changed. We express this
behaviour in terms of the
Sturm Comparison Theorem:
Whenever λ1 < λ2, then between two zeroes of the nontrivial solution u(x, λ1),
there lies a zero of u(x, λ2).

This theorem demands that one compare the two different solutions

u(x, λ1) ≡ u1(x) and u(x, λ2) ≡ u2(x)

of Eq. 1.19 corresponding two different constants λ1 and λ2. The conclusion
is obtained in three steps:
Step 1: Multiply these two equations respectively by u2 and u1, and then
form their difference. The result, after cancelling out the q(x)u1u2 term, is

d

dx

[

p(x)

(

u2
du1
dx
− u1

du2
dx

)]

= (λ2 − λ1)u1u2ρ(x) ,
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u(x,λ1)

u(x,λ1)

ζ

u (x)

1st zero of
x= a

1

x

Figure 1.4: Graph of a solution u(x, λ1) which satisfies the mixed D-N bound-
ary condition at x = a.

which is the familiar Lagrange identity, Eq.(1.15), in disguise. Upon inte-
gration one obtains

p(x)(u2u
′
1 − u1u′2)

∣
∣
∣
∣

x

a

= (λ2 − λ1)
∫ x

a

u1u2ρ dx .

If both u1 and u2 satisfy the mixed Dirichlet-Neumann boundary conditions
αu(a) + α′u′(a) = 0 at x = a, then

(u2u
′
1 − u1u′2)x=a = −

α

α′ [u2(a)u1(a)− u1(a)u2(a)] = 0 .

If x = a is a singular point of the differential Eq.(1.19), p(a) is zero. Thus, if
u and u′ are finite at x = a, then the left hand side vanishes again at the lower
limit x = a. Thus both for a regular and for this singular Sturm-Liouville
problem we have

p(x)

(

u2(x)
du1(x)

dx
− u1(x)

du2(x)

dx

)

= (λ2 − λ1)
∫ x

a

u1u2ρ dx .

Step 2: Now assume that, for some range of values λ, each of the correspond-
ing solutions u(x, λ) satisfying the boundary condition at x = a, oscillates.
In other words, as x increases beyond x = a, u(x, λ) reaches a maximum,
then decreases, passes through zero, reaches a minimum, increases and so on.
That such a range of λ-values exists, we shall see later.
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u (x)1 u (ξ)1 >0

u (1 ζ)< 0

ζ
x

ξ

u (x)1 < 0

Figure 1.5: Graph of a solution u(x, λ1) which is zero at ζ and ξ.

Let λ1 lie in this range, and let x = ζ be the first zero of u1(x) as in
Figure 1.4. Consequently,

(

p(x)u2
du1
dx

)

ζ

= (λ2 − λ1)
∫ ζ

a

u1u2ρ dx .

Step 3. One must now conclude that if λ2 > λ1, then the zeroes of u2(x)
are more closely spaced than those of u1(x). Why must this statement, the
Sturm Comparison Theorem, be true?
a) Assume the contrary, i.e., assume that u2(x) has no zero in a < x < ζ.
See Figure 1.4. In that case u2(x) > 0 for all a < x < ζ. This implies

(

p(x)u2
du1
dx

)

ζ

= (λ2 − λ1)
∫ ζ

a

u1u2ρ dx > 0 .

But p(ζ) > 0, u2(ζ) > 0 and du1(ζ)
dx

< 0, so that
(
p(x)u2

du1
dx

)

ζ
< 0. This is a

contradiction. Hence our assumption was wrong; the function u2 does have
a zero in a < x < ζ.
b) Now consider the circumstance where u1(x) has two successive zeroes at
ζ and ξ: u1(ζ) = u1(ξ) = 0. In that case one obtains

p(ξ)u2(ξ)u
′
1(ξ)− p(ζ)u2(ζ)u′1(ζ) = (λ2 − λ1)

∫ ξ

ζ

u2u1ρ dx .

If u2(x) does not change sign in ζ < x < ξ, as in Figure 1.6, then we again
have a contradiction because if u1(x) < 0, then u′1(ζ) < 0, u′1(ξ) > 0 ⇒
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u (x)1

ζ
x

ξ

u (x)2

impossible
if

λ  >λ2 1

Figure 1.6: If λ2 > λ1 it is impossible that u(x, λ2)u(x, λ1) > 0 for all x in
the interval [ζ, ξ].

(r.h.s.)× (l.h.s.) < 0. In other words, the picture in Figure 1.6 is impossible.
We conclude, therefore, that u2(x) must have a zero inside the open interval
(ζ, ξ).

1.4 Phase Analysis of a Linear Second Order

O.D.E.

The fundamental property of solutions to the λ-parametrized S-L equation is
their oscillatory nature, i.e. the existence and the spacing of their zeros. This
undulatory behavior of a solution is conceptualized by means of its phase, a
concept formed from the observation of waves. Its mathematization in the
context of a S-L d.e., more generally, a non-linear 2nd order o.d.e., is the
result of a transformation to polar coordinates.

One starts with the two-dimensional domain of states, the Poincaré phase
plane. In compliance with the given 2nd order o.d.e., one introduces rectilin-
ear coordinates. Their values are proportional to the two state variables (u′

and u) of the system governed by that 2nd order o.d. equation. As depicted
in Figure 1.7, this d.e. determines the trajectory of a moving point. Its
polar angle is the evolving phase of the system. It is particularly desirable
to employ phase method to linear ordinary differential equations (o.d.e.’s) of
second order not only for the breadth and the depth of the obtained results,
but also for the ease with which these results are obtained. A major con-
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tributing factor to the latter is that the method is capable of characterizing
the solutions to any such differential equation, and it can do so geometrically.

1.4.1 The Prüfer System

For linear second order ordinary differential equations, the phase plane method
is achieved by the so-called Prüfer substitution. It yields the phase and the
amplitude of the sought after solution to the Sturm-Liouville equation.

The method to be developed applies to any differential equation having
the form

d

dx

(

P (x)
du

dx

)

+Q(x)u = 0 a < x < b (1.21)

Here 0 < P (x), P ′(x), and Q(x) are continuous.
We are interested in asking and answering the following questions:

1. How often does a solution oscillate in the interval a < x < b; i.e., how
many zeroes does it have?

2. How many maxima and minima does it have between a pair of consec-
utive zeroes?

3. What happens to these zeroes when one changes P (x) and Q(x)?

The questions can be answered by considering for this equation its phase
portrait in the Poincaré phase plane. We do this by introducing the “phase”
and the “radius” of a solution u(x). This is done in three steps.

A) First apply the Prüfer substitution

P (x)u′(x) = r(x) cos θ(x); u(x) = r(x) sin θ(x)

to the quantities in Eq.(1.21). Do this by introducing the new dependent
variable r and θ as defined by the formulae

r2 = u2 + P 2(u′)2 ; θ = arctan
u

Pu′
.

(Without loss of generality one may always assume that u(x) is real. Indeed,
if u(x) were a complex solution, then it would differ from a real one by
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Figure 1.7: The Poincaré phase plane of the second order linear differential
equation is spanned by the amplitude u and its derivative u′ (multiplied by
the positive coefficient P ). A solution to the differential equation is repre-
sented by an x-parametrized curve. The (Prüfer) phase is the polar angle
θ.

a mere complex constant.) A solution u(x) can thus be pictured in this
Poincaré plane as a curve parametrized by the independent variable x.

However, there is more. Two solutions to Eq.(1.21), say u1 and u2, give
rise to two vectors,

~R1(x) = (Pu′1, u1) = (r1 cos θ1, r1 sin θ1)

and

~R2(x) = (Pu′2, u2) = (r2 cos θ2, r2 sin θ2) ,

moving in the Poincaré plane as shown in Figure 1.8. The area of the triangle
formed by these vectors is 1/2 that of the parallelogram,

~R2 × ~R1 = Pu′2u1 − Pu′1u2 (1.22)

= r1(x)r2(x) sin[θ1(x) sin θ2(x)]. (1.23)

This is constant because of Abel’s Theorem, Eq.(1.17). This constancy as
function of x is a universal property. It holds for all S-L systems, regardless
of the particular boundary conditions u1 and u2 may be subjected to.
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R2 1−
2 R1

x
x

θθ

u

P u

Figure 1.8: The area spanned by the vectors ~R1 and ~R2, whose position is
parametrized by x, remains constant throughout its x-parametrized motion.

The transformation
(Pu′, u)↔ (r, θ)

is a transition from rectilinear to polar coordinates in the Poincaré plane.
This transformation is non-singular for all r 6= 0. Furthermore, we always
have r > 0 for any non-trivial solutions. Why? Because if r(x) = 0, i.e.,
u(x) = 0 and u′(x) = 0 for some particular x, then by the uniqueness theorem
for second order linear o.d.e. u(x) = 0 ∀ x, i.e., we have the trivial solution.

B) Second, obtain a system of first order o.d.e. which is equivalent to the
given differential Eq.(1.21).
(i) Differentiate the relation

cot θ =
Pu′

u
.

(Side Comment: If u = 0, then we differentiate tan θ = u/Pu′ instead. This
yields the same result.)
One obtains

− csc2 θ
dθ

dx
=

(Pu′)′

u
− Pu′

u2
u′

= −Q− 1

P

cos2 θ

sin2 θ
,

or

dθ

dx
= Q(x) sin2 θ +

1

P (x)
cos2 θ ≡ F (x, θ) . (1.24)
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This is Prüfer’s differential equation for the phase, the Prüfer phase.
(ii) Differentiate the relation

r2 = u2 + (Pu′)2

and obtain

r
dr

dx
= uu′ + (Pu′)(Pu′)′

=
u

P
Pu′ − Pu′Qu

=
r sin θ

P
r cos θ − r cos θQr sin θ

or

dr

dx
=

1

2

[
1

P (x)
−Q(x)

]

r sin 2θ . (1.25)

This is Prüfer’s differential equation for the amplitude.
C) Third, solve the system of Prüfer equations (1.24) and (1.25). Doing

so is equivalent to solving the originally given equation 1.21. Any solution to
the Prüfer system determines a unique solution to the equation (1.21), and
conversely.

Of the two Prüfer equations, the one for the phase θ(x) is obviously much
more important: it determines the qualitative, e.g. oscillatory, behavior of
u(x). The feature which makes the phase equation so singularly attractive
is that it is a first order equation which also is independent of the amplitude
r(x). The amplitude r(x) has no influence whatsoever on the phase function
θ(x). Consequently, the phase function is governed by the simplest of all
possible non-trivial differential equations: an ordinary first order equation.
This simplicity implies that rather straight forward existence and uniqueness
theorems can be brought to bear on this equation. They reveal the qualitative
nature of θ(x) (and hence of u(x)) without having to exhibit detailed analytic
or computer generated solutions.

(1) One such theorem says that for any initial value

(a, γ)

∃ a unique solution θ(x) which satisfies

dθ

dx
= F (x, θ)
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Figure 1.9: The phase function θ(x) is that unique solution to the Prüfer
equation dθ/dx = F (θ, x) whose graph passes through the given point
(a, γ).

and

θ(a) = γ ,

provided P and Q are continuous at a. See Figure 1.9. Existence and unique-
ness of θ(x) prevails even if P (x) and Q(x) have finite jump discontinuities
at x 6= a.

(2) Once θ(x) is known, the Prüfer amplitude function r(x) is determined
by integrating Eq.(1.25). One obtains

r(x) = K exp

∫ x

a

1

2

[
1

P (x)
−Q(x)

]

sin 2θ(x) dx

where K = r(a) is the initial amplitude.
(3) Each solution to the Prüfer system, Eqs.(1.24) and (1.25), depends

on two constants:

the initial amplitude K = r(a)

the initial phase γ = θ(a)

Note the following important fact: Changing the constant K just multiplies
the solution u(x) by a constant factor. Thus the zeroes of u(x) can be located
by studying only the phase d.e.

dθ

dx
= F (x, θ) .
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This is a major reason why we shall now proceed to study this equation very
intensively.

Vibrations, oscillations, wiggles, rotations and undulations are all char-
acterized by a changing phase. If the independent variable is the time, then
this time, the measure of that aspect of change which permits an enumera-
tion of states, manifests itself physically by the advance of the phase of an
oscillating system.

Lecture 7

Summary. The phase of a system is the most direct way of characterizing
its oscillatory nature. For a linear 2nd order o.d.e., this means the Prüfer
phase θ(x), which obeys the first order d.e.

dθ

dx
= Q(x) sin2 θ +

1

P (x)
cos2 θ ≡ F (x, θ) . (1.26)

It is obtained from the second order equation

[
d

dx
P (x)

d

dx
+Q(x)

]

u(x) = 0 (1.27)

by the Prüfer substitution

u(x) = r(x) sin θ(x) Pu′(x) = r(x) cos θ(x) .

These equations make it clear that the zeroes and the oscillatory behavior of
u(x) are controlled by the phase function θ(x).

1.5 Qualitative Results

The phase is a very direct way of deducing a number of important properties
of any solution to a general second order linear o.d.e. We shall do this by
making a number of simple observations.

(i) The zeroes of a solution u(x) to Eq. 1.19 occur where the Prüfer phase
θ has the values

0,±π,±2π, . . .
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x
. . . . .

u

sin θ = 0
Figure 1.10: The function u(x) has its zeroes whenever the phase θ(x) is an
integral multiple of π.

(ii) At these points, where sin θ(x) = 0, θ(x) is an increasing function of
x. Indeed, sin θ = 0 implies cos2 θ = 1. Consequently, the Prüfer equation
yields

dθ

dx
=

1

P
> 0 , (whenever θ = 0,±π, . . . ) (1.28)

because P (x) > 0 by assumption. The positiveness of this rate of change
implies that in the Poincaré phase plane, which is spanned by Pu′ and u,
the curve (P (x)u′(x), u(x)) crosses the horizontal Pu′-axis (θ = nπ) only in
the counter clockwise sense as illustrated in Figure 1.7. In other words, the
phase of the curve always goes forward, never backward (Figure 1.11) when
it crosses the horizontal.

The following conclusions follow easily.
(iii) The zeroes of u(x) are isolated, i.e. they are separated by a finite

amount from each other. Why is this statement true? Consider two succes-
sive zeroes of u(x). Call them xn and xn+1. At these points the phase has
the values θ(xn) = nπ and θ(xn+1) = (n+ 1)π. The phase equation

dθ

dx
= Q(x) sin2 θ +

1

P (x)
cos2 θ

implies that the slopes dθ
dx

∣
∣
∣
∣
∣
xn

= 1
P (xn)

and dθ
dx

∣
∣
∣
∣
∣
xn+1

= 1
P (xn+1)

both be positive.

Reference to the θ−x plane, say Figure 1.12, reveals that these two inequal-
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Figure 1.11: The phase can only advance, never retreat across the horizontal
axis.

ities simply prevent xn and xn+1 from being infinitesimally close together.
The function θ(x) would become multivalued if they were.
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Figure 1.12: The zeroes of u(x), i.e. the integral π values of θ must have a
finite x-separation, otherwise θ(x) becomes multi-valued.

(iv) If Q > 0, then u(x) has exactly one maximum (or minimum) between
two successive zeroes of a given solution. Thus a sequence of maxima and
minima above (or below) the x-axis is impossible if Q(x) > 0.

The reason for this impossibility is this:

1. At a maximum (or a minimum) of u one has

0 = Pu′ = r cos θ ⇔ cos θ = 0 , sin2 θ = 1 .

A maximum (or minimum) of u is located at θ = (n+ 1
2
)π.
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Figure 1.13: The minimum of u(x) in this figure is forbidden because the cor-
responding slope dθ/dx at that point would have to be negative, in violation
of inequality 1.29.

2. Prüfer’s equation (1.24) implies, therefore,

dθ

dx
= Q sin2 θ + 0 = Q > 0 (at a MAX or a MIN) (1.29)

at these points. Consequently, θ(x) can cross the line θ = (n + 1
2
)π

only once, which means u has a maximum (or minimum) only once. If
it crossed it a second time, as in Figure 1.13, the slope would have to
be negative at the second crossing point, thus violating the inequality
1.29.

If Q < 0, then, of course, all bets are off!

1.6 Phase Analysis of a Sturm-Liouville Sys-

tem

Every Sturm-Liouville system has a personality, which is encoded in its phase.
In other words, the phase is the brains of the regular Sturm-Liouville system.
It is the phase which determines where a given solution has a maximum.
It is the phase which determines where a given solution is zero.
It is the phase which determines where a given solution oscillates.
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It is the phase which determines how many zeroes a given solution has in its
domain of definition.

Thus, when one thinks of the questions, “How do the boundary and the
associated eigenvalue parameter λ control the nature of the solution to the
regular Sturm-Liouville problem?” one should actually ask a more penetrat-
ing question:

“How do the boundary conditions and the associated eigenvalue param-
eter λ control the phase of the solution to the S-L problem?”

The existence of allowed (eigen)values of λ and the concomitant eigen-
function is determined entirely by the phase. Let us, therefore, recast the
mixed D-N boundary conditions in terms of this phase.

1.6.1 The Boundary Conditions

The two D-N boundary conditions are

αu(a) + α′u′(a) = 0 and βu(b) + β′u′(b) = 0

at the two endpoints x = a and x = b. We know that the phase θ(x, λ)
satisfies the family of λ-parametrized 1st order o.d.e.’s

dθ

dx
= (λρ(x)− q(x)) sin2 θ +

1

p(x)
cos2 θ ,

where ρ, q, and p are given by the S-L equation
[
d

dx
p(x)

d

dx
+ λρ(x)− q(x)

]

u = 0 .

We must now determine what conditions the two homogeneous D-N bound-
ary conditions impose on the phase θ(x). The transformation of the D-N
conditions into equivalent conditions on the phase is done with the help of
the Prüfer relation

tan θ =
u

pu′
.

This determines two phase angles. At the left endpoint x = a, let the
initial phase be θ(a, λ) = γ. This phase γ is uniquely determined by the two
requirements

tan γ ≡ u(a)

u′(a)p(a)
= − α′

αp(a)
and 0 ≤ γ < π ,
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if α 6= 0, and by

γ =
π

2
if α = 0 .

(It is clear that γ = π
2
expresses the case of pure Neumann condition at

x = a.) Thus the D-N boundary condition at x = a has been expressed in
terms of a single quantity, the initial phase. This initial phase is required to
be the same for all λ.

At x = b we introduce the final phase angle δ. It is determined by the
two requirements

tan δ = − β′

βp(b)
and 0 < δ ≤ π

if β 6= 0, and by

δ =
π

2
if β = 0 .

Lecture 8

Having reformulated the two D-N conditions in terms of the two angles γ
and δ, we are ready to restate the S-L problem in terms of the phase function
θ. This restatement is very simple.

1.6.2 The Boundary Value Problem

A solution u(x, λ) of the S-L d.e. for a ≤ x ≤ b will be an eigenfunction
of the regular S-L boundary value problem if and only if the corresponding
phase, obtained from the Prüfer d.e.

dθ

dx
= (λρ− q) sin2 θ +

1

p
cos2 θ ,

satisfies the corresponding end point conditions

θ(a, λ) = γ and θ(b, λ) = δ + nπ n = 0, 1, . . .

with 0 ≤ γ < π and 0 < δ ≤ π.
Note that any λ for which these endpoint conditions hold is an eigenvalue

of the regular S-L problem, and conversely, that an eigenvalue of this S-L
problem will yield a phase function whenever it satisfies the required end
point conditions for some n = 0, 1, 2, . . . .

The question now is: Does there exist a λ which guarantees that the two
end conditions are satisfied for every n = 0, 1, 2, . . . ?
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1.6.3 The Behavior of the Phase: The Oscillation The-
orem

The answer is yes. Indeed, let θ(x, λ) be that solution to the Prüfer d.e.
which satisfies the initial condition θ(a, λ) = γ. We have one such solution
for each λ. We can draw the graphs of these solutions for various values of
λ. See Figure 1.14
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(b) Common initial phase γ ≡ θ(x = a, λ) = π/2

Figure 1.14: Two families of λ-parametrized phase functions θ(x, λ). The
starting point in each family is the same for all λ. In the first family the
common starting phase is γ ≡ θ(x = a, λ) = 0. In the second it is γ ≡ θ(x =
a, λ) = π/2. The S-L equations are the same, namely u′′ + λu = 0.
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Note that if the function p(x) of the S-L equation is the constant function,
then the slope

dθ

dx
=

1

p
(when θ = 0, π, 2π, . . . )

at every “zero” of u(x, λ) = r sin θ(x, λ) will be a fixed constant, independent
of λ. However, between a pair of successive “zeroes” the slope dθ

dx
will be the

larger, the larger λ is. Consequently, for large λ, the phase θ(x, λ) has an
undulatory (i.e., “wavelike”) behavior as θ(x, λ) passes through the successive
zeroes of u(x, λ).

We now ask: How does

θ(x, λ)

behave as a function of λ? The answer to this question is important because
it determines whether the other end point condition (θ(b, λ) = δ + nπ, n =
0, 1, . . . ) can be satisfied.

The behavior of θ(x, λ) as a function of λ is summarized by the following
three statements, which together comprise the

Oscillation Theorem:

The solution θ(x, λ) of the Prüfer d.e. satisfying the initial condition

θ(a, λ) = γ , 0 ≤ γ < π ∀ λ

1. is a continuous and strictly increasing function of λ,

2. lim
λ→∞

θ(x, λ) =∞, i.e., θ(x, λ) is unbounded, and

3. lim
λ→−∞

θ(x, λ) = 0

for fixed x in the interval a < x ≤ b.

The above oscillation theorem is a statement about the global phase to-
pograhy of the (x, λ)-domain as expressed by the scalar function θ(x, λ). Its
domain is the vertical strip

D = {(x, λ) : a ≤ x ≤ b; −∞ < λ < +∞} (1.30)

and its topographical features (height, gradient, critical points if any, con-
tours, · · · ) are all contained in the behaviour of θ on D.
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(b) Prüfer scalar phase function contours of θ(x, λ) when
the initial phase value (at x = 0) is fixed at θ(x = 0, λ) =
π/2 for all λ-values

Figure 1.15: The (x, λ)-domain D, Eq.(1.30), with two different contour
topographies of the Prüfer phase θ(x, λ). The isograms in Figure (a) above
result from the special initial phase value condition γ ≡ θ(x = 0, λ) = 0,
while those in Figure (b) result from the more typical initial phase value
γ ≡ θ(x = 0, λ) = π/2. Of all the Prüfer phase isograms, the ones having
the values θ = δ + nπ, n = 0, 1, 2, · · · yield the eigenvalues λn, which can be
read off at the terminal point x = 10. The other isograms, θ = δ+(2n+1)π

2
,

and only those, yield (by inspection) the location and the number of zeros of
the eigenfunction un(x).
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Instead of giving Birkhoff’s and Rota’s rigorous proof of this theorem, we
shall increase our motivation for its validation by highlighting the geometrical
meaning of the theorem’s conclusions. We do this by identifying the shapes
of the system of isograms of θ(x, λ) on D . One thereby sees how

• they give rise to the semi-infinite eigenvalue spectrum and

• how and why they determine the location and number of zeros of the
corresponding eigenfunction.

The two topographical maps (a) and (b) in Figure 1.15 tell the story. Note
that the isolines of constant θ are curves λ(x) which are homeomorphic to
the horizontal lines of constant θ in Figure 1.14. There, in both (a) and
(b), each line of constant θ intersects monotonically the λ-parametrized θ(x)
curves.

Figures 1.15 and 1.14 contain the same information about the allowed
eigenvalues λ and the number and location of zeros of the corresponding
eigenfunctions. However, (a) and (b) in Figure 1.15 do so in a much more
direct way.

1.6.4 Discrete Unbounded Sequence of Eigenvalues

With x = b this “Oscillation theorem” tells us that θ(b, λ) is a function
which increases without limit as λ→∞. Consequently, as λ increases from
λ = −∞, there will be a first value, say λ0, for which the second boundary
condition (the one at x = b), i.e.,

θ(b, λ0) = δ

is satisfied. Moreover, as λ increases beyond λ0, θ(b, λ) increases monoton-
ically beyond δ until it reaches the value δ + π. This happens at a specific
value of λ, say λ1, which is larger than λ0,

λ0 < λ1 .

Continuing in this fashion, one finds that, regardless of how big an integer n
one picks, the equation

θ(b, λ) = δ + nπ
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always has a solution for λ, which we shall call λn. This yields an infinite
discrete sequence of λ’s which is monotonically increasing

λ0 < λ1 < · · · < λn < · · · .

This sequence has no upper bound. Why? For any large Λ > 0 consider
θ(b,Λ). This number lies between some pair of points, say,

δ +Nπ ≤ θ(b,Λ) < δ + (N + 1)π

The Oscillation Theorem says that θ(b, λ) has the property of being a mono-
tonic function of λ whose range is the whole positive real line. The latter
property guarantees that each of the two equations,

θ(b, λ) = δ +Nπ

and
θ(b, λ) = δ + (N + 1)π ,

has a solution. The former property guarantees that each of these two solu-
tions is unique. Call them λN and λN+1. The former property also guarantees
that

λN ≤ Λ < λN+1 .

Since Λ > 0 can be as large as we please, the sequence of eigenvalues,

λ0 < λ1 < · · · < λN < λN+1 < · · · ,

has no upper bound.
Corresponding to this sequence, there is the set of eigenfunctions

un(x) = rn(x) sin θ(x;λn) n = 0, 1, 2, . . . .

Each of these functions oscillates as a function of x. How many times does
each un(x) pass through zero in the open interval (a, b)? Reference to Fig-
ure 1.14 shows that un(x) has precisely n zeroes inside (a, b); zeroes at the
endpoints, if any, do not count. Indeed, it must have at least n zeroes be-
cause the graph of θ(x, λ) with λ held fixed as in Figure 1.14, must cross at
least n multiples of π (dotted horizontal lines in Figure 1.14 and 1.12). On
the other hand, the function un(x) cannot have more than n zeroes because
the graph of phase θ(x, λ) can cross each multiple of π no more than once.
This fact is guaranteed by Eq.(1.28) on page 43.



54 CHAPTER 1. STURM-LIOUVILLE THEORY

To summarize, we have the following
Theorem: Any regular S-L problem has an infinite number of solutions
un(x) which belong to the real eigenvalues

λ0 < λ1 < λ2 < · · · with lim
n→∞

λn =∞ .

Furthermore, each eigenfunction un(x)

1. has exactly n zeroes in the interval a < x < b,

2. is unique up to a constant multiplicative factor.

Lecture 9

1.7 Completeness of the Set of Eigenfunctions

via Rayleigh’s Quotient

The fact that eigenvalues of the regular Sturm-Liouville problem form a semi-
unbounded sequence, i.e., that

lim
n→∞

λn =∞ ,

is very important. It implies that the set of eigenfunctions of the Sturm-
Liouville problem

Lu = λu

αu(a) + α′u′(a) = 0
βu(b) + β′u′(b) = 0 ,

(1.31)

with

L =
1

ρ(x)

[

− d

dx
p(x)

d

dx
+ q(x)

]

,

is a generalized Fourier basis. In other words, they form a complete basis set
for the subspace of L2(a, b) of those square-integrable functions which satisfy
the given boundary conditions, Eq.(1.31). This subspace is

H =

{

u :

∫ b

a

|u(x)|2ρ(x) dx <∞; αu(a) + α′u′(a) = 0; βu(b) + β′u′(b) = 0

}

.
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Recall that a set {un(x) : n = 0, 1, . . . , N, . . . } is said to be complete, if for
any vector u ∈ H, the error vector

h∗N = u−
N∑

n=0

cnun

can be made to have arbitrarily small squared norm by letting N →∞, i.e.,

lim
N→∞

‖h∗N‖2 ≡ lim
N→∞

〈

u−
N∑

n=0

cnun , u−
N∑

m=0

cmum

〉

= 0 .

Here
cn = 〈un, u〉

is the nth (generalized) Fourier coefficient with the consequence that h∗N is
perpendicular to the subspace

WN = span{u0, u1, . . . , uN} .

The subspace WN induces H to be decomposed into the direct sum

WN ⊕W⊥
N = H .

Here W⊥
N (“WN perp”) is the subspace of all vectors perpendicular to WN

W⊥
N = {u : 〈u, un〉 = 0 n = 0, 1, . . . , N} .

In other words, W⊥
N is the space of all vectors satisfying the set of constraint

conditions

〈u, u0〉 = 0

〈u, u1〉 = 0
...

〈u, uN〉 = 0 .

Our starting point for demonstrating the completeness is the Rayleigh prin-
ciple. It says that the Rayleigh quotient

〈u,Lu〉
〈u, u〉 ≡ R[u]
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h*Nw* + = u
N h*N

Hilbert space=WN WN

W  = span{u   , ... , u  }N

u u
1

w*N
0

0

N .

Figure 1.16: The N +1-dimensional subspace spanned by the eigenfunctions
u0, u1, · · · , uN causes the Hilbert space L2(a, b) to be decomposed into the
direct sum consisting of W ∗

N and the space W⊥
N , which is spanned by the

remaining basis vectors uN+1, uN+2, · · · .

satisfies various minimum principles when u is restricted to lie on various
subspaces W⊥

N , N = 0, 1, . . . . Indeed, one has

λ0 = min
u∈H

〈u,Lu〉
〈u, u〉 , i.e.,

〈u,Lu〉
〈u, u〉 ≥ λ0 , for all u ∈ H

λ1 = min
u∈W⊥

0

〈u,Lu〉
〈u, u〉 , i.e.,

〈u,Lu〉
〈u, u〉 ≥ λ1 , for all u ∈ W⊥

0

i.e., for any u ∈ H subject to the constraint 〈u, u0〉 = 0.

More generally, the N + 1st eigenvalue λN+1 is characterized by

λN+1 = min
u∈W⊥

N

〈u,Lu〉
〈u, u〉 , i.e.,

〈u,Lu〉
〈u, u〉 ≥ λN+1 , for all u ∈ W⊥

N

i.e., for any u ∈ H subject to the constraints

〈u, u0〉 = 0
...

〈u, uN〉 = 0 .
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The Nth error vector

h∗N = u−
N∑

n=0

cnun

satisfies the constraint conditions

〈un, h∗N〉 = 0 n = 0, 1, . . . , N .

Consequently, it satisfies the corresponding Rayleigh inequality

〈h∗N ,Lh∗N〉
〈h∗N , h∗N〉

≥ λN+1

or
〈h∗N ,Lh∗N〉
λN+1

≥ ‖h∗N‖2 ≥ 0 .

We insert the expression for h∗N into the left hand side, and obtain

ℓ.h.s =
1

λN+1

{〈u−
N∑

0

cnun,Lu−
N∑

m=0

cmLum〉}

=
1

λN+1

{〈u,Lu〉 −
N∑

0

cn〈un,Lu〉 −
N∑

m=0

cmλm〈u, um〉

+
N∑

n=0

N∑

m=0

cncmλm〈un, um〉 .

The orthonormality of eigenfunctions and the definition of the generalized
Fourier coefficients guarantee that the last two sums cancel. Furthermore, by
doing an integration by parts twice, and by observing that the resulting end
point terms vanish because of the Dirichlet-Neumann boundary conditions,
Eq. 1.31, we obtain

〈un,Lu〉 =

∫ b

a

un
1

ρ

[

− d

dx
p
d

dx
+ q

]

uρ(x)dx

= −punu |ba +
∫ b

a

(

p
dun
dx

du

dx
+ qunu

)

dx

= 〈Lun, u〉 = λncn .
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As a consequence the Rayleigh inequality becomes

1

λN+1

{〈u,Lu〉 −
N∑

n=0

|cn|2λn} ≥ ‖h∗N‖2 .

Without loss of generality one may assume that the lowest eigenvalue λ0 ≥ 0.
This can always be made to come about by readjusting the λ and the function
q(x) in the Sturm-Liouville equation. As a result, the finite sum may be
dropped without decreasing the ℓ.h.s. Consequently,

〈u,Lu〉
λN+1

≥ ‖u−
N∑

n=0

cnun‖2 .

The numerator is independent of N . Thus

lim
N→∞

‖u−
N∑

n=0

cnun‖2 ≤ lim
N→∞

〈u,Lu〉
λN+1

= 0

because {λN : N = 0, 1, . . . } is an unbounded sequence. Thus we have

u
.
=

∞∑

n=0

cnun ,

The function u is an arbitrary square integrable function satisfying the the
given mixed Dirichlet-Neuman end point conditions. Consequently, the Sturm-
Liouville eigenfunctions form a (complete) generalized Fourier basis indeed.
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Chapter 2

Infinite Dimensional Vector
Spaces

Lecture 10

The process of extending the algebraic and geometrical methods of linear
algebra from matrices to differential or integral operators consists of going
from a finite dimensional vector space, typicallyRn, to an infinite dimensional
vector space, typically a function space.

However, a vector space of functions has certain idiosyncrasies precisely
because its dimension is infinite. These peculiarities are so important that
we must develop the framework in which they arise.

One of the most useful, if not the most useful, framework is the theory of
Hilbert spaces, the closest thing to the familiar finite-dimensional Euclidean
spaces. In passing we shall also mention metric spaces and Banach spaces.

We shall see that infinite dimensional vector spaces are a powerful way of
organizing the statement and solution of boundary value problems. In fact,
these spaces are the tool of choice whenever the linear superposition principle
is in control. This happens in signal processing, in quantum mechanics,
electromagnetic wave theory, and elsewhere.

The most notable peculiarity associated with infinite dimensional vector
spaces is the issue of completeness.

From the viewpoint of physics and engineering, completeness is an issue
of precision in measurements. We would like to have at our disposal math-
ematical concepts which are such that they are capable of mathematizing

61
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natural phenomenona no matter how advanced the technolgy of measuring
their properties.

One of the most useful infinite dimensional vector spaces is Hilbert space.
To define it, we must have at our disposal the constellation of concepts on
which it is based. Let us identify the components of the constellation.

2.1 Inner Product Spaces

An inner product space is a vector space, say H, together with a complex
bilinear function 〈 , 〉 having the following properties:

(i) 〈f, g〉 = 〈g, f〉 where f, g ∈ H
(ii) 〈f, α1g1 + α2g2〉 = α1〈f, g1〉+ α2〈f, g2〉

where α1 and α2 are complex numbers

(iii) 〈f, f〉 > 0 if f 6= ~0

and 〈f, f〉 = 0⇔ f = ~0 .

Comments:
(a) The condition 〈f, g〉 = 〈g, f〉 is quite necessary, otherwise there would

be conflict with (iii). Indeed, if i =
√
−1, then

〈if, if〉 = i〈if, f〉 = i〈f, if〉 = i(−i)〈f, f〉
= 〈f, f〉 > 0 .

In other words, condition (i) guarantees that the positive definiteness condi-
tion (iii) is preserved.

(b) With the help of (i), condition (ii) is equivalent to

〈α1f1 + α2f2, g〉 = α1〈f1, g〉+ α2〈f2, g〉 . (2.1)

Thus we see that a complex scalar (say, α1 or α2) in the first factor of the
inner product gets complex conjugated when it gets separated from the inner
product as a multiplicative factor. One says that 〈 , 〉 is linear in the
second argument and antilinear in the first argument.

(c) The square root of 〈f, f〉,
√

〈f, f〉 ≡ ‖f‖, is called the norm of the
vector f . It is always understood that the norm is finite. In particular
〈f, f〉 <∞
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(d) The inner product satisfies the Cauchy-Schwarz inequality

|〈f, g〉| ≤ ‖f‖ ‖g‖ .

This inequality has a nice geometrical interpretation for real inner product
spaces. In that case 〈f, g〉 = 〈g, f〉 is the familiar inner product and

−1 ≤ 〈f, g〉
‖f‖‖g‖ ≡ cos(angle between f and g) ≤ 1 .

The Cauchy-Schwarz inequality follows from the fact that for any complex λ

0 ≤ 〈λf + g, λf + g〉 = |λ|2‖f‖2 + ‖g‖2
+ λ〈f, g〉+ λ〈g, f〉 .

Letting λ = x 〈f,g〉
|〈f,g〉| we obtain for all real x

0 ≤ x2‖f‖2 + 2x|〈f, g〉|+ ‖g‖2 .

Consequently, the discriminant,

|〈f, g〉|2 − ‖f‖2‖g‖2 ,

of this quadratic expression must be negative or zero, otherwise this expres-
sion would be negative for some values of x. It follows that

|〈f, g〉| ≤ ‖f‖ ‖g‖ .

(e) The inner product implies the triangle inequality

‖f ± g‖ ≤ ‖f‖+ ‖g‖ . (2.2)

This inequality readily follows from the properties of the inner product
(Why?)

2.2 Normed Linear Spaces

There exist other structures which a vector space may have. A norm on
the vector space V is a linear functional, say p(f), with the following three
properties:
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1. Positive definiteness: p(f) > 0 for all nonzero vectors f in V , and
p(f) = 0⇔ f = ~0.

2. Linearity: p(αf) = |α|p(f) for all vectors f and for all complex num-
bers α.

3. Triangle inequality: p(f + g) ≤ p(f) + p(g) for all vectors f and g in
V .

Such a function is usually designated by p(f) = ‖f‖, a norm of the vector
f . The existence of such a norm gives rise to the following definition:

A linear space V equipped with a norm p(f) = ‖f‖ is called a normed
linear space.
Example 1: Every inner product of an inner product space determines the
norm given by

‖f‖ = (〈f, f〉) 1
2 ,

which, as we have seen, satisfies the triangle inequality,

‖f + g‖ ≤ ‖f‖+ ‖g‖ .

Thus an inner product space is always a normed linear space with the inner
product norm. However, a normed linear space is not necessarily an inner
product space.

Lecture 11

Example 2: Consider the vector space of n× n matrices A = [aij ]. Then

‖A‖ = max
i,j
|aij|

is a norm on this vector space.
Example 3: Consider the vector space of all infinite sequences

x = (x1, x2, . . . , xk, . . . )

of real numbers satisfying the convergence condition

∞∑

k=1

|xk|p <∞
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where p ≥ 1 is a real number. Let the norm be defined by

‖x‖ =
( ∞∑

k=1

|xk|p
) 1

p

.

One can show that (Minkowski’s inequality)

( ∞∑

k=1

|xk + yk|p
) 1

p

≤
( ∞∑

k=1

|xk|p
) 1

p

+

( ∞∑

k=1

|yk|p
) 1

p

,

i.e., that the triangle inequality,

‖x+ y‖ ≤ ‖x‖+ ‖y‖ ,

holds. Hence ‖ · ‖ is a norm for this vector space. The space of p-summable
(∞∑

1

|xk|p <∞
)

real sequences equipped with the above norm is called ℓp

and the norm is called the ℓp-norm.
This ℓp-norm gives rise to geometrical objects with unusual properties.

consider the following
Example 4: The surface of a unit sphere centered around the origin of a
linear space with the ℓp-norm is the locus of points {(x1, x2, · · · } for which

( ∞∑

k=1

|xk|p
) 1

p

= 1 .

Consider the intersection of this sphere with the finite dimensional subspace
Rn, which is spanned by {(x1, x2, · · · , xn}.
a) When p = 2, this intersection is the locus of points for which

|x1|2 + |x2|2 + · · ·+ |xn|2 = 1 (unit sphere in Rn with ℓ2-norm)

This is the familiar (n − 1)-dimensional unit sphere in n-dimensional Eu-
clidean space whose distance function is the Pythagorean distance

d(x, y) =
{
|x1 − y1|2 + |x2 − y2|2 + · · ·+ |xn − yn|2

} 1
2 .
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x

y
|x| +|y| =12 2

Figure 2.1: Circle in R2 endowed with the Pythagorean distance function of
ℓ2.

b) When p = 1, this intersection is the locus of points for which

|x1|+ |x2|+ · · ·+ |xn| = 1 (unit sphere in Rn with ℓ1-norm)

This is the (n − 1)-dimensional unit sphere in n-dimensional vector space
endowed with a different distance function, namely one which is the sum of
the differences

d(x, y) = |x1 − y1|+ |x2 − y2|+ · · ·+ |xn − yn| ,
between the two locations in Rn, instead of the sum of squares. This distance
function is called the Hamming distance, and one must use it, for example,
when travelling in a city with a rectangular grid of streets. With such a
distance function a circle in R2 is a square standing on one of its vertices.
See Figure 2.2. A 2-sphere in R3 is a cube standing on one of its vertices,
etc.
c) When p→∞, this intersection is the locus of points for which

lim
p→∞

(
n∑

k=1

|xk|p
) 1

p

= 1 =⇒

Max{|x1|, |x2|, · · · , |xn|} = 1 (unit sphere in Rn with ℓ∞-norm) .

Such a unit sphere Rn is based on the distance function

d(x, y) = lim
p→∞

(
n∑

k=1

|xk − yk|p
) 1

p

= Max{|x1 − y1|, |x2 − y2|, · · · , |xn − yn|} .
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x

y

|x|+|y|=1

Figure 2.2: Circle in R2 endowed with the Hamming distance function of ℓ1.

This is called the Chebyshev distance. It is simply the maximum coordinate
difference regardless of any other differences. With such a distance function
a circle in R2 is a square. See Figure 2.3. A 2-sphere in R3 is a cube, etc.

x

y
Max{|x|,|y|}=1

Figure 2.3: Circle in R2 endowed with the Chebyshev distance function of
ℓ∞.

2.3 Metric Spaces

Inner product spaces as well as normed spaces have a distance function,
namely the norm of the difference,

‖f − g‖ ≡ d(f, g) ,

between two vectors f and g. This norm of the difference is called the
distance between f and g. Applying this formula to the three pairs of points
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of a generic triangle, one obtains the triangle inequality

‖f − h‖ ≤ ‖f − g‖+ ‖g − h‖
i.e., d(f, h) ≤ d(f, g) + d(g, h).

The importance of a distance function and the triangle inequality is that
it can also be applied to certain nonlinear spaces, which have no zero element
(“origin”). Such spaces are called metric spaces. More precisely we have the
following definition.

By a metric space is meant a pair (X, d) consisting of set X and a distance
function d, i.e., a single-valued, nonnegative, real function d(f, g) defined for
f, g ∈ X which has the following three properties.

1. Positive definiteness: d(f, g) ≥ 0 for all f and g in X, and d(f, g) = 0
if and only if f = g.

2. Symmetry: d(f, g) = d(g, f).

3. Triangle inequality: d(f, h) ≤ d(f, g) + d(g, h).

The distance function d( , ) is called the metric of the metric space. All
inner product spaces are metric spaces with

d(f, g) = ‖f − g‖ .

All normed linear spaces are metric spaces with

d(f, g) = ‖f − g‖ .
However not all metric spaces are normed linear spaces.

Example 1: The two dimensional surface of a sphere

X = {(x, y, z) : x2 + y2 + z2 − 1} (≡ S2)

is not a vector space. It is, however, a metric space whose distance function
is the (shortest) length of the great circle passing between a pair of points.

Exercise 2.3.1 (DISTANCE FUNCTIONS AS METRICS)
Show that (a) the Hamming distance, (b) the Pythagorean distance, and (c) the
Chebyshev distance each satisfy the triangle inequality.
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INNER
PRODUCT
SPACES

NORMED LINEAR SPACES

METRIC SPACES

Figure 2.4: Hierarchy of linear and nonlinear spaces

2.4 Complete Metric Spaces

Lecture 12

2.4.1 Limit of a Sequence

A sequence of elements f1, f2, . . . in a vector space, or more generally in a
metric space, is said to converge to the element f if

lim
n→∞

fn = f.

The element f is called the limit of the sequence {fn}. The meaning of this
is that the distance

d(fn, f) = ‖fn − f‖
between f and fn can be made arbitrarily small by making n sufficiently
large. To summarize, a convergent sequence is one which converges to a
limit.
Side Comment: It is easy to show that this limit is unique, a property
which applies to all metric spaces.

2.4.2 Cauchy Sequence

It is clear that the elements f1, f2, . . . , fm, . . . , fn, . . . become closer and closer
in some sense. In fact, from the triangle inequality for a vector space

‖f + g‖ ≤ ‖f‖+ ‖g‖
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one finds that

‖fn − fm‖ = ‖(fn − f) + (f − fm)‖ (2.3)

≤ ‖fn − f‖+ ‖f − fm‖ → 0 as m,n→∞ (2.4)

or more generally

d(fn, fm) ≤ d(fn, f) + d(f, fm)→ 0 as m,n→∞

in a metric space.
Consequently

lim
n,m→∞

‖fn − fm‖ = 0 in a vector space

or
lim

n,m→∞
d(fn, fm) = 0 in a metric space .

A sequence {fn} whose elements satisfy this limit condition, i.e., whose ele-
ments get arbitrarily close together for sufficiently large n andm, is a Cauchy
sequence. Thus

{fn} has a limit ⇒ {fn} is a Cauchy sequence .

Thus every convergent sequence is a Cauchy sequence, i.e., “every convergent
sequence also converges in the Cauchy sense”.

2.4.3 Cauchy Completeness: Complete Metric Space,
Banach Space, and Hilbert Space

Can one turn the last sentence around? In other words, is every Cauchy se-
quence a convergent sequence? Put differently, if {fn} is a Cauchy sequence,
is it true that {fn} has a limit? What is, in fact, meant by this question is
whether {fn} has a limit in the same space to which the elements fn belong.
The answer is this: in a finite dimensional complex vector space, a Cauchy
sequence always has a limit in that vector space; in other words, a finite
dimensional vector space is complete. However, such a conclusion is no longer
true for many familiar infinite dimensional vector spaces.
Example: Consider the inner product space

C[a, b] = {f(x) : f is continuous on a ≤ x ≤ b}
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1

-
1
2

0

uk

continuous

discontinuous

x

Figure 2.5: Discontinuous function as a limit of continuous functions.

with inner product 〈f, f〉 =
∫ b

a
ff dx = ‖f‖2.

Claim: C[a, b] is “incomplete”.
Discussion: Consider the sequence of continuous functions

uk(x) =
1

2
+

1

π
arctan kx − 1 ≤ x ≤ 1.

From Fig. 2.5 we see that:

1. lim
k,p→∞

‖uk − up‖2 = lim
k,p→∞

∫ 1

−1
(up − uk)

2 dx = 0; in other words, the

sequence {uk} is a Cauchy sequence.

2. For fixed x

lim
k→∞

uk(x) = v(x) =







1 0 < x ≤ 1
1
2

x = 0

0 −1 ≤ x < 0

which is a discontinuous function, i.e., v 6∈ C[−1, 1]. Furthermore,
we say that the sequence of functions {uk : k = 1, 2, · · · } converges
pointwise to the function v.

3. lim
k→∞
‖v − uk‖2 = lim

k→∞

∫ 1

−1
(v(x)− uk)2 dx = 0.

4. One can show that 6 ∃ any continuous function w such that

‖w − uk‖ → 0 as k →∞ .
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We say that C[a, b], the space of continuous square integrable functions

(
∫ b

a
|f |2 dx < ∞), is Cauchy incomplete, or C[a, b] is Cauchy incomplete rel-

ative to the given norm ‖f‖ =
√

〈f, f〉. This is so because we have found
a Cauchy sequence of functions {un} in the inner product space C[a, b] with
the property that

lim
n→∞

un = v 6∈ C[a, b] .
In other words, the limit of the Cauchy sequence does not lie in the inner
product space. This is just like the set of rationals which is not extensive
enough to accomodate the norm |x − y|: there are holes (but no gaps) in
the space. These holes are the irrational numbers, which are not detected
by | · · · | when it is used to determine whether or not an infinite sequence is
convergent.
Example: The 1-dimensional vector space of rationals over the field of ra-
tionals is Cauchy incomplete.
Problem: Why is it that the real line equipped with the distance

d(x, y) = |arctan x− arctan y|

is an incomplete metric space?
In order to remove this incompleteness deficiency, one enlarges the space

so that it includes the limit of any of its Cauchy sequences. A space which
has been enlarged in this sense is said to be Cauchy complete. This enlarged
space is called a complete metric space.

The Cauchy completion of the rationals are the reals. The Cauchy com-
pletion of an inner product space is a Hilbert space The Cauchy completion
of a normed linear space is a Banach space.

2.5 Hilbert Spaces

Lecture 13

An infinite dimensional inner product space which is Cauchy-complete is
called a Hilbert space.

In the realm of infinite dimensional vector spaces, a Hilbert space is the
next best thing to an Euclidean space, i.e., a finite dimensional inner product
space. The single most useful property of these spaces is that they permit
the introduction of an orthonormal basis.
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The first and most important way of specifying such a basis is to intro-
duce a Hermitian matrix or operator. Its eigenvectors form an orthonormal
basis. In fact, this is why a Hilbert space was invented in the first place: to
accomodate the eigenvalue problem of a Hermitian operator,

Au = λu

The Sturm-Liouville eigenvalue problem, Section 1.3.3, page 19, is a premiere
example of this. It arises in the mathematization of boundary value problems,
for example.

The second way of specifying such a basis is by means of the Gram-
Schmidt orthogonalization process. From a given linearly independent set
of vectors, one constructs by an iterative process a corresponding set of or-
thonormal vectors.

Let us, therefore, assume that we have acquired by one of these, or by
some other method, the system of orthonormal elements

{u1, u2, . . . , un, . . . : 〈ui, uj〉 = δij}

of the Hilbert space H.
If such a system of o.n. basis vectors has been obtained, it is natural

to ask: Does the set of such orthonormal elements constitute a basis for the
whole space H? In other words, for any f ∈ H, can one, in some sense, claim
that

f = c1u1 + c2u2 + · · · (Generalized Fourier series)

for an appropriate choice of ci? This is an existence question. Furthermore,
given that such constants have been constructed, are they unique?

For a finite dimensional vector space these questions have an implicit
affirmative answer because of the finiteness of the dimension. However, for
an infinite dimensional vector space there is cause to worry about existence.
The vector f might point into a direction which is so peculiar that not even
the given infinite number of basis vectors is sufficient to give a 100% accurate
representation of f in terms of these vectors. There is a sense in which
this worry is justified if the vector is a discontinuous function. This fact is
highlighted by the Fourier Theorem in chapter 3 on page 124. However, there
is another sense in which the representation is always 100% accurate, with
the result that the answer to the above questions is in the affirmative.
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2.5.1 Two Prototypical Examples

The two most important Hilbert spaces in physics (e.g quantum mechan-
ics), engineering (e.g. signal processing, vibrations), and mathematics (e.g.
solutions to differential equations) are:

1. The vector space of square summable sequences

ℓ2 = {U = (c1, c2, . . . ) : ci ∈ { complex numbers }, i = 1, 2, . . . }

with squared norm given by the inner product

‖U‖2 = 〈U,U〉 =
∞∑

i=1

|ci|2 .

2. The vector space of square integrable functions

L2(a, b) = {f :
∫ b

a

ffρ(x)dx <∞ ; ρ(x) > 0}.

The positive function ρ(x) is given. It is called a weight function.

This vector space has the following three properties.

(a) L2(a, b) is an inner product space

〈f, g〉 ≡
∫ b

a
fgρ(x) dx Physics convention

≡
∫ b

a
fgρ(x) dx Mathematics convention

m
〈f, f〉 ≡

∫ b

a
|f |2ρ(x) dx which is the squared

norm of f

Comment: ρ(x) > 0 ⇒ √ρ can be absorbed into the functions,

so that instead of {f(x)} one has {h(x)} = {f(x)
√

ρ(x)} with the
squared norm

〈h, h〉 =
∫ b

a

|h|2 dx.

Conclusion: We still have the same inner product space.

(b) L2(a, b) is closed under addition:
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i. Expanding the inner product of a sum with itself, we have

‖f + g‖2 = 〈f + g, f + g〉 = ‖f‖2 + ‖g‖2 + 〈f, g〉+ 〈g, f〉
= ‖f‖2 + ‖g‖2 + 2Re 〈f, g〉
≤ ‖f‖2 + ‖g‖2 + 2‖f‖ ‖g‖,

(2.5)

where we used the Cauchy-Schwarz inequality.

ii. Recall that

0 ≤ (‖f‖ − ‖g‖)2 = ‖f‖2 + ‖g‖2 − 2‖f‖ ‖g‖. (2.6)

iii. Adding this non-negative quantity to the r.h.s. of (2.5) in-
creases it. Consequently, Eqs.(2.5) and (2.6) ⇒ ‖f + g‖2 ≤
2‖f‖2 + 2‖g‖2.
Thus we have

f, g square integrable⇒ f + g is square integrable ,

i.e. L2 is indeed closed under addition.

(c) L2(a, b) is Cauchy complete.

2.5.2 Hilbert Spaces: Their Coordinatizations

Lecture 14

The importance of L2 derives from the fact that its elements refer, among oth-
ers, to the finite energy states of an archetypical system, a vibrating system
or the finite energy signals of an ensemble of messages. These states/signals
are mathematized in terms of functions. On the other hand, for the purpose
of measurement they need to be, or have been, represented by sequences
of numbers, i.e. by elements of ℓ2. Without measurement data expressed
in terms of these elements, these states would be mere floating abstraction
disconnected from the physical world. It is the elements of ℓ2 which ground
such finite energy states in observations and measurements. Granted their
epistemic foundation in the physical world, what is the role of L2 and ℓ2 in
the structure of linear mathematics?
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To this end recall that, given an n-dimensional vector space V , then a
choice of basis determines an isomorphism F which relates V to Rn, the
space of n-tuples, a coordinate realization of V :

V
F−−−−−−→ Rn

u ∼∼∼∼❀ F (u) =






c1
...
cn






Here

(i) F is induced by a given system of orthonormal spanning vectors uk.
This means that once {uk} is given, F is determined: for any u in V
F yields a unique F (u), the array expansion coefficients ck.

(ii) F is linear. This means that F is mathematized by means of a matrix.

(iii) F is one-to-one.

(iv) F is onto,

where “onto” means that, given any v ∈ Rn, one can solve

F (u) = v (2.7)

for u ∈ V , while “one-to-one” means that such a solution is unique. In brief,
F is an isomorphic relation between V and Rn, and it is induced by {uk}nk=1.

The extension of the idea of such an isomorphism to infinite-dimensional
Hilbert spaces results in the claim that a Hilbert space H has ℓ2 as its coor-
dinate realization. Relating these two spaces is the isomorphism F ,

H F−−−−−−→ ℓ2

f ∼∼∼∼❀ F [f ] = {c1, c2, · · · }

Here, as in the finite dimensional case,

(i) F is induced by a given system of orthonormal vectors uk.

(ii) F is linear.

(iii) F is one-to-one.
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(iv) F is onto.

An isomorphism is a two-way map H −→ ℓ2 and H ←− ℓ2. In finite dimen-
sions its validation is achieved by algebraic manipulations on a basis-induced
system of equations.

In infinite dimensions, however, the method for validation is necessarily
different. It is a three-step process:

I. Identify an infinite system of o.n. vectors. This sytem induces a linear
map F from H to ℓ2.

II. Apply Bessel’s least squares theorem to the system of o.n. vectors.
This application starts by constructing the linear map,

F : H −→ ℓ2 . (2.8)

The map F is the unifying kingpin in the whole subsequent devel-
opment, as summarized by the three theorems 1.5.1, 1.5.2, and 1.5.3
below.

According to Bessel’s least squares theorem (1.5.1 below), even if more
than one f ∈ H yields the same {ck} ∈ ℓ2, each one of them has
the same optimal (least squared error) representative in the subspace
spanned by those o.n. vectors. This representative is the result of
Bessel’s least squares error analysis. If the least squared error is zero,
i.e. Parseval’ identity is satisfied, Bessel’s theorem guarantees that
there is only a single function f having the particular least squares
representation induced by the system of o.n. vectors. In other words,
the map F is one-to-one (Theorem 1.5.2).

III. Use the Riesz-Fischer Theorem (1.5.3). Its gist is the fundamental
feature that, for a system with an infinite number of o.n. vectors, this
map is always onto. In other words, for every element {ck} ∈ ℓ2 there
is at least one element f ∈ H.

In summary, Fischer and Riesz guarantee that F is onto, while Bessel
and Parseval guarantee that it is one-to-one. In brief, F is an isomorphism.
Put differently, as exemplified by the contributions of these four workers,
human knowledge of mathematical methods is not a mere collection, but a
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structure. Their works, even though developed separately, does not amount
to a juxtaposition. By applying the concept of an isomorphism to their works
one forms a unified structure, the coordinatization of a Hilbert space.

Bessel and Parceval

Bessel’s fundamental optimization process, in particular the construction of
of the linear map Eq.(2.8), is summarized by the following

Theorem 2.5.1 (Bessel)
(Least squares approximation via subspaces) Given an o.n. system

u1, u2, . . . , uk, . . .

in the Hilbert space H ⊆ L2, let f be an arbitrary element of H. Then
(i) the expression

∥
∥
∥
∥
∥
f −

N∑

k=1

akuk

∥
∥
∥
∥
∥

2

≡ E2
N(a1, . . . , aN)

has a minimum, for

ak = 〈uk, f〉 ≡ ck k = 1, · · · , N .

(ii) This minimum equals

‖f‖2 −
N∑

k=1

|ck|2 = E2
N(c1, . . . , cN) N = 1, 2, · · · .

with its associated hierarchy

‖f‖2 ≥ E2
1(c1) ≥ E2

2(c1, c2) ≥ · · · ≥ E2
N(c1, · · · , cN) ≥ · · · ≥ 0 .

(iii) Moreover,
∞∑

k=1

|ck|2 ≤ ‖f‖2 ,

a result known as Bessel’s inequality.

Note: This theorem introduces en passant two new concepts which are key
to the subsequent development:
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• The coefficients
ck = 〈uk, f〉

are called the (generalized) Fourier coefficients. They form the image
of the function f under the linear transformation

F : H → ℓ2 (2.9)

f ∼❀ F [f ] = {ck}∞k=1 (2.9′)

• The sequence of sums

N∑

k=1

ckuk ≡ SN N = 1, 2, · · · ,

is called the sequence of partial Fourier series of f , with SN being the
N th partial Fourier series.

Nota bene: The function E2
N(a1, . . . , aN) is called Gauss’s mean squared er-

ror. Minimizing it by setting

∂E2
N

∂ak
= 0 k = 1, . . . , N

yields the N Fourier coefficients

ak = 〈uk, f〉 ≡ ck k = 1, . . . , N

as the solution to this equation (try it!). The word “mean” in Gauss’s mean
squared error arises from its defining property,

E2
N =

∫ b

a

|f(x)−
N∑

k=1

akuk(x)|2ρ(x) dx .

The integrand |f(x)−∑N
k=1 akuk(x)|2 is the error at x, while the integral is

(b− a) times the (weighted) “mean” of this quantity, in compliance with the
mean value theorem of integral calculus.
Proof: The Gaussian mean squared error function

〈f −
N∑

k=1

akuk , f −
N∑

ℓ=1

aℓuℓ〉 ≡ E2
N
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is a quadratic expression in the complex unknowns ak. As usual, in such
expressions completing the square will yield the minimum value at a glance.
Multiplying out the inner product yields

E2
n = ‖f‖2 −

N∑

k=1

ak〈uk, f〉 −
N∑

ℓ=1

aℓ〈f, uℓ〉+
N∑

k=1

N∑

ℓ=1

akaℓ〈uk, uℓ〉 .

By (i) introducing the Fourier coefficients

ck = 〈uk, f〉

of f relative to the system {uk}, (ii) using the orthonormality of the uk’s

yields, and (iii) adding and subtracting
N∑

k

|ck|2, one obtains

E2
N = ‖f‖2 − ∑N

k=1 akck −
∑N

ℓ=1 aℓcℓ +
∑N

k=1 akak
− ∑N

k=1 |ck|2 +
∑N

k=1 ckck
= ‖f‖2 − ∑N

k=1 |ck|2 +
∑N

k=1 |ak − ck|2

This expression is the key to validating the three conclusions of the theorem.

(i) E2
N achieves its minimum when

ak = ck .

Thus F [f ] = {ck}∞k=1 is linear.

(ii) The minimum value of E2
N is

E2
N(c1, · · · , cN) = ‖f − SN‖2 (2.10)

= ‖f‖2 −
N∑

k=1

|ck|2 .

(iii) The fact that this holds for all integers N implies

∞∑

k=1

|ck|2 ≤ ‖f‖2 ,

which is also called Bessel’s inequality.
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Bessel’s Inequality: Its Geometrical Meaning

This theorem can also be summarized geometrically as follows:

1. The set of linear combinations

span {u1, . . . , uN} ≡ WN ⊂ H ⊆ L2

is a subspace of L2, and the N th partial Fourier sum

N∑

k=1

ckuk ≡ w∗
N (2.11)

is the orthogonal projection of f onto WN . The squared length of w∗
N

is

‖w∗
N‖2 = 〈

N∑

k=1

ckuk,

N∑

k=1

ckuk〉

=
N∑

k=1

|ck|2 ,

which is the Pythagorean theorem in WN .

2. This projection of f onto WN is linear. It is given by

w∗
N =

N∑

k=1

uk〈uk, f〉 ≡ PWN
f (∈ WN) . (2.12)

It is depicted in Figure 2.6, and it has the property that

PWN
PWN

f = PWN
f for all f ∈ H .

This expresses the fact that PWN
is the identity operator onWN . On the

other hand, in light of Bessel’s inequality, PWN
shortens f if f 6∈ WN .

3. The triangle formed by f , w∗
N ∈ WN , and the error vector

h∗N = f − w∗
N ; w∗

N =
N∑

k=1

ckuk
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W  = span{u   , ... , u  }1 NN

f h*N

u u
1

2

w*N

Figure 2.6: The N -dimensional subspace WN of the ambient Hilbert space
H = L2. The least squares approximation w∗

N is the orthogonal projection
of the vector f onto WN . The difference between the given vector f and its
projection onto the subspace is the error vector h∗N .

is a right triangle: the sides of the triangle obey the Pythagorean the-
orem in the ambient Hilbert space:

‖h∗N‖2 = ‖f −
N∑

k=1

ckuk‖2 (2.13)

= 〈f −
N∑

k=1

ckuk, f −
N∑

k=1

ckuk〉

= ‖f‖2 −
N∑

k=1

|ck|2 (2.14)

= ‖f‖2 − ‖w∗
N‖2

This evidently yields
‖f‖2 ≥ ‖w∗

N‖2

which is the finite-dimensional version of Bessel’s inequality.

Using the optimal (= “least square”) approximation

w∗
N =

N∑

i=1

ckuk , ck = 〈uk, f〉
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one obtains

‖f‖2 ≥
N∑

i=1

ckck ; ck determined by the least squares approximation,

which for our square integrable functions is

∫ b

a

|f(x)|2ρ(x)dx ≥
N∑

i=1

|ck|2 .

Geometrically this inequality says

(length of vector)2 ≥
(

length of its projection
onto the subspace WN

)2

.

Consider now a sequence of subspaces

W1 ⊂ W2 ⊂ · · · ⊂ WN ⊂ WN+1 ⊆ · · · ,

the respective optimal approximations to the given function f , and the
corresponding sequence of least square errors

‖h∗N‖2 = ‖f −
N∑

i=1

ckuk‖2 , N = 1, 2, . . . .

This sequence not only reveals the quality of each partial sum approxi-
mation. If ‖h∗N‖2 approaches zero as N tends to infinity, then this very
fact also reveals something about {uk}. Indeed, whenever ‖h∗N‖2 → 0,
the o.n. system is one which constitutes a basis for H, meaning that
Eq.(2.15) or (2.17) is satisfied.

4. With ‖h∗N‖2 as the shortest squared distance between f and WN , the
error vector h∗N is perpendicular to WN :

〈uk, h∗N〉 = 0, k = 1, 2, · · · , N.
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The Orthonormal System

Highlighting the fact that any o.n. system induces a linear transformation
into ℓ2 is only the first step in using a Hilbert space to conceptualize the mea-
sured properties of things in science. Is the chosen o.n. system appropriate
for this task? There are many kinds of o.n. systems and their concomi-
tant linear transformations. The necessity of grounding a Hilbert space in
the measurements and observations of the physical world requires answers to
two key questions about any o.n. system and its linear transformations:

1. Is it onto (“surjective”)?

2. Is it one-to-one (“injective”)?

Their answers require the following
Definition.
A system of o.n. vectors {uk : k = 1, 2, · · · } is said to be closed whenever

∞∑

k=1

|ck|2 = ‖f‖2 (2.15)

for every f in H.
Under such a circumstance one refers to this relation as Parseval’s iden-
tity.1

By taking the limit as N → ∞ of the right hand sides of Eqs.(2.13) and
(2.14), one obtains the result that

∞∑

k=1

|ck|2 = ‖f‖2 ⇐⇒ lim
N→∞

‖f −
N∑

k=1

ckuk‖2 = 0 (2.16)

whenever ck = 〈uk, f〉. This equivalence is the mathematization of the portal
between any Hilbert space and its coordinate realization by an “appropriate”
system of o.n. vectors. That the two equalities imply each other is the result
of a mere algebraic evaluation of the involved inner products.

Exercise 2.5.1 (PARSEVAL’S IDENTITY AND FOURIER SERIES)
Let

ck ≡ 〈uk, f〉 k = 1, 2, · · ·
1It is called an identity, and not an equation, because it holds for all f ’s.
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be the Fourier coefficients of f ∈ L2 relative to the orthonormal system {uk}∞k=1 ⊂
L2.

Prove:
∞∑

k=1

|ck|2 = ‖f‖2 ⇐⇒ ‖f −
∞∑

k=1

ckuk‖2 = 0 .

The concept “appropriate” is too broad and not particular enough to
identify the kind of system worthy of thorough study. This deficiency is
remedied by the concept having the following
Definition
A system of o.n. vectors {uk}∞k=1 is said to be complete whenever

lim
N→∞

‖f −
N∑

k=1

ckuk‖2 = 0 (2.17)

i.e.

f=̇
∞∑

k=1

ckuk

Comment
This is to be compared with pointwise equality, which is expressed by the
statement that

f(x) =
∞∑

k=1

ckuk(x) . (2.18)

The difference between “
.
=” and “=” manifests itself only when the square-

summable sequence {ck} yields a function which has one or more discontinu-
ities, then one does not have pointwise equality, Eq.(2.18). Instead, one has
the weaker condition, Eq.(2.17). This condition does not specify the value
of f at the point(s) of discontinuity. Instead, it specifies an equivalence class
of functions, all having the same graph everywhere except at the point(s) of
discontinuity.
Completeness Relation For H ⊆ L2(a, b)

An “appropriate” system is one for which either equation in Eq.(2.16),
i.e. ∞∑

k=1

〈f, uk〉〈uk, f〉 = 〈f, f〉 ⇐⇒ f=̇
∞∑

k=1

uk〈uk, f〉 (2.19)



86 CHAPTER 2. INFINITE DIMENSIONAL VECTOR SPACES

holds for all f ∈ H. Moreover, the statement

〈f, f〉 =
∞∑

k=1

〈f, uk〉〈uk, f〉 ∀f ∈ H

implies and is implied by

〈f, g〉 =
∞∑

k=1

〈f, uk〉〈uk, g〉 ∀f and g ∈ H.

Explicitly, one has
∫ b

a

f(x)g(x)ρ(x)dx =
∞∑

k=1

∫ b

a

f(x)uk(x)ρ(x)dx

∫ b

a

uk(x
′)g(x′)ρ(x′)dx′ .

This can be rewritten in terms of the Dirac delta function (which is
developed in Section 3.2 starting on page 135) as

∫ b

a

∫ b

a

f(x)δ(x− x′)g(x′)ρ(x)dxdx′

=

∫ b

a

∫ b

a

f(x)
∞∑

k=1

uk(x)uk(x
′)ρ(x)ρ(x′)g(x′)dxdx′ .

This holds for all f, g ∈ H = L2(a, b). Consequently, we have the
following alternate form for the completeness of the set of orthonormal
functions

δ(x− x′)
ρ(x′)

=
∞∑

k=1

uk(x)uk(x
′)

or

δ(x− x′)
ρ(x′)

=
∞∑

k=1

|uk(x)〉〈uk(x′)|

in quantum mechanical notation.

Usually the orthonormal functions uk are the eigenfunctions of some
operator (for example, the Sturm-Liouville operator + boundary con-
ditions, which we have met in chapter 1 on page 20). The Dirac delta
function

δ(x− x′)
ρ(x′)

=
δ(x− x′)
ρ(x)
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is the identity operator on the Hilbert space H. Consequently, the
alternate form of the completeness relation

δ(x− x′)
ρ(x)

=
∞∑

k=1

uk(x)uk(x
′) (2.20)

can be viewed as a spectral representation of the identity operator in
H.

Thus the completeness of a set {uk}∞k=1 refers to the fact that it contains
sufficiently many uk’s of the right kind so that the identity transformation
(2.20) can be represented in terms of them. Equivalently, the uk’s form a
spanning set for H ⊆ L2.

On the other hand, in the quest for alternative mathematical precision,
some mathematicians asked and answered the following important question:
Is an o.n. system {uk}∞k=1 unique whenever it gives rise to Parseval’s identity?
In other words, can such a {uk} be a proper subset of any other orthonor-
mal set in H? The reason that the answer is “no” is that they call {uk} a
maximal o.n. sequence.

Band-Limited L2 Message Spaces

Example (Complete vs. incomplete system of o.n. band-limited L2 signal
functions.)
Consider the following three Hilbert spaces:

H[0,ε] =

{

f ∈ L2(−∞,∞) :

∫ ∞

−∞

e−iωx√
2π

f(x)dx = 0; ω 6∈ [0, ε]

}

, (2.21)

H[ε,2ε] =

{

g ∈ L2(−∞,∞) :

∫ ∞

−∞

e−iωx√
2π

g(x)dx = 0; ω 6∈ [ε, 2ε]

}

, (2.22)

H[0,2ε] =

{

h ∈ L2(−∞,∞) :

∫ ∞

−∞

e−iωx√
2π

h(x)dx = 0; ω 6∈ [0, 2ε]

}

(2.23)

In mathematical engineering each one refers to a set of band-limited signals:
The Fourier amplitudes of the f ’s, g’s, and h’s are non-zero only in the
frequency windows [0, ε], [ε, 2ε], and [0, 2ε] respectively.

Each of these spaces is a type of function space. Indeed, each of the f ’s,
g’s, and h’s is a particular signal function. The difference between the three
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is the difference in how a particular signal function is put into mathematical
form (“mathematized”). Although there are many ways of doing this, here
we shall do it by means of Fourier series: Consider the following three systems
of o.n. vectors:

{uk(x)} = {P ε
0k(x) : k = 0,±1, · · · } (2.24)

{uk′(x)} = {P ε
1k′(x) : k

′ = 0,±1, · · · } (2.25)

{uk′′(x)} = {P 2ε
0k′′(x) : k

′′ = 0,±1, · · · }. (2.26)

Borrowing from Section 3.4.2 the o.n. wave packets

P ε
jℓ(x) =

∫ (j+1)ε

jε

e−2πiℓω/ε

√
ε

eiωx√
2π

dω , (2.27)

and affixing superscripts ε and 2ε to them to indicate their banwidth, we
note that each of the P 2ε

0k′′ ’s has twice the frequency bandwidth of the P ε
0k’s

and of the P ε
0k′ ’s.

Messages are represented by Fourier series in their respective message
spaces:

f(x) =
∑

k

ckuk(x) ∈ H[0,ε]

g(x) =
∑

k′

c′k′u
′
k′(x) ∈ H[ε,2ε]

h(x) =
∑

k′′

c′k′′u
′′
k′′(x) ∈ H[0,2ε]

Thus the three systems induce the following three respective Fourier maps

F[0,ε] :







L2 → ℓ2

H[0,ε] ↔ ℓ2

f ❀ F[0,ε][f ] = {〈uk, f〉 ≡ ck}

F[ε,2ε] :







L2 → ℓ2

H[ε,2ε] ↔ ℓ2

g ❀ F[ε,2ε][f ] = {〈u′k′ , g〉 ≡ c′k′}

F[0,2ε] :







L2 → ℓ2

H[0,2ε] ↔ ℓ2

h ❀ F[0,2ε][f ] = {〈u′′k′′ , h〉 ≡ c′′k′′}
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Each of the three systems, Eqs.(2.24)-(2.26) is complete in their respective
subspaces H[0,ε], H[ε,2ε], and H[0,2ε]. This is because the respective Parseval
identities:

‖f‖2 =
∑

k

|ck|2

‖g‖2 =
∑

k′

|c′k′ |2

‖h‖2 =
∑

k′′

|c′′k′′ |2

are satisfied.
However, the system (2.24) is incomplete in H[ε,2ε]. This is because the
Fourier coefficients of any g ∈ H[ε,2ε] w.r.t. (2.24) vanish identically,

〈uk, g〉 = 〈uk,
∑

k′

c′k′u
′
k′〉

=
∑

k′

c′k′〈P ε
0k, P

ε
1k′〉

=
∑

k′

c′k′ 〈P̂ ε
0k, P̂

ε
1k′〉

︸ ︷︷ ︸

=zero; see Eq.(3.83).

= 0 .

As a consequence, Parseval’s identity is strongly violated:

‖g‖2 >
∑

k

|〈uk, g〉|2 (= 0).

This violation is due to the following: even though g is a non-trivial message
(i.e. a Fourier series) in H[ε,2ε], an attempt to represent g as a Fourier series
in H[o,ε] results in failure: relative to H[0,ε] the system of o.n. vectors, g gets
represented by a Fourier series with coefficients all zero. In other words, F[o,ε]

maps g and the zero vector into the origin of ℓ2. Thus F[o,ε] is not one-to-one
if its domain includes H[ε,2ε]. But this can happen only if Parseval’s identity
is violated.

The relation between the completeness of a system of o.n. vectors and its
concomitant Fourier map F can therefore be summerized by the following
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Theorem 2.5.2 (F Is One-To-One)
Given:
Let {uk} be an orthonormal system on a Hilbert space H. Let {ck = 〈uk, f〉}
be the set of corresponding Fourier coefficients of some f ∈ H.
Conclusion:
The Fourier representation map

F : H → ℓ2

f ❀ F [f ] = {ck}

is one-to-one if and only if {uk} is complete in H.
Proof: (in three steps)

1: Let f and g have the same image in ℓ2:

F [f ] = F [g].

2: Let h = f − g. Then

F [h] ≡ {〈uk, h〉} = {0, 0, · · · , 0, · · · }

3: {uk} is complete if and only if

∑

k

|〈uk, h〉|2 = ‖h−
∑

k

uk〈uk, h〉‖2 = ‖h‖2 = ‖f − g‖2

Thus
f=̇g

i.e. F is one-to-one indeed.

Whichever way one singles out such a system of o.n. vectors, in linear
mathematics one refers to such a system as being a spanning set for the
vector space H. Such a set is an H basis because the orthogonality of its
elements makes it also a linearly independent set.

In summary, when Bessel’s inequality becomes an equality, in which case
one has Parseval’s identity on L2, then Eq.(2.16) tells us that

f=̇
∞∑

k=1

ckuk .
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Here

ck = 〈uk, f〉
are simply the generalized Fourier coefficients.
Thus Bessel-based Parseval’s identity, which is a statement about these co-
efficients, achieves two goals at once:

• It yields the linear map F from L2 into ℓ2: for each f there is a unique
{ck} ∈ ℓ2, and

• it yields an o.n. system {uk}∞k=1 which is complete in H.

This achievement completes the first two steps in coordinatizing a Hilbert
space.

Lecture 15

Riesz and Fischer

If the elements of ℓ2 comprise measured laboratory data, then the introduc-
tion of an o.n. system is the means of relating this data to a theory as
expressed by the elements of a particular Hilbert space. If this relation is
expressed by the linear map F , and if the physical context demands that
this F accomodate a range of measurements, then it is necessary to ascer-
tain whether the range space of the chosen F is sufficiently “large” (high
dimensional) to cover the whole space of measurements, ℓ2. In other words,
is F an onto map? Riesz and Fischer took the decisive step in answering this
question in the affirmative. Their line of reasoning is summarized by means
of Riesz-Fischer Theorem 1.5.3 on page 92

That third step was a non-trivial task, and they achieved it in two entirely
different ways. But interestingly enough, they published it in the same year
(1907) in the same issue of the same mathematics journal.

Ernst Fischer’s approach, which we also shall adopt in the R-F Theorem,
consisted of showing that the inner product space L2 is Cauchy complete. By
contrast Frigyes Riesz’s approach was to solve a system of integral equations.
He showed that one can solve

F [f ] = {ck}∞k=1
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for the function f . That is to say, the system of integral equations

∫

u1 f ρ dx = c1
∫

u2 f ρ dx = c2

...
∫

uk f ρ dx = ck

...

can always be solved for an f ∈ L2 such that

‖fN − f‖2 → 0 as N →∞ .

Thus both Riesz and Fischer show that to every element {c1, c2, · · · , ck, · · · } ∈
ℓ2 there corresponds an element f ∈ L2(a, b) with the numbers c1, c2, · · · , ck, · · ·
as its generalized Fourier coefficients. In brief, they show that F , Eq.(2.29),
is an onto map.

With this historical background, these achievements of Riesz and Fis-
cher’s, restated in terms of the modern geometrical inner product framework,
are summarized by what is nowadays known as the

Theorem 2.5.3 (Riesz-Fischer: F is Onto)

Given: (i) An orthonormal system {uk} in the (Cauchy complete) L2

(ii) A sequence of numbers c1, c2, . . . , ck, · · · with the property that

∞∑

k=1

|ck|2 <∞ .

Conclusion: (a) There exists an element f ∈ L2(a, b) with c1, c2, . . . , ck, · · · as its
Fourier coefficients, i.e. such that

(b) ‖f‖2 =
∞∑

k=1

|ck|2
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(c) with

ck = 〈uk, f〉, k = 1, 2, · · · (2.28)

Comment 1: Items (a) and (c) imply that

F
L2(a, b) −→ ℓ2

f ∼❀ F [f ] = {ck}∞k=1

(2.29)

with the property that it is onto2 and linear.

Comment 2: Item (b) implies that this F is an isometry. This fact is defined
explicitly on page 100

Comment 3: In light of the fact that (b) implies3 that

lim
N→∞

‖f −
N∑

k=1

ckuk‖2 = 0

one concludes that system {uk} of orthonormal elements is a complete, i.e. a
spanning set for L2:

f =̇
∞∑

k=1

ckuk

Proof: Starting with {ck} we must first show that there exists a function
f ∈ L2 having the two properties (a) and (c). Then we must show that this
function satifies (b).

The existence follows from the following three step construction:

2This claim is also stated by saying that the preimage F−1 [{ck}] of {ck}, namely, the
set of elements

F−1 [{ck}] = {f : F [f ] = {ck}} ,
is non-empty.

3In fact, one has

∞∑

k=1

|ck|2 = ‖f‖2 ⇔ lim
N→∞

‖f −
N∑

k=1

ckuk‖2 = 0 .

For the validity of this equivalence see Exercise 1.5.1 on page 85
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1. Concider the following sequence of sums in L2:

fN =
N∑

k=1

ckuk, N = 1, 2, · · · (2.30)

This sequence is a Cauchy sequence, i.e. it satisfies the Cauchy crite-
rion. Indeed,

‖fN+P − fN‖2 = ‖cN+1uN+1 + · · · cN+PuN+P‖2

=
N+P∑

k=N+1

|ck|2 → 0 as N →∞

because ∞∑

k=1

|ck|2

converges4. So {fN}∞1 is a Cauchy sequence indeed.

2. The fact that L2 is Cauchy complete w.r.t. ‖ · · · ‖2 implies that there
exists a function f ∈ L2 such that

lim
N→∞

‖f − fN‖2 = 0 . (2.31)

This validates part (a) of the theorem.

3. Is there a relation between the given ck’s and the inner products of the
uk’s and that function f? Consider any one of the inner products, say,

〈uℓ, f〉 = 〈uℓ, fN〉+ 〈uℓ, f − fN〉
4Let us say it converges to S. In that case one has

N+P∑

k=N+1

|ck|2 =

N+P∑

k=1

|ck|2 − S + S −
N∑

k=1

|ck|2

≤
∣
∣
∣
∣
∣

N+P∑

k=1

|ck|2 − S
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
S −

N∑

k=1

|ck|2
∣
∣
∣
∣
∣

≤ ǫ

2
+
ǫ

2
= ǫ for sufficiently large N and N + P .
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For the first term one has

〈uℓ, fN〉 = cℓ

whever N > ℓ. The second term goes to zero as N → ∞. Indeed,
applying the Cauchy-Schwarz inequality, one has

|〈uℓ, f − fN〉|2 ≤ ‖uℓ‖2 · ‖f − fN‖2 .

In compliance with the Cauchy completeness, Eq.(2.31), the r.h.s. of
this inequality goes to zero in the limit as N →∞. One therefore has

〈uℓ, f〉 = lim
N→∞

{〈uℓ, fN〉+ 〈uℓ, f − fN〉}
= ck .

In other words, cℓ is the ℓ
th Fourier coefficient of f relative to the o.n.

system {uk}. This validates part (c) of the theorem.

Comment: This line of reasoning, which starts with 〈uℓ, f〉 and ends with
〈uℓ, f〉 = cℓ, applies to every component of the given {ck}∞k=1 =
{c1, c2, · · · , ck, · · · }, a vector in ℓ2. A linear algebraist would say
that Riesz and Fischer, by following definite (mental) procedures
applied to established knowledge (including taking note of the fact
that the limit f is unique 5), have formed a new concept: the linear
mapping

ℓ2 → L2 (2.32)

{ck}❀ f = lim
N→∞

N∑

k=1

ckuk . (2.32′)

This mapping is the inverse of the mapping (2.29) and is symbol-
ized by F−1.

4. The limiting behaviour of fN , ‖f − fN‖ → 0 as N →∞ implies

lim
N→∞

〈

f −
N∑

k=1

ckuk, f −
N∑

ℓ=1

cℓuℓ

〉

= 0 , (2.33)

5See the “Side Comment” on page 69.
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which in turn is equivalent to

‖f‖2 =
∞∑

k=1

|ck|2 . (2.34)

This is because (i) the ck’s are the Fourier coefficients of f relative to
the {uk}, and (ii) the uk’s are mutually orthonormal. This validates
part (b) of the theorem.

Corollary 1

The map F−1 : ℓ2 → L2 is one-to-one.
It is a consequence of Parseval’s identity, Eq.(2.34), that (2.32) is a one-to-
one map. This is because f=0 yields {ck= 0}∞k=1 as the only preimage under
(2.32).

Corollary 2 The map F : L2 → ℓ2 is an isomorphism.
Theorems 1.5.3 combined with 1.5.2, i.e. the map F induced by a complete
infinite system of o.n. vectors is onto and one-to-one, leads to the definition
that F is an isomorphism.

Corollary 3 The map F : L2 → ℓ2 is an isometry.
Equation (2.34) holds for all {ck}’s and f ’s. Consequently,

∞∑

k=1

ck dk = 〈f, g〉 .

This validates that F is an isometry, i.e. an isometric isomorphism, between
ℓ2 and L2.

Proposition (Coordinatization of Hilbert Space H)
Let H be an “infinite” dimensional Cauchy-complete inner product space,
i.e. given any positive integer N , H contains N o.n. vectors. Then H has
l2 as its coordinate realization. In brief, H is coordinatized by the isometric
mapping, Eq.(2.29), which is induced by this system of o.n. vectors.

2.5.3 Isomorphic Hilbert Spaces

Lecture 16
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Parseval’s identity, Eq.(2.15), is a remarkable for its diverse and non-trivial
implications! One of its consequences is the generalized Fourier expansion

f(x)
.
=

∞∑

k=1

ckuk

with ck = 〈uk, f〉. Indeed, starting with Parseval’s mathematically simple
identity,

0 = 〈f, f〉 − lim
N→∞

N∑

k=1

ckck ,

subtract and add the limit of the sum

N∑

ℓ=1

cℓ〈f, uℓ〉 =
N∑

ℓ=1

N∑

k=1

cℓck〈uk, uℓ〉.

One obtains

0 = 〈f, f〉 − lim
N→∞

{ N∑

k=1

ck〈uk, f〉 −
N∑

ℓ=1

cℓ〈f, uℓ〉

+
N∑

ℓ=1

N∑

k=1

cℓck〈uk, uℓ〉
}

0 = 〈f − lim
N→∞

N∑

k=1

ckuk, f − lim
N→∞

N∑

ℓ=1

cℓuℓ〉

0 = lim
N→∞

‖f −
N∑

k=1

ckuk‖2 ,

which is what is meant by

f
.
=

∞∑

k=1

ckuk ; ck = 〈uk, f〉 ∀ f ∈ H .

But there is more. The generalized Fourier series has a perspicuous property:
it is a length and angle preserving (isometric) isomorphism. It is a one-to-one
linear correspondence – let us call it F , as we have done all along – between
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H

f

g
{c }

{c }+
{d } {d }

{c  +d  }

k

kk
k

k
kf+g

l 2

Figure 2.7: Linear map between H ⊆ L2, and l2, the space of square
summable sequences. This map is an isometry which is induced by the gen-
eralized Fourier series.

f ∈ H ⊆ L2(a, b) and {c1, c2, . . . , ck, . . . } ∈ ℓ2 = the Hilbert space of square
summable series (“functions on the integers”). The correspondence

f
F→ F [f ] = {ck} ≡ {c1, c2, . . . , ck, . . . }

g
F→ F [g] = {dk} ≡ {d1, d2, . . . , dk, . . . }

αf + βg
F→ F [αf + βg] = α{ck}+ β{dk}

(i) is one-to-one and onto, which means it has an inverse:

F−1[{ck}] = f ≡
∞∑

k=1

ckuk
F−1

← {ck} ;

(ii) is linear, which means it takes closed triangles in L2 into closed triangles
in ℓ2:

{ck + dk} = {ck}+ {dk} ;
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H right triangle in l2right triangle in Fourier
Euler

formula

same
lenghths

Fourier
series

Figure 2.8: The isometry between H ⊆ L2, the space of square integrable
functions, and l2, the space of square summable sequences, preserves lengths
and angles.

(iii) preserves lengths. Indeed,

f =
∞∑

k=1

ckuk

g =
∞∑

ℓ=1

dℓuℓ

implies

〈f − g, f − g〉 =
∞∑

k=1

(ck − dk)(ck − dk)

‖f − g‖2 =
∞∑

k=1

|ck − dk|2 ∀ f, g ∈ H .

It follows that

〈f, g〉 =
∞∑

k=1

ckdk

‖f‖2 =
∞∑

k=1

|ck|2 .
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Consequently, F preserves lengths, inner products, and angles (if the Hilbert
space is real).
Definition: A linear transformation which is one-to-one and onto is called
an isomorphism.
Definition: A distance preserving transformation between two metric spaces
is called an isometric transformation, or simply an isometry.

In that case, the two spaces are said to be isometric spaces. This means
they look the same from the viewpoint of geometry.

To summarize, the striking feature of the completeness, i.e., Parseval’s
relation is that it establishes an isometric isomorphism, or more briefly an
isometry between the two spaces.

Thus

H (⊆ L2(a, b)) and ℓ2 are isometric Hilbert spaces .

They are geometrically the same (right triangles in one space correspond to
right triangles in the other space).

Because one can establish a linear isometry between any Hilbert space
and one and the same ℓ2, the space of square summable series, one obtains
the
Theorem: (Isomorphism theorem) Any two complex Hilbert spaces are iso-
morphic. In fact, so are any two real Hilbert spaces.

Lecture 17

Comment: The isometric isomorphism is a unitary transformation whose
elements are {u1(x), u2(x), . . . }. Indeed, consider the equation

∞∑

k=1

uk(x)ck = f(x) .

The coefficients ck are the components of an infinite dimensional column
vector in ℓ2. The function f is an infinite dimensional column vector whose
components f(x) are labelled by the continuous index x. It follows that
{uk(x)} are the entries of a matrix whose columns are labelled by k and
whose rows are labelled by x. The orthogonality conditions

〈ui, uj〉 = δij
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expresses the orthonormality of the colums of this matrix. The completeness
relation ∞∑

k=1

uk(x)uk(x) =
δ(x− x′)
ρ(x)

expresses the orthonormality of the rows. It follows that {uk(x)} represents
a unitary transformation which maps H ⊆ L2(a, b) onto ℓ2.

Exercise 2.5.2 (SQUARED LENGTHS AND INNER PRODUCTS)
An isometry between the Hilbert space H of square integrable functions f , and the
Hilbert space ℓ2 of square summable sequences {ck}∞k=1 is a linear one-to-one and
onto transformation f → {ck} with the property that it preserves squared lengths:

〈f, f〉 =
∞∑

k=1

|ck|2 , ∀f ∈ H .

SHOW that

〈f, g〉 =
∞∑

k=1

ckdk , dk = 〈uk, g〉 ∀f, g ∈ H .

where
f → {ck} and g → {dk} .

Exercise 2.5.3
Let g be a fixed and given square integrable function, i.e.

0 <

∫ ∞

−∞
g(x)g(x) dx ≡ ‖g‖2 <∞

One can think of g as a function whose non-zero values are concentrated in a small
set around the origin x = 0.

Consider the concomitant “windowed” Fourier transform on L2(−∞,∞), the
space of square integrable functions,

T : L2(−∞,∞) → R(T )

f → Tf(ω, t) ≡
∫ ∞

−∞
g(x− t)e−iωxf(x) dx

Let h(ω, t) be an element of the range space R(T ). It is evident that

〈h1, h2〉 =
∫ ∞

−∞

∫ ∞

−∞
h1(ω, t)h2(ω, t) dωdt
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is an inner product on R(T ).
FIND a formula for 〈Tf1, T f2〉 in terms of the inner product

(f1, f2) ≡
∫ ∞

−∞
f1(x)f2(x) dx

on L2(−∞,∞).

Exercise 2.5.4 (SHANNON’S SAMPLING FUNCTIONS)
By

(a) starting with the orthonormality relation

π∫

−π

δN

(

t− 2π

2N + 1
k

)

δN

(

t− 2π

2N + 1
l

)

dt =
2N + 1

2π
δkl ;

k, l = −N, . . . , N

where

δN (u) =
1

2π

sin(N + 1
2)u

sin u
2

(

=
1

2π

N∑

n=−N
einu

)

,

(b) then rescaling the integration domain by introducing the variable

z =
N + 1

2

2πw
t ,

where w > 0 is a fixed constant (the ”band width”),

(c) and finally going to the limits N →∞.

(i) Show that the set of functions

{
sinπ(2wz − k)
π(2wz − k) ≡ sin c(2wz − k) : k = 0,±1,±2, . . .

}

is an orthogonal set satisfying

∞∫

−∞

sin c(2wz − k) sin c(2wz − l)dz = Aδkl .

What is A?
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(ii) This set of functions

{

uk =
1√
A

sinc(2wz − k) : k = 0,±1, · · ·
}

is not complete on L2(−∞,∞), but it is complete on a certain subset
B ⊂ L2(−∞,∞).

What is this subset? i.e. What property must a function f(t) have in
order that f ∈ B?

This question can be answered with the help of Parseval’s (“complete-
ness”) relation as follows: Recall that completeness on B here means
that f ∈ B implies that one can write f as

f(z) =
∞∑

k=−∞
ckuk(z), uk =

1√
A

sinc(2wz − k)

with ck = 〈uk, f〉, which we know is equivalent to

〈f, f〉 =
∞∑

k=−∞
|ck|2 . (2.35)

Thus, to answer the question, we must ask and answer: What prop-
erty must f have in order to guarantee that Eq.(2.35) be satisfied?
Therefore, to give a correct answer, one must (i) identify the property
and (ii) then show that Parseval’s relation is satisfied by every such
function.
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Chapter 3

Fourier Theory

Lecture 18

A system is identified by its properties, and linearity, more often than not,
plays a fundamental role in organizing them quantitatively. Thus, if ψ1 and
ψ2 are two spatial amplitude profiles of a vibrating string, or two temporal
histories of a simple harmonic oscillator, then so is the linear combination

ψ = c1ψ1 + c2ψ2 .

One says that the system obeys the linear superposition principle. Mathe-
matically one says that the set of such ψ’s forms a vector space.

By specifying functions such as ψ(x), ψ1(x), and ψ2(x) one directs at-
tention to the fact that (i) the system has a specific domain and that (ii)
the state (or the history) of the system consists of assigning to this domain
numbers that characterize the state (or the history) in numerical terms.

There are linear systems whose intrinsic properties are independent of
arbitrary translations in that domain. An infinite string having constant
density and tension, or a simple harmonic oscillator with its time independent
spring constant and mass, or a system of differential equations with constant
coefficients is a case in point.

On the other hand, there are systems whose properties are independent
only under discrete translations, such as a wave disturbance propagating
through a discrete lattice or a simple harmonic oscillator whose spring con-
stant varies periodically with time.

All such systems have the property that if ψ(x) describes its state (or
its history, in which case x is the time variable), so does ψ(x + a). In other
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words, a linear system which is invariant under space (or time) translation
has the property that ψ(x) and Taψ(x) ≡ ψ(x+a) belong to the same vector
space.

This immediately raises the algebraic question: What are the eigenvalues
and eigenvectors of the translation operator Ta,

Taψ(x) = λaψ(x) ?

i.e. which states (or histories) have the property that

ψ(x+ a) = λaψ(x) ? (3.1)

First consider the case of arbitrary translation invariance. By differenti-
ation w.r.t. a one finds that the solution is

ψ(x) = ecx,

where c is a constant. The requirement that this solution stay bounded in the
whole domain −∞ < x <∞ demands that the constant be purely imaginary:

ψ(x) = eikx . (3.2)

These are the tranlation eigenfunctions whose eigenvalues are eika.
Fourier theory is based on introducing these functions to represent any

state (or history) of the a linear translation invariant system. In brief, Fourier
theory is an expression of the translation invariance of a linear sustem.

Next consider the case of discrete translation invariance. By rewriting
the eigenvalue in Eq.(3.1) as

λa = eρa

one finds that Eq.(3.1) becomes

e−ρ(x+a)ψ(x+ a) = e−ρxψ(x) ≡ uρ(x) .

Thus e−ρxψ(x) is a function, say uρ(x), with periodicity a. Consequently, an
eigenfunction of discrete translation symmetry x→ x+ a has the form of an
a-periodic function modulated by a (real or complex) exponential1

ψρ(x) = eρxuρ(x) ,

1This fact is known to engineers and to physicists as Bloch’s theorem, and to mathe-
maticians as Floquet’s theorem.
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while the eigenvalue has the form

λa = eρa .

The periodic part of these eigenfunctions forms a portal from Fourier theory
on the real line to Fourier series theory on the closed circle.

First of all, noticing the periodicity of each uρ, one isolates a specific
and blindingly obvious characteristic of the points x, x ± a, x ± 2a, · · · : the
measurable value of the function uρ at these points. This value serves to
unite these points into a higher order concept, namely, the equivalence class

{x, x± a, x± 2a, · · · } ≡ {x} .

In other words, the function uρ renders these points as indistinguishable with
respect to its measured value uρ(x) = uρ(x± a) = uρ(x± 2a) = · · · .

Secondly, the continuity of the periodic functions uρ guarantees that the
family of equivalent classes

{{x} : 0 ≤ x ≤ a}

forms a closed circle with circumference a.

Finally one asks, which of these periodic functions are eigenfunctions of
the translation operation x→ x+ b:

φ(x+ b) = µbφ(x) ?

The line of reasoning that led to Eq.(3.2) followed by the imposition of the
periodicity condition on these functions leads to the answer that

φ(x) = eikx

µρ = eikb

}

k =
2π

a
n (n = any integer) (3.3)

A linear combination of such eigenfunctions makes up a Fourier series.
The conclusion is that the theory of Fourier series is an expression of a
linear system in a discrete translation invariant environment or of a system
in a periodic state. An electromagnetic wave propagating through a periodic
lattice or the sound emitted by a ticking clock are examples of such systems.
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Figure 3.1: Dirichelet kernels of order N = 0 and N = 1.
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Figure 3.2: Dirichelet kernels of order N = 2 and N = 3. Each of these
kernels is the observed far field amplitude profile of the radiation emitted
coherently from an odd (2N + 1) number of sources having equal strength.
The observed intensity, which is perceived by the human eye, is proportional
to the square of the amplitude. The separation between the source screen
and the observation screen is much larger than is implied by the picture.

3.1 The Dirichlet Kernel

Consider a screen with equally spaced slits illuminated by a laser beam.
Assuming the width of the slits is small compared to their separation, each
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one of them acts as a source of radiation as depicted in Figures 3.1 and 3.2.
Observations show that at large distances from these sources – large com-

pared to the laser wave length, and large compared to the slit separation –
the emitted radiation forms a Fraunhofer diffraction which is characterized
by the number of slit sources. For an odd number, say 2N + 1 = 1, 3, 5, 7 of
them, the measured amplitude profiles and the observed intensity (= squared
amplitude) profiles have forms which are shown in Figures 3.1-3.2

Each of the diffraction amplitude profiles is the interference pattern of
radiation from an odd number of slit sources having equal amplitude and
equal phase. Each pattern can be represented with mathematical precision
as a finite Fourier sum with a number terms equal to the odd number of slit
sources causing the pattern.

If the number of sources is 2N + 1, then the corresponding pattern is
called a Dirichelet kernel of integral order N . Its mathematical form is

δN(u) =
1

2π

sin(N + 1
2
)u

sin u
2

, (3.4)

where u is the displacement along the screen where the pattern is observed.
This kernel is a fundamental concept. Among others, it is the mathematical
root of the Fourier Series theorem and the sampling theorem, applications
which we shall develop as soon as we have defined this kernel mathematically.

Remark 1. Q: What can one say about diffraction patterns caused by
an even number of slit sources?
A: The essential difference from an odd number lies in the observed ampli-
tude. Whereas for an odd-numbered source the peak amplitude has always
the same sign every period, for an even-numbered slit source the peak ampli-
tude alternates between positive and negative from one period to the next.
See Figure 3.3. However, such an amplitude is still given by Eq.(3.4), pro-
vided N assumes odd integer values, 1

2
, 3
2
, 5
2
, · · · . Such an amplitude pattern

is called a Dirichelet kernel of odd half-integral order.
Remark 2. Q: What happens to the diffraction pattern if each slit has

a finite width, say w?
A: In that case the diffraction pattern gets modulated (i.e. multiplied) by
the sinc function

sin(u/w)

u/w
.

This conclusion is validated by means of the Fourier Integral Theorem, which
is developed in the next Section 3.3.1 on page 140.
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N=ORDER OF DIRICHELET KERNEL

Figure 3.3: Dirichelet kernels of odd half-integral order N = 1
2
, 3
2
, 5
2
. These

kernels differ from those in Figures 3.1-3.2 in that here the number of sources
is even (2N +1). Furthermore, the observed amplitude has peaks that alter-
nate in sign every period.

The Dirichlet kernel of integral order arises in the context of Fourier series
whose orthonormal basis functions on [0, 2π] are

{uk(x)} =
{

1√
2π
,

1√
π
cosnx,

1√
π
sinnx

}

.

Consider the N th partial sum SN of f , a function integrable on the interval
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[0, 2π]

SN =
a0
2

+
N∑

n=1

an cosnx+
N∑

n=1

bn sinnx

SN(x) =
1

π

∫ 2π

0

[

1

2
+

N∑

n=1

cosnx cosnt+
N∑

n=1

sinnx sinnt

]

f(t)dt

=

∫ 2π

0

1

π

[

1

2
+

N∑

n=1

cosn(x− t)
]

f(t)dt

≡
∫ 2π

0

δN(x− t)f(t)dt .

This is the (optimal) least squares approximation of f .
Definition: (Dirichlet kernel = “periodic finite impulse function”) The func-
tion

δN(u) =
1

π

[

1

2
+

N∑

n=1

cosnu

]

=
1

2π

N∑

n=−N
einu with u = x− t (3.5)

is called the Dirichlet kernel and it is also given by

1

2π

e−iNu − ei(N+1)u

1− eiu =
1

2π

sin
(
N + 1

2

)
u

sin u
2

= δN(u) . (3.6)

Lecture 19

3.1.1 Basic Properties

Property 1. δN(x − t) projects periodic functions onto their least squares
approximation in the subspace spanned by {uk(x)}.
Property 2. (The graph, Figure 3.4)
From Figure 3.4, Eq.(3.5), and Eq.(3.6) one sees that

• δN(u) is an even periodic function with period 2π:

δN(u+ 2πn) = δN(u).
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• δN(u) has 2N equally spaced zeros which are determined by

(N +
1

2
)u = π, 2π, 3π, . . . , 2Nπ ,

and thus are given by

u = 1
π

N + 1
2

, 2
π

N + 1
2

, . . . , 2N
π

N + 1
2

.

Note that the next term in this sequence is

(2N + 1)
π

N + 1
2

= 2π ,

but δN(u) is not zero there. In fact, at all integral multiples of 2π,
namely u = 0, 2π, . . . , δN(u) has the value

δN(2πn) =
1

π

(

N +
1

2

)

,

which is the maximum value of the function.

• δN(u) has N maxima and N minima per period.

3.1.2 Three Applications

Solution to Wave Equation via Dirichlet Kernel

In a subsequent chapter we shall study the inhomogeneous Helmholtz wave
equation

(∇2 + k2)ψ = f(x, y, z) .

It is amusing that the solution to this equation exhibits a property which is
readily expressed in terms of a Dirichlet kernel and more generally in terms
of a Fourier series. This property is so useful, physically fundamental, and
deducible with so little effort that it is worthwhile to give a quick derivation.
The property pertains to the field amplitude ψ(x, y, z) when the inhomogene-
ity (“source”) of the wave equation is concentrated at, say, 2N + 1 sources

(xn, yn, zn) n = 0,±1, . . . ,±N .
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Figure 3.4: Dirichlet kernels for N=5 and N=10. There are N maxima and
N minima per period. The number of zeroes is 2N and their spacing inside
each periodic subinterval is 1/(2N + 1).

In that case, the governing Helmholtz equation is

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

]

ψ(x, y, z) = −
N∑

n=−N
An δ(x− xn)δ(y− yn)δ(z − zn)

(3.7)

One can readily show that the solution to this inhomogeneous wave equa-
tion is

ψ(x, y, z) =
1

4π

N∑

n=−N
An

eikRn

Rn

.

Each term in this solution is proportional to the strength of each correspond-
ing localized source of the wave equation. The quantity

Rn =
√

(x− xn)2 + (y − yn)2 + (z − zn)2

is the distance between (x, y, z), the point where the field is observed, and
(xn, yn, zn), the location of the nth source point.
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We now consider the circumstance where this distance is large. More
precisely, we assume that if the sources are distributed along, say, the x-axis,

(xn, yn, zn) = (xn, 0, 0) n = 0,±1, · · · ,±N
and the amplitude is observed at, say,

(x, y, z) = (x, 0, z)

so that the distance is

Rn =
√

r2 − 2xxn + x2n where r2 = x2 + z2 ,

then “large distance” means that r is so large that

xn
r
≪ 1 n = 0,±1, · · · ,±N .

For such distances the solution has the form

ψ(x, y, z) =
1

4π

N∑

n=−N

An
Rn

exp{ikr − ikxxn
r

+ ikxn
xn
2r

+ (negl. terms)} (3.8)

The long distance assumption can be strengthened by demanding that
both

xn
r
≪ 1 and kxn

xn
2r
≪ 1 (3.9)

be satisfied. This strengthened assumption is called the “Fraunhofer approx-
imation”. Under this approximation the third contribution to the phase in
the exponential of the solution, Eq.(3.8), is so small that this contribution
can also be neglected. As a consequence the solution assumes the perspicuous
form

ψ(x, 0, z) =
eikr

4πr

N∑

n=−N
An exp {−ikxn

x

r
} . (3.10)

Suppose the 2N + 1 sources are equally spaced and hence are located at

xn = △x n n = 0,±1, · · · ,±N .

In that case the solution is a (2N + 1)-term Fourier series whose coefficients
are the source strengths An in Eq.(3.7):

ψ(x, 0, z) =
eikr

4πr

N∑

n=−N
Ane

−inθ; θ ≡ x

r
(k△x) . (3.11)

We thus have proved the following fundamental
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Theorem 3.1.1
(Fraunhofer-Kirchhoff) At sufficiently large distances expressed by Eq.(3.9),
the solution to the inhomogeneous Helmholtz wave equation, Eq.(3.7), has
the Fourier form Eq.(3.10) whose spectral coefficients are the strengths of the
inhomogeneities in that wave equation. If these inhomogeneities are equally
spaced, then the solution is a Fourier series, Eq.(3.11).

When all the sources have equal strength, say A, then the solution is
proportional to the Dirichlet kernel,

ψ(x, 0, z) = A
eikr

2r
δN(θ); θ ≡ x

r
(k△x) , (3.12)

which varies with θ in a way given in Fig. 3.4.
For the sake of completeness it is necessary to point out that the Fraun-

hofer approximation can always be satisfied by having the separation between
the “observation” point and the finite source region be large enough. If it is
not satisfied, i.e., if

xn
r
≪ 1 but kxn

xn
2r
≈ 1 or kxn

xn
2r

> 1 , (3.13)

then the third contribution to the phase of the solution, Eq.(3.8), cannot be
neglected. This less stringent assumption is called the “Fresnel approxima-
tion”.

Exercise 3.1.1 (SHIFTED INTEGRATION LIMITS)
Suppose that f(x+ 2π) = f(x) is an integrable function of period 2π. Show that

2π+a∫

a

f(x)dx =

2π∫

0

f(x)dx

where a is any real number.

Dirichlet Kernel: Fountainhead of All Subspace Vectors

Consider the space of functions which lie in the subspace

W2N+1 = span

{
1√
2π
,

1√
π
cosnt,

1√
π
sinnt : n = 1, . . . , N

}

= span

{
1√
2π
eint : n = 0,±1, . . . ,±N

}

.
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One can say that each of these functions owes its existence to the Dirichlet
kernel

δN(t− x) =
1

2π

N∑

n=−N
ein(t−x). (3.14)

First, note that δN(t−x) is a vector in W2N+1 for every x. Second, note that
this vector generates a set of orthonormal basis vectors for W2N+1. They are
generated by repeated shifts of the function δN(t) along the t-axis. Indeed
the resulting vectors are

gk(t) =
2π

2N + 1
δN(t− xk)

where

xk =
π

N + 1
2

k , k = 0, 1, . . . , 2N

is the amount by which the function δN(t) has been shifted to the right. The
increment between successive shifts is evidently

△t = π

N + 1
2

,

the separation between the successive zeroes of δN(t) in the interval (0, 2π).
This means that, to obtain the function gk(t), the maximum of δN(t) has
been shifted to the location of its kth zero. As a consequence, note that

gk(t = xℓ) =
2π

2N + 1
δN(xℓ − xk) ℓ, k = 0, 1, . . . , 2N

=

{
0 ℓ 6= k
1 ℓ = k

.

or more briefly,

gk(xl) = δkℓ . (3.15)

This is called the sifting property of the function gk. What is the significance
of this important property? To find out compare it with the fact that the
functions are orthogonal relative to the given inner product; in particular

2N + 1

2π

∫ 2π

0

gk(t)gk′(t) dt = δkk′ .
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That is, except for a normalization factor, the set of elaments {gk : k =
0, 1, · · · , 2N} forms an orthonormal basis for the subspace W2N+1. Note
that the property

gk(xℓ) = δkℓ

does not depend on the inner product structure of the subspaceW2N+1 at all.
Instead, recall that this property is a manifestation of a universal property
which all vector spaces have, regardless of what kind of inner product each
one may or may not be endowed with. This universal property is, of course,
the Duality Principle: Every vector space, in our case W2N+1, has a dual
vector space, which is designated by W ∗

2N+1 and which is the space of linear
functionals on W2N+1. In particular, this property expresses the duality
between the given basis

{gk : k = 0, 1, . . . , 2N}

for W2N+1 and the dual basis

{ωℓ : ℓ = 0, 1, . . . , 2N}

for W ∗
2N+1, the space of linear functionals on W2N+1. A typical basis func-

tional (“dual basis element”)

ωℓ : W2N+1 → scalars
f ❀ ωℓ(f) ≡ f(t = xℓ)

is the linear map (“evaluation” map) which assigns to the vector f the value
of f(t) (viewed as a function) at t = xℓ.

By applying this linear functional to each of the basis vectors gk inW2N+1

one finds that
ωℓ(gk) ≡ gk(xℓ) = δkl .

This duality relationship between the two bases, we recall, verifies the duality
between W2N+1 and W ∗

2N+1.
The usefulness of this “evaluation” duality is that one can use it to solve

the following reconstruction problem:
Given:

• a set of samples of the function f ∈ W2N+1

{ (x0, f(x0)), (x1, f(x1)), · · · , (xk, f(xk)), · · · , (x2N , f(x2N)) } ;
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• a basis {gk} for W2N+1 consisting of functions with the sifting property

gk(xℓ) = δkℓ .

Find: a set of coefficients {αk} such that

2N∑

k=0

αkgk(t) = f(t)

whenever t = x0, x1, · · · , x2N .
This problem has an easy solution. Letting t = x0, x1, · · · , x2N , and using

the duality relation, one finds

αk = f(xk).

Consequently,

f(t) =
2N∑

k=0

f(xk)gk(t) . (3.16)

The amazing thing about this equation is that it not only holds for the
sampled values but also for any t in the interval [0, 2π].

How is it, that one is able to reconstruct f(t) with 100% precision on the
whole interval [0, 2π] by only knowing f(t) at the points {xk}?
Answer: we are given the fact that the function f(t) is a vector in W2N+1.
We also are given that the functions gk(t), k = 0, 1, · · · , 2N , form a basis for
W2N+1, and that these functions have the same domain as f(t). Equation
(3.16) is a vector equation. Consequently, its reinterpretation as a function
equation is also 100% accurate.

Exercise 3.1.2 (DIRICHELET BASIS)
Consider the (2N +1)-dimensional space W2N+1 ⊂ L2(0, 2π) which is spanned by

the O.N. basis { 1√
2π
eikt, k = 0,±, · · · ,±N}:

W2N+1 = span{ 1√
2π
eikt}k=Nk=−N

Next consider the set of shifted Dirichelet kernel functions,

gk(t) =
2π

2N + 1
δN (t− xk) ≡

1

2N + 1

N∑

n=−N
ein(t−kπ/(N+ 1

2
)) .
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Show that

{gk(t) : k = 0,±1, · · · ,±N} ≡ B

is a basis (“Dirichelet” basis) for W2N+1. This, we recall, means that one must
show that

(a) the set B is one which is linearly independent, and

(b) the set B spans W2N+1, i.e. if f is an element of W2N+1, then one must
exhibit constants bk such that

f(t) =
N∑

n=−N
bkgk(t) .

Whittaker-Shannon Sampling Theorem: The Finite Interval Ver-
sion

To summarize: the reconstruction formula

f(t) =
2N∑

k=0

f(xk)
2π

2N + 1
δN(t− xk) (3.17)

highlights the key role of the Dirichlet kernel in representing an arbitrary
element of W2N+1 in terms of a finite set of sampled data. Start with the
normalized Dirichlet kernel 2π

2N+1
δN(t), a vector in W2N+1. By applying dis-

crete shift operations generate a basis. Finally form the linear combination
whose coordinates are the sampled values of the function. The resulting for-
mula, Eq.(3.17) is also known as (a special case of) the Whittaker-Shannon
sampling theorem and it constitutes the connecting link between the ana-
logue world and the world of digital computers.

Lecture 20
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Fourier Series of a Function

Consider a periodic function, f(x) = f(x + 2π) and its Nth partial Fourier
sum

SN(x) =
a0
2

+
N∑

n=1

an cosnx+
N∑

n=1

bn sinnx (3.18)

=

∫ π

−π
δN(t− x)f(t)dt . (3.19)

Here δN(t − x) is the familiar Dirichlet kernel and the integration limits
have been shifted downward without affecting the integral. This can always
be done when integrating a periodic function. In fact, the shift can be any
real amount:

∫ 2π

0

(
periodic function

with period 2π

)

dt =

∫ 2π+a

a

(
periodic function

with period 2π

)

dt .

(Verify that this identity holds for any real a.)
Question: What is lim

N→∞
SN(x)?

Answer: SN(x)→ 1
2
[f(x+) + f(x−)] as N →∞.

One arrives at this answer by means of a four step argument.

1. Shift the integration limit by the amount a = x and obtain

SN(x) =

∫ x+π

x−π
δN(t− x)f(t) dt .

[ ]|
x x+ πx− π
t ✲

This places x at the center of the integration interval. Now break up
the integral into two parts

SN(x) =

∫ x

x−π
δN(t− x)f(t)dt

︸ ︷︷ ︸

JN(x)

+

∫ x+π

x

δN(t− x)f(t)dt
︸ ︷︷ ︸

IN(x)

(3.20)

and show that

JN(x)→
1

2
f(x−) and IN(x)→

1

2
f(x+) as N →∞ .
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Figure 3.5: The graph of δN(u) and the function f(x + u) around u = 0,
where it has the indicated jump discontinuity.

2. Look at each integral in turn. Let u = t− x and obtain

IN(x) =

∫ π

0

f(x+ u)δN(u)du .

Figure 3.5 depicts the graphs of the two factors making up the inte-
grand. Using

δN(u) =
1

2π

sin(N + 1
2
)u

sin u
2

we obtain

lim
N→∞

IN(x) =
1

2
f(x+) .

The details are as follows:

IN(x) =
1

2π

∫ π

0

f(x+ u)− f(x+)
sin u

2
︸ ︷︷ ︸

G(u)

sin

[(

N +
1

2

)

u

]

du+f(x+)

∫ π

0

δN(u)du

︸ ︷︷ ︸

‖
1

2
(indep.’t of N)

.

Note that G(u) is piecewise continuous. Why? Because, assuming that
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f has one-sided derivatives f ′
L(x) and f

′
R(x) at x, we have

G(0+) ≡ lim
u→0+

f(x+ u)− f(x+)
sin u

2

= 2f ′
R(x) .

Thus we see that the integrand is piecewise continuous throughout
[0, π], even at u = 0, where the denominator sin u

2
vanishes. The total

integral in question,

IN(x) =
1

2π

∫ π

0

G(u) sin

[(

N +
1

2

)

u

]

du+
1

2
f(x+) ,

is, therefore, well-defined.

As N →∞ the integrand is a function G(u), piecewise continuous and
finite on [0, π], multiplied by a rapidly oscillating function.

Such an integral averages to zero as N → ∞. The vanishing of such
an integral is also known as the Riemann-Lebesgue lemma. See the
ensuing exercise on page 125

Conclusion: lim
N→∞

IN(x) = 0 + 1
2
f(x+).

3. Similarly, with u = x− t and δN(−u) = δN(u) one has

JN(x) =
1

2π

∫ π

0

f(x− u)δN(u) du

and

lim
N→∞

JN(x) = 0 +
1

2
f(x−) .

4. Consequently, the limit of the partial sum, Eq.(3.20), is

lim
N→∞

SN(x) =
1

2
[f(x−) + f(x+)] . (3.21)

To summarize, one has the following

Theorem 3.1.2 (Fourier Series Theorem)
.
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1. Let f(x) be a function which is piecewise continuous on [−π, π].
Its Fourier series is given by

1

2π

∫ π

−π
f(t) dt+

1

π

∞∑

n=1

∫ π

−π
f(t) cosn(t− x) dt = 1

2
[f(x−) + f(x+)]

at each point −π < x < π where the one sided derivatives f ′
R(x) and

f ′
L(x) both exist.

2. If f is continuous the result is

1

2π

∞∑

n=−∞

∫ π

−π
ein(x−t)f(t) dt =

1

2
[f(x−)+f(x+)] = f(x) ∀ f ∈ C[−π, π] .

or equivalently

f(x) =
∞∑

n=−∞

einx√
2π

cn

with

cn =

∫ π

−π

e−int√
2π
f(t) dt

Exercise 3.1.3 (RIEMANN-LEBESGUE LEMMA)
The Riemann-Lebesgue lemma is a well-known fact among radio amateurs and
electrical engineers. There it is the time average of an amplitude modulated signal,

G(u) sin(N +
1

2
)u ,

whose carrier is sin(N + 1
2)u, a rapidly oscillating function whose modulation

amplitude is G(u). The higher the carrier frequency (N + 1
2), the more closely

that average approaches zero.
Given that G(u) is piecewise continuous on [0, π] and has left and right hand

derivatives at each point in [0, π], show that

lim
N→∞

∫ π

0
G(u) sin(N +

1

2
)u du = 0 .

Lecture 21
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3.1.3 Poisson’s summation formula

The periodicity of the Dirichlet kernel guarantees that Fourier’s theorem
holds also when x lies outside the interval [−π, π], even if the function f is not
periodic. Let us therefore apply the Fourier theorem to the new (continuous)
function f(t+ 2πm):

1

2π

∞∑

n=−∞

∫ π

−π
ein(x−t)f(t+ 2πm) dt = f(x+ 2πm) .

Now

(i) shift the integration variable t by 2πm,

f(x+ 2πm) =
1

2π

∞∑

n=−∞

∫ π+2πm

−π+2πm

ein(x−t
′+2πm)f(t′) dt′ ,

(ii) make use of the periodicity of the exponential,

f(x+ 2πm) =
1

2π

∞∑

n=−∞

∫ π+2πm

−π+2πm

ein(x−t
′)f(t′) dt′ ,

(iii) sum over all the integral values of m = 0,±1,±2, · · · ,
∞∑

m=−∞
f(x+ 2πm) =

1

2π

∞∑

n=−∞

+∞∑

m=−∞

∫ π+2πm

−π+2πm

ein(x−t
′)f(t′) dt′ ,

(iv) and use the fact that
∑∞

−∞
∫ π+2πm

−π+2πm
· · · =

∫∞
−∞ · · · .

The result is

∞∑

m=−∞
f(x+ 2πm) =

1

2π

∞∑

n=−∞

∫ ∞

−∞
ein(x−t)f(t) dt, (3.22)

or

∞∑

m=−∞
f(x+ 2πm) =

1

2π

∞∑

n=−∞
F (n)einx “general Poisson sum formula”

(3.23)
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Here

F (n) =

∫ ∞

−∞
e−intf(t) dt (3.24)

is the Fourier transform of the function f .
Setting x = 0, one obtains

∞∑

n=−∞
F (n) = 2π

∞∑

m=−∞
f(2πm), “Poisson sum formula” (3.25)

An alternative equally useful form (see Eq.(3.32) on page 129) of Poisson’s
formula is

∞∑

m=−∞
f(m) =

∞∑

n=−∞
F (2πn) . (3.26)

Example (Closed form via Poisson summation)

Employ the Poisson summation formula to find the value of the sum
∞∑

m=−∞
f(m) =

∞∑

m=−∞

1

m2 + a2

in terms of elementary functions.
The first step in finding this value is to determine the Fourier amplitude

F (k) ≡
∫ ∞

−∞
e−ikx

1

x2 + a2
dx

of the given function f . Using Cauchy’s integral formula one finds that

F (k) =
π

a
e−|k|a ,

where without loss of generality a > 0.
The second step consists of evaluating the right hand side of Eq.(3.26).

∞∑

n=0

F (−2πn) +
∞∑

n=1

F (2πn) =
π

a

[

2
∞∑

n=1

e−2πan − 1

]

=
π

a

[
2

1− e−2πa
− 1

]

=
π

a

1 + e−2πa

1− e−2πa

=
π

a
coth πa . (3.27)
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One has therefore the following result.

∞∑

m=−∞

1

m2 + a2
=
π

a
coth πa .

Exercise 3.1.4 (CLOSED FORM VIA GENERALIZED POISSON SUMMATION)
Prove or disprove:

∞∑

m=−∞

1

(m+ b)2 + a2
=
π

a

coshπa

(sinh2 πa cos2 πb+ cosh2 πa sin2 πb)
(3.28)

∞∑

m=−∞

1

(m+ b)2
=

π2

sin2 πb
(3.29)

∞∑

m=−∞

1

(b+ 2πm)2
=

1

4 sin2 b
2

(3.30)

(Hint:

∫ ∞

−∞
e−ikx

1

(x+ b)2 + a2
dx =

π

a
e−|k|aeikb can be of help.)

The simplicity of the Poisson summation formula is enhanced if one does
not refer to the function f explicitly. Reexpressing the right hand side of
Eq.(3.22) in terms of equally spaced Dirac delta functions,

∞∑

m=−∞
f(x+ 2πm) =

∞∑

m=−∞

∫ ∞

−∞
δ(t− x− 2πm)f(t) dt,

and observing the fact that Eq.(3.22) holds for all continuous functions f
whose infinite sum of sampled values converges, we leave these individual
functions unspecified and simply write Eq.(3.22) in the form

1

2π

∞∑

n=−∞
einu ≡ lim

N→∞
δN(u) =

∞∑

m=−∞
δ(u− 2πm) (3.31)

= “comb2πu” ; u = t− x ,
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or equivalently,
∞∑

n=−∞
ei

2π
a
nu = |a|

∞∑

m=−∞
δ(u−ma),

whenever a is positive. (Question: what happens when a < 0?) This is
obviously an alternate form of the Poisson sum formula. It says that as the
number of terms becomes very large, the Dirichlet kernel approaches a pe-
riodic train of delta function impulses. However, it needs to be emphasized
that this relation is based on the tacit understanding that one first multi-
ply by some appropriate function f(t) and do the t-integration before one
compares the sums on the two sides of this relation.

What happens if one first rescales the domain of the function f(x) by a
non-zero real factor before shifting it by the amount 2πm? In that case one
applies the Fourier theorem to the function

f

(
x+ 2πm

a

)

and the Poisson sum formula, Eq.(3.25), becomes

∞∑

n=−∞
F (na) =

2π

a

∞∑

m=−∞
f

(
2πm

a

)

. (3.32)

Exercise 3.1.5 (POISSON FORMULA AND ORTHONORMALITY)
Stephane G. Mallat in his article “A Theory of Multiresolution Signal Decomposi-
tion: The Wavelet Theory” (IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 11, p. 674-692, 1989) makes the following claim in Appendix B
of his article:

Let φ̂(ω) be the Fourier transform of φ(x)

φ̂(ω) =
1√
2π

∫ ∞

−∞
φ(x)e−iωxdx.

With the Poisson formula one can show that the family of functions

{φ(x− k) : k = 0,±1,±2, · · · }

is orthonormal if and only if

∞∑

k=−∞
|φ̂(ω + 2πk)|2 = const.
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Prove or disprove this claim. If the claim is true, what would be the value of
“const.”

Exercise 3.1.6 (PHASE SHIFTED POISSON FORMULAS)
Using the Fourier transform notation

F (n) =

∫ ∞

−∞
e−intf(t) dt ,

prove or disprove that

∞∑

m=−∞
f ([2m+ 1]π) =

1

2π

∞∑

n=−∞
(−1)nF (n)

∞∑

n=−∞
F (n+

1

2
) = 2π

∞∑

m=−∞
(−1)mf(2mπ)

1

2π

∞∑

n=−∞
(−1)neinu =

∞∑

m=−∞
δ (u− [2m+ 1]π) ,

and more generally that

∞∑

m=−∞
f

(
[2m+ 1]π

a

)

=
a

2π

∞∑

n=−∞
(−1)nF (na)

1

2π

∞∑

n=−∞
(−1)neinua =

∞∑

m=−∞

1

|a|δ
(

u− [2m+ 1]π

a

)

.

3.1.4 Gibbs’ Phenomenon

The Fourier series representation is a least squares fit of a linear combination
of orthonormal functions to a given function, even if it has a finite number of
discontinuities. However, something peculiar happens, if, using least squares
partial sums, one attempts to compute the value of the function near one of its
discontinuities. This peculiarity, now known as the Gibbs phenomenon, was
highlighted in 1848 by an obscure mathematician, Henry Wilbraham. Fifty
years later, unfamiliar with that work, the experimental physicist Albert
A. Michelson, complained2 about the fact that the value of the function

2A.A. Michelson, letter to the editor, Nature 58, 1898, p544-545. The driving force
behind this letter came from observation. J.F. James explains: “Michelson and Stratton
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represented by the bracketed sum in Eq.(3.37), when evaluated at x = kπ
N

equals kπ. The source of his dismay was that the graph of the partial sum
is therefore

SN(x) =
1

2
+

2

π
Nx,

which easily overshoots the values of f(t) as given by Eq.(3.36) near t = 0.

Motivated by Michelson’s observations, the physicist Willard Gibbs re-
discovered Wilbraham’s peculiarity and drew attention to the distinction
between the limit of the graphs of the partial sums of the Fourier series (see
Eq.(3.37) and Figure 3.7 below) as compared to the graph of the function
that is the limit of the partial sum of the Fourier series (see Eq.(3.36) below).

Figure 3.7 shows the graph of an attempt to approximate the unit step
function by means of a partial sum with 2N + 1 = 41 terms. It is evident
that that the partial sum, SN(x), in its attempt to approximate the function’s
discontinuity, overshoots its values by well defined amounts on both sides of
the discontinuity3. This overshoot does not go away asN increases. However,
its width decreases and makes no difference in the infinite limit of the least
squares approximation.

Let us make these statements quantitative by calculating the magnitude
of this overshoot.

designed a mechanical Fourier synthesizer, in which a pen position was controlled by 80
springs pulling together against a master-spring, each controlled by 80 gear-wheels which
turned at relative rates of 1/80, 2/80, 3/80, · · · 79/80 and 80/80 turns per turn of a crank
handle. The synthesizer could have the springs tensions set to represent 80 amplitudes of
the Fourier coefficients and the pen position gave the sum of the series. As the operator
turned the crank-handle a strip of paper moved uniformly beneath the pen and the pen
drew the graph on it, reproducing to Michelson’s mystification and dismay, not a square-
wave as planned, but showing the Gibbs’ phenomenon. Michelson assumed, wrongly, that
mechanical short comings were the cause.

The machine itself [see the photograph in Figure 3.6, which can also be found in A

Student’s Guide to Fourier Transforms with Applications in Physics and Engineering by
J.F. James (Cambridge University Press, 2002)], a marvel of its period, was constructed
by Gaertner & Co. of Chicago in 1898. It now languishes in the archives of the South
Kensington Science Museum”.

3Such an overshoot resembles the diffracted amplitude profile in the shadow region of
a sharp-edged screen illuminated by monochromatic radiation.
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Figure 3.6: The original (1898) “Harmonic Integrator” designed by Michelson
and Stratton. Its behaviour exhibited the Gibb’s phenomenon in Figure 3.7 .
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Figure 3.7: Graph of the N th partial Fourier sum SN(x) for the unit step
function.



3.1. THE DIRICHLET KERNEL 133

We start with the shifted representation of the partial sum Eq.(3.19),

SN(x) =

∫ π

−π
f(t)δN(t− x)dt .

The overshoot, we suspect, happens where the function is discontinuous.
Without loss of generality we assume that this happens at t = 0. Thus
one must investigate how SN(x) behaves in the neighborhoods of this point:
−π < x < π. By an appropriate change of integration variables one obtains

SN(x) =

∫ 0

−π−x
f(u+ x)δN(u)du+

∫ π−x

0

f(u+ x)δN(u)du

=

∫ π+x

0

f(x− u)δN(u)du+
∫ π−x

0

f(u+ x)δN(u)du ,

where one uses δN(−u) = δN(u) to obtain the second equality. The fact that
f(t) is discontinuous at t = 0 implies that its explicit form is

f(t) =

{
fL(t) −π < t < 0
fR(t) 0 < t < π

This induces a corresponding decomposition of the integral representation
for SN :

SN(x) =

∫ x

0

fR(x− u)δN(u)du
︸ ︷︷ ︸

©1

+

∫ π+x

x

fL(x− u)δN(u)du
︸ ︷︷ ︸

©2

+

∫ π−x

0

fR(x+ u)δN(u)du

︸ ︷︷ ︸

©3

Instead of keeping x fixed as N → ∞, one now inquires about the value of
SN(x) as N →∞, but lets x→ 0 simultaneously by setting

x =
π

2N + 1

while going to the limit.
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The second integral is is

©2 =
∫ π+x

x

fL(x− u)δN(u)du

=

∫ π+x

x

fL(x− u)− fL(x−)
2π sin u

2
︸ ︷︷ ︸

GL(u)

sin

(

(N +
1

2
)u

)

du

+ fL(x
−)

∫ π+x

x

δN(u)du .

The function GL(u) vanishes at u = 0 where GL(0) = f ′
L(x

−), because f is
assumed to have a left-sided derivative there. Consequently, upon setting
x = π

2n+1
, using the fact that

∫ π

0
δ(u)du = 1

2
, one finds with the help of the

Riemann-Legesgue lemma that

lim
N→∞

©2 = 0 +
fL(0

−)

2
. (3.33)

The same typen of reasoning yields

lim
N→∞

©3 = 0 +
fR(0

+)

2
. (3.34)

The limit of the first integral ©1 is evaluated by introducing the integratioin
variable

v =

(

N +
1

2

)

u

Consequently,

©1 =
∫ x(N+ 1

2)

0

fR

(

x− v

N + 1/2

)
sin v

2π sin v
2(N+1/2)

dv

N + 1/2
.

Setting

x =
π

2(N + 1/2)

one finds

lim
N→∞

©1 =
∫ π

2

0

fR(0
+)

v

πv
dv

=
fR(0

+)

2
× 1.179 (3.35)
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Combining Eqs.(3.33), (3.34), and (3.35), one obtains

lim
N→∞

SN

(
π

2N + 1

)

= lim
N→∞

{©2 +©3 +©1}

=
fL(0

−) + fR(0
+)

2
+
fR(0

+)

2
× 1.179

Thus, added onto the function value halfway along the discontinuity, the
Fourier series representation adds an additional amount which is 118% of
the remaining part of that discontinuity. Figure 3.7 illustrates the overshoot
for the unit step function

f(t) =

{
fL(t) = 0 −π < t < 0
fR(t) = 1 0 < t < π

(3.36)

The graph of its N = 41 partial Fourier series (a pure sine series),

SN(x) =
1

2
+

2

π

(

sin x+
sin 3x

3
+

sin 5x

5
+ · · · sinNx

N

)

(3.37)

is exhibited in this figure. There one can see the calculate value of Gibbs’
18 % overshoot numerically.

3.2 The Dirac Delta Function

Having already used the concept of a Dirac’s “delta function” several times,
we shall now introduce it in a way which lets us see how this concept fits into
the familiar realm of functions and integrals.
Definition: Let δα(x) be a set of α-parameterized functions with the follow-
ing properties: for any “well-behaved” (in a sense which depends upon the
context) function

1. lim
α→0

∫∞
−∞ f(x)δα(x) dx = f(0)

2. (a) lim
α→0

∫ −ε
−∞ f(x)δα(x) dx = 0

(b) lim
α→0

∫∞
ε
f(x)δα(x) dx = 0

for all ε > 0.
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Then Dirac’s “delta function” is a linear functional from the vector space of
continuous functions into the reals,

δ(x) : C0 −→ R ,

defined by

δ(x) : f ❀

∫ ∞

−∞
f(x)δ(x) dx ≡ lim

α→0

∫ ∞

−∞
f(x)δα(x) dx (= f(0))

(3.38)
or

“δ(x) = lim
α→0

δα(x)” .

Remark 1. We have put the last equation in quotes because, strictly speak-
ing, δ(x) is only defined when integrated against a “well-behaved” function.
In other words, the frequently quoted definition “this function equals zero
everywhere, except at x = 0 where it is infinite so that its integral is one”
is in conflict with the classical definition of a function and integral. Indeed,
δ(x) = 0 ∀ x 6= 0 and lim

ε→0

∫ ε

−ε δ(x) dx 6= 0 violates the classical definition of a

function.
Remark 2. Equations (2) in the definition do not imply that

lim
α→0

δα(x
′ − x) = 0 for x′ 6= x .

Example 4 (below) is an instance.
It is easy to come up with examples of parametrized functions that give

rise to δ(x).

1. The Impulse Function

δα(x) ≡







1

α
|x| ≤ α

2

0 |x| > α

2

2. The Gaussian function

δα(x) ≡
1

α
√
π
e−x

2/α2
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3. The “Lorentz line” function

δα(x) =
1

π

α

x2 + α2

4. The sinc function

δα(x) =
sin π

α
x

πx
≡ 1

α
sinc

π

α
x (3.39)

All of them satisfy

(a)
∫∞
−∞ δα(x) dx = 1 ∀α > 0.

(b) lim
α→0

∫∞
−∞ f(x)δα(x) dx = f(0).

(c) Examples 1-3 are characterized by lim
α→0

δα(x) = 0 whenever x 6= 0.

However, for example 4 one has lim
α→0

δα(x) 6= 0 whenever x 6= 0.

Exercise 3.2.1 (DIRAC DELTA AS A LIMITING WAVE PACKET)
Show that

lim
w→∞

sin 2πwx

πx
, w > 0

is a representation of the Dirac δ-function.
Discussion:

Let

δw(x) =
sin 2πwx

πx

and let f(x) be a function which is piecewise continuous on [−a, a], in par-
ticular,

lim
x→0+

f(x) = f(0+)

lim
x→0−

f(x) = f(0−)

To show that

lim
w→∞

δw(x) = δ(x) (Dirac delta function)

one must show that

lim
w→∞

∫ a

−a
δw(x)f(x) dx =

1

2
f(0+) +

1

2
f(0−)
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One way of doing this is to follow the approach used to obtain an analogous
result in the process of establishing the validity of the Fourier series theorem,
and then use the result that

∫ ∞

0

sin y

y
dy =

π

2

Exercise 3.2.2 (DERIVATIVE OF THE DIRAC DELTA)
Consider the integral

I =

∫ ∞

−∞
δ(x+ a)f(x) dx .

Assuming that f(x) is nearly linear so that

f(−a) = f(0)− af ′(0) + (neglegible terms), (3.40)

show that I can be evaluated by means of the formal equation

δ(x+ a) = δ(x) + a δ′(x) , (3.41)

where δ(x) and δ(x+ a) are defined by Eq.(3.38) and δ′(x) is defined by

δ′(x) :
∫ ∞

−∞
δ′(x)f(x) dx ≡ lim

α→0

∫ ∞

−∞
δ′α(x)f(x) dx . (3.42)

Comment: For obvious reasons it is invalid to claim

δα(x+ a) = δα(x) + a δ′α(x)

without referring to test functions that can be approximated by Eq.(3.40).

3.3 The Fourier Integral

Question: What aspect of nature is responsible for the pervasive importance
of Fourier analysis?
Answer: Translation invariance. Suppose a linear system is invariant under
time or space translations. Then that system’s behaviour becomes partic-
ularly perspicuous, physically and mathematically, when it is described in
terms of translation eigenfunctions, i.e., in terms of exponentials which os-
cillate under time or space translations. (Nota bene: real exponentials are
also translation eigenfunctions, but they won’t do because they blow up at
−∞ or +∞.) In other words, it is the translation invariance in nature which
makes Fourier analysis possible and profitable.
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3.3.1 Transition from Fourier Series to Fourier Integral

We now extend the domain of definition of a linear system from a finite inter-
val, say (−c, c), to the infinite interval (−∞,∞). We shall do this by means
of a line of arguments which is heuristic (“serving to discover or stimulate
investigation”). Even though it pretty much ignores issues of convergence, it
has the advantage of being physically precise. It highlights the relation be-
tween the discrete Fourier spectrum of a finite system with finitely separated
walls and its limiting form as the system becomes arbitrarily large where the
walls have arbitrarily large separation. The process of arriving at this limit
will be revisited in the more general context of the spectral representation of
the unit impulse response (“Green’s function” in Section 4.12.3 on page 291)
for an infinite string as the limit of a finite one (Section 4.13 on page 298).

By contrast, the advantage of formulating Fourier analysis in mathemat-
ically more precise terms lies in that it highlights unambiguously the nature
of the functions that lend themselves to being Fourier analyzed.

We start with the complete set of basis functions orthonormal on the
interval [−c, c],

{

einπx/c√
2c

: n = 0,±1, . . .
}

.

The Fourier series for f ∈ L2(−c, c) is

1

2
[f(x+) + f(x−)] = lim

N→∞

N∑

n=−N

[
∫ c

−c
f(t)

e−inπt/c√
2c

dt

]

︸ ︷︷ ︸

cn

einπx/c√
2c

.

If f is continuous at x, then

1

2
[f(x+) + f(x−)] = f(x) .

Second, we let

∆k =
π

c

and, after rearranging some factors, obtain

f(x) =
∞∑

n=−∞
∆k

ein△kx√
2π

∫ c

−c

e−in△kt√
2π

f(t)dt . (3.43)
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Third, by introducing the points

kn = n△k, n = 0,±1,±2, · · · ,

we partition the real k-axis into equally spaced subintervals of size△k = π/c.
We introduce these points into the Fourier sum, Eq.(3.43),

f(x) = lim
N→∞

N∑

n=−N
∆k

eiknx√
2π

∫ c

−c

e−iknt√
2π

f(t)dt (3.44)

≡
∞∑

n=−∞
∆kgc(kn, x) (3.45)

Note that this Fourier sum is, in fact, a Riemann sum, a precursor (i.e.
approximation) to the definite integral

f(x) ≈ lim
R→∞

∫ R

−R
dk
eikx√
2π

∫ c

−c

e−ikt√
2π

f(t)dt (3.46)

over the limit of the interval [−R,R] as

R ≡ kN ≡ N△k →∞ .

The fourth and final step is to let c→∞ in order to obtain the result

f(x) =

∫ ∞

−∞
dk

eikx√
2π

∫ ∞

−∞

e−ikt√
2π
f(t) dt . (3.47)

This result is Fourier’s Integral Theorem.

3.3.2 The Fourier Integral Theorem

The mathematically more precise statement of this theorem is as follows:

Theorem 3.3.1 (Fourier’s Integral Theorem)
Given:(i) f is function piecewise continuous on every bounded closed interval of

the x-axis.

(ii) At each point x the function f has both a left derivative f ′
L(x) and a

right derivative f ′
R(x),
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(iii) f ∈ L1(−∞,∞), i.e. f is absolutely integrable along the x-axis:

∫ ∞

−∞
|f(x)|dx <∞

Conclusion:

lim
K→∞

∫ K

−K
dk

eikx√
2π

︸ ︷︷ ︸
∫ ∞

−∞
dk

eikx√
2π

∫ ∞

−∞

e−ikt√
2π
f(t)dt

︸ ︷︷ ︸

f̂(k)

=
1

2

[
f(x−) + f(x+)

]
(3.48)

Comments:

1. This result can be restated as a Fourier transform pair,

f̂(k) =

∫ ∞

−∞

e−ikt√
2π
f(t)dt (3.49)

f(x) =

∫ ∞

−∞

eikx√
2π
f̂(k)dk (3.50)

whenever f is continuous.

2. The exponentials in Eqs.(3.49) and (3.50) give rise to a generalized
completeness relation. By interchanging integration order in Eq.(3.48)
and letting K = 1/α, one has

f(x) = lim
α→0

∫ ∞

−∞







∫ 1/α

−1/α

dk
eik(x−t)

2π
︸ ︷︷ ︸

δα(x− t)







f(t) dt . (3.51)

This equation holds for all continuous functions f ∈ L1(−∞,∞). Thus
δα(x− t) is another delta convergent sequence:

δ(x− t) = lim
α→0

δα(x− t) =
∫ ∞

−∞

eik(x−t)

2π
dk . (3.52)
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It is of course understood that one first do the integration over t before
taking to the indicated limit.
Either one of the two equations, Eq.(3.51) or (3.52), is a generalized
completeness relation for the set of “wave train” functions,

{
eikx√
2π

: −∞ < k <∞
}

.

However, these functions are not normalizable, i.e., they 6∈ L2(−∞,∞).
Instead, as Eq.(3.52) implies, they are said to be “δ-function normal-
ized”.

Proof of the Fourier integral theorem:
The proof of the Fourier integral theorem presupposes that the Fourier

amplitude f̂(k) is well-defined for each k. That this is indeed the case follows
from the finiteness of |f̂(k)|:

|f̂(k)| ≤
∫ ∞

−∞
|e

−ikt
√
2π
f(t)|dt 1√

2π

∫ ∞

−∞
|f(t)|dt <∞ .

The last inequality is an expression of the fact that f ∈ L1(−∞,∞). Thus
f̂(k) is well-defined indeed.

The proof of the Fourier integral theorem runs parallel to the Fourier
series theorem on page 124. We shall show that

lim
K→∞

SK(x) =
1

2

[
f(x−) + f(x+)

]
,

where

SK(x) =

∫ ∞

−∞
dt f(t)

∫ K

−K

eik(x−t)

2π
dk

=

∫ ∞

−∞
dt f(t)

eik(x−t)

2πi(x− t)

∣
∣
∣
∣

K

−K

=

∫ ∞

−∞
dt f(t)

sinK(x− t)
π(x− t)

=

∫ x

−∞
f(t)

sinK(x− t)
π(x− t) dt

︸ ︷︷ ︸

JK(x)

+

∫ ∞

x

f(t)
sinK(x− t)
π(x− t) dt

︸ ︷︷ ︸

IK(x)
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The evaluation of the integrals is done by shifting the integration variable.
For the second integral one obtains

IK(x) =

∫ ∞

0

f(x+ u)
sinKu

πu
du

=

∫ ∞

0

f(x+ u)− f(x+)
πu

sinKudu+
f(x+)

π

∫ ∞

0

sinKu

u
du .

Using the fact that
∫ ∞

0

sinKu

u
du =

π

2
,

and the fact that
f(x+ u)− f(x+)

πu
≡ G(u)

is piecewise continuous everywhere, including at u = 0, where

G(0) ≡ lim
u→0+

f(x+ u)− f(x+)
πu

= f ′
R(x)

is the right hand derivative of f at x, one finds that

lim
K→∞

IK(x) = lim
K→∞

{∫ ∞

0

G(u) sinKudu+
f(x+)

π

π

2

}

= 0 +
1

2
f(x+)

with the help the Riemann-Lebesgue lemma.

A similar analysis yields

lim
K→∞

JK(x) =
1

2
f(x−)

The sum of the last two equations yields

lim
K→∞

S(K) = lim
K→∞

[JK(x) + IK(x)] =
1

2

[
f(x−) + f(x+)

]
,

This validates Fourier’s integral theorem.
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3.3.3 The Fourier Transform as a Unitary Transforma-
tion

The Fourier integral theorem establishes a quantitative relation between all
L1(−∞,∞) functions and their spectral properties. Question: Can this also
be done for signals of finite energy, i.e. L2(−∞,∞) functions:

∫ ∞

−∞
|f(t)|2dt <∞ ?

Given that the physical world is perfect, i.e. fully real and hence worthy of
the most painstaking study, the Swiss mathematician Michel Plancherel rose
to the challenge by mathematizing the causal relation between the temporal
and the spectral properties of these finite energy signals. The result was his
famous theorem, which is the L2 version of Fourier’s L1 integral theorem:

Theorem 3.3.2 (Plancherel’s Theorem)
Given:
A function f(x) which is square integrable over (−∞,∞): f ∈ L2(−∞,∞).
Conclusion:
There exists a function f̂(k) belonging to L2(∞,∞) such that

1.

lim
σ→∞

∫ ∞

−∞

∣
∣
∣
∣
f̂(k)−

∫ σ

−σ

e−ikx√
2π
f(x) dx

∣
∣
∣
∣

2

dk = 0

2. ∫ ∞

−∞

∣
∣
∣f̂(k)

∣
∣
∣

2

dk =

∫ ∞

−∞
|f(x)|2 dx

3.

lim
σ→∞

∫ ∞

−∞

∣
∣
∣
∣
f(x)−

∫ σ

−σ
f̂(k)

eikx√
2π

dk

∣
∣
∣
∣

2

dx = 0

The function f̂(k) is called the Fourier transform of f(x). It is deter-
mined except over a set of measure zero.

Furthermore, in case

h(k) =

∫ ∞

−∞

e−ikx√
2π
f(x) dx
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exists, one has

f̂(k) = h(k)

almost everywhere.

An important corollary of this theorem is

Theorem 3.3.3 (Parseval’s Theorem)
Given:

1. Let f1(x) and f2(x) be square integrable: f1, f2 ∈ L2(−∞,∞).

2. Let f̂1(k) and f̂2(k) be their respective Fourier transforms.

Conclusion:

1.

∫ ∞

−∞
f̂1(k)f̂2(k) dk =

∫ ∞

−∞
f1(x)f2(−x) dx, (3.53)

or equivalently

∫ ∞

−∞
f̂1(k)f̂2(k) dk =

∫ ∞

−∞
f1(x)f2(x) dx (3.54)

2. In particular,

∫ ∞

−∞
f̂1(k)f̂2(k)e

ikxdk =

∫ ∞

−∞
f1(y)f2(x− y) dx.

Thus, if f̂1(k)f̂2(k) belongs to L
2(−∞,∞) as well as both of its factors,

it is the Fourier transform of

1√
2π

∫ ∞

−∞
f1(y)f2(x− y) dx. (3.55)

This will also be true whenever f1, f2 and (3.55) all belong to L2(−∞,∞).
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Fourier’s integral theorem expresses a linear transformation, say F , when
applied to the space of square integrable functions. From this perspective
one has

L2(−∞,∞)
F−→ L2(−∞,∞)

f(t) ∼❀ F [f ](k) =
∫ ∞

−∞

e−ikt√
2π
f(t)dt ≡ f̂(k) . (3.56)

Furthermore, this transformation is one-to-one because Fourier’s theorem
says that its inverse is given by

L2(−∞,∞)
F−1

−→ L2(−∞,∞)

f̂(k) ∼❀ F−1[f̂ ](x) =

∫ ∞

−∞

eikx√
2π
f̂(k)dk ≡ f(x) . (3.57)

That F maps square integrable functions into square integrable functions is
verified by the following computation, which gives rise to Parseval’s identity:
For f ∈ L2(−∞,∞) we have

∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
f(x)f(x)dx

=

∫ ∞

−∞
f(x)

[∫ ∞

−∞
f̂(k′)

eik
′x

√
2π
dk′
]

dx

=

∫ ∞

−∞
f̂(k′)

[∫ ∞

−∞

e−ik′x√
2π

f(x)dx

]

dk′

=

∫ ∞

−∞
f̂(k′)f̂(k′)dk′

=

∫ ∞

−∞
|f̂(k)|2dk .

Thus we obtain Parseval’s identity (= “completeness relation”, see Eq.(2.17)
on page 85). The only proviso is (a) that the function f be square-inegrable
and (b) that its Fourier transform f̂ be given by the Fourier transform inte-
gral.
Remark 1: The fact that the Fourier transform is a one-to-one linear trans-
formation from the linear space L2(−∞,∞) to the linear space L2(−∞,∞)
is summarized by saying that the Fourier transform is an “isomorphism”.
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Fourier
domain

Spatial
domain

Fourier
transform

Figure 3.8: The Fourier transform is an isometry between L2(−∞,∞), the
Hilbert space of square integrable functions on the spatial domain, and
L2(−∞,∞), the Hilbert space of square integrable functions on the Fourier
domain.

Remark 2: The line of reasoning leading to Parseval’s identity also leads to

〈f, g〉 ≡
∫ ∞

−∞
f(x)g(x)dx =

∫ ∞

−∞
f̂(k)ĝ(k)dk ≡ 〈f̂ , ĝ〉

whenever f, g ∈ L2(−∞,∞).
Remark 3: The above two remarks imply that the Fourier transform is a
unitary transformation in L2(−∞,∞). Unitary transformations are “isome-
tries” because they preserve lengths and inner products. One says, therefore,
that the space of functions defined on the spatial domain is “isometric” to
the space of functions defined on the Fourier domain. Thus the Fourier trans-
form operator is a linear isometric mapping. This fact is depicted by Figure
3.8

Note, however, that even though the Fourier transform and its inverse,

f(x) =

∫ ∞

−∞
f(x′)δ(x′ − x)dx′ =

∫ ∞

−∞
f̂(k)

eikx√
2π
dk , (3.58)

take square integrable functions into square integrable functions, the “basis
elements” eikx are not square integrable. Instead, they are “Dirac delta
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function” normalized, i.e.,
∫ ∞

−∞

eikx√
2π

e−ikx√
2π
dk = δ(x− x) .

Thus they do not belong to L2(−∞,∞). Nevertheless linear combinations
such as Eq.(3.58) are square integrable, and that is what counts.

Exercise 3.3.1 (THE FOURIER TRANSFORM: ITS EIGENVALUES)
The Fourier transform, call it F , is a linear one-to-one operator from the space of
square-integrable functions onto itself. Indeed,

F : L2(−∞,∞) → L2(−∞,∞)

f(x) ∼→ F [f ](k) ≡ 1√
2π

∫ ∞

−∞
e−ikxf(x) dx ≡ f̂(k)

Note that here x and k are viewed as points on the common domain (−∞,∞) of
f and f̂ .

(a) Consider the linear operator F2 and its eigenvalue equation

F2f = λf.

What are the eigenvalues and the eigenfunctions of F2?

(b) Identify the operator F4? What are its eigenvalues?

(c) What are the eigenvalues of F?
Exercise 3.3.2 (THE FOURIER TRANSFORM: ITS EIGENVECTORS)
Recall that the Fourier transform F is a linear one-to-one transformation from
L2(−∞,∞) onto itself.
Let φ be an element of L2(−∞,∞).
Let φ̂ = Fφ, the Fourier transform of φ, be defined by

φ̂(p) =

∫ ∞

−∞

e−ipx√
2π

φ(x)dx p ∈ (−∞,∞).

It is clear that

φ, Fφ, F2φ ≡ F(Fφ), F3φ ≡ F(F2φ), F4φ ≡ F(F3φ), · · ·
are square-integable functions, i.e. elements of L2(−∞,∞).
Consider the SUBSPACE W ⊂ L2(−∞,∞) spanned by these vectors, namely

W = span{φ,Fφ,F2φ,F3φ,F4φ, · · · } ⊂ L2(−∞,∞).
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(a) Show that W is finite dimensional.
What is dimW?
(Hint: Compute F2φ(x),F3φ(x), etc. in terms of φ(x), φ̂(x))

(b) Exhibit a basis for W .

(c) It is evident that F is a (unitary) transformation on W .
Find the representation matrix of F , [F ]B, relative to the basis B found in
part b).

(d) Find the secular determinant, the eigenvalues and the corresponding eigen-
vectors of [F ]B.

(e) For W , exhibit an alternative basis which consists entirely of eigenvectors of
F , each one labelled by its respective eigenvalue.

(f) What can you say about the eigenvalues of F viewed as a transformation on
L2(−∞,∞) as compared to [F ]B which acts on a finite-dimensional vector
space?

Exercise 3.3.3 (EQUIVALENT WIDTHS)
Suppose we define for a square-integrable function f(t) and its Fourier transform

f̂(ω) =

∫ ∞

−∞

e−iωt√
2π

f(t) dt

the equivalent width as

∆t =

∣
∣
∣
∣
∣

∫∞
−∞ f(t) dt

f(0)

∣
∣
∣
∣
∣
,

and the equivalent Fourier width as

∆ω =

∣
∣
∣
∣
∣

∫∞
−∞ f̂(ω) dω

f̂(0)

∣
∣
∣
∣
∣
.

(a) Show that
∆t∆ω = const.

is independent of the function f , and determine the value of this const.

(b) Determine the equivalent width and the equivalent Fourier width for the
unnormalized Gaussian

f(t) = e−x
2/2b2

and compare them with its full width as defined by its inflection points.
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Exercise 3.3.4 (AUTO CORRELATION SPECTRUM)
Consider the auto-correlation h 4

h(y) =

∫ ∞

−∞
f(x)f(x− y)dx (3.59)

of the function f whose Fourier transform is

f̂(k) =

∫ ∞

−∞

e−ikx√
2π

f(x)dx.

Compute the Fourier transform of the auto correlation function and thereby show
that it equals the “spectral intensity” (a.k.a. power spectrum) of f whenever f is
a real-valued function. This equality is known as the Wiener-Khintchine formula.

Exercise 3.3.5 (MATCHED FILTER)
Consider a linear time-invariant system. Assume its response to a specific driving
force, say f0(t), can be written as

∫ ∞

−∞
g(T − t)f0(t)dt ≡ h(T ).

Here g(T −t), the “unit impulse response’ (a.k.a. “Green’s function”, as developed
in CHAPTER 4 and used in Section 4.4.1), is a function which characterizes the
system completely. The system is said to be matched to the particular forcing
function f0 if

g(T ) = f0(−T ).
(Here the bar means complex conjugate.) In that case the system response to a
generic forcing function f(t) is

∫ ∞

−∞
f0(t− T )f(t)dt ≡ h(T ).

A system characterized by such a unit impulse response is called a matched filter

because its design is matched to the particular signal f0(t). The response h(T ) is
called the cross correlation between f and f0.

(a) Compute the total energy

∫ ∞

−∞
|h(T )|2dT

4Not to be confused with the convolution integral Eq.(3.68) on page 156
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of the cross correlation h(T ) in terms of the Fourier amplitudes

f̂0(ω) =

∫ ∞

−∞

e−iωt√
2π

f0(t)dt

and

f̂(ω) =

∫ ∞

−∞

e−iωt√
2π

f(t)dt.

(b) Consider the family of forcing functions

{f0(t), f1(t), · · · , fN (t)}

and the corresponding family of normalized cross correlations (i.e. the cor-
responding responses of the system)

hk(T ) =

∫∞
−∞ f0(t− T )fk(t)dt
[∫∞

−∞ |fk(t)|2dt
]1/2

k = 0, 1, · · · , N

Show that

(i) h0(T ) is the peak intensity, i.e., that

|hk(T )|2 ≤ |h0(T )|2 k = 0, 1, · · ·
(Nota bene: The function h0(T ) corresponding to f0(t) is called the
auto correlation function of f0(t)). Also show that

(ii) equality holds if the forcing function fk(t) has the form

fk(t) = κf0(T ) κ = constant

Lecture 22

3.3.4 Fourier Transform via Parseval’s Relation

The Fourier transform is so robust that it can also be applied to functions
which are not square-integrable. In fact, it can even be applied to generalized
functions (“distributions”), i.e. to entities which are defined by the fact that
they are linear functionals on the linear space of the familiar locally integrable
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functions. If f(x) is such a function, then a generalized function, say g(x),
is defined by the fact that

∫ ∞

−∞
f(x)g(x)dx ≡ 〈f, g〉 <∞

is finite. The Dirac delta function is an example of a generalized function
because ∫ ∞

−∞
f(x)δ(x− x′)dx ≡ f(x′) <∞ .

Recall that whenever one has square-integrable functions f and g (whose
Fourier transforms are f̂ and ĝ) then the reasoning which lead to Parseval’s
identity leads to

〈f, g〉 = 〈f̂ , ĝ〉
One now turns this relation around and uses it to define the Fourier transform
ĝ of a given generalized function g. In other words, start with the set of locally
integrable functions f̂(k) and their inverse Fourier transforms

f(x) =

∫ ∞

−∞

eikx√
2π
f̂(k)dk .

Next define the Fourier transform of g as follows: Let it be that generalized
function ĝ which is determined by the compatibility (between functions and
their transforms) requirement that

〈f̂ , ĝ〉 = 〈f, g〉 (3.60)

hold for all locally integrable functions f̂ . This equality is now our funda-
mental requirement. It determines ĝ uniquely. Indeed, for every f̂ one readily
determines f and hence 〈f, g〉. This implies that Eq.(3.60) is the equation
which defines the linear functional ĝ, the sought-after Fourier transform of
g. This linear functional is unique and is denoted by

ĝ(k) =

∫ ∞

−∞

e−ikx√
2π
g(x)dx ,

even though g(x) may not be integrable in the standard sense.
Example 1(Fourier transform of a “ticking clock” signal)
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Consider the generalized function

g(x) =
∞∑

n=−∞
δ(x− n) ,

the train of evenly spaced delta function impulses. What is its Fourier trans-
form?

We know that for any continuous function f̂ ∈ L2(−∞,∞) one can de-
termine its inverse Fourier transform f and hence

〈f, g〉 ≡
∫ ∞

−∞
f(x)

∞∑

n=−∞
δ(x− n) dx =

∞∑

n=−∞
f(n) <∞ . (3.61)

The Fourier transform of g is determined by the requirement that for all
appropriate f̂

∫ ∞

−∞
f̂(k)ĝ(k)dk

1
= 〈f, g〉

2
=

∞∑

n=−∞
f(n)

3
=
√
2π

∞∑

m=−∞
f̂(2πm)

4
=

∫ ∞

−∞
f̂(k)

∞∑

m=−∞

√
2π δ(k − 2πm) dk .

Equality 1 is the fundamental consistency relation, Eq.(3.60); 2 holds because
of Eq.(3.61); 3 holds because of Poisson’s sum formula, Eq.(3.25) on page 127,

∞∑

n=−∞
f(n) =

∞∑

m=−∞

√
2πf̂(2πm)

with f̂ =
√
2πF :

f̂(k) =

∫ ∞

−∞

e−ikx√
2π
f(x)dx ; (3.62)

4 takes advantage of the sampling property of the Dirac delta function δ(k−
2πm). Thus one finds that

∫ ∞

−∞
f̂(k)ĝ(k)dk =

∫ ∞

−∞
f̂(k)

∞∑

m=−∞

√
2π δ(k − 2πm) dk
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holds for all integrable functions f̂(k). This fact is reexpressed by the state-
ment

ĝ(k) =
∞∑

m=−∞

√
2π δ(k − 2πm) .

This is the desired result. It says that the Fourier transform of a periodic
train of infinitely sharp pulses (with period ∆x = 1) is another periodic train
of pulses (with period ∆k = 2π) in the Fourier domain.
Example 2 (Fourier transform of a periodic function) Consider a periodic
function

g(x) = g(x+ a)

whose Fourier series representation is

g(x) =
∞∑

−∞
cn
ei2πnx/a√

a
, with cn =

∫ a

0

e−i2πnx/a√
a

g(x) dx .

What is its Fourier transform?
Note that for any integrable function f and its Fourier transform, Eq.(3.62),
one has

〈f, g〉 =
∞∑

−∞
cn

∫ ∞

−∞
f(x)

ei2πnx/a√
a

dx

=
∞∑

−∞
cn

√

2π

a
f̂

(
2πn

a

)

=

∫ ∞

−∞
f̂(k)

∞∑

−∞
cn

√

2π

a
δ(k − 2πn

a
) dk

Using the stipulated Parseval requirement,

〈f, g〉 = 〈f̂ , ĝ〉 ≡
∫ ∞

−∞
f̂(k)ĝ(k) dk ,

which holds for all functions f̂ , one sees that

ĝ(k) ≡ F [g] (k) =
∞∑

n=−∞
cn

√

2π

a
δ(k − n2π

a
)
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Thus we have the following result: The Fourier transform of a function
periodic on the given domain is a periodic train of Dirac delta functions on
the Fourier domain, each one weighted by the respective Fourier coefficient.

Conversely, the Fourier transform of a periodic train of weighted Dirac
delta functions is a periodic function.

What happens if all the weight are equal? In that case the periodic
function g(x) turn out to be a generalized function, namely

g(x) =
∞∑

n=−∞

ei2πnx/a√
a

(3.63)

=
√
a

∞∑

m=−∞
δ(x−ma) . (3.64)

The above Parseval-relation-based method for calculating the Fourier trans-
forms applies to periodic and generalized functions as well. Consequently,
one has

ĝ(k) ≡ F [g] (k) =
∞∑

n=−∞

√

2π

a
δ(k − n2π

a
) . (3.65)

What happens if one takes the Fourier transform again? Without much ado
one finds that the Fourier transform of the function ĝ is

F
[ ∞∑

n=−∞

√

2π

a
δ(x− n2π

a
)

]

(k) =
∞∑

m=−∞

e−i2πmk/a√
a

(3.66)

=
∞∑

n=−∞

√
a δ(k − na) . (3.67)

In other words, one recovers the original function g.

Exercise 3.3.6 (EIGENFUNCTIONS OF F2)
It is evident from Eqs.(3.67) and (3.64) that the function g is an eigenfunction
of the Fourier transform taken twice, i.e. of the operator F2, with eigenvalue
λ = +1. Are there any other such functions, and if so, characterize them by a
simple criterion.

Exercise 3.3.7 (FOURIER TRANSFORM: BASIC PROPERTIES)
Let ĝ(k) = F [g(x)] (k) and H(k) = F [h(x)] (k) be the Fourier transforms of g(x)
and h(x). Find
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(i) F [αg(x) + βh(x)] (k), where α and β are constants.

(ii) F [g(x− ξ)] (k)

(iii) F
[
eik0xg(x)

]
(k)

(iv) F [g(ax)] (k)

(v) F
[
dg(x)

dx

]

(k)

(vi) F [xg(x)] (k)

in terms of ĝ(k) and f̂(k).

3.3.5 Efficient Calculation: Fourier Transform via Con-
volution

Given the importance of the Fourier transforms of periodic functions, is there
not a computationally more efficient way of finding these transforms? The
answer is “yes”, and it hinges on the remarkable properties of the convolution
integral5

f ∗ g(x) =

∫ ∞

−∞
f(x− ξ)g(ξ) dξ (3.68)

=

∫ ∞

−∞
g(x− ξ)f(ξ) dξ

of the two functions f and g. Before identifying these properties we first
describe the mental process which leads to the graph of this integral:

(i) Take the graph of the function f(ξ) and flip it around the vertical axis
ξ = 0. This yields the graph of the new function f(−ξ).

(ii) Slide that flipped graph to the right by an amount x by letting ξ →
ξ − x, and thus obtain the graph of f(x− ξ).

(iii) Multiply this graph by the graph of g(ξ) to obtain the graph of the
product function f(x− ξ)g(ξ).

5Not to be confused with the auto-correlation integral, Eq.(3.59) on page 150.
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(iv) Find the area under this product function.

As one slides the flipped graph to the right, this area generates the graph of
f ∗ g(x).
Example 3 (Periodic train of Gaussians via convolution)

Consider the graph of the Gaussian

f(ξ) = e−(ξ−c)2/2b2 (3.69)

having full width 2b centered around ξ = c, and let

g(ξ) =
∞∑

n=−∞
δ(ξ − n) (3.70)

be a periodic train of Dirac delta functions. To form the convolution f ∗g(x),
flip the function f to obtain

f(−ξ) = e−(−ξ−c)2/2b2 ,

which is centered around ξ = −c, shift it to the right by an amount x to
obtain

f(x− ξ) = e−(x−ξ−c)2/2b2 ,

and finally do the integral

∫ ∞

−∞
f(x− ξ)

∞∑

n=−∞
δ(ξ − n) dξ =

∞∑

n=−∞
f(x− n)

=
∞∑

n=−∞
e−(x−n−c)2/2b2 .

This is a periodic train of Gaussians, and the period is ∆x = 1. This result
also illustrates how a periodic function, in our case

h(x) =
∞∑

n=−∞
f(ξ − n) ≡

∞∑

n=−∞
e−(x−n−c)2/2b2 ,

can be represented as the convolution

∞∑

n=−∞
f(x− n) = f ∗ g(x)
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Figure 3.9: Periodic train of Gaussian pulses obtained by convolving a single
Gaussian, on the very left, with a periodic train of Dirac delta functions,
whose infinite amplitudes are represented in this figure by the heavy dots.The
Fourier transform of the train of Gaussians is shown in Figure 3.10
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where f and g are given by Eqs.(3.69) and (3.70). The graph of this convo-
lution is the Gaussian train in Figure 3.9. Its Fourier transform, Figure 3.10
is calculated below using a fundamental property of the convolution integral.

Exercise 3.3.8 (PERIODIC FUNCTION AS A CONVOLUTION)
Show that any periodic function f(ξ) = f(ξ+a) is the convolution of a nonperiodic
function with a train of Dirac delta functions.

The convolution of two functions has several fundamental properties (com-
mutativity, associativity, distributivity), but its most appealing property is
that its Fourier transform is simply the product of the Fourier transforms of
the respective functions,

∫ ∞

−∞
f ∗ g(x)e

−ikx
√
2π

dx =

∫ ∞

−∞

∫ ∞

−∞
f(x− ξ)g(ξ) dξ e

−ikx
√
2π

dx

=
√
2πf̂(k)ĝ(k) (3.71)

This result can be an enormous time saver. Let us apply it to the problem
of finding the Fourier transform of h(x), the periodic train of Gaussians
considered in Example 3, but with c = 0, i.e. centered around the origin.
The calculation yields

f̂(k) =

∫ ∞

−∞
e−ξ

2/2b2 e
−ikξ
√
2π
dξ

= be−b
2k2/2 (3.72)

and

ĝ(k) =

∫ ∞

−∞

∞∑

n=−∞
δ(ξ − n)e

−ikξ
√
2π
dξ

=
∞∑

m=−∞

√
2πδ(k − 2πm) . (3.73)

It follows that the Fourier transform of that train yields

∫ ∞

−∞

∞∑

n=−∞
e−(x−n)2/2b2 e

−ikx

2π
dx = be−b

2k2/2

∞∑

m=−∞

√
2πδ(k − 2πm) .
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Figure 3.10 shows the real part of this transform. Study the relationship
between this figure and Figure 3.9 carefully. They highlight the archetypical
properties of the Fourier transform. To name a few:

• Local properties in the given domain get transformed into global prop-
erties in the Fourier domain.

• Jaggedness in the given domain gets transformed into broad spectral
behaviour in the Fourier domain.

• Narrow pulses get transformed into wide envelopes, and vice versa.

• Periodicity in the given domain gets transformed into equally spaced
(but in general nonperiodic) spectral lines in the Fourier domain.

And there are others.

The pulses that make up the periodic train of Gaussians, Fig. 3.9, have
no internal structure. Thus the natural question is: What is the Fourier
transform of a periodic train of pulses, each one made up of a finite number
of oscillations as in Fig. 3.11? The next example addresses this question.

Example 4 (Fourier transform of light from a mode-locked laser)

A mode-locked laser generates light in the form of a periodic train of pulses
of light. This periodicity is expressed in terms of the separation between
successive pulses, and each pulse is characterized by three properties:

1. pulse envelope,

2. optical (“carrier”) frequency and the

3. phase of the optical carrier vibrations relative to the pulse envelope.

The temporal amplitude profile of the the nth pulse is

fn(t) = e−(t−nT )2/2b2eiω0(t−nT )eiδn

The constant T is the separation between successive pulses. The first factor is
the pulse envelope, which we take to be a Gaussian of full width 2b centered
around time t = nT . The second factor expresses the oscillations of the
optical carrier whose frequency is ω0. The last factor expresses the phase
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FOURIER TRANSFORM OF A PERIODIC TRAIN OF GAUSSIANS

Line Spacing:             ∆ k = 2π

Full Envelope Width:   (2 / b) 2π = 40x2π

−−−− k / 2 π −−−−>

−
−

−
 R

E
A

L 
P

A
R

T
 o

f F
O

U
R

IE
R

 A
M

P
LI

T
U

D
E

 / 
b 

−
−

−
>

Figure 3.10: Set of equally spaced (here with ∆k = 2π) spectral lines result-
ing from the Fourier transform of the periodic train of Gaussians in Fig. 3.9.
The spectral envelope, here again a Gaussian, is the Fourier transform of one
of the identical pulses which make up the train.

shift of the optical carrier relative to the pulse envelope. The optical pulse
train is the sum

f(t) =
∞∑

n=−∞
e−(t−nT )2/2b2eiω0(t−nT )eiδn .

The width of the pulse envelope in lasers nowadays (2002) is less than 10
femtoseconds (=10−14 sec.). This corresponds to light travelling a distance
of less than three microns. Such a pulse width is achieved by the constructive
interference of more than a million longitudinal laser modes phase-locked to
oscillate coherently.

The pulse repetition rate for a phase-locked laser is determined by the
round trip travelling time inside the laser cavity with a partially silvered
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Figure 3.11: Periodic train of optical pulses emitted by a “mode-locked”
laser. In this figure the pulse separation is highly understated. In an actual
train the pulse separation is typically more than a million times the full width
of each pulse. In spite of this, the optical phase (relative to the Gaussian
envelope) shifts by a fixed and controllable amount from one pulse to the
next. In this figure that phase shift is zero: the optical oscillation amplitude
profile in each pulse is congruent to that in all the others.

mirror at one end. For a laser 1.5 meters long the pulses emerge therefore at
one end at a rate of 1/T=100 megaHertz, corresponding to a pulse separa-
tion of 3 meters of light travelling time between two pulses. In between two
such pulses there is no light, no electromagnetic energy whatsoever. The de-
structive interference of the above-mentioned million laser modes guarantees
it.

The pulses can therefore be pictured as micron-sized “light bullets” shot
out by the laser. Because of their small size these bullets have an enormous
amount of energy per unit volume, even for modestly powered lasers.
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Ordinarily the phase δn varies randomly from one pulse to the next. In
that case f is merely a train of pulses with incoherent phases. The Fourier
transform of such a train would be a correspondingly irregular superposition
of Fourier transforms. This superposition is exhibited in Figure 3.12
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Figure 3.12: Average of the Fourier spectra of 81 pulses of a train like that
in Fig. 3.11, but each pulser having random phase δn from one to the next.
Compare the Fourier spectrum in this figure with the one in Fig. 3.14 whose
pulse train is coherently phased (i.e. δn = 0) and of infinite length.

However, a recent discovery shows that light generated by a laser op-
erating in a “locked-mode” way can be made to produce pulses which are
phase coherent, even though they are separated by as much as three meters.
Indeed, experiments show that the phase δn increases by a constant amount
from one pulse to the next. Evidently the amplifying medium in the laser
must somehow “remember” the phase of the carrier oscillations from one
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emitted pulse to the next. Thus

δn = n∆φ .

where ∆φ is a constant as in Figure 3.13. In that case f is a periodic function,
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Figure 3.13: Overlay of two successive pulses with phase difference ∆φ = π/2.

f(t) =
∞∑

n=−∞
e−(t−nT )2/2b2eiω0(t−nT )ein∆φ (3.74)

=
∞∑

n=−∞
e−(t−nT )2/2b2eiω0tein(∆φ−ω0T ) .

Here

ω0T = (# of optical carrier cycles between adjacent pulses)× 2π

What is the Fourier spectrum of such a periodic train? The result is
depicted in Figure 3.14.
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The line of reasoning leading to this result is as follows: Observe that the
periodic train can be written as the convolution integral

f(t) =

∞∫

−∞

e−(t−ξ)2/2b2eiω0(t−ξ)
∞∑

n=−∞
ein∆φδ(ξ − nT ) dξ

≡ pulse ∗ combT (t; ∆φ)

where

pulse(t) ≡ e−t
2/2b2eiω0t

is a carrier amplitude modulated by a Gaussian, and

combT (t; ∆φ) ≡
∞∑

n=−∞
ein∆φδ(t− nT )

is a periodic train of linearly phased Dirac delta functions with fixed phase
difference ∆φ from one delta function to the next. The respective Fourier
transforms are

F [pulse](ω) =

∫ ∞

−∞
e−t

2/2b2eiω0t
e−iωt√
2π
dt

= be−(ω−ω0)2b2/2 , (3.75)

a Gaussian in frequency space centered around ω0, and, with the help of
Poisson’s sum formula, Eq.(3.31),

F [comb](ω) =

∫ ∞

−∞
combT (t; ∆φ)

e−iωt√
2π
dt

=
∞∑

n=−∞

ei(∆φ−ωT )n√
2π

=
∞∑

m=−∞

√
2πδ(ωT − 2πm−∆φ) . (3.76)

This is a periodic set of Dirac delta functions in the frequency domain, but
collectively shifted by the common amount ∆φ. The convolution theorem,
Eq.(3.71), implies that the Fourier transform of the train of laser pulses,
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Figure 3.14: Set of equally spaced spectral lines resulting from the Fourier
transform of the optical train of pulses in Fig. 3.11. The line spacings in
the figure have the common value ∆ω/2π = 1/T Hertz. For an actual laser
generated train the typical value is ∆ω/2π ∼108 Hertz, which is precisely the
rate at which energy pulses back and forth in a laser cavity of length ∼1.5
meters. For a laser which generates 10 femtosecond pulses, the Gaussian
spectral envelope encompasses ∼106 spectral lines instead of only the 20
depicted in this figure.

Eq.(3.74) is simply the product of Eqs.(3.75) and (3.76):

F [f ](ω) =

∫ ∞

−∞

e−iωt√
2π
f(t)dt

=
√
2πbe−(ω−ω0)2b2/2

︸ ︷︷ ︸

spectral envelope

∞∑

m=−∞
δ(ωT −∆φ− 2πm)

︸ ︷︷ ︸

spectral lines

(3.77)

=
√
2πbe−(ω−ω0)2b2/2

1

2πT

∞∑

m=−∞
δ

(
ω

2π
−m 1

T
− ∆φ

2π

1

T

)

(3.78)
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This is a discrete spectrum of equally spaced sharp spectral lines. The sep-
aration between them is

∆ω

2π
=

1

T
,

which is the pulse repetition rate.
From one pulse to the next there is a change in the optical phase relative

to the envelope. This phase change, ∆φ (exhibited in Figure 3.13) results in
all frequencies of the spectral lines under a pulse envelope being shifted by
the common amount

(fraction of a cycle)

(pulse)
︸ ︷︷ ︸

phase shift

pulse
× 1

2π

× (pulses)

(time)
︸ ︷︷ ︸

pulse repetition rate

=
∆φ

2π
× 1

T
︸ ︷︷ ︸

“frequency offset”

=
(cycles)

(time)

This frequency offset does not apply to the spectral envelope, which re-
mains fixed as one changes ∆φ. Instead, it applies only to the position of the
spectral lines, which get shifted by this frequency offset. This is illustrated
in Figure 3.15.

Finally note that, with light oscillating at its carrier frequency ω0, the
Gaussian envelope in Figure 3.14 is centered around the carrier frequency
ω = ω0 in the frequency domain. When ω0 = 0, Figs. 3.11 and 3.14 reduce
to Figs. 3.9 and 3.10 of Example 3.

Exercise 3.3.9 (FINITE TRAIN OF PULSES)
Find the Fourier spectrum of a finite train of identical coherent (δn = 0 for n =
0,±1, · · · ,±N) pulses of the kind shown in Fig. 3.11. Describe the result in terms
of a picture and a mathematical formula. Point out how the result differs from
Figs. 3.12 and 3.14.

Exercise 3.3.10 (FOURIER SERIES OF A TRAIN OF GAUSSIANS)
Verify that

f(t) =
∞∑

n=−∞
e−(t−nT )2/2b2eiω0(t−nT )
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zero interpulse phase shift
nonzero interpulse phase shift

Figure 3.15: Two sets of equally spaced spectral lines resulting from the
Fourier transform of two optical trains of pulses. The first (dotted) spectrum
(which is identical to that of Fig. 3.14) is due to the train whose pulses have
zero (∆φ = 0) interpulse carrier phase shift of the optical carrier relative
to the envelope. The second (solid) spectrum is due to pulses with nonzero
(∆φ 6= 0) interpulse carrier phase shift.

is a function periodic in t: f(t+ T ) = f(t).
Find the Fourier series representation

f(t) =
∞∑

m=−∞
cme

iωmt

of f(t) by determining ωm and cm.

Lecture 23
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3.4 Orthonormal Wave Packet Representation

The Fourier representation of a square integrable function f (∈ L2(−∞,∞))
consists of the integral

f(t) =

∫ ∞

−∞
f̂(ω)

eiωt√
2π
dω ,

where

f̂(ω) =

∫ ∞

−∞

e−iωt√
2π
f(t)dt .

The virtue of this representation is that the basis functions

uω(t) =
eiωt√
2π

−∞ < ω <∞

are translation invariant, i.e.,

uω(t+ a) = eiωauω(t) .

It sould be noted that in reality translation invariance is a limiting feature,
one that manifests itself after one has taken the limit of some parametrized
family of integrable functions, for example,

uω(t) ≡ lim
T→∞

uω(t, T ) = lim
T→∞

e−t
2/T 2 eiωt√

2π
.

Thus, although in the limit these basis functions are “Dirac delta function”
orthonormalized, ∫ ∞

−∞
uω′(t)uω(t)dt = δ(ω′ − ω) ,

they are not square integrable ( 6∈ L2(−∞,∞)), i.e.,

∫ ∞

−∞
|uω(t)|2dt =∞ .

This disadvantage can be overcome if one does not insist on the basis
function being translation invariant, i.e. on going to the limit. The benefit
accrued consists not only of the basis elements being square integrable, and
hence orthonormal in the standard sense, but of the representation being in
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the form of an infinite series instead of an infinite integral. This means that
the Hilbert space of square integrable functions is discrete-dimensional: any
element is a linear combination of a countable number of basis elements. A
Hilbert space which has a basis which is countable is said to be a separable
Hilbert space (with the implication that there are Hilbert spaces which are
nonseparable, i.e. do not have a basis which is countable). A separable
Hilbert space has the property that any of its elements can be approximated
with arbitrary accuracy by a partial Fourier-type sum.

However, we shall find that the largest benefit of a discrete basis repre-
sentation consists of the fact that it allows one to view the behaviour of a
given function, say f(t), and its Fourier transform f̂(ω) from a single point
of view: the basis elements reveal the structure of the given function si-
multaneously in the Fourier (ω) domain and in the time domain, or in the
space domain, whichever the case may be. In practical terms this means that
we shall resolve the given function f(t) into a superposition of orthonormal
wavepackets which are localized both in the frequency domain and in the
time domain, i.e., they have a (mean) frequency and a (mean) location in
time. Roughly speaking, each wave packet has the best of both arenas: one
foot in the frequency domain and the other foot in the time domain.

By contrast, the Fourier integral representation consists of the given func-
tion being resolved into a superposition of infinite wave trains, each one
having a definite frequency, but because of their infinite extent, having no
definite location. This representation reveals the structure of the function in
the Fourier domain, but not in the time domain.

3.4.1 Orthonormal Wave Packets: General Construc-
tion

There are many different complete sets of orthonormal wave packets. Each
set is a countable basis for the Hilbert space L2(−∞,∞). The construction
is basically the same for all these sets and it is illustrated by the following
example.

Subdivide the real line, −∞ < ω <∞, of the Fourier domain into equal
subintervals of length ε and consider a function, Pjℓ(t), whose Fourier trans-
form is zero everywhere except in one of these subintervals,
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. . .

(j+1)0            ε          2ε          . . .j ε ε

ωω

Im F (ω)jl

Figure 3.16: The imaginary part of the localized Fourier amplitude of the
wave packet Pjℓ(t). In this graph ℓ = 4 and the mean frequency of the wave
packet is (j + 1

2
)ε.

Fjℓ(ω) =







0 ω not in [jε, (j + 1)ε]

e−2πiℓω/ε√
ε

jε ≤ ω ≤ (j + 1)ε
. (3.79)

We demand that ℓ = 0,±1,±2, · · · , is an integer so that Fjℓ(ω) can be
pictured as a finite complex amplitude in the jth frequency window jε ≤ ω ≤
(j + 1)ε. See Figure 3.16.

Note that
∫ ∞

−∞
F jℓ(ω)Fj′ℓ′(ω)dω = δjj′δℓℓ′ ,

which can be easily verified. Such an orthonormality relation is the key to
constructing complete sets of orthonormal wave packets. Simply invent a
set of functions Fjℓ(ω) which satisfy such an orthonormality property. The
example in Figure 3.16 illustrates this idea. Then use these functions to
construct your own set of wave packets

Pjℓ(t) =

∫ ∞

−∞
Fjℓ(ω)

eiωt√
2π
dω . (3.80)



172 CHAPTER 3. FOURIER THEORY

We see that the transformation

F−1 : L2(−∞,∞) −→ L2(−∞,∞)

Fjℓ(ω) ∼→ F−1[Fjℓ] ≡
∫ ∞

−∞
Fjℓ(ω)

eiωt√
2π
dω

≡ Pjℓ(t) ,

which is represented by the “matrix”,

eiωt√
2π

,

is a unitary transformation because it preserves inner products between ele-
ments in L2(−∞,∞), or equivalently, because it preserves the inner products
between the square integrable basis elements

δjj′δℓℓ′ = 〈Fjℓ, Fj′ℓ′〉 = 〈F−1[Fjℓ],F−1[Fj′ℓ′ ]〉 = 〈Pjℓ, Pj′ℓ′〉 .

3.4.2 Orthonormal Wave Packets: Definition and Prop-
erties

We shall now use the above construction idea to obtain a complete set of o.n.
wave packets with Fourier domain windows of constant width. In the next
subsection we shall do it for wave packets of variable width (“wavelets”).

Definition

Applying Eq.(3.79) to Eq.(3.80) one finds that the typical wave packet is

P ε
jℓ(t) =

∫ (j+1)ε

jε

dω
eiωt√
2π

︸ ︷︷ ︸

× e−2πiℓω/ε

√
ε

︸ ︷︷ ︸

=
1√
2πε

ei(t−
2πℓ
ε

)(j+1)ε − ei(t− 2πℓ
ε

)jε

i(t− 2πℓ
ε
)

unitary
xformation

×
amplitude
in the

frequency
domain

=
wave
packet

=
2√
2πε

sin

[

(t− 2πℓ

ε
)
ε

2

]

t− 2πℓ

ε

· exp{i(t− 2πℓ

ε
)(j +

1

2
)ε} . (3.81)
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Notation: For the purpose of notational efficiency we shall suppress the super-
script ε in the wavepacket name P ε

jℓ(t) throughout the remainder of Section
3.4.2. Thus we use simply Pjℓ(t) instead. However, in the upcoming Sections
3.5 and 3.6 we shall always highlight ε by explicitly writing P ε

jℓ(t).

Four Properties

First of all, we observe that this wave packet consists of a real amplitude, a
’sinc’ function, multiplied by an exponential phase factor, which is rapidly
oscillating when the integer |j| is large. From the viewpoint of engineering
one says that the wave train exp{i(t− 2πℓ/ε)(j + 1

2
)ε} is getting modulated

by the ‘sinc’ function. The resultant wave train amplitude has its maximum
at t = 2πℓ

ε
. From the viewpoint of physics one says that the wave trains

{ eiωt√
2π
: jε < ω < (j + 1)ε} comprising the wave packet exhibit a beating

phenomenon with the result that they interfere constructively at t = 2πℓ
ε
.

From the viewpoint of mathematics one observes that the integral has a
maximum value when the integrand does not oscillate, i.e. when t = 2πℓ

ε
.

Second, we observe that the spacing between successive zeroes is ∆t = 2π
ε
.

They are located at

t =
2π

ε
k k = 0,±1, · · · but k 6= ℓ .

At t = 2π
ε
ℓ the wave packet Pjℓ(t) has maximum modulus

√
ε
2π
. These two

properties are summarized by the sifting property of Pjℓ(t):

Pjℓ

(

t =
2π

ε
k

)

=

√
ε

2π
δkℓ . (3.82)

Consequently, the real and imaginary parts of the wave packets have profiles
as depicted in Figure 3.17.

Third, it has mean frequency (j + 1
2
)ε. Its mean position along the time

axis is 2π
ε
ℓ. Its frequency spread is the width of its frequency window in the

Fourier domain

∆ω = ε .

Its temporal spread,

∆t =
2π

ε
,
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Figure 3.17: Real parts of the three wave packets
√
πPjℓ(2πt), ℓ = 0, 1, 2 as

given by Eq.(3.81). The t-axis is in units of 2π, i.e. it is expressed in periods of
some standard clock. The width of the Fourier window is taken to be ε = 2.
The mean frequency of all three wave packets is (j + 1

2
)ε = (2 + 1

2
)2 = 5

oscillations per period.



3.4. ORTHONORMAL WAVE PACKET REPRESENTATION 175

is its half width centered around its maximum, which is located at t = 2πℓ
ε
.

Consequently, the frequency spread times the temporal spread of each wave
packet is

∆ω∆t = 2π ,

which is never zero. Thus, the only way one can increase the temporal resolu-
tion (∆t→ 0) is at the expense of the frequency resolution, i.e., by increasing
(∆ω → ∞) the frequency bandwidth of each wave packet. Conversely, the
only way to increase the frequency resolution is to increase the width of the
wave packet.

The last property is expressed by the following exercise:

Exercise 3.4.1 (ORTHONORMALITY AND COMLETENESS)
Consider the set of functions (”wave packets”)

{

Pjl(t) =
1√
ε

(j+1)ε∫

jε

e2πilω/ε
1√
2π
e−iωtdω ;

j = 0,±1,±2, · · ·
l = 0,±1,±2, · · ·

}

where ε is a fixed positive constant.

(a) SHOW that these wave packets are orthonormal:

i.e.

∞∫

−∞

Pjl(t)P̄j′l′(t) dt = δjj′δll′ (3.83)

(b) SHOW that these wave packets form a complete set:

i.e.
∞∑

j=−∞

∞∑

l=−∞
Pjl(t)P̄jl(t

′) =
1

2π

∫ ∞

−∞
eiω(t−t

′) dω ≡ δ(t− t′) (3.84)

Note that the expression for a periodic train of delta functions, Poisson’s
sum formula, Eq.(3.31) on page 128, may be helpful here.

The completeness relation, Eq.(3.84) is equivalent to the statement that
any square integrable function f(t) ∈ L2(−∞,∞) can be represented as a
superposition of wave packets, namely

f(t) =
∞∑

j=−∞

∞∑

ℓ=−∞
αjℓPjℓ(t) , −∞ < t <∞
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where

αjℓ =

∫ ∞

−∞
P jℓ(t

′)f(t′) dt′

are the expansion coefficients.

Whittaker-Shannon Sampling Theorem: The Infinite Interval Ver-
sion

Remark: Note that even though the expansion coefficients can be deter-
mined from these integrals, it is not necessary to do so. Instead, one can ob-
tain the expansion coefficients αjℓ from f(t) directly. One need not evaluate
the integral at all. The key to success lies in the sifting property, Eq.(3.82).

Suppose one knows that f(t) has a Fourier transform which is non-zero
only in the interval jε < ω < (j+1)ε. This is no severe restriction because f
is square integrable, and one can set j = 0, provided we make ε large enough.
This implies that

αjℓ = 0 if j 6= 0 .

(Why?) Consequently, we have

f(t) =
∞∑

ℓ=−∞
α0ℓP0ℓ(t) −∞ < t <∞ ,

where the wave packets P0ℓ are given by Eq.(3.86). It is easy to determine
the expansion coefficients. Using the sifting property, Eq.(3.82), one obtains

f

(
2π

ε
k

)

= α0k

√
ε

2π
k = 0,±1, . . . .

This means that the expansion coefficients α0k are determined from the values
of f sampled at the equally spaced points t = 2π

ε
k. These sampled values of

f determined its representation

f(t) =
∞∑

ℓ=−∞
f

(
2π

ε
ℓ

)√

2π

ε
P0ℓ(t)

in terms of the set of orthonormal wave packets. This representation of f
in terms of its sampled values is 100% accurate. It is called the Whittaker-
Shannon sampling theorem. It is a generalization of the special case, Eq.(3.17)
mentioned on page 121.
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Exercise 3.4.2 (WAVE PACKET TRAINS)
Consider the wave packet

Qjℓ(t) =
1√
2πε

∫ (j+ 1
2
)ε

(j− 1
2
)ε

eiωte−2πiℓω/εdω.

Express the summed wave packets

(a)
∞∑

j=−∞
Qjℓ(t)

(b)
∞∑

ℓ=−∞
Qjℓ(t)

(c)
∞∑

ℓ=−∞

∞∑

j=−∞
Qjℓ(t)

in terms of appropriate Dirac delta functions, if necessary.

Lecture 24

3.4.3 Phase Space Representation

Consider the two-dimensional space spanned by the time domain (−∞ <
t < ∞) and the Fourier domain (−∞ < ω < ∞) of the set of square-
integrable function f(t). The introduction of the set of orthonormal wave
packets determines a partitioning of this space into elements of area whose
shape, magnitude and location is determined by these o.n. wave packets.
This partitioned two-dimensional space is called the phase space of the system
whose state is described by the set of square-integrable functions.

The wave packet representation of the function

f(t) =
∞∑

j=−∞

∞∑

ℓ=−∞
αjℓPjℓ(t)

is represented geometrically as a set of complex amplitudes (αjℓ) assigned to
their respective elements of area each one of size ∆ω∆t = 2π, which together
comprise the phase space of the system. This phase space is two dimensional
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and it is spanned by the time domain (−∞ < t <∞) and the Fourier domain
(−∞ < ω <∞) of the function f(t).

The set of orthonormal wave packets determine a partitioning of this
phase space into elements of equal area,

∆ω∆t = 2π ,

which are called phase space cells. The existence of this partitioning is guara-
teed by the following

Theorem 3.4.1 (Wave Packet Representation Theorem)
Let f(t) be a square-integrable function. Let f̂(ω) be its Fourier transform,

f̂(ω) =

∫ ∞

−∞

e−iωt√
2π
f(t)dt

and let

P̂jℓ(ω) =

∫ ∞

−∞

e−iωt√
2π
Pjℓ(t)dt (= Fjℓ(ω), which is given by Eq.(3.79))

be the Fourier transform6 of the wave packet Pjℓ(t). Then the Fourier trans-
form pair

f(t) =
∞∑

j=−∞

∞∑

ℓ=−∞
αjℓPjℓ(t)

6The form of this Fourier transform is generated by the action of the jth power of the
translation operation Tǫ acting on P̂0ℓ(ω). Indeed, introducing the rectangular function

rect[0,ǫ](ω) =

{
1 0 < ω < ǫ
0 otherwise

one has

P̂jℓ(ω) =
e−2πiℓω/ǫ

√
ǫ

rect[jǫ,(j+1)ǫ](ω)

=
e−2πiℓ(ω−jǫ)/ǫ

√
ǫ

rect[0,ǫ](ω − jǫ)

= (Tǫ)
j
P̂0ℓ(ω) (3.85)
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(time)

t =2π
ε

ω = ε

l

(freq.’y)j

Figure 3.18: The smallest elements of phase space are the phase space cells.
Each one, like the one depicted in this picture, has area 2π.

and

f̂(ω) =
∞∑

j=−∞

∞∑

ℓ=−∞
αjℓP̂jℓ(t)

have the same expansion components αjℓ relative to the Fourier-related bases

{Pjℓ} and {P̂jℓ}. Both bases are orthonormal

〈Pjℓ, Pj′ℓ′〉 ≡
∫ ∞

−∞
P jℓ(t)Pj′ℓ′(t)dt = δjj′δℓℓ′

〈P̂jℓ, P̂j′ℓ′〉 ≡
∫ ∞

−∞
P̂ jℓ(ω)P̂j′ℓ′(ω)dω = δjj′δℓℓ′

and are complete

∞∑

j=−∞

∞∑

ℓ=−∞
Pjℓ(t)P jℓ(t

′) = δ(t− t′)

∞∑

j=−∞

∞∑

ℓ=−∞
P̂jℓ(ω)P̂ jℓ(ω

′) = δ(ω − ω′)

This theorem implies that
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1. the location of a typical phase space cell as determined by Pjℓ(t) and

P̂jℓ(ω) is given by

2π

ε
ℓ = mean temporal position

(

j +
1

2

)

ε = mean frequency .

2. the shape of a typical phase space cell as determined by Pjℓ(t) and

P̂jℓ(ω) is given by

∆t =
2π

ε
∆ω = ε ,

the temporal and the frequency spread of the wave packet.

3. the area of a typical phase space cell as determined by Pjℓ(t) and P̂jℓ(ω)
is

∆ω∆t = 2π .

The wave packet representation

f(t) =
∞∑

j=−∞

∞∑

ℓ=−∞
αjℓPjℓ(t)

of a square integrable function determines the corresponding phase space
representation. It consists of assigning the complex amplitude αjℓ to the
(j, ℓ)th phase space cell. Typically, the squared norm

‖f‖2 =
∫ ∞

−∞
|f(t)|2 dt

is proportional to the total “energy” of the signal represented by f(t). If that
is the case, then Parseval’s identity

∫ ∞

−∞
|f(t)|2 dt =

∞∑

j=−∞

∞∑

ℓ=−∞
|αjℓ|2
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Figure 3.19: Phase space representation of a function.

implies that

|αjℓ|2 ∝ “energy” contained in the (j, ℓ)th phase space cell .

In other words,
{|αjℓ|2 : j, ℓ = 0,±1, . . . }

is a decomposition of the energy of f(t) into its most elementary spectral and
temporal components relative to the chosen wave packet basis {Pjℓ(t)}. The
wave packet representation of a signal f(t) assigns to each phase space cell
an intensity |αjℓ|2. Each cell acquires a level of grayness ∝ |αjℓ|2.

Thus a signal gets represented by assigning a degree of darkness (“squared
modulus”) and a phase factor of each phase space cell. This is shown in
Figure 3.19.

An example of this geometrical phase space representation is the musi-
cal score of a piece of music. The notes represent the phase space cells in
which there is a non-zero amount of energy. (Musicians ignore the phase
factor which ordinarily would go with it.) A signal, say, Beethoven’s Fifth
Symphony, is therefore represented by a distribution of dots (of various gray
levels) in phase space, with time running horizontally to the right, and pitch
going up vertically.

A phase space representation relative to a chosen set of o.n. wave pack-
ets is, therefore, a highly refined and sophisticated version of a musician’s
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score. In fact, it constitutes the ultimate refinement. No better discrete
representation is possible.
Final Remarks:

1. It is not necessary that the wave packets, Eq.(3.81) have their Fourier
support centered around (j + 1

2
)ε. Another possibility is that they be

centered around jε. In that case the resulting set of wave packets

Qε
jℓ ≡

∫ (j+ 1
2
)ε

(j− 1
2
)ε

e−2πiℓω/ε

√
ε

eiωt√
2π
dω

j = 0,±1,±2, . . .
ℓ = 0,±1,±2, · · ·

would still be orthonormal and complete.

2. Each wave packet of mean frequency zero, Qε
0ℓ(t), ℓ = 0,±1,±2, · · · is

an integral representation of the sinc function, Eq.(3.39) on page 137,
centered around t = 2πℓ

ε
,

∫ ε
2

− ε
2

e−2πiℓω/ε

√
ε

eiωt√
2π
dω =

2√
2πε

sin
[
(t− 2πℓ

ε
) ε
2

]

t− 2πℓ
ε

= Qε
0ℓ(t) . (3.86)

In the limit as ε → ∞ this tends towards an expression proportional
to the Dirac delta function.

3.5 Orthonormal Wavelet Representation

The key property of the o.n. wave packets is that all phase space cell (i.e.,
wave packets) have the same shape

∆t =
2π

ε
∆ω = ε .

Suppose, however, we must represent a signal which looks like the one in
Figure 3.20. In other words, upon closer examination, the signal on a small
scale is similar to the signal on the larger scale. In that case the large scale
structure is represented “most economically” by a sequence of wide low fre-
quency wave packets. The qualifier “most economically” means representing
the signal with the fewest number of non-zero wave packet coefficients. The
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Figure 3.20: A function whose large scale and small scale structures are of
equal importance.

existence of o.n. wave packets which are wide and narrow is the important
new feature.

Let us apply the general idea of constructing o.n. wave packets in Sec-
tion (3.4.1) to obtain o.n. wave packets with Fourier domain windows of
variable width. In fact, we shall construct o.n. wave packets with adjacent,
but non-overlapping, windows in the Fourier domain, with each window ex-
tending exactly over one octave. Thus each positive frequency window is
twice as wide as its neighbor on the left.

In the time domain, all o.n. wave packets have the same half width,
namely 2π

ε
. They are different in that they are related to one another by

discrete equal shifts 2π
ε

in time and also by equal shifts ε in frequency. If a
signal changes “slowly” over time, i.e., does not change appreciably over a
time interval less than the inter-wave packet spacing 2π

ε
, then the signal can

be represented quite efficiently by a finite wave packet sum. If, however, the
signal changes “abruptly”, i.e., it changes appreciably over a time interval
small compared to the width, and hence the spacing, of the wave packets,
then the wave packets representation becomes less efficient. The wave packet
sum must contain many high frequency packets that reinforce each other on
one side where the abrupt change occurs and cancel each other on the other
side of that change.

What is needed is an o.n. set of variable width wave packets. In ef-
fect, instead of having a uniform sampling rate, the sampling rate should be
variable to accomodate abrupt changes in the signal. Orthonormal wavelets
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Figure 3.21: Unequal frequency windows of the set of o.n. wavelets. Each
window is an octave.

fullfill this requirement.

Lecture 25

3.5.1 Construction and Properties

There are equally spaced large half width wavelets of low mean frequency.
They enter into the representation of the low resolution, slowly varying fea-
tures of the signal. There are also equally spaced small half width wavelets of
corresponding higher spread in frequency. They enter into the representation
of the high resolution, abruptly changing features of the signal.

Instead of the equally spaced frequency windows of the wave packets,
the wavelets are synthesized over frequency windows whose width increases
exponentially. Wave packets have variable frequency window ε = 2−kε0.
Inserting this into Eq. (3.79), we obtain the Fourier transform of a wavelet
as the following windowed phase factor:

F2−kℓ(ω) =







√
1

2−kε0
e−2πiℓω/2−kε0 ω ∈ [2−kε0, 2

1−kε0]

0 otherwise
.

Here ε = 2−kε0 is the variable frequency window. Such a wavelet is a wave
packet P ε

jℓ(t) (see Section 3.4.1) for which j = 1 and ε = 2−kε0. The integer
k = 0,±1,±2, . . . is the octave number of the wavelet. Let us designate this
wavelet by W+

kℓ. Its key properties are as follows:
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1. Its explicit form is

W+
kℓ(t) =

√
1

2−kε0

21−kε0∫

2−kε0

e−2πiℓω/2−kε0
eiωt√
2π
dω , (3.87)

and its Fourier transform is

Ŵ+
kℓ(ω) = F2−kℓ(ω) (3.88)

2. Its mean frequency is

ω =
1

2
(2−k + 21−k)ε0 .

3. Its mean position along the time axis is

t = 2πℓ/2−kε0 .

4. The wavelet has half width

∆t = 2π/2−kε0 , (3.89)

its frequency spread is

∆ω = 2−kε0 , (3.90)

and its phase space area is

∆ω∆t = 2π , (3.91)

like that of any o.n. wave packet.

5. The wavelets, as well as their Fourier transforms, are orthonormal :

∫ ∞

−∞
W+

kℓ(t)W
+
k′ℓ′(t)dt = δℓℓ′δkk′ ,

∫ ∞

−∞
Ŵ+

kℓ(ω)Ŵ
+
k′ℓ′(ω)dω = δℓℓ′δkk′ .
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6. They form a complete set in the given domain,

∞∑

k=−∞

∞∑

ℓ=−∞
W+
kℓ(t)W

+
kℓ(t

′) +W−
kℓ(t)W

−
kℓ(t

′) = δ(t− t′) ,

as well as in the Fourier domain

∞∑

k=−∞

∞∑

ℓ=−∞
Ŵ+
kℓ(ω)Ŵ

+
kℓ(ω

′) + Ŵ−
kℓ(ω)Ŵ

−
kℓ(ω

′) = δ(ω − ω′) .

Note that the negative frequency wavelets,

W−
kℓ(t) =

√
1

2−kε0

∫ −2kε0

−21−kε0

e−2πiℓω/2−kε0
eiωt√
2π
dω , (3.92)

must be included in order to form a complete set. These completeness rela-
tions imply that these wavelets as well as their Fourier transforms form bases
for the vector space of square integrable functions L2(−∞,∞).

These six wavelet properties are summarized geometrically in terms of
their phase space representatives. The set of o.n. wavelets induces a parti-
tioning of phase space into cells of equal area

∆ω∆t = 2π/2−kε0 2−kε0 = 2π ,

but unequal shape, Eq.(3.89)-(3.90). The orthogonality in the time and in the
frequency domains implies that the areas of these cells should be pictured as
nonoverlapping. The completeness relations imply that these cells cover the
whole phase space without any gaps between them. In brief, the phase space
is partitioned by the wavelets into mutally exclusive and jointly exhaustive
cells of equal area, but different shapes as in Figure 3.22. This is different
from Figure 3.18, which depicts the partitioning by the o.n. wave packets
into cells. They also are mutually exclusive and jointly exhaustive and have
equal area. But they have identical shape.

The variable ε0 is a positive parameter which effects all wavelets at once.
It therefore controls the way they partition phase space. What happens when
one increases ε0? Reference to propert 4. indicates that such an increase
produces a global distortion which dilates all phase space cells along the
vertical (frequency) direction while compressing them along the horizontal
(time) direction.
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Figure 3.22: Partitioning of phase space by o.n. wavelets into cells of equal
area (△t △ω = 2π), but unequal shape (∆t = 2π/2−kε0, ∆ω = 2−kε0). For
a given mean frequency the successive wavelets have equal width.

The distortion corresponds to that suffered by an incompressible fluid.
Once the parameter has doubled in value, the new partitioning is congru-

ent to the old one. However, the integer octave label k gets shifted by one
unit in the process: k → k + 1. More precicely, reference to Eq.(3.87) shows
that one has

W±
kℓ(t)

∣
∣
ε0=ε1

= W±
k+1 ℓ(t)

∣
∣
ε0=2ε1

. (3.93)

The set of o.n. wavelets is characterized by a seventh fundamental prop-
erty:

7. All wavelets are derivable from a single standard wave packet. By
translating and compressing this standard “mother wavelet”, as it is
known informally, one recovers any one of the o.n. wavelets. This re-
covery holds separately for the positive and negative frequency wavelets



188 CHAPTER 3. FOURIER THEORY

and follows directly from their defining equations, Eq.(3.87) and (3.92):
By changing the Fourier integration variable from ω to Ω = ω

2−k , one
obtains, for the typical wavelet, the alternate integral expression

W±
kℓ(t) =

√
1

2−kε0
(±)

∫ ±21−kε0

±2−kε0

e−2πiℓω/2−kε0
eiωt√
2π
dω

=

√

2−k

ε0
(±)

∫ ±2ε0

±ε0
eiΩ(2−kt−2πℓ/ε0)

dΩ√
2π

≡
√
2−kψ±(2−kt− 2π

ε0
ℓ) , k, ℓ = 0,±1,±2, · · · .(3.94)

The simplicity of this expression is striking. To obtain it, all one needs
to do is apply a translation, compression and amplification to a single
universal wave packet. Start with the mother wavelet (standard wave
packet function),

W±
00(t) ≡ ψ±(t) =

1√
2πε0

(±)
∫ ±2ε0

±ε0
eiΩtdΩ

=

√
ε0
2π
e±3itε0/2

sin tε0/2

tε0/2
,

and translate it along the t-axis by an amount 2π
ε0
ℓ to obtain

ψ±(t− 2π

ε0
ℓ) .

Next compress it uniformly along the t-axis by the compression factor
2−k to obtain the compressed wave packet

ψ±(2−kt− 2π

ε0
ℓ) .

To preserve normalization amplify its amplitude by
√
2−k to obtain

√
2−kψ±(2−kt− 2π

ε0
ℓ) .

This three step process is sufficient to yields the generic wavelet, Eq.(3.94).

Note that the resulting set of orthonormal wavelets decomposes into dif-
ferent classes. Those wavelets belonging to the same class (k fixed) have the
same mean frequency and the same temporal width, but are time translated
relative to each other (ℓ = 0,±1,±2, · · · ). By contrast, different classes are
distinguished by different mean frequencies and hence different widths.
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3.6 Multiresolution Analysis

A choice of basis for a vector space is a choice of the standard by which
vectors are measured. Once chosen, this standard remains fixed. However, a
question remains: Which basis does one pick? And, is the choice arbitrary
or is there a principle that guides this choice?

It turns out that the latter is the case. This is illustrated by the follow-
ing example involving two different bases for the space of square integrable
functions.

3.6.1 Chirped Signals and the Principle of Unit-Economy

Consider chirped audio signals. Their frequency is a monotonic function of
time. There are signals characterized by a down-chirp, like that of a bat
using its sonar echolocation ability to track its prey. There are also signals

= N

N t

εmax

(time)

t =2
ε

ω = ε

l

j

π

(freq.’y)

ω

Figure 3.23: Phase space representation of a chirped signal occupying N
phase space cells. The grey level of each cell expresses the intensity of the
corresponding wave packet.

characterized by an up-chirp. The phase space representation of a typical
example is depicted by the shaded phase space cells in Figure 3.23. An up-
chirp signal starts at low frequency and stops at some maximum frequency,
say

ωmax = Nε .



190 CHAPTER 3. FOURIER THEORY

Here N is the number of phase space cells which the signal occupies. For
illustrative purposes consider a signal with a linear up-chirp,

f(t) =
N∑

n=1

αnP
ε
nn(t) . (3.95)

This representation is based on the by-now-familiar orthonormal wave packet
functions Eq.(3.81),

P ε
jl(t) =

1√
2πε

(j+1)ε∫

jε

e−2πilω/εeiωtdω .

Recall that the constant ε, which characterizes the shape

∆ω = ε

∆t =
2π

ε

of each phase space cell, is a parameter which identifies this family of wave
packets, {P ε

jl(t) : j, ℓ = 0,±1, · · · }.
However, there are also other families characterized by other parameter

values. Consider another set of wave packets whose phase space cells have
dimension

∆ω = 2ε

∆t =
2π

2ε

These basis functions are obtained from P ε
jl(t) by making the replacement

ε→ 2ε. This amplifies and compresses the wave packets in the time domain.
Indeed, the defining integral expression for P 2ε

jl (t) yields

P 2ε
jl (t) =

√
2P ε

jl(2t) .

What is the representation of the given chirp signal with respect to this new
basis? The answer is based on the transformation formula

P ε
j′l′(t) =

∞∑

j=−∞

∞∑

ℓ=−∞
P 2ε
jl (t) 〈P 2ε

jl , P
ε
j′l′〉 .
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It is worth while to do the calculation explicitly because the answer turns
out to be fairly simple and informative. The simplicity starts to become
evident when one splits the chirped signal into odd and even labelled terms.
Assuming without loss of generality that the number of terms is even, N =
2M , one has

f(t) =
M−1∑

m=0

α2m+1P
ε
(2m+1) (2m+1)(t) +

M∑

m=1

α2mP
ε
(2m) (2m)(t) . (3.96)

The odd and even transformation formulas are

P ε
(2m+1) ℓ(t) =

1√
2
P 2ε
m 2ℓ(t) +

1

π
√
2

∞∑

k=0

2i

2ℓ− 2k − 1
P 2ε
m (2k+1)(t)

and

P ε
2m ℓ(t) =

1√
2
P 2ε
m 2ℓ(t)−

1

π
√
2

∞∑

k=0

2i

2ℓ− 2k − 1
P 2ε
m (2k+1)(t) .

Consequently, the chirped signal is given by

f(t) = (3.97)
M−1∑

m=0

[

α2m+1
1√
2
P 2ε
m (4m+2)(t) +

i

π
√
2

∞∑

k−∞

2α2m+1

2(2m+ 1)− 2k − 1
P 2ε
m (2k+1)(t)

]

+
M∑

m=1

[

α2m
1√
2
P 2ε
m 4m(t) − i

π
√
2

∞∑

k=−∞

2α2m

2(2m)− 2k − 1
P 2ε
m (2k+1)(t)

]

.

Compare the two representations, Eq.(3.96) and Eq.(3.97), of the chirped
signal. In Eq.(3.96) f(t) is represented by a set of N = 2M basis vectors (in
physics and engineering also known as “degrees of freedom”),

{P ε
nn(t) : n = 1, · · · , 2M}. (3.98)

In Eq.(3.97) by contrast, f(t) is represented by the basis

{P 2ε
m (4m+2)(t) : m = 0, · · · ,M − 1} ∪ {P 2ε

m (4m)(t) : m = 1, · · · ,M} ∪
{P 2ε

m (2k+1)(t) : m = 0, · · · ,M ; k = 0,±1,±2, · · · } , (3.99)
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which has a substantially larger number of elements.

Is the choice of basis vectors arbitrary? The principle of unit-economy7

applied to this example demands that one pick the wave packet basis Eq.(3.98),
whose coefficients in Eq.(3.95) express the essential properties of the de-
grees of freedom of the chirped signal. One should not pick the other basis,
Eq.(3.99), whose amplitudes in Eq.(3.97) are nonessential because specifying
them might lead to signals which are not chirped at all.

The mathematical implementation of the principle of unit-economy to
signal processing consists of the requirement that one pick an optimal basis
to represent the set of signals under consideration. This means that one pick
a subspace of minimal dimension in order to accomodate these signals.

7The principle of unit-economy [1, 12], also known informally as the “crow epistemol-
ogy”, is the principle that stipulates the formation of a new concept

1. when the description of a set of elements becomes too complex,

2. when the elements of the set are used repeatedly, and

3. when the elements of the set require further study.

It is obvious that the last is the most important because that is the nature of cognition,
pushing back the frontier of knowledge.
The principle of unit economy is implemented by a process of conceptualization, which

is a method of expanding man’s consciousness by reducing the number of its content’s
units – a systematic means to an unlimited integration of cognitive data.

The principle of unit-economy forbids the formation of a new concept if that formation
is based on some nonessential property.
The principle of unit-economy is a statement not only about the structure of mathe-

matics, but also more generally about why one forms concepts in the first place, be they
first-order concepts based on perceptual data (“percepts”), or be they higher-level concepts
based on already-formed concepts.
The principle of unit-economy is a guiding principle that leads us from an unlimited

number of specific units (i.e. members of a class, in our example, signals characterized by
a chirp) to a single new concept (in mathematics also known as an “equivalence class”,
in our example, the concept “chirped signal”). By repeatedly applying this principle to
percepts, as well as to the product of such applications, one can reduce a vast amount of
information to a minimal number of units. These one’s consciousness can readily keep in
the forefront of one’s mind, digest them, assimilate them, manipulate them, and use them
without any danger of information overload.
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3.6.2 Irregular Signals and Variable Resolution Anal-
ysis

Is it possible to extend the optimal choice of a basis to signals which are
much more irregular than those which are accomodated by a wave packet
basis?

Consider the signals accomodated by a seismograph. Two of the most
prominent signals are sudden bursts, such as explosions initiated for the pur-
pose of locating petroleum reserves, or precursors to a vulcanic eruption, or
earth quakes. Then there is the second type of signals, those which char-
acterize the resonant vibrational or wave motions initiated by such bursts.
It is obvious that the second type is most efficiently analyzed using Fourier

t
Figure 3.24: Amplitude profile of a structured pulse

or wave packet basis functions. However, a burst-like signal is characterized
by variations localized in time. The signal has a finite time duration. It
also has a starting edge with a finite temporal thickness which often contains
rapid variations (“high frequency structure”) as exemplified in Figure 3.24.
Thus under low resolution one would simply measure the amplitude profile
of the main body of a pulse of finite duration. But under higher resolution
one would also measure the high frequency structure which in Figure 3.24
announces the beginning of that pulse.

Given such a signal, how does one represent it in the most efficient way
i.e. in compliance with the priciple of unit-economy?
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3.6.3 Multiresolution Analysis as Hierarchical

The answer is provided by multiresolution analysis (MRA). It provides a
simple hiearchical framework for identifying the properties of a signal, i.e.
for taking note of its existence, for measuring it, for representing it, and
for even reproducing it. A key aspect of this framework is its Hierarchical
structure.

At different resolutions the details of a signal generally characterize differ-
ent physical aspects of an event. At coarse resolution these details correspond
to the larger overall aspects, the context of an event. At fine resolution these
details correspond to its distinguishing features. Such a course-to-fine strat-
egy is typical in identifying an event.

The mathematical formulation of this resolution hiearchy is developed in
four steps.

Central Approximation Space

First of all, construct a central approximation space V0, which is a subspace
of the space of square-integrable functions L2(−∞,∞), which (a) is spanned
by a translation-generated (a.k.a. “Riesz”) basis

V0 = span{φ(t− l) : ℓ = 0,±1, · · · }
and (b) is orthonormal:

∫ ∞

−∞
φ(t− k)φ(t− ℓ) dt = δkℓ . (3.100)

The existence of such a basis is equivalent to the statement that V0 is closed
under integral shifts of its elements, i.e.

f(t) ∈ V0 ⇒ f(t− ℓ) ∈ V0 whenever ℓ = integer .

The function φ(t), known as a scaling function (a.k.a. “father wavelet”) can
be any square integrable function as long as it satisfies the integer-shifted
orthonormality condition, Eq.(3.100).

A particular example of such a basis is the set of wave packets {Qε
0ℓ(t)},

Eq.(3.86) on page 182:

Qε
0ℓ(t) =

√

1

2πε

∫ ε/2

−ε/2
e−2πiℓω/ε eiωtdω (3.101)

≡ φ

(

t− 2πℓ

ε

)
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For this basis the scaling function is obtained by setting ε = 2π and letting
ℓ = 0:

φ(t) =
sin πt

πt
. (3.102)

This scaling function happens to be one whose Fourier transform has compact
support and is piecewise constant:

φ̂(ω) =







√

1

2π
ω ∈ [−π, π]

0 otherwise
.

The central approximation space V0 is spanned by the orthonormal basis

φ(t− ℓ) = sin π(t− ℓ)
π(t− ℓ) ℓ = 0,±1, · · · . (3.103)

It is the vector space of “band-limited” functions, i.e. functions whose Fourier
transforms have compact support on the frequency interval [−π, π]. The basis
for this space is generated by Eq.(3.102) and it is called the Shannon basis.

Translation Followed by Compression

Second, rescale the given domain of the integer-shifted basis elements φ(t−ℓ).
This rescaling yields a different basis for a different, but related, vector space.
For the Shannon basis this is achieved by again using Eq.(3.101), but by first
setting

ε = 2−kε0 k = integer

before letting ε0 = 2π. The result is

√
2−k φ(2−kt− ℓ) =

√
2−k

sin π(2−kt− ℓ)
π(2−kt− ℓ) . (3.104)

For each integer k these functions form an orthonormal basis for the space
of those band-limited functions, whose Fourier domain is restricted to the
frequency band [−π2−k, π2−k]. The orthonormality is guaranted by the fact
that these functions are derived from the set of orthonormal wave packets
P0ℓ(t). The vector space

span
{√

2−k φ(2−kt− ℓ) : ℓ = 0,±1, · · ·
}

≡ Vk (3.105)
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Figure 3.25: Partitioning of phase space by a collection hierarchical sets of
band limited orthonormal basis functions. The heavy-lined rectangles are
the phase space cells of low resolution wave packets; they span the k = 1st
resolution vector space V1. The shaded rectangles are those of the next
(i.e. more refined) resolution wave packets; they span the k = 0th resolution
vector space V0. The thin and tall unshaded rectangles are those of the
wave packets of still higher resolution. They span the k = −1st resolution
vector space V−1. The unshaded rectangle in the middle is the phase space
cell of the “father wavelet”, the scaling function in Eq.(3.102). It yields (by
compression and translation) all basis functions for all the vector spaces Vk.

is called the kth resolution space. For fixed k these basis elements form the
kth resolution Shannon basis, more simply the kth Shannon basis. They have
the common phase space shape

∆t = 2k

∆ω =
2π

2k

∆t∆ω = 2π .

These shapes are illustrated in Figure 3.25 for the vector spaces Vk, k =
−1, 0, 1. Relative to the phase space cells of V0, k > 0 implies that the phase
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space cells get dilated in the time domain and compressed in the frequency
domain in order to comply with ∆t∆ω = 2π.

Also note that increasing k designates increasing roughness, i.e, lower
resolution. Thus increasing resolutions are labelled by decreasing integers.
This labelling, which at first sight is backward, highlights the fact that the
low resolution features of a signal are generally more significant than those
of high resolution.

Resolution Spaces as Hierarchical

Third, take note of the hierarchical subspace structure of the resolution
spaces Vk, k = · · · ,−1, 0, 1, · · · . The Fourier transform of the basis ele-
ments, Eq.(3.104), for Vk have compact support confined to [−π2−k, π2−k].
As was shown in Part (c) of Ex. 1.5.3 on page 103, these basis elements form
a complete set. This means that f ∈ Vk if and only if its Fourier transform
has support confined to [−π2−k, π2−k]. Next consider the vector space Vk+1.
The Fourier transform of its basis elements have support confined to

[
−π2−(k+1), π2−(k+1)

]
⊂
[
−π2−k, π2−k

]

In fact, every element of Vk+1 enjoys this property. This implies that such
elements also belong to Vk. Thus one has

f ∈ Vk+1 ⇒ f ∈ Vk .

In other words, Vk+1 is a subspace of Vk:

Vk+1 ⊂ Vk .

More explicitly, this inclusion property says that

{0} ⊂ · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · ⊂ L2(−∞,∞) .

Such a hierarchy of increasing subspaces is called a multiscale analysis of the
space of square-integrable functions. A multiscale analysis is always derived
from (i.e. based on) a scaling function φ. In our illustrative example this
scaling function (“father function”) is Shannon’s sinc function, Eq.(3.102).



198 CHAPTER 3. FOURIER THEORY

Resolution Analysis as a Decomposition into Subspaces

Fourth, decompose each resolution subspaceVk into its subsequent resolution
subspace Vk+1 and its corresponding orthogonal complement, the subspace
of details Ok+1:

Vk = Vk+1 ⊕Ok+1 (3.106)

Given the fact that Vk is spanned by the kth resolution basis, Eq.(3.105),
the meaning of such a decomposition consists of exhibiting an alternative
o.n. basis part of whose elements span Vk+1, while the remainder spans its
orthogonal complement. This decomposition is achieved as follows:
Recall that every square integrable function f(t) can be approximated as an
optimal element in Vk. This optimal approximation, which with Bessel’s
Theorem on page 78 in Section 2.5.2 was identified as the least squares ap-
proximation of f(t) in the subspace Vk, is uniquely expressed in terms of any
orthonormal basis. Following Eq.(2.12), and using the o.n. basis, Eq.(3.104),
one has the projection of f(t) onto Vk:

PVk
f(t) =

∞∑

ℓ=−∞
2−kφ(2−kt− ℓ) 〈φ(2−ku− ℓ), f(u)〉 (3.107)

This is the least squares approximation of f(t) based on the subspace Vk,
or more briefly the Vk-least squares approximation. The next (less refined)
approximation is the projection of f(t) onto the subspace Vk+1 ⊂ Vk:

PVk+1
f(t) =

∞∑

ℓ=−∞
2−(k+1)φ(2−(k+1)t− ℓ) 〈φ(2−(k+1)u− ℓ), f(u)〉 . (3.108)

Here PVk
and PVk+1

are the projection operators onto Vk and Vk+1 respec-
tively.

Let us compare the two o.n. bases for the two resolution spaces Vk and
Vk+1. We shall presently see that they are two families of o.n. wave packets
identified already on page 182 by Eq.(3.86):

Qε
0ℓ(t) =







Q2ε′

0ℓ (t) ε = 2ε′

Qε′

0ℓ(t) ε = ε′
.

Here nad throughout the ensuing development we always let

ε′ = 2−k, k = 0,±1,±2, · · · .
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Using Eqs.(3.104) and (3.102) one finds that the Vk-family members are

Vk :
√
2−k φ(2−kt− ℓ) =

√
2−k

1

2π

∫ π

−π
eiω(2

−kt−ℓ)dω

=
1√
2π

1√
2ε′

∫ ε′

−ε′
e−2πiℓω/2ε′eiωtdω

= Q2ε′

0ℓ (t) , (3.109)

and

∆t =
2π

2ε′
= 2k

∆ω = 2ε′ =
2π

2k
.

By contrast, the Vk+1-family members, which are twice as wide in the tem-
poral domain and twice as narrow in the frequency domain, are

Vk+1 :
√
2−(k+1) φ(2−(k+1)t− ℓ) =

√
2−(k+1)

1

2π

∫ π

−π
eiω(t2

−(k+1)−ℓ)dω

=
1√
2π

1√
ε′

∫ ε′/2

−ε′/2
e−2πiℓω/ε′eiωtdω

= Qε′

0ℓ(t) (3.110)

and

∆t =
2π

ε′
= 2× 2k

∆ω = ε′ =
1

2
× 2π

2k
.

These two bases are represented by two overlapping arrays of phase space
cells, as in Figure 3.26. The phase space cells referring to the Vk-basis are
taller and skinnier than those referring to Vk+1. Furthermore, the phase
space domain of the Vk+1-basis is a horizontal strip which is contained en-
tirely within that of the Vk-basis. Consequently, the phase space domain
of the Vk-basis gets partitioned into three mutually exclusive and jointly
exhaustive domains:

• the negative “band pass” frequency strip −ε′ < ω < −ε
′

2
,
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Figure 3.26: Partitioning of phase space by a nested set of band limited
orthonormal basis functions. The tall thin rectangles and the shaded rectan-
gles are the phasespace cells of the basis functions which span Vk and Vk+1

respectively. These two sets of phase space cells are reproduced respectively
on the l.h.s. and r.h.s. of Figure 3.27.

• the strip −ε
′

2
< ω <

ε′

2
generated by the Vk+1-basis, and

• The positive “band pass” frequency strip
ε′

2
< ω < ε′.

The mutual exclusivity of these three strips, together with the fact that
their union equals the strip generated by the Vk-basis, implies that Vk is
spanned by two fundamental bases. Besides the one given by Eq.(3.109),

Vk = span{Q2ε′

0ℓ (t) : ℓ = 0,±1, · · · } ,

there also is

Vk = span {Qε′

0ℓ(t) : ℓ = 0,±1, · · · } ∪

{P ε′/2
1ℓ (t) : ℓ = 0,±1, · · · } ∪ {P ε′/2

−2 ℓ (t) : ℓ = 0,±1, · · · } .

As one can see from Figure 3.27, this corresponds to the union of the three
strips mentioned above. Here the P ’s are the familiar o.n. wave packets
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Figure 3.27: Two alternative partitionings of the same phase space domain
of Vk. The three different horizontal strips in the right hand partitioning
refer to the three orthogonal subspaces O+

k+1, Vk+1, and O−
k+1.

defined by Eq.(3.81):

P
ε′/2
1ℓ (t) =

1√
2π

1
√

ε′/2

∫ ε′

ε′/2

e−2πiℓω/(ε′/2)eiωtdω (3.111)

P
ε′/2
−2 ℓ (t) =

1√
2π

1
√

ε′/2

−ε′/2∫

−ε′

e−2πiℓω/(ε′/2)eiωtdω , (3.112)

and

∆t =
2π

ε′/2
= 2× 2(k+1)

∆ω = ε′/2 =
1

2
× 2π

2(k+1)

for both the positive and negative frequency wave packets. Due to the mutual
orthogonality of all the P ’s and Q’s combined, every band limited function
f ∈ Vk is a unique linear combination of these elements. Thus we have
identified two alternative bases of Vk. The first one consists of the elements
exhibited by Eq.(3.109). The second one consists of the elements exhibited
by Eqs.(3.110)-(3.112).
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This fact is reexpressed by the statement that Vk is the direct sum of the
subspaces

O+
k+1 ≡ span{P ε′/2

1ℓ (t) : ℓ = 0,±1, · · · } (3.113)

Vk+1 ≡ span{Qε′

0ℓ(t) : ℓ = 0,±1, · · · } (3.114)

O−
k+1 ≡ span{P ε′/2

−2 ℓ (t) : ℓ = 0,±1, · · · } , (3.115)

or, symbolically, that

Vk = Vk+1 ⊕O+
k+1 ⊕O−

k+1 ,

which is the same as Eq.(3.106), provided one sets

Ok+1 = O+
k+1 ⊕O−

k+1 ,

the direct sum of the positive and negative frequency subspaces othogonal
to the (k + 1)st resolution space Vk+1.

3.6.4 Unit-Economy via the Two Parent Wavelets

It is quite evident that, by itself, the introduction of the translation-generated
basis elements (the P ’s and the Q’s) constitutes a proliferation of concepts:
their sheer number prevents them from being automatically accessible for
further study; one’s mind run’s the danger of being subjected to information
overload. Such a state of affairs motivates an inquiry as to the applicability of
the principle of unit-economy8. Can one, by introducing simplifying concepts,
reduce this number by consolidating these P ’s and the Q’s into one or two
concepts?

An affirmative answer to this question is based on the introduction of two
“mother wavelet” for all the P ’s and a “father wavelet” for all the Q’s.

Recall that theQ’s have already been consolidated by Eqs.(3.101), (3.102),
and (3.110) into the single scaling function, the “father wavelet”

φ(t) =
sin πt

πt
. (3.116)

Thus by applying to this wavelet a translation, a compression, and an am-
plification, one obtains

√
2−(k+1) φ(2−(k+1)t− ℓ) = Qε′

0ℓ(t) with ε′ = 2π 2−(k+1) .

8As identified in the footnote on Page 192.



3.6. MULTIRESOLUTION ANALYSIS 203

In other words,

Vk+1 = span{
√
2−(k+1) φ(2−(k+1)t− ℓ) : ℓ = 0,±1,±2, · · · } .

The successful application of the principle of unit-economy to the basis of
Vk+1 can be extended to the bases of O±

k+1 in an analogous manner. First
of all, one observes that the basis elements of O+

k+1, Eq.(3.111), are precisely
the positive frequency waveletsW+

k+1 ℓ(t), Eq.(3.87) with k → k+1, provided
one sets ε0 = π:

P
ε′/2
1ℓ (t) = W+

k+1 ℓ(t) |ε0=π
1
= W+

k+2 ℓ(t) |ε0=2π

2
=
√
2−(k+2) ψ+(2−(k+2)t− ℓ) .

(3.117)

Similarly one finds that the basis elements of O−
k+1, Eq.(3.112), are precisely

the negative frequency wavelets W−
k+1 ℓ(t), Eq.(3.92) with k → k + 1,

P
ε′/2
−2 ℓ (t) = W−

k+1 ℓ(t) |ε0=π
1
= W−

k+2 ℓ(t) |ε0=2π

2
=
√
2−(k+2) ψ−(2−(k+2)t− ℓ) .

(3.118)

Equality 1 follows from Eq.(3.93), while 2 follows from Eq.(3.94), and the
positive (resp. negative) frequency mother wavelets ψ+ (resp. ψ−) are given
by

ψ±(t) = e±3iπt sin πt

πt
. (3.119)

They are merely complex conjugates of each other. Substitute Eqs.(3.117)
and (3.118) into Eqs.(3.113) and (3.115). The result,

O+
k+1 = span{

√
2−(k+2) ψ+(2−(k+2)t− ℓ) : ℓ = 0,±1,±2, · · · }

O−
k+1 = span{

√
2−(k+2) ψ−(2−(k+2)t− ℓ) : ℓ = 0,±1,±2, · · · } ,

highlights the fact that the two orthogonal subspaces O+
k+1 and O−

k+1 are
spanned by basis vectors which are generated by the positive frequency
mother wavelet and its complex conjugate respectively.

Thus one has the result that, for every integer k, each of the wavelets
ψ+, ψ− and φ procreates its respective vector space O+

k+1, O
−
k+1, and Vk+1.

The application of this fact to their direct sum

Vk = Vk+1 ⊕O+
k+1 ⊕O−

k+1 , (3.120)
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is as follows: Let f be any square-integrable function, and let PVk
f , Eq.(3.107),

be its Vk-least squares approximation. Then Eq.(3.120) expresses the fact
that PVk

f decomposes uniquely into three parts,

PVk
f = PVk+1

f + P
O

+
k+1
f + P

O
−

k+1
f . (3.121)

They are

PVk+1
f(t) =

∑

ℓ

2−(k+1)φ(2−(k+1)t− ℓ)〈φ(2−(k+1)u− ℓ), f(u)〉 (3.122)

P
O

+
k+1
f(t) =

∑

ℓ

2−(k+2)ψ+(2−(k+2)t− ℓ)〈ψ+(2−(k+1)u− ℓ), f(u)〉

P
O

−

k+1
f(t) =

∑

ℓ

2−(k+2)ψ−(2−(k+2)t− ℓ)〈ψ−(2−(k+1)u− ℓ), f(u)〉 .

They crystalize, within the context of resolution 2−k,

• the essential degrees of freedom of the space of square-integrable func-
tions (a.k.a. signals) and

• the detail degrees of freedom relative to the next (lower) resolution
2−(k+1).

The representations of f at resolutions 2−k and 2−(k+1) are given by

PVk
f(t) =

∑

ℓ

2−kφ(2−kt− ℓ)〈φ(2−ku− ℓ), f(u)〉 (3.123)

and Eq.(3.122) respectively. The basis elements

φ(2−kt− ℓ) ℓ = 0,±1, · · ·

and

φ(2−(k+1)t− ℓ) ℓ = 0,±1, · · ·

are the essential degrees of freedom of f within the context of resolutions 2−k

and 2−(k+1) respectively. The associated coefficients 〈· · · , · · · 〉 are the corre-
sponding amplitudes. We say that these degrees of freedom are independent
– there is no redundancy – because the basis elements for each resolution
space Vk are mutually orthogonal.
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When one compares a function f at resolutions 2−k and 2−(k+1), then the
difference

PVk
f − PVk+1

f = P
O

+
k+1
f + P

O
−

k+1
f ,

is called the detail of f relative to the next resolution 2−(k+1). The basis
elements

ψ(2−(k+1)t− ℓ) ℓ = 0,±1, · · ·
are the corresponding detail degrees of freedom. They are independent of the
essential degrees of freedom at resolution 2−(k+1) but not so at resolution 2−k.
These detail degrees of freedom span the vector space

Ok+1 = O+
k+1 ⊕O−

k+1 ,

which is the orthogonal complement of Vk+1 in Vk. The relation between
these subspaces is depicted in Figure 3.28 below.

· · · Vk−1 → Vk → Vk+1 · · ·
ց ⊕ ց ⊕

Ok Ok+1

Figure 3.28: Hierarchical relation between the resolution subspaces and their
orthogonal detail subspaces. The arrows are orthogonal projections onto the
subspaces.

It is difficult to overstate the importance of the principle of unit-economy.
Its application is implicit and is taken for granted through out any theoretical
development, ours in particular. However, there are situations where it is
instructive to highlight particularly significant instances of its application.
A case in point is the introduction of the scaling function, the father wavelet
φ(t). By this process an entire aggregate of concepts has been condensed into
a single new concept, a multiscale analysis (MSA), with a scaling function
φ(t) residing at its core. The economy in the number of concepts achieved
by this condensation is a tribute to this principle. It demands that any new
concept be defined in terms of essential properties.

The gist of the last two pages consisted of the task of establishing the
two alternative bases of the resolution space, Eq.(3.120), in terms of a single
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scaling function, Eq.(3.116), and the two “mother wavelets”, Eq.(3.119). Fur-
thermore, the development was based on a scaling function having a rather
specialized form, the Shannon wavelet sin πt/πt. One therefore wonders
whether the benefits to be gained from such a highly specialized activity are
really worth the effort expended. That the answer is “yes” is due to the fact
that the development identifies a wider principle constructively: For every
MSA there is a scaling function φ(t), and for every scaling function there ex-
ists a MSA. The assumed specialized form, Eq.(3.119), is non-essential. The
identification, MSA↔ φ(t), is captured by means of the following definition:
Definition (Multiscale Resolution Analysis)

An increasing sequence of Hilbert spaces

{Vk : {0} ⊂ · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · ⊂ L2(−∞,∞)} ,
(3.124)

is said to be a multiscale analysis of the space of square integrable functions
L2(−∞,∞) if

1. (the Cauchy completion of) their union is that space of square integrable
functions:

∞⋃

k=−∞
Vk = L2(−∞,∞) , (3.125)

2. their intersection is the zero function:

∞⋂

k=−∞
Vk = {0} , (3.126)

3. every resolution space Vk is related to a central (i.e. reference) space
V0 by a dilation of its elements:

f(t) ∈ Vk ⇐⇒ f(2kt) ∈ V0 , (3.127)

4. there exists a square-integrable function φ such that its integer trans-
lates form an orthonormal basis for the central approximation space
V0:

V0 = span{φ(t− ℓ) : ℓ = 0,±1, · · · } (3.128)
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with

∞∫

−∞

φ(u− ℓ)φ(u− ℓ′)du = δℓℓ′ . (3.129)

Thus a multiscale analysis (MSA) is a type of hierarchy having properties 1-
4. There are many other hierarchies that have only properties 1-2. But only
MSA’s are characterized by property 3.

This property is the essential (distinguishing) characteristic of a MSA.
It says that, in order for a hierarchy of linear spaces to be a MSA, each
one of these spaces must be a scaled version of a reference space V0, the
central approximation space. By starting with a function in V0, and applying
iteratively scaling operations, compression (×2) or dilation (×2−1), to its
argument, one moves up or down this hierarchy of approximation spaces.

The purpose of Property 4 is not to define what a MSA is. Instead, its
role is to have the scaling function φ(t) serve as a unique identifier of the
central approximation space V0, and hence, by Property 3, of a particular
MSA. Thus Property 4 establishes a unique correspondence between the set
of MSA’s and the set of scaling functions.

The unique identification of V0 is achieved by having the discrete trans-
lates of φ(t) form an orthonormal basis of V0. That translation process is
depicted in Figure 3.17 on page 174. The ablity of φ(t) to serve as a unique
identifier for the whole MSA becomes evident when one applies Property 3
to this functions. One finds that the set of translated and scaled functions

{
√
2−k φ(2−kt− ℓ) : l = 0,±1, · · · }

form o.n. bases for the respective approximation spaces Vk, and hence form
a basis for the whole MSA. This means that every MSA is distinguished from
every other MSA by means of its scaling function φ(t).

Consequently, the definition of a MSA by properties 1-4 not only defines
what a MSA is, but also establishes a one-to-one correspondence between
the set of MSA’s and the set of scaling functions.

The translates of the scaling function need not be orthonormal. In that
case the orthonormality condition, Eq.(3.129), gets replaced by the condition
that {φ(t− ℓ)} form a Riesz basis, i.e. that

A
∞∑

ℓ=−∞
|cℓ|2 ≤ ‖

∞∑

ℓ=−∞
cℓφ(t− ℓ)‖2 ≤ B

∞∑

ℓ=−∞
|cℓ|2 .
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Here A,B > 0 are positive constants, {cℓ} is a square-summable sequence,
and ‖ · · · ‖ is the L2-norm. In that circumstance there exists a theorem due
to Mallat which guarantees that the Riesz basis can be orthonormalized by
an appropriate renormalization procedure in the Fourier domain of φ(t).

Exercise 3.6.1 (IMPROVED FIDELITY BY AUGMENTATION)
SHOW that

∞⋃

k=−∞
Vk = L2(−∞,∞)⇐⇒ lim

k→−∞
‖PVk

f − f‖ = 0 ,

where PVk
is the orthogonal projection onto Vk and ‖ · · · ‖ is the L2-norm.

Exercise 3.6.2 (LOSS OF FIDELITY BY CURTAILMENT)
SHOW that

∞⋂

k=−∞
Vk = {0} ⇐⇒ lim

k→∞
‖PVk

f‖ = 0 .

Exercise 3.6.3 (TRANSLATION INVARIANT FUNCTION SPACES)
(a) SHOW that V0 is discrete translation invariant, i.e. that

f(t) ∈ V0 ⇐⇒ f(t− ℓ) ∈ V0 where ℓ is an integer.

(b) SHOW that Vk is 2k-shift invariant, in particular that

f(t) ∈ Vk ⇐⇒ f(t− 2kℓ) ∈ Vk .

3.6.5 Multiscale Analysis as a Method of Measure-
ment

Multiscale analysis introduces a breakthrough in the measurement of sig-
nals. It quantifies not only the location of characterisic features within a
given signal (see Figure 3.24 on page 193), but, like a telescope with vari-
able and calibrated zoom, it also quantifies their amplitudes in an optimally
efficient way. Measuring rods capable of this dual capability are depicted
schematically in Figure 3.29 on page 211.

Such an application of a multiscale analysis to any given signal always
requires two steps:
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1. specifying the scaling function, the standard of measurement and

2. measuring, and hence representing, the signal relative to the basis ele-
ments generated from that scaling function.

Let us consign the task of specifying the scaling function to the next subsec-
tion. Thus we assume that a choice of a scaling function has been made, and
we endeavor to measure the given signal, say f(t). This means that we find
the coefficients which represent the kth approximation of f , i.e. the least
squares approximation of f in the subspace Vk, Eq.(3.123). This array of
coefficients, the array of inner products

[PVk
f ] = {〈

√
2−kφ(2−ku− ℓ), f(u)〉 : ℓ = 0,±1, · · · } ,

is called the discrete approximation of f at resolution 2−k, and it constitutes
the result of the measuring process. It consists of the inner products

〈φ(2−ku− ℓ), f(u)〉 =
∞∫

−∞

φ
(
−2−k(2kℓ− u)

)
f(u)du

=
[
f(u) ∗ φ(−2−ku)

]
(2kℓ) ,

which is the convolution integral evaluated at the equally spaced points 2kℓ.
These values of the convolution integral are the output resulting from the
signal f(t) being passed through the filter φ(−2−ku). This is because in
the Fourier domain the convolution integral is the product of two Fourier
transforms. Thus one finds that the discrete approximation consists of the
set of sampled values of the given signal after it has passed through a filter
which is expressed by the Fourier integral

∞∫

−∞

φ(−2−ku)e
−iωu
√
2π

du .

3.6.6 Multiscale Analysis vs Multiresolution Analysis:
MSA or MRA?

The two names “multiscale analysis” (=MSA) and “multiresolution anal-
ysis”(=MRA) refer to the same concept. Both are characterized by the
discrete set of powers of the number 2,

2k, k = 0,±1,±2, · · · ,
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and the corresponding set of orthonormal basis functions

{
√
2−k φ(2−kt− ℓ) : ℓ = 0,±1, · · · }, k = 0,±1,±2, · · · .

The difference is that MRA and MSA highlight different aspects of the same
thing. As k increases, the scale increases but the resolution decreases. This
is like stepping away from a picture.

Consider the array of functions

φ(2−kt− ℓ) = φ

(
t− 2kℓ

2k

)

, ℓ = · · · ,−2,−1, 0, 1, 2, · · · .

This array is a set of identical localized graphs, each one displaced by the
amount 2k from its nearest neighbor. Thus each of these graphs serves as
marker on the real line and 2k is the distance between successive makers. In
brief, the real line equipped with this set of markers constitutes a new kind
of measuring rod for measuring signals. The integer k specifies the nature –
the resolution – of this measuring rod. Every integral increase in k increases
(decreases) the scale for performing these mesurements, and hence decreases
(increases) the resolution of the measuring rod. Figure 3.29 depicts several
such measuring rods.

3.6.7 The Pyramid Algorithm

The MSA measuring process starts with the acquisition of a signal as an
element in the central (“fiducial”, “reference”) vector space V0. This means
that a signal

f(t) =
∞∑

ℓ=−∞
c0ℓφ(t− ℓ) ∈ V0

is acquired in the form of a square summable sequence of numbers

{c0ℓ} = {〈φ(u− ℓ), f(u)〉} , ℓ = 0,±1, · · ·

The problem is to determine the representation of the signal in each of the
subsequent (“lower resolution”) approximation spaces V0 ⊃ V1 ⊃ V2 ⊃ · · · ,
i.e. find

{c1ℓ}, {c2ℓ}, · · ·
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21

22

23

24

25

26

27

28

29

−−−− t −−−>

Figure 3.29: Nine different measuring rods. Each is graduated with its own
set of markers, i.e. shifted scaling functions φ(2−k(t −m)), ranging from a
set of very high resolution (29 : k = −9) markers, through a set of medium
resolution (25 : k = −5), to the set of lowest resolution (21 : k = −1) mark-
ers. A high resolution measuring rod accomodates additional high resolution
markers, which are, however, not depicted in this figure. The markers of
each rod are uniformly spaced, as they must. The novelty of these rods
is that each marker has the mathematically precise internal structure of a
wavepacket. This novelty permits one to measure not only the locations of
specific features in a given signal but also their amplitudes.

such that
∞∑

ℓ=−∞
ckℓφ(t− ℓ) = PVk

f(t)

is the least squares projection of f(t) onto Vk for k = 1, 2, · · · . This turns
out to be an iterative process which terminates after a finite number of steps.

The key observation which makes this process so powerful and appealing
is that the relationship between two adjacent resolution spaces, say Vk and
Vk+1, is independent of the order k.

Given the fact that {Vk : k = 0,±1, · · · } is a MSA and that φ(t) is the
corresponding scaling function, we know that
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• for fixed integer k

{
√
2−k φ(2−kt− ℓ) : l = 0,±1, · · · }

is an o.n. basis for Vk, and that

• each of the basis elements
√
2−(k+1) φ(2−(k+1)t−ℓ′) forVk+1 also belongs

to Vk.

Consequently, each such basis element can be expanded uniquely in terms of
the Vk-basis

φ(2−(k+1)t−ℓ′) =
∞∑

ℓ=−∞
φ(2−kt−ℓ) 2−k〈φ(2−ku−ℓ), φ(2−(k+1)u−ℓ′)〉 (3.130)

By changing variables in the inner product integral one finds that

2−k〈φ(2−ku− ℓ), φ(2−(k+1)u− ℓ′)〉 ≡ 2−k
∞∫

−∞

φ(2−ku− ℓ)φ(2−(k+1)u− ℓ′)du

=

∞∫

−∞

φ(u− ℓ)φ(2−1u− ℓ′)du

=

∞∫

−∞

φ (u− (ℓ− 2ℓ′))φ(2−1u)du

≡
√
2 hℓ−2ℓ′

Exercise 3.6.4 (ORTHONORMALITY)
a) Point out why this inner product is the (ℓ, ℓ′)th entry of the

√
2-multiple of a

unitary matrix, which is independent of k.

b) Show that
∑∞

ℓ=−∞ hℓhℓ−2ℓ′ = δ0ℓ′ .
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When one computes the (complex) inner product of f with both sides of
Eq.(3.130), one obtains

〈
√
2−(k+1)φ(2−(k+1)u− ℓ′), f(u)〉

︸ ︷︷ ︸

ck+1
ℓ′

=
∞∑

ℓ=−∞
〈
√
2−(k+1)φ(2−(k+1)u− ℓ′),

√
2−kφ(2−ku− ℓ)〉

× 〈
√
2−kφ(2−ku− ℓ′), f(u)〉

=
∞∑

ℓ=−∞
〈
√
2−kφ(2−ku− ℓ), f(u)〉

︸ ︷︷ ︸

ckℓ

hℓ−2ℓ′

Thus, by setting hℓ−2ℓ′ ≡ h̃2ℓ′−ℓ one has

ck+1
ℓ′ =

∞∑

ℓ=−∞
h̃2ℓ′−ℓ c

k
ℓ (3.131)

The sum on the r.h.s. is the discrete convolution of {h̃ℓ} and {ckℓ}. It shows
that the discrete approximation

{ck+1
ℓ } = {〈

√
2−(k+1)φ(2−(k+1)u− ℓ), f(u)〉 : ℓ = 0,±1, · · · }

of f can be computed from {ckℓ} by convolving it with {h̃ℓ}, and then keeping
only every other sample from the result. Thus, if one starts out with a dis-
crete approximation {ckℓ} which represents f by means of a finite number of
samples, then the next discrete approximation is represented by only half as
many samples. After a sufficient number of such iterative steps the process
stops because one has run out of samples. All successive discrete approxima-
tions of f are merely sequences of zeros. This iterative algorithm is known
as the pyramid algorithm first introduced by Stephane Mallat [10]. It is a
rather efficient algorithm because it terminates after only

log2(# of sampled values of f) .

iterations.

3.6.8 The Requirement of Commensurability

The problem of specifying a scaling function is the problem of choosing an
appropriate standard.
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A standard has to be commensurable with the things being measured.
In fact, it has to be an element of the set of things being measured. Thus,
if one wishes to measure the shape of functions which are, say, piecewise
constant, then the scaling function should have the same property. If the
functions to be measured have compact support, then the scaling function
should also have compact support. If the functions to be measured have
continuous derivatives, then the scaling function better have that property
also. Thus the requirement of commensurability dictates the choice of an
appropriate standard – an appropriate scaling function.

The Scaling Function as a MSA Identifier

Once a scaling function has been chosen and constructed, the corresponding
MSA is uniquely determined. However, not all square-integrable functions
qualify as scaling functions. In fact, to qualify, the definition of a MSA on
page 206 implies that a scaling function must satisfy two key properties.
They are (i) Eq.(3.129),

∞∫

−∞

φ(u− ℓ′)φ(u− ℓ′′)du = δℓ′ℓ′′ (3.132)

and (ii) Eq.(3.130) on page 212, or equivalently with k = −1

φ(t) =
√
2

∞∑

−∞
hℓφ(2t− ℓ) . (3.133)

where

hℓ = 〈φ(2t− ℓ), φ(u− ℓ)〉 .

The boxed is known as the scaling equation for the scaling function φ(t). Both
Eqs.(3.132) and (3.133) put strong restrictions on the collection of square-
integrable functions. The first constitutes a discrete infinitude of constraints
and is equivalent to

∞∫

−∞

φ(u)φ(u− ℓ)du = δ0ℓ .
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The second is a statement about the dilation operator D,

L2 D−→ L2

f(t) ∼❀ Df(t) =
√
2−1f(2−1t) .

That second constraint, Eq.(3.133), demands that, even though D changes
the shape of the graph of f , the resulting function still lies in the subspace

V0 = span{φ(t− ℓ) : ℓ = 0,±1, · · · }

spanned by the discretely tranlated functions φ(t − ℓ). In other words, the
function φ(t) is such that the subspace V0 generated from this function is
invariant under D.

Both boxed equations put severe restrictions on the collection of square-
integrable functions, but these restrictions are not strong enough to single
out a unique function. Instead, they narrow the field of candidates to those
L2-functions which qualify as scaling functions for MSAs. The nature of
these restrictions becomes more transparent if one expresses them in the
Fourier domain, instead of the given domain. Thus by introducing the Fourier
transform of φ(t),

1√
2π

∞∫

−∞

e−iωtφ(t) dt = φ̂(ω) ,

one finds for the first equation that

δ0ℓ =

∞∫

−∞

φ(t)φ(t− ℓ)dt

=

∞∫

−∞

φ̂(ω)φ̂(ω)eiωℓdω

=

2π∫

0

∞∑

n=−∞

∣
∣
∣φ̂(ω + 2πn

∣
∣
∣

2

eiωℓdω

This equation says that the sum of the squared magnitude is a function all of
whose Fourier coefficients vanish – except for the one corresponding to ℓ = 0.
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Such a function is a constant, namely

∞∑

n=−∞

∣
∣
∣φ̂(ω + 2πn)

∣
∣
∣

2

=
1

2π
. (3.134)

This condition on the Fourier transform of φ is Mallat’s necessary and suffient
condition for the discrete translates of φ(t) to form an o.n. basis for V0.

In the Fourier domain the second equation, the scaling equation (3.133),
has a simple form. Taking the Fourier transform of the equivalent equation

φ

(
t

2

)

=
√
2

∞∑

−∞
hℓφ(t− ℓ) ,

one finds

φ̂(2ω) = H(ω)φ̂(ω) , (3.135)

where

H(ω) =

√
2

2

∞∑

ℓ=−∞
hℓe

iωℓ

is a 2π-periodic function of ω:

H(ω + 2π) = H(ω) .

Equation (3.135) is a linear equation. It expresses in the Fourier domain the
relation between the input φ̂(ω) and the output φ̂(2ω) of a time-invariant
linear system. In the theory of such systems the function H(ω) is therefore
known as a filtering function or filter in brief. Its periodicity is an important
but fairly mild restriction on H(ω). That condition can be strengthened con-
siderably by incorporating the Fourier normalization condition, Eq.(3.134)
into Eq.(3.135). One does this by inserting Eq.(3.135) into Eq.(3.134). The
result is that H(ω) satisfy the additional normalization condition

|H(ω)|2 + |H(ω + π)|2 = 1 . (3.136)

Thus the scaling equation is a linear equation, and to qualify as a scaling func-
tion, its Fourier transform must satisfy a simple linear equation, Eq.(3.135),
having a normalized periodic coefficient. The nature of a particular scaling
function, and hence the nature of the corresponding MSA, is controlled by
the nature of that normalized coefficient function 2π-periodic on the Fourier
domain.
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Exercise 3.6.5 (FUNCTIONAL CONSTRAINT ON THE FILTER FUNCTION)
Verify the validity of the functional constraint, Eq.(3.136).

Exercise 3.6.6 (THE SCALING EQUATION SOLVED)
Consider a function φ(t) having the property

∣
∣
∣
∣
∣
∣

∞∫

−∞

φ(t)dt

∣
∣
∣
∣
∣
∣

6= 0 .

Find the solution to the scaling equation, Eq.(3.135).

Answer: φ̂(ω) = φ̂(0)
∞∏

k=1

H
( ω

2k

)

Exercise 3.6.7 (TWO SOLUTIONS TO THE SCALING EQUATION)
Let φ+(t) be a solution to the scaling equation

φ(t) =
√
2

∞∑

−∞
hℓφ(2t− ℓ) .

a) Point out why

φ̂−(ω) =

{
φ̂+(ω) ω ≥ 0

−φ̂+(ω) ω < 0

is the Fourier transform of a second independent solution to the above scaling
equation.

b) Show that φ+(t) and φ−(t) are orthogonal,

∞∫

−∞

φ
+
(t)φ−(t)dt = 0 ,

whenever (i) φ(t) is a real function or whenever (ii) its Fourier transform is an
even function of ω.

3.6.9 Wavelet Analysis

The task of identifying the properties of an acquired signal starts with its
given representation as an element in the reference (i.e. fiducial, central)
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representation space V0. One singles out the large overall features by pro-
jecting it onto the next subspace V1. This projection process suppresses the
finer details of the signal. They are no longer present when the signal is
represented as an element of V1. Using the pyramid algorithm one repeats
this process iteratively. In this process one moves from the resolution 2−k of
Vk to the lower resolution 2−(k+1) of Vk+1 ⊂ Vk.

To keep track of the finer details suppressed by this process, one intro-
duces Ok+1, the orthogonal complement of Vk+1 in Vk:

Vk+1⊥Ok+1 .

Thus any signal f represented in Vk is the unique sum of the signal repre-
sented in Vk+1 and its suppressed detail which lies in Ok+1:

PVk
f = PVk+1

f + POk+1
f .

In brief,
Vk = Vk+1 ⊕Ok+1 .

The o.n. bases for Vk and Vk+1, and hence the representations of the
signal f in these spaces, are known and expressed in terms of the scaling
function φ(t). These bases determine a unique basis for Ok whose purpose
is to keep track of the suppressed POk+1

f of the signal f . The process of
constructing the Ok+1-basis resembles that for Vk and Vk+1. One starts
with a square-integrable function ψ(t), the “mother wavelet”. By applying
translations and dilations to it, one obtains the desired o.n. basis for Ok+1,
the space of details at resolution 2−(k+1). The crucial part of this endeavor is
the construction of the mother wavelet from the scaling function of the MSA.
The construction is done by means of the following theorem by Mallat:

Theorem 3.6.1
(Wavelet generation theorem)

1. Let
· · · ⊃ Vk ⊃ Vk+1 ⊃ · · ·

be the hierarchy of vector spaces which make up the MSA whose scaling
function is φ(t) and whose corresponding pyramid algorithm is based
on the filtering function

H(ω) =

√
2

2

∞∑

ℓ=−∞
hℓe

iωℓ



3.6. MULTIRESOLUTION ANALYSIS 219

2. Let ψ(t) be a function whose Fourier transform is given by

ψ̂(ω) = G
(ω

2

)

φ̂
(ω

2

)

where

G(ω) = eiωH(ω + π) ,

then

I.

{
√
2−kψ(2−kt− ℓ) : ℓ = 0,±1, · · · } (3.137)

is an o.n. basis for Ok and

II.

{
√
2−kψ(2−kt− ℓ) : ℓ, k = 0,±1, · · · } (3.138)

is an o.n. basis for L2(−∞,∞).

The validation of this theorem is a three step process.

1. First of all notice that the set of functions, Eq.(3.137), being orthogo-
nal,

δℓℓ′ =

∞∫

−∞

√
2−kψ(2−ku− ℓ)

√
2−kψ(2−ku− ℓ′)du

=

∞∫

−∞

ψ(u− ℓ)ψ(u− ℓ′)du ,

is equivalent to the statement that

∞∑

n=−∞

∣
∣
∣ψ̂(ω + 2πn)

∣
∣
∣

2

=
1

2π
−∞ < ω <∞ . (3.139)

The reasoning is identical to that leading to Eq.(3.134).
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2. Secondly note that Vk+1 ⊂ Vk, and hence

Vk = Vk+1 ⊕Ok+1 where Vk+1 ⊥ Ok+1 ,

with

Vk+1 = span{
√
2−kφ(2−kt− ℓ)}

Ok+1 = span{
√
2−kψ(2−kt− ℓ)} ,

implies that any basis element of Vk+1 or of Ok+1 is a linear combina-
tion of the basis elements of Vk. Applying this fact to the case k = −1,
one has

φ

(
t

2

)

=
√
2

∞∑

−∞
hℓφ(t− ℓ)

ψ

(
t

2

)

=
√
2

∞∑

−∞
gℓφ(t− ℓ) .

The corresponding Fourier transformed equations are

φ̂(2ω) = H(ω)φ̂(ω) with H(ω) =

√
2

2

∞∑

−∞
hℓe

iωℓ (3.140)

ψ̂(2ω) = G(ω)ψ̂(ω) with G(ω) =

√
2

2

∞∑

−∞
gℓe

iωℓ (3.141)

3. Thirdly note that the orthogonality condition, Eq.(3.139), when com-
bined with Eq.(3.141), yields a normalization condition on G(ω) anal-
ogous to Eq.(3.136) on page 216,

|G(ω)|2 + |G(ω + π)|2 = 1 .

This is not the only constraint that G must satisfy. One must also take
into account that Ok+1 is the orthogonal complement of Vk+1 in Vk

This fact, which is expressed by

∞∫

−∞

φ(u− ℓ)ψ(u− ℓ′)du = 0 for all integers ℓ and ℓ′ ,
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is equivalent to

∞∑

n=−∞
φ̂(ω + 2πn)ψ̂(ω + 2πn) = 0 −∞ < ω <∞ (3.142)

Inserting Eqs.(3.140) and (3.141) into Eq.(3.142), using the fact that
H and G are 2π-periodic,

H(ω + 2πn) = H(ω)

G(ω + 2πn) = G(ω)

and taking advantage of Eq.(3.134), one finds that the additional con-
straint on G is

H
(ω

2

)

G
(ω

2

)

+H
(ω

2
+ π
)

G
(ω

2
+ π
)

= 0 .

Thus the filter functions H and G satisfy

H(ω)G(ω) +H(ω + π)G(ω + π) = 0 (3.143)

and

G(ω)G(ω) +G(ω + π)G(ω + π) = 1 (3.144)

H(ω)H(ω) +H(ω + π)H(ω + π) = 1 . (3.145)

A good way of remembering these constraints is that the matrix
[

H(ω) G(ω)
H(ω + π) G(ω + π)

]

is unitary. These constraints are useful if for no other reasons than that
they (i) place the two sequences of Fourier coefficients {hℓ} and {gℓ}
on certain quadratic surfaces in the Hilbert space ℓ2 and that they (ii)
establish a tight relation between the hℓ’s and the gℓ’s. Indeed, from
Eq.(3.143) one finds

G(ω) = H(ω + π)e−iω .

This relation is not unique. Other possibilities are

G(ω) = H(ω + π)e−(2p+1)iω where p is an arbitrary integer .
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Each side of this equation is a Fourier series in powers of eiω. Equating
equal powers one finds

gℓ = (−1)ℓ h2p+1−ℓ .

With both G(ω) and H(ω) at hand, one solves the two Eqs.(3.140) and
(3.141). The solutions are

φ̂(ω) = φ̂(0)
∞∏

k=1

H
( ω

2k

)

ψ̂(ω) = φ̂(0)G(ω)
∞∏

k=1

H
( ω

2k

)

.

The inverse Fourier transform of these solutions yields the sought after
scaling function

φ(t) = φ̂(0)

∞∫

−∞

∞∏

k=1

H
( ω

2k

) eiωt√
2π
dω

and the mother wavelet

ψ(t) = φ̂(0)

∞∫

−∞

G(ω)
∞∏

k=1

H
( ω

2k

) eiωt√
2π
dω .

Shifting and dilating this mother wavelet yields the o.n. basis functions,
Eq.(3.137), for Ok

Exercise 3.6.8 (ORTHOGONALITY OF THE DETAIL SPACES)
Validate conclusion # II. of the theorem on page 219, i.e. point out why, whenever
k 6= k′, the functions in the space of details Ok are orthogonal to the functions in
the space of details Ok′ .
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Chapter 4

Green’s Function Theory

Lecture 26

We shall now direct our efforts towards finding what in linear algebra corre-
sponds to the inverse of the linear operator A−λB. This means that we are
going to find a linear operator G which satisfies the equation

(A− λB)G = I . (4.1)

Once we have found this inverse operator G, it is easy to solve the inhomo-
geneous problem

(A− λB)~x = ~b (4.2)

for ~x. This is so because the solution is simply

~x = G~b . (4.3)

If the vector space arena is an infinite-dimensional Hilbert space, the inverse
operator

Gλ = (A− λB)−1

is usually called the Green’s function of A− λB, although in the context of
integral equations the expression

Gλ = (A− λI)−1

is sometimes called the resolvent of A. Its singularities yield the eigenvalues
of A, while integration in the complex λ-plane yields, as we shall see, the cor-
responding eigenvectors. It is therefore difficult to overstate the importance
of the operator Gλ.

225
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4.1 Cause and Effect Mathematized in Terms

of Linear Operator and Its Adjoint

The matrix/operator Gλ is the fundamental bridge between the nature of
the physical world and linear mathematics – more precisely, a particular
instance of the connection between the law of causality (“The action of an
entity follows from its nature.” 1,2) and its formulation in quantitative terms.

Being perfect, i.e. totally real, the physical world is worthy of the most
painful study. A necessary and sufficient condition for success in this process
consists of (i) seeking awareness of and identifying causal connections in the
world and (ii) doing so in terms of the language of mathematics. Equations
(4.1)-(4.2) and their consequence Eq.(4.3) comprise the prototypical math-
ematization3 of both of these within the framework of linear mathematics.
The vector ~b refers to a cause (e.g. force, source, signal, etc.) while ~x refers
to the effect (e.g. movement, field, response, etc.). On the other hand, I
refers to a type of standardized cause, while G refers to the corresponding
effect. Once one has identified and mathematized this standard cause and
effect connection, Eq. (4.3) yields with mathematical certainty the outcome
of any linear cause and effect connection.

In other words, even though the study of the physical world might require
considerable effort and perseverance, with linear systems such a study is
comparatively straight forward. This is because, once one has found the
solution to Eq.(4.1), solutions to Eq.(4.2) are easy to obtain by merely using
Eq.(4.3).

The validity of this claim rests on the validity of three concepts, the first
two of which we shall take for granted.

1. An inner product. This is the geometrical structure, a bi-linear scalar
function, on the given inner product space H,

〈f, g〉 = 〈g, f〉 . (4.4)

1More explicitly: “An entity of a certain kind necessarily acts in a certain way under
a given set of circumstances.”

2David Harriman, THE LOGICAL LEAP: Induction In Physics, pages 9, 21-22, 236-
237. New American Library, Penguin Group, Inc., New York, 2010.

3The concept of “mathematization” refers to the process of expressing things in terms
of the language of mathematics, i.e. in quantitative terms.
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2. The Hermitian adjoint, TH , of a given linear operator T. It is defined
by the requirement that,

〈f, Tg〉 = 〈THf, g〉 for all f, g ∈ H . (4.5)

3. the reciprocity relation between (i) the solution to the standard cause
and effect problem and (ii) that of the Hermitian adjoint of this cause
and effect problem.

If the4 solution to the inhomogeneous problem, Eq.(4.2) exists, then the
method of solving it is a four step process. The Hermitian adjoint, (A−λB)H ,
of the given operator T = A− λB plays a key role. Indeed, the existence of
that solution depends on the existence of F , the solution to the equation

(A− λB)HF = I . (4.6)

Step I. Find the solution to Eq.(4.6), if it exists.
Step II. Note that FH , the Hermitian adjoint of F , satisfies

FH(A− λB) = I . (4.7)

Step III. Multiply the given Eq.(4.2) by FH ,

FH(A− λB)~x = FH~b . (4.8)

Step IV. Apply Eq.(4.7) and obtain the solution

~x = FH~b . (4.9)

At first sight this result is somewhat daunting because we need to find the
Hermitian adjoint of A − λB, solve the corresponding equation for F , and
finally find the Hermitian adjoint of F .
However, the reciprocity theorem allows us to dispense with having to find
all these Hermitian adjoints.
Theorem 1 (Reciprocity) Let G be a solution to Eq.(4.1), and let F be a
solution to Eq.(4.6), then

FH = G . (4.10)

4We are assuming that λ is such that the homogeneous problem (A−λB)u = 0 has no
non-trivial solution. This means that if a solution to Eq. (4.2) exists, it is the solution.
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The proof is very simple: Multiply Eq.(4.1) by FH to obtain

FH(A− λB)G = FH . (4.11)

Applying Eq.(4.7) one obtains the reciprocity relation,

G = FH . QED. (4.12)

In light of this relation, the solution to the inhomogeneous problem, Eq.(4.2),
is given by

~x = G~b . (4.13)

In physics and engineering there is a large class of linear systems which are
self-adjoint, for example vibrating or oscillating linear systems without any
friction. They are mathematized by the self-adjointness condition

(A− λB)H = TH = T = A− λB . (4.14)

More precisely, we have the following
Definition. A linear operator T is said to be self-adjoint or Hermitian if it
satisfies

〈f, Tg〉 = 〈Tf, g〉 for all f, g ∈ H .

Thus, if the Hermitian adjoint of an operator equals the operator itself, then
the operator is said to be Hermitian. In light of Eq.(4.6), it should come as no
surprise that the corresponding Green’s (“response”) matrix/operator/function
satisfies the same condition.

GH = G. (4.15)

4.1.1 Adjoint Boundary Conditions

The operators which are of immediate interest to us are differential operators.
Although their actions consist of taking derivatives, their definition is more
restrictive. The additional properties they have to satisfy is the consequence
of the fact that an operator is a type of mapping. As such, one must always
specify not only its fomula (or rule) but also its domain. The domain in our
case is a subspace of the given Hilbert space. Thus, to specify uniquely a
2nd order differential operator, one must specify three things:
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(i) The domain H, the Hilbert space, which we shall take to be L2(a, b),
the space of functions square-integrable on [a, b].

(ii) The homogeneous boundary conditions to be satisfied by u ∈ H.

(iii) L = α(x)
d2

dx2
+ β(x)

d

dx
+ γ(x), i.e. the “formula”.

Items (i)-(iii) are referred to collectively as the “operator L”. One also
should note that (i) and (ii) define a linear subspace S of H as follows: Let
L to be the linear map whose image Lu has a well defined inner product, i.e.
〈v, Lu〉 =finite, for any square-integrable u and v. For the set of continuously
differentiable functions, C2(a, b), this means that

L : S∩C2(a, b) −→ H = L2(a, b)
u ∼❀ Lu .

Here S is the domain of L, and it is

S = { u ∈ L2(a, b) : 〈v, Lu〉 = finite ∀ v ∈ L2(a, b); u satisfies

the given homogeneous boundary conditions at a and b}

What if u is not a continuously differentiable function? Then its image Lu
is not square-integrable, but the inner product 〈v, Lu〉 is still well-defined
because it is finite. For example, if u is a function which has a kink, then Lu
would not be defined at that point and Lu would not be square-integrable.
Nevertheless, the integral of vLu would be perfectly finite.

The (Hermitian) adjoint L∗ of an operator such as L is defined by the
requirement that

〈v, Lu〉 = 〈L∗v, u〉
for all u ∈ S and all v belonging to S∗, the domain of L∗. This is illustrated
in the examples below. In compliance with standard notation, we are using
L∗, and not LH to refer to the Hermitian adjoint of the differential operator
L. In some physics text books one finds L† instead.

Example 1. Let L =
d

dx
have as its domain the subspace

S = { u ∈ L2(a, b) : u(a) = 2u(b) ; 〈v, Lu〉 = finite whenever v ∈ L2(a, b)} ,
(4.16)
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and let the inner product be

〈v, u〉 =
∫ b

a

v(x)u(x) dx .

FIND the adjoint of this operator.
To do this, one integrates by parts in order to move the operator from the
second factor to the first and thereby obtains

〈v, Lu〉 =

∫ b

a

v
d

dx
u dx

= v(b)u(b)− v(a)u(a)
︸ ︷︷ ︸

P (v,u)|ba

+

∫ b

a

(

− d

dx
v

)

︸ ︷︷ ︸

L∗v

u dx .

The bilinear expression P (v, u) is called the bilinear concomitant or the con-
junct of v and u. Thus we have

〈v, Lu〉 − 〈L∗v, u〉 ≡ P (v, u)|ba (4.17)

This intergral identity relates the behaviour of v(x) and u(x) in the interior
of [a, b] to their values on the boundary, x = a and x = b. The construction
of L∗ from L is based on the requirement that

〈v, Lu〉 − 〈L∗v, u〉 = 0 .

This means that the bilinear concomitant evaluated at the endpoints must
vanish,

P (v, u)|ba = 0 . (“compatibility condition”) (I)

This is a compatibility condition between the given boundary condition,
Eq.(4.16), i.e.

S = {u ∈ L2(a, b) : u(a)−2u(b) = 0} (“given boundary condition”) (II)

and the to-be-determined adjoint boundary condition,

S∗ = {u ∈ L2(a, b) : αu(a)+βu(b) = 0} (“adjoint boundary condition”) (III)

This means that any two of the three sets of conditions implies the third:
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1. (II) and (III) imply (I).

2. (III) and (I) imply (II).

3. (I) and (II) imply (III).

Using the boundary condition, one obtains

〈v, Lu〉 = [v(b)− 2v(a)]u(b) +

∫ b

a

(−) d
dx
v u dx

≡ 〈L∗v, u〉 .

This determines L∗, provided the boundary term vanishes for all u ∈ S. This
implies that v must satisfy the adjoint boundary condition

v(b)− 2v(a) = 0 . (4.18)

The conclusion is this: the adjoint L∗ of L consists of two parts,

(i)

L∗ = − d

dx
(“the formula′′)

(ii) the adjoint boundary condition, Eq.(4.18), which determines the do-
main

S∗ = { v ∈ L2(a, b) : v(a) =
1

2
v(b) ; 〈L∗v, u〉 <∞ ∀u ∈ L2(a, b)}

(“the domain′′)

on which L∗ operates.

The expression L∗ = − d
dx

without the boundary condition is called the formal
adjoint of L. If v, and hence v, satisfies the adjoint boundary condition, then
the “formal” adjoint becomes the adjoint of L. In this case one has

〈v, Lu〉 = 〈L∗v, u〉

for all u ∈ S and all v ∈ S∗.
It is clear that L and its adjoint L∗ are different operators: they differ not
only in their domain but also in their formula.
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Example 2. Consider L = i
d

dx
whose domain is the subspace S = { u : u(a) =

u(b) }.
FIND its adjoint.
Following the familiar procedure, one obtains

〈v, Lu〉 = i[v(b)− v(a)]u(b) +
∫ b

a

i
d

dx
v u dx

= 〈L∗v, u〉 .
This holds for all u ∈ S, provided v(a) = v(b). It follows that

L∗ = i
d

dx
(“formula′′)

S∗ = { v : v(a)− v(b) = 0 } (“domain′′)

One sees that both the formal adjoint (“the formula”) and its domain are
the same as the given operator. This observation motivates the following
Definition. An operator said to be self-adjoint, if both its formula and its
domain are the same, i.e.

L∗ = L

and
S∗ = S

Reminder : Sometimes we shall mean by L∗ only the “formal” adjoint of L,
at other times we shall mean by L∗ the adjoint of L, which includes the
boundary conditions. The context will make clear which is which.

Lecture 27

4.1.2 Second Order Operator and the Bilinear Con-
comitant

Let us extend our considerations from linear differential operators of first
order to those of second order. To do this, let us find the adjoint of a second
order operator. The given operator consists of

(i) the differential operator

L = α(x)
d2

dx2
+ β(x)

d

dx
+ γ(x)
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(ii) the domain S ⊂ H = L2(a, b) on which it operates,

S = { u : u ∈ L2(a, b); Lu ∈ L2(a, b); B1(u) = 0; B2(u) = 0 }

where B1 and B2 are two homogeneous boundary conditions,

0 = B1(u) ≡ α1u(a) + α′
1u

′(a) + β1u(b) + β′
1u

′(b)
0 = B2(u) ≡ α2u(a) + α′

2u
′(a) + β2u(b) + β′

2u
′(b)

(4.19)

The α′
is and β′

is are given constants not to be confused with the functions
α(x) and β(x). The task is to find the adjoint of the given operator, namely
FIND

(i) L∗

(ii) S∗ = { v ∈ L2(a, b) : B∗
1(v) = 0; B∗

2(v) = 0 }
such that

〈v, Lu〉 = 〈L∗v, u〉
for all u ∈ S and all v ∈ S∗. The left-hand side of this equation is given, and
it is

〈v, Lu〉 =
∫ b

a

(

αv
d2u

dx2
+ βv

du

dx
+ vγu

)

dx .

In order to have the derivatives act on the function v, one does an integration
by parts twice on the first term, and once on the second term. The result is

〈v, Lu〉 =

∫ b

a

(
d2

dx2
αv − d

dx
βv + γv

)

︸ ︷︷ ︸

L∗v

u dx

+ [vαu′ − (vα)′u+ vβu]
b
a

︸ ︷︷ ︸

P (v, u)|ba
The bilinear expression P (v, u) is called the bilinear concomitant or the con-
junct of v and u. Thus we have

〈v, Lu〉 − 〈L∗v, u〉 ≡ P (v, u)|ba (4.20)

This important integral identity is the one-dimensional version of Green’s
identity. Indeed, it relates the behavior of v(x) and u(x) in the interior
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of [a, b] to their values on the boundary, here x = a and x = b. It is an
extension of the integrated Lagrange identity, Eq.(1.16), from formally self-
adjoint second order operators to generic second order operators. Observe
that when

β = α′ ,

L becomes formally self-adjoint whenever the coefficient functions α, β, and
γ are real. In this circumstance L is the Sturm-Liouville operator and the
bilinear concomitant reduces to

P (v, u) = α[vu′ − v′u] ,

which is proportional to the Wronskian determinant of v and u. The con-
struction of L∗ from L is based on the requirement that

〈v, Lu〉 − 〈L∗v, u〉 = 0 .

This means that the bilinear concomitant evaluated at the endpoints must
vanish,

P (v, u)|ba = 0 . (“compatibility condition”) (I)

This is a compatibility condition between the given boundary conditions,
Eq.(4.19),

B1(u) = 0
B2(u) = 0

, (“given boundary conditions”) (II)

and the adjoint boundary conditions,

B∗
1(v) = 0

B∗
2(v) = 0

. (“adjoint boundary conditions”) (III)

This means that any two of the three sets of conditions implies the third:

1. (II) and (III) imply (I).

2. (III) and (I) imply (II).

3. (I) and (II) imply (III).

The problem of obtaining the adjoint boundary conditions in explicit form,

0 = B∗
1(v) ≡ α∗

1v(a) + α∗
1
′v′(a) + β∗

1v(b) + β∗
1
′v′(b)

0 = B∗
2(v) ≡ α∗

2v(a) + α∗
2
′v′(a) + β∗

2v(b) + β∗
2
′v′(b)

(4.21)

is a problem in linear algebra. One must combine the given boundary condi-
tions, Eq.(4.19) with the compatibility condition (I) to obtain the coefficients
α∗
i , α

∗
i
′, β∗

i , β
∗
i
′ in Eq.(4.21).
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4.2 Green’s Function and Its Adjoint

Presently our task is to solve what in linear algebra corresponds to

(A− λB)~u = ~b . (4.22)

We shall find that the execution of this task is a straight forward calcu-
lation, provided there exists a unique answer. The existence and uniqueness
questions are readily understood for any finite-dimensional matrix. Such un-
derstanding also applies to a second order operator, even though its domain
and target space (=“codomain”) is infinite-dimensional and thus has its own
mathematical subtleties.

An understanding of the existence and uniqueness questions is not only
the difference between success and failure in solving Eq.(4.22) and its exten-
sion to a second order differential equation, but it is also the basis for the
spectral applications in Section 4.10. In light of this we shall interrpt the
development to give a rapid review of the linear algebra behind the Green’s
function concept.

4.3 A Linear Algebra Review: Existence and

Uniqueness

In dealing with a linear system A−λB we are dealing with with the following
causal relation

source ~b response ~u

−→ A− λB −→
input output

(4.23)

The properties of this causal connection are captured by means of the fol-
lowing equation,

(A− λB)~u = ~b . (4.24)

The associated mathematical problem is this:
Given: (a) The linear mapping A− λB : U → V ; (b) any vector ~b ∈ V
Find: ~u ∈ U such that Eq.(4.24) is satisfied
Discussion: This linear algebra problem, it turns out, decomposes into the
task of answering two questions:
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1. Can one find a G such that

(A− λB)G = I on V ?

2. Can one find an H such that

(A− λB)∗H = I on U ?

If A− λB has the right properties, the answer is ’yes’ to both questions.

4.4 The Inhomogeneous Problem

In the framework of calculus this means that we must solve the inhomoge-
neous boundary value problem

Lu(x) = −f(x) a < x < b
B1(u) = 0
B2(u) = 0

, (4.25)

or, more generally, solve the problem

Lv(x) = −f(x) a < x < b

B1(v) = d (4.26)

B2(v) = e , (4.27)

Notation: the minus sign on the right hand sides is a convention which
complies with the interpretation of f as the force density on a simple string
as discussed in the next section.
The operator L is a second order linear differential operator, while d and e
are constants. We shall first deal with the first problem where the boundary
conditions are homogeneous (d = e = 0). Once we have solved it, the
solution to the second one is simply equal to the first solution augmented by
that solution to the homogeneous differential equation which satisfies

Lvh(x) = 0 a < x < b
B1(vh) = d
B2(vh) = e

.
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Thus,

v(x) = u(x) + vh(x)

= u(x) + c1v1(x) + c2v2(x) .

Here v1 and v2 are any two independent solutions to the homogeneous dif-
ferential equation, and the constants c1 and c2 are adjusted so that the two
linear endpoint conditions, Eqs.(4.26) and (4.27), are satisfied. This means
that c1 and c2 are determined by

c1B1(v1) + c2B1(v2) = d

c1B2(v1) + c2B2(v2) = e .

Lecture 28

The solution to the inhomogeneous problem, Eqs.(4.25), is based on the
corresponding Green’s function. In the engineering sciences it is also known
as the unit impulse response. It is given by the following
Definition. (Green’s function and its adjoint)
Let G(x; ξ) be a function with the property

LG(x; ξ) = −δ(x− ξ) a < x, ξ < b
B1(G) = 0
B2(G) = 0

. (4.28)

Such a function is the Green’s function for the boundary value problem.
The corresponding adjoint Green’s function H(x; ξ) is the function with the
property

L∗H(x; ξ) = −δ(x− ξ) a < x, ξ < b
B∗

1(H) = 0
B∗

2(H) = 0
, (4.29)

where L∗ is the formal adjoint of the differential operator L and B∗
1(H) = 0

and B∗
2(H) = 0 are the boundary conditions adjoint to B1(G) = 0 and

B2(G) = 0.
The adjoint Green’s function is very useful because it allows us to solve the
inhomogeneous boundary value problem, Eqs.(4.25). The solution is obtained
with the help of Green’s identity, Eq.(4.20),

〈H,Lu〉 − 〈L∗H, u〉 =
∫ b

a

(HLu− L∗Hu) dx = P (H, u)|ba .
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Indeed, using the fact that the adjoint boundary conditions

B∗
1(H) = 0

B∗
2(H) = 0

have been constructed so as to guarantee that

P (H, u)|ba = 0 ,

we obtain with the help of the given Eq.(4.25), Lu = −f , and with (4.29),
L∗H = −δ(x− ξ), the result

∫ b

a

f(x) H(x; ξ) dx =

∫ b

a

δ(x− ξ) u(x) dx ,

which yields the solution

u(ξ) =

∫ b

a

H(x; ξ) f(x) dx

It turns out that the beauty of this result is that we don’t even have to use the
adjoint Green’s function H(x; ξ). Instead, one may use the original Green’s
function G(x; ξ). This is based on the following
Theorem (Green’s function and its adjoint)

H(x; ξ) = G(ξ; x)

The proof of this equation is given below.
Remark 1. This result says that in order to obtain the adjoint Green’s func-
tion,

H(x; ξ) = G(ξ; x) ,

simply interchange the arguments x and ξ and then take the complex conju-
gate of the Green’s function, the solution to Eq.(4.28). With the help of this
result the solution to the inhomogeneous problem becomes simply

u(ξ) =

∫ b

a

G(ξ; x) f(x) dx (4.30)

The advantage is clear: don’t bother solving Eq.(4.29). It is enough to find
only the Green’s function, i.e. the solution to Eq.(4.28).
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Remark 2. The other noteworthy feature is algebraic. The process of inter-
changing the arguments x and ξ and then taking the complex conjugate is
precisely the infinite-dimensional version of taking the Hermitian adjoint of a
matrix. Moreover, the integration in Eq.(4.30) corresponds to the summation
when a matrix acts on a vector and thereby yields a new vector.
Remark 3. If the boundary value problem is self-adjoint, i.e. L = L∗, together
with B∗

1 = B1 and B∗
2 = B2, then H(x; ξ) = G(x; ξ) and we have the result

G(ξ; x) = G(x; ξ) .

This is generally known as the reciprocity relation. It says that G(x; ξ) is
what in linear algebra corresponds to a “Hermitian matrix”.
Proof : (In three steps)

(i) Again use Green’s identity

∫ b

a

(HLG− L∗HG) dx = P (H,G)|ba

(ii) The boundary conditions of the two boundary value problems (4.28)
and (4.29) guarantee that the linear concomitant vanishes at the end-
points,

P (H,G)|ba = 0 .

(iii) Inserting the two respective differential equations of (4.28) and (4.29)
into the above Green’s identity, one obtains

∫ b

a

H(x; ξ′)δ(x− ξ) dx =

∫ b

a

G(x; ξ)δ(x− ξ′) dx

or
H(ξ; ξ′) = G(ξ′; ξ) ,

which is what had to be shown.

4.4.1 Translation Invariant Systems

It is difficult to overstate the power and versatility of the Green’s function
method. From the viewpoint of mathematics it allows one to generate solu-
tions to any inhomogeneous linear differential equation with boundary con-
ditions. From the viewpoint of radiation physics the Green’s function relates
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a disturbance to its measurable effect or response. From the viewpoint of
engineering G(x; ξ) expresses those inner workings of a linear system which
relates its input to its output.

Invariant linear systems constitute one of the most ubiquitous of its kind.
They are characterized by invariance under space and/or time translations.
Their Green’s function have the invariance property

G(x+ a; ξ + a) = G(x; ξ)

under arbitrary translations a. Letting a = −ξ, one finds that

G(x; ξ) = G(x− ξ; 0) ≡ G(x− ξ)

Thus Eq.(4.30) becomes

u(ξ) =

∫ ∞

−∞
G(ξ − x) f(x) dx ≡ G ⋆ f (ξ) . (4.31)

In other words the response of an invariant linear system is simply the con-
volution of the input with the system Green’s function.

It is virtually impossible to evade the fact that the essence of any lin-
ear translation invariant aspect of nature is best grasped by means of the
Fourier representation. The input-output relation of a linear invariant system
expressed by means of the convolution integral, Eq.(4.31), is no exception.
Take the Fourier transform F of both sides and find

û(k) =
√
2π Ĝ(k)f̂(k) ,

where

û(k) ≡ F [u](k) ≡
∫ ∞

−∞

e−ikξ√
2π

u(ξ) dξ

is the Fourier amplitude corresponding to u(ξ). Convolution of functions in
the given domain has simplified into multiplication of their Fourier ampli-
tudes in the Fourier domain. For each point in this domain the factor f̂(k)
expresses the input of the linear system, û(k) expresses its response. In sig-
nal processing and in electromagnetic theory the function Ĝ(k) is called the
filter function, while in acoustics and optics it is called the transfer function
[4] of the linear system.
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4.5 Pictorial Definition of a Green’s Function

One of the most effective ways to use an idea and keep it in the forefront of
one’s mind is in terms of pictures. A Green’s function is no exception. One
of the best pictures which illustrates a one-dimensional Green’s function is
that of a string subjected to a unit point force.

4.5.1 The Simple String and Poisson’s Equation

Consider a simple string with a force applied to it. For such a string let

FTdx = net transverse force acting on the string segment between x and
x+ dx due to tension T only.

= vertical force component

= T
du

dx

∣
∣
∣
∣
x+dx

− T du

dx

∣
∣
∣
∣
x





assuming du
dx
≪ 1, so that

sin =
du
dx

√

1+( du
dx)

2 ≈ du
dx

= tan





so that

d

dx
T
du

dx
=

(Force due to tension)

(length)

{
> 0(upward) if string curvature > 0
< 0(downward) if string curvature < 0

.

Let F (x) = applied force density

(
(Force)

(length)

)

.

If the string is in equilibrium then there is no acceleration. Consequently,
the total force density is zero:

d

dx
T
du

dx
+ F (x) = 0

or
d

dx
T
du

dx
= −F (x)

For constant tension one obtains

d2u

dx2
= −f(x) where f(x) =

F (x)

T
. (4.32)

This is the one-dimensional Poisson equation.
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Example
Consider a cable whose linear mass density is ρ and which is suspended
between two horizontal points, x = 0 and x = L, in a uniform gravitational
field whose acceleration is g. The force density on such a cable is ρg. If the

0 L
x

Figure 4.1: A cable of length L suspended between two horizontal points.
If its slope is small then its deviation away from the dotted horizontal is
governed by Poisson’s equation. If the slope is not small then the deviation
is described by a catenary.

tension in the cable is T , then the equilibrium profile u(x) is governed by

d2u

dx2
=
ρg

T
.

The solution is evidently

u(x) = c1 + c2x+
1

2

ρg

T
x2 ,

where the integration constants are determined by u(0) = 0 and u(L) = 0.
It follows that the cable’s profile away from the straight horizontal is

u(x) = x(x− L) ρg
2T

.

Exercise 4.5.1 (ADJOINT OF AN OPERATOR)
Find the adjoint differential operator L∗ and the space on which it acts if

(a) Lu = u′′ + a(x)u′ + b(x)u where

u(0) = u′(1) and u(1) = u′(0).
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(b) Lu = − (p (x)u′)′ + q(x)u where

u(0) = u(1) and u′(0) = u′(1).

Assume that the scalar product is

〈u, v〉 =
∫ 1

0
u v dx.

Exercise 4.5.2 (ADJOINT EIGENVALUE PROBLEM)
Let L be a differential operator defined over that domain S of functions which sat-
isfy the given homogeneous boundary condition B1(u) = 0 and B2(u) = 0. Let L∗

be the corresponding adjoint operator defined on the domain S∗ of functions which
satisfy the corresponding adjoint boundary conditions, B∗

1(v) = 0 and B∗
2(v) = 0.

Let u ∈ S be an eigenfunction of L:

Lu = λu

Similarly let v ∈ S∗ be an eigenfunction of L∗:

L∗v = λ′v.

(i) Make a guess as to the relationship between the eigenvalues λ of L and the
eigenvalues λ′ of L∗ and give a reason why.

(ii) Prove: If λ 6= λ̄′ then 〈v, u〉 = 0. i.e. An eigenfunction of L corresponding to
the eigenvalue λ is orthogonal to every eigenfunction of L∗ which does not
correspond to λ̄. Here the overline means complex conjugate, of course.

Exercise 4.5.3 (BESSEL OPERATORS)
Find the Green’s function for the Bessel operators

(a) Lu(x) =
d

dx
x
du(x)

dx

(b) Lu(x) =
d

dx
x
du(x)

dx
− n2

x
u(x) with y(0) finite and y(1) = 0,

i.e. solve the equations Lu = −δ(x− ξ) with the given boundary conditions.

Exercise 4.5.4 (DIFFERENT ENDPOINT CONDITIONS)
1. Find the Green’s function for the operator with

L =
d2

dx2
+ ω2 with

u(a) = 0
u(b) = 0

a < b

and ω2 a fixed constant. i.e. solve Lu = −δ(x− ξ) with the given boundary
conditions.
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2. Does this Green’s function exist for all values of ω? If NO, what are the
exceptional values of ω?

3. Having found the Green’s function in part (1), suppose one wishes to find
the Green’s function for the same differential equation, but with different
end point conditions, namely u(a) = 0 and u′(a) = 0. How would one find
this new Green’s function with a minimal amount of work? Go ahead, find
it.

Exercise 4.5.5 (ADJOINT FOR GENERIC ENDPOINT CONDITIONS)
Suppose that Lu = u′′ where

a1u(0) + b1u
′(0) + c1u(1) + d1u

′(1) = 0

and
a2u(0) + b2u

′(0) + c2u(1) + d2u
′(1) = 0.

1. Find L∗ and the space on which it acts if one uses the scalar product 〈u, v〉 =
∫ 1
0 u v dx.

2. For what values of the constants a1, b1, . . . , c2, d2 is the operator self adjoint?

Lecture 29

4.5.2 Point Force Applied to the System

A unit force localized at a point is a unit force distributed over an ε-interval
surrounding the given point. The density of this distributed force is inversely
proportional to ε. More precisely, one defines

δε(x− ξ) ≡







1

ε
|x− ξ| ≤ ε

2

0 |x− ξ| > ε

2

[
(Force)

(length)

]

,

the finite approximation to the Dirac distribution, whose integral, the total
force,

∫ b

a

δε(x− ξ) dx =

∫ ξ+ε/2

ξ−ε/2
δε(x− ξ) dx = 1 ,
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is unity. Let us apply such a force density,

F (x) = δε(x− ξ) ,

to a string with constant horizontal tension T . The response of this string is
governed by the Poisson equation (4.32), namely

T
d2G

dx2
= −δε(x− ξ) .

Note that the sum of all the vertical forces is necessarily zero. This equilib-

ξ ξ+ ε/2ξ− ε/2

T T

a b

force

applied
  unit

Figure 4.2: A distributed unit force applied to a string with tension T . The
force is concentrated in an interval of size ε. As ε → 0, the response of the
string tends towards the Green’s function G(x; ξ).

rium condition is expressed by the statement that (see Fig. 4.2)

TG′(ξ+)− TG′(ξ−) + 1 = 0

or by

G′(ξ+)−G′(ξ−) = − 1

T
,

which is known as the jump condition. Here we are using the notation
ξ± = ξ ± ε/2 with ε neglegibly small. The other condition that the response
G must satisfy is that it be continuous at x = ξ, i.e.

G(ξ+)−G(ξ−) = 0 .
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This continuity condition, the jump condition, together with the boundary
conditions lead to a unique response, the Green’s function G(x; ξ) of the
string.(Why?)

4.6 Properties and Utility of a Green’s Func-

tion

More generally, a unit force applied to a general linear system yields a re-
sponse which is governed by the equation

LGε = −δε(x− ξ) ,

where L is the repeatedly used linear operator

L =
d

dx
p(x)

d

dx
+ γ(x) .

Integrate both sides and obtain

∫ ξ+ε/2

ξ−ε/2

(
d

dx
p
d

dx
Gε + γGε

)

dx = −1 (4.33)

What happens to Gε as ε → 0? The physical properties of the linear sys-
tem imply that the response Gε remain a continuous function of x, and its
mathematical formulation should reflect this fact. Indeed, this continuity is
guaranteed by the fact that the equation

d

dx
p(x)

d

dx
G+ γ(x)G = −δ(x− ξ)

be satisfied. If G ≡ limε→0Gε were not continuous, then the first term of the
differential equation,

p
d2G

dx2
,

would yield the derivative of a Dirac delta function, and there is no such
expression on the right hand side.

The continuity of G(x; ξ) and the evaluation of the integral Eq.(4.33) lead
to the two key conditions which the unit impulse response G must satisfy,

G(ξ+)−G(ξ−) = 0 “continuity for all a < x < b” .
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and

dG

dx

∣
∣
∣
∣

ξ+

− dG

dx

∣
∣
∣
∣

ξ−

= − 1

p(ξ)
“jump condition at x = ξ” .

A more careful statement of these properties is provided by the following

Theorem 4.6.1 (Fundamental Theorem for Green’s Functions)
Let G(x; ξ) be a function which

(a) considered as a function of x, satisfies the differential equation

[
d

dx
p(x)

d

dx
+ γ(x)

]

G(x; ξ) ≡ LG(x; ξ) = 0

in (a, b) except at the point x = ξ,

(b) satisfies the given homogeneous boundary conditions,

(c) for fixed ξ is continuous, even at x = ξ,

(d) has continuous 1st and 2nd derivatives everywhere in (a, b), except at
x = ξ, where it has a jump discontinuity given by

d

dx
G(x; ξ)

∣
∣
∣
∣

ξ+

ξ−
=
−1
p(ξ)

.

Conclusion:

u(x) =

∫ b

a

G(x; ξ) f(ξ) dξ ⇐⇒ u(x) satisfies
(i) the given boundary conditions
(ii) Lu = −f(x),

where f is piecewise
continuous in (a, b)

(4.34)

Comment. A function which satisfies properties (a)-(d) is, of course, the
Green’s function for the boundary value problem stated in the conclusion,
equivalently given by Eq.(4.28). Even though there is more than one way of
constructing such a function (if it exists), the result is always the same. In
other words, one has the following
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Theorem 4.6.2 (Uniqueness of a Green’s function)
The Green’s function of a given linear system is unique.

It is easy to verify the validity of this theorem. If there were two such
functions:

LG1(x; ξ) = −δ(x− ξ)
LG2(x; ξ) = −δ(x− ξ) ,

then their difference satisfies the homogeneous equation

L(G1 −G2) = 0 .

Consider the Green’s function H adjoint to either G1 or G2. It satisfies
Eq.(4.29),

L∗H(x; ξ′) = −δ(x− ξ′) .
Consequently,

0 = 〈H,L(G1 −G2)〉
= 〈L∗H, (G1 −G2)〉

=

∫ b

a

(−)δ(x− ξ′) (G1(x; ξ)−G2(x; ξ)) dx

= G2(ξ
′; ξ)−G1(ξ

′; ξ) .

Thus the Greens function is unique:

G1(ξ
′; ξ) = G2(ξ

′; ξ) .

It is informative to restate this calculation algebraically: Starting with the
fact that the difference satisfies G1 −G2 satisfies the homogeneous problem,
one recalls that such a problem furnishes us with only two alternatives:

(i) the trivial solution,which is the zero solution. In this case the difference
between the two Green’s functions vanishes identically. This means the
Green’s function is unique.

(ii) a nontrivial solution, which implies that the nullspace of the homoge-
neous adjoint problem is nonzero. In this case the inner product of
this solution with the inhomogeneity, the Dirac delta function, does
not vanish. Hence the existence of a solution to the inhomogeneous
problem is impossible. In other words, the Green’s function does not
exist.
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The two possibilities (i) and (ii) are mutually exclusive and jointly exhaustive.
They illustrate the so-called Fredholm alternatives of a linear operator.

Proof of the Fundamental Theorem: The implication “⇐=” has already
been demonstrated with Eq.(4.30). To show “=⇒” compute the various
derivatives and then form the linear combination Lu. The fact that the
slope of G makes a jump at x = ξ demands that the integral for u be split
at that point,

u(x) =

∫ x−0

a

G(x; ξ) f(ξ) dξ +

∫ b

x+0

G(x; ξ) f(ξ) dξ

u′(x) =

∫ x−0

a

dG(x; ξ)

dx
f(ξ) dξ +

∫ b

x+0

dG(x; ξ)

dx
f(ξ) dξ

+ G(x; x− 0) f(x− 0) − G(x; x+ 0) f(x+ 0)

By hypothesis (c) the last two terms cancel for all x where f(x) has no jump
discontinuity. (If f does have a jump discontinuity at, say, x0 then consider
u(x) for the case x < x0 separately from the case x > x0.) Finally, take the
second derivative,

u′′(x) =

∫ x−0

a

d2G(x; ξ)

dx2
f(ξ) dξ +

∫ b

x+0

d2G(x; ξ)

dx2
f(ξ) dξ

+
dG(x; ξ)

dx

∣
∣
∣
∣

ξ=x−0

f(x− 0) − dG(x; ξ)

dx

∣
∣
∣
∣

ξ=x+0

f(x+ 0)

Combine these derivatives to form

Lu(x) =

∫ x−0

a

[

p
d2G

dx2
+ p′

dg

dx
+ γG

]

f(ξ) dξ

+

∫ b

x+0

[

p
d2G

dx2
+ p′

dg

dx
+ γG

]

f(ξ) dξ

+ p(x)f(x)

[
dG(x; x− 0)

dx
− dG(x; x+ 0)

dx

]

The first two integrals are zero because of hypothesis (a). Compare the last
term with the jump discontinuity stipulated by (d),

dG(ξ+; ξ)

dx
− dG(ξ−; ξ)

dx
=
−1
p(ξ)

.
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Next compare the first term in this difference with the first term in the square
bracket on the right hand side of Lu(x). Note that the first argument (“point
of observation”) is to the right of the second argument (“source point”) in
both of these first terms.

Comparing the second terms, one finds the same thing, except that the
“point of observation” is to the left of the “source point”. This agreement
implies that

dG(x; x− 0)

dx
− dG(x; x+ 0)

dx
=
−1
p(x)

.

Insert this expression into the right hand side of Lu(x) and obtain

Lu(x) = −f(x) .

This verifies that u(x) as given in the conclusion satisfies the inhomogeneous
differential equation indeed.

Lecture 30

4.7 Construction of the Green’s Function

The explicit construction of the Green’s function is a very intuitive and me-
chanical process if one has available two independent solutions to the homo-
geneous (i.e. with zero on the right hand side) differential equation governing
the physical system. Indeed, on the interval (a, b) consider the two linearly
independent solutions u1(x) and u2(x) which satisfy

Lu1(x) = 0

and
Lu2(x) = 0 .

Let consider first the case where these two functions satisfy boundary con-
ditions at each end point, a and b separately. We shall let these boundary
conditions be the mixed Dirichlet-Neumann conditions at a and b respec-
tively,

0 = B1(u1) ≡ αu1(a) + α′u′1(a)

0 = B2(u2) ≡ βu2(b) + β′u′2(b) .
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It is important to note that these boundary conditions do not determine
these two functions uniquely. In fact, each one may be multiplied by its own
multiplicative factor. Thus, one obtains two families of solutions,

c1u1(x) : B1(c1u1) = 0

and
c2u2(x) : B2(c2u2) = 0 .

Because of the Fundamental Theorem, we must say (i) that the Green’s
function has the form

G(x; ξ) =

{
c1u1(x) x < ξ
c2u2(x) ξ < x

(4.35)

and that (ii) the constants c1 and c2 must be adjusted so that at x = ξ the
Green’s function is continuous :

c2u2(ξ)− c1u1(ξ) = 0 (4.36)

and has the prescribed jump in its slope:

c2u
′
2(ξ)− c1u′1(ξ) =

−1
p(ξ)

. (4.37)

These are two equations in the two unknowns c2 and c1. Thus two unique
members of each family of solutions have been determined. Figure 4.3 de-
picts how the graphs of the two solutions meet so as to fulfill the continuity
requirement. Observe that, by itself, continuity at x = ξ does not determine
the amplitude at that point. Furthermore, at that point the graph has a
kink, an abrupt change in its slope which depends entirely on the as-yet-
indeterminate amplitude at that point.

However, from Figure 4.3 one sees that by adjusting the amplitude G(ξ; ξ)
to an appropriate value, the magnitude of the change in the slope at x = ξ can
be made to equal the required amount, which is −1/p(ξ). This determines
G(x; ξ) uniquely.

Note, however, that there is one circumstance under which G(x; ξ) does
not exist, namely, when u1 and u2 form a linearly dependent set, i.e. when
they are related by

u1(x) = ku2(x) a ≤ x ≤ b .
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u1

u2

x
Boundary
condition
satisfied

for u
here     and        here

for u21

ξ

Figure 4.3: Pictorial construction of the Green’s function G(x; ξ). At x =
ξ, where the graphs of the two solutions meet, G must have exactly that
amplitude which guarantees that the jump in the slope equals precisely the
requisite amount.

It is clear that in this circumstance the continuity condition at x = ξ prevents
the existence of any kink at x = ξ: regardless how large an amplitude one
chooses, the change in the slope will always be zero,

u1(ξ) = ku2(ξ)
c2u2(ξ)− c1u1(ξ) = 0

}

=⇒ c2u
′
2(ξ)− c1u′1(ξ) = 0

Equation (4.37) will always be violated, and the Green’s function does not
exist.

If the Green’s function does exist (i.e. when u1 and u2 form a linearly
independent set) then it is given by Eq.(4.35), where c1 and c2 are determined
uniquely by Eqs.(4.36) and (4.37). This circumstance is summarized by the
following

Theorem 4.7.1 (Construction of G(x; ξ))
Given: The functions u1(x) and u2(x) which satisfy

Lu1(x) = 0
αu1(a) + α′u′1(a) = 0

and
Lu2(x) = 0

βu2(b) + β′u′2(b) = 0 .
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Conclusion: The Green’s function for L is

G(x; ξ) =
−1
c

{
u1(x)u2(ξ) for x < ξ
u1(ξ)u2(x) for ξ < x

≡ −1
c

u1(x<)u2(x>) (4.38)

where

c = p(ξ) [u1(ξ)u
′
2(ξ)− u′1(ξ)u2(ξ)] .

Remark. (i) The normalization constant c is according to Abel’s theorem
(Section 1.3.3) always a constant.
(ii) It is evident that the notation introduced in Eq.(4.38),

G(x; ξ) =
−1
c
u1(x<)u2(x>)

is very suggestive. We shall use it repeatedly.
Proof. To verify that the formula given by Eq.(4.38) is the Green’s func-
tion, simply check that properties (a)-(d) of the Fundamental Theorem are
satisfied. Thus

(a) G(x; ξ) obviously satisfies the homogeneous differential equation LG(x; ξ) =
0 whenever x 6= ξ.

(b) G(x; ξ) does satisfy the given boundary conditions at each endpoint a
and b.

(c) G(x; ξ) is obviously continuous.

(d) The derivative
dG

dx
satisfies the correct jump discontinuity at x = ξ.

Indeed,

dG

dx

∣
∣
∣
∣

ξ+

− dG

dx

∣
∣
∣
∣

ξ−

=
−1
c
[u1(ξ)u

′
2(ξ

+)− u′1(ξ−)u2(ξ)]

=
−1
c

c

p(ξ)

=
−1
p(ξ)
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Thus G as given by formula (4.38) has all the identifying properties of the
Green’s function indeed.
Example (Response of a static string)
Consider the following boundary value problem:

d2u

dx2
= −f(x)

u(0) = 0

u(1) = 0

Find its Green’s function and its solution.
Solution: There are three steps that lead up to the Green’s function:

u′′ = 0⇒ a) u1 = x so that u1(0) = 0
b) u2 = 1− x so that u2(1) = 0
c) c = p(x) [u1u

′
2 − u′1u2]

= 1 [x(−1)− 1(1− x)]
= −1

Consequently,

d) G(x; ξ) =

{
x(1− ξ) x < ξ
ξ(1− x) ξ < x

≡ x<(1− x>)
The solution is

e) u(x) =

∫ 1

0

G(x; ξ)f(ξ) dξ

=

∫ x

0

ξ(1− x)f(ξ) dξ +
∫ 1

x

x(1− ξ)f(ξ) dξ

Lecture 31

4.8 Unit Impulse Response: General Homo-

geneous Boundary Conditions

From the viewpoint of technique, the Green’s function most easily con-
structed is the one satisfying the separated boundary conditions. This Green’s
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function is

G(x; ξ) =
−1
c
u1(x<)u2(x>) .

It satisfies

a bξ
x

Figure 4.4: Response to a unit impulse applied at x = ξ.

αG(a; ξ) + α′G′(a; ξ) = 0

βG(b; ξ) + β′G′(b; ξ) = 0

and

LG(x; ξ) = −δ(x− ξ) , where L =
d

dx
p(x)

d

dx
+ γ(x) .

The graph of such a unit impulse response is depicted in Figure 4.4. Such a
Green’s function is obviously the simplest to construct: find any solution to
the homogeneous problem for the left hand interval, then find any solution
for the right hand interval, and for all intent and purposes one is done. The
only remaining question is: What is the Green’s function if the homogeneous
boundary conditions are different?
The answer is illustrated by the following problem:

Given: The above Green’s function G(x; ξ).

Find: (a) The Green’s function GR(x; ξ) which satisfies the “initial condi-
tions”

GR(a; ξ) = 0

and
dGR(x; ξ)

dx

∣
∣
∣
∣

x=a

= 0
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a bξ

G (x;ξ )
R

x="time"
Figure 4.5: Unit impulse response of a system satisfying Dirichlet and Neu-
mann conditions at x = a. Boundary conditions imposed at the same point
are called initial conditions. If these two conditions are imposed at the start-
ing point (and x is “time”), then the response is called causal or retarded. If
the two conditions were imposed at a later point, then the response would
be called acausal or advanced.

(b) The Green’s function, say GA, which is adjoint to GR.

(c) The adjoint boundary conditions.

(d) A qualitative graph of GA.

Solution: Use L(GR −G) = 0 and the theorem of Section 4.2.

Remark : If x is the time, then GR would be the so-called causal or retarded
Green’s funtion depicted in Figure 4.5, while GA would be the so-called
acausal or advanced Green’s function.

The general philosophy is this: If it is too difficult to find the Green’s func-
tion for a desired set of boundary conditions, consider alternative boundary
conditions for which the Green’s function can readily be found. The desired
Green’s function is obtained by adding that solution to the homogeneous
differential equation which guarantees that the desired boundary conditions
are fullfilled.
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4.9 The Totally Inhomogeneous Boundary Value

Problem

The utility of the Green’s function extends to the inhomogeneous boundary
value problem where the Dirichlet-Neumann boundary conditions are inho-
mogeneous.

Lu = −f(x) a < x < b

B1(u) = d

B2(u) = e .

The solution is expressed in terms of the Green’s function in the previous
section, and it is given by

u(x) =

∫ b

a

G(x; ξ) f(ξ) dξ + c1u1(x) + c2u2(x) ,

where, as before, u1 and u2 are two independent solutions to the homogeneous
differential equation, and c1 and c2 are adjusted so as to satisfy the given
boundary condition,

d = B1(u) = 0 + 0 + c2B1(u2)
e = B2(u) = 0 + c1B2(u1) + 0

Consequently, the solution to the problem is

u(x) =

∫ b

a

G(x; ξ) f(ξ) dξ +
e

B2(u1)
u1(x) +

d

B1(u2)
u2(x) ,

The mathematically most perspicuous aspect of this expression is the fact
that it can be written as

u(x) = up(x) + uh(x) .

Here up(x) is a particular solution to the inhomogeneous differential equation,

Lup(x) = −f(x) ,

while uh(x) is a complementary function which satisfies the homogeneous
differential equation,

Luh(x) = 0 .
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The motivation for adding the appropriate solution of this equation to a
particular solution is precisely the one already stated, namely to satisfy the
given boundary conditions at the endpoints.

Exercise 4.9.1 (NON-SELFADJOINT BOUNDARY CONDITIONS)
Let L = − d2

dx2
with boundary conditions u(0) = 0, u′(0) = u(1), so that the domain

of L is S = {u : Lu is square integrable; u(0) = 0, u′(0) = u(1)}.

(a) For the above differential operator FIND S∗ for the adjoint with respect to

〈v, u〉 =
∫ 1

0
v̄ u dx .

and compare S with S∗.

(b) COMPARE the eigenvalues λn of

Lun = λnun n = 0, 1, 2, . . .

with the eigenvalues λ∗n of

L∗vn = λ∗nvn n = 0, 1, 2, . . .

If the two sequences of eigenvalues are different, point out the distinction; if
you find they are the same, justify that result.

(c) EXHIBIT the corresponding eigenfunctions.

(d) Is λ = 0 an eigenvalue? Why or why not?

(e) VERIFY that
∫ 1
0 v̄num dx = 0 for n 6= m.

Exercise 4.9.2 (TWO-COMPONENT EIGENVALUE PROBLEM)
Attack the eigenvalue problem

−u′′(x) = λu(x) 0 < x < 1

u′(1) = λu(1)

u(0) = 0

as follows:
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Let U =
(
u(x)
u1

)

be a two-component vector whose first component is a twice

differentiable function u(x), and whose second component is a real number u1.
Consider the corresponding vector space H with inner product

〈U, V 〉 ≡
∫ 1

0
u(x)v(x)dx+ u1v1

Let S ⊂ H be the subspace

S = {U : U =

(
u(x)

u(1)

)

; u(0) = 0}

and let

LU =

(−u′′(x)
u′(1)

)

.

The above eigenvalue problem can now be rewritten in standard form

LU = λU with U ∈ S .

(a) PROVE or DISPROVE that L is self adjoint, i.e. that 〈V, LU〉 = 〈LV,U〉.

(b) PROVE or DISPROVE that L is positive-definite, i.e. that 〈U,LU〉 > 0 for
U 6= ~0. (Reminder: “positive-definiteness” applies to all vectors, not only
to eigenvectors of L.

(c) FIND the (transcendental) equation for the eigenvalues of L.

(d) Denoting these eigenvalues by λ1, λ2, λ3, · · · , EXHIBIT the orthonormalized
eigenvectors Un, n = 1, 2, 3, · · · , associated with these eigenvalues.

Exercise 4.9.3 (ASYMPTOTIC EIGENVALUE SPECTRUM)
The eigenvalue equation for the Exercise on the previous page (“Non-selfadjoint
Boundary Value Conditions”) is

sinλ1/2 = λ1/2

Prove or disprove that an asymptotic formula for the roots is

λ1/2 ∼ (2m+
1

2
)π − 2 log(4m+ 1)π

(4m+ 1)π
± i log(4m+ 1)π

(You might put λ1/2 = α+ iβ so that

sinα coshβ = α (1)

cosα sinhβ = β (2)
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For large α, Eq. (1) implies β is large. If β is large then β/ sinhβ approaches zero
so that α = (n+ 1

2)π + ǫn where ǫn → 0. From Eq. (1), since cos ǫn ∼ 1, one has
coshβ = (2m+ 1

2)π, where n = 2m)

Lecture 32

4.10 Spectral Representation

Once the Green’s function for a system has been obtained one knows ev-
erything about the system, in particular its set of orthonormal basis. An
example from linear algebra illustrates the point.

4.10.1 Spectral Resolution of the Resolvent of a Ma-
trix

Consider the problem

(A− λI)~u = ~b

of solving N equations for N unknowns; in other words, given ~b and the
matrix A, find ~u. Here λ is a fixed parameter.

This problem is solved by solving the alternate problem

(A− λI)Gλ = I (4.39)

for

Gλ = (A− λI)−1 .

The matrix Gλ is called the resolvent of the operator A.
The solution ~u is given by

~u = Gλ
~b = (A− λI)−1~b .

This corresponds to expressing the solution in terms of the Green’s function.
Continuing with the illustrative example from linear algebra, let us as-

sume that A is Hermitian. Consequently, it has a complete set of eigen
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vectors {~ξi : i = 1, · · · , N}, and

A =
N∑

i=1

λi~ξi~ξ
H
i

I =
N∑

i=1

~ξi~ξ
H
i (4.40)

Gλ =
N∑

j=1

~ξj~ξ
H
j

λj − λ
(4.41)

are the spectral representations of A, I, and of the resolvent Gλ = (A−λI)−1.
The last one follows from the spectral representation

A− λI =
N∑

i=1

(λi − λ)~ξi~ξHi

and the orthonormality of the eigenvectors:

~ξHi
~ξj = δij .

That Gλ is the resolvent can be readily checked by verifying Eq.(4.39):

(A− λI)Gλ =
N∑

i=1

N∑

j=1

(λi − λ)~ξi~ξHi
~ξj~ξ

H
j

λj − λ

=
N∑

i=1

N∑

j=1

~ξiδij~ξ
H
j

λi − λ
λj − λ

=
N∑

i=1

~ξi~ξ
H
i

= I

It is clear that the resolvent Gλ, Eq.(4.41), viewed as a function of the
complex variable λ has singularities which are located at λ1, · · · , λN , the
eigenvalues of A. It follows that a contour integral in the complex λ plane
around these eigenvalues will recover the spectral representation of the iden-
tity, Eq.(4.40). The complex integration leading to this conclusion is straight
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forward. Consider the integral around the contour C,

1

2πi

∮

C

Gλ dλ =
1

2πi

∮

C

N∑

j=1

~ξj~ξ
H
j

λj − λ
dλ (4.42)

Let the closed integration contour C be large enough to enclose all the

Re

Im Im

λ

λ λ

Reλ

Figure 4.6: The integration path in the complex λ-plane is large enough so
as to enclose all the poles of the resolvent. That integration path is deformed
into a union of small circles, each one enclosing a single pole.

singularities of Gλ. Use the Cauchy-Goursat theorem to deform the closed
integration path without changing the value of the integral. Have the de-
formed integration path consist of the union of cirles, each one enclosing its
respective singularity of Gλ. This is done in Figure 4.6. As a consequence,
the integral over the large contour C becomes a sum of integrals, each one
over a small circle surrounding a pole of Gλ. Apply Cauchy’s integral the-
orem to each integral. Its value equals the 2πi times the residue of Gλ at
that pole, an eigenvalue of A. The residue at the ith eigenvalue is −~ξj~ξHj .
Inserting this result into the right hand side of Eq.(4.42), cancelling out the
factor 2πi, one is left with

1

2πi

∮

C

Gλ dλ = −
N∑

j=1

~ξj~ξ
H
j

This formula is an expression of the following
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Proposition: If the contour encloses all singularities of the resolvent Gλ

in the complex λ-plane, then the contour integral yields the complete set of
orthonormalized eigenvectors of A or (in view of the completeness of such a
set of vectors)
the resolvent of A yields, via complex integration, the spectral representation
of the identity,

1

2πi

∮

C

Gλ dλ = −Identity ,

where

Identity =
N∑

j=1

~ξj~ξ
H
j .

The uniqueness of the resolvent of A guarantees this result no matter
how one obtained Gλ in the first place. Thus, if one somehow can determine
Gλ, then by an integration in the complex λ-plane one can readily obtain all
normalized eigenvectors of the operator A.

Furthermore, it is worth while to emphasize that the nonexistence of Gλ

for certain values of λ, far from being a source of trouble or dispair, is, in
fact, an inordinate physical and mathematical boon. As we shall see, from
the physical point of view, the nonexistence furnishes us with the resonances
of the system, while from the mathematical viewpoint it furnishes us with
the orthonormalized eigenvectors or eigenfunctions of the system.

Lecture 33

4.10.2 Spectral Resolution of the Green’s Function

Instead of representing the Green’s function Gλ(x; ξ) of a system in terms of
two solutions to the homogeneous differential equation, as by Eq.(4.38), we
shall now represent it as a generalized Fourier series. The Green’s function
is a solution to the inhomogeneous boundary value problem

(
1

ρ(x)

[

− d

dx
p(x)

d

dx
+ q(x)

]

− λ
)

u =
f(x)

ρ(x)

or

(L − λ)u =
f

ρ
(4.43)
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with

B1(u) = 0

B2(u) = 0

Here ρ(x) is the weight function of the Sturm-Liouville differential equation.
We are led to the spectral representation of Gλ by the following three-step

line of reasoning:
(1) The non-trivial solutions to the homogeneous boundary value problem

are the eigenfunctions, un(x) n = 1, 2, · · · , each of which satisfies

Lun = λun
B1(un) = 0
B2(un) = 0






n = 1, 2, · · ·

These eigenfunction are used to represent the solution u(x) as a generalized
Fourier series,

u =
∞∑

m=1

cmum ,

whose coefficients cn are to be determined. To obtain them, take the inner
product of Eq.(4.43) with these eigenfunctions un,

〈un,Lu〉 − λ〈un, u〉 = 〈un, f/ρ〉 (4.44)

(2) For illustrative purposes consider the case where L is self-adjoint with
respect to the inner product

〈un, u〉 ≡
∫ b

a

un(x) u(x) ρ(x) dx

Consequently, the first term of Eq.(4.44) is

〈un,Lu〉 = 〈Lun, u〉
= λn〈un, u〉
= λncn .

The equation itself becomes

(λn − λ)cn = 〈un, f/ρ〉
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and thus determines the coefficient cn. Thus the Fourier series representation
of the solution is

u(x) =
∞∑

n=1

un
〈un, f/ρ〉
λn − λ

(3) This representation can be applied to the Green’s function. Letting
f(x) = δ(x− ξ)/ρ(x), one obtains

〈un,
δ(x− ξ)
ρ(x)

〉 = un(ξ)〉 .

Thus the Fourier series becomes

Gλ(x; ξ) =
∞∑

n=1

un(x)un(ξ)

λn − λ
(4.45)

This is the spectral representation of the Green’s function.
For the purpose of comparison consider the spectral representation of the

identity. It is obtained from the Fourier representation of a generic function
satisfying the given boundary conditions,

u(x) =
∞∑

n=1

un(x)cn

=
∞∑

n=1

un(x)

∫ b

a

un(ξ)ρu(ξ) dξ

=

∫ b

a

∞∑

n=1

un(x)ρun(ξ)u(ξ) dξ .

This holds for any function u. Consequently, the expression in front of u(ξ)
is the Dirac delta,

∞∑

n=1

un(x)ρun(ξ) = δ(x− ξ)

or

δ(x− ξ)
ρ(ξ)

=
∞∑

n=1

un(x)un(ξ)



266 CHAPTER 4. GREEN’S FUNCTION THEORY

This is the spectral representation of the identity operator in the Hilbert
space, the same as Eq.(2.20) on page 87, which was obtained by essentially
the same line of reasoning. Note the perspicuous similarity with the Green’s
functionGλ(x; ξ), the resolvent of the Sturm-Liouville operator in this Hilbert
space.

Exercise 4.10.1 (REPRESENTATION VIA EIGENFUNCTIONS)
Consider the eigenvalue problem

Lu = λu L = α
d2

dx2
+ β

d

dx
+ γ

B1(u) = 0

B2(u) = 0

and its adjoint

L∗v = λ̄v

B∗
1(v) = 0

B∗
2(v) = 0

with respect to the inner product 〈v, u〉 =
∫ b
a v̄(x)u(x)dx. One can show, and you

may safely assume, that the eigenvalue spectra of these two problems are complex
conjugates of each other.

(a) Prove that the solution u(x;λ) for the problem

Lu− λu = −f(x)

B1(u) = 0 ; B2(u) = 0

is given by

u(x;λ) =
∑

n

〈vn, f〉
λ− λn

un(x)

Here un and vn are the eigenfunctions of L and L∗ and they have been
normalized by the condition

〈vn, um〉 = δnm .
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(b) Show that the Green’s function is

Gλ(x|ξ) =
∑

n

un(x)v̄n(ξ)

λn − λ

Exercise 4.10.2 (NORMAL MODE PROFILES VIA COMPLEX INTEGRATION)
Obtain the o.n. set of eigenfunctions for the Sturm-Liouville problem

Lu ≡ −d
2u

dx2
= ω2u

u(a) = u(b) = 0

by applying the complex integration technique to the Green’s function Gω(x; ξ)

(L− ω2)G ≡ −d
2Gω
dx2

− ω2Gω = δ(x− ξ) a < x , ξ < b

Gω(a; ξ) = 0
Gω(b; ξ) = 0

a < ξ < b

4.10.3 Green’s Function as the Fountainhead of the
Eigenvalues and Eigenvectors of a System

The spectral representation of G is a second way of writing the Green’s func-
tion. The first way was Eq.(4.38) on page 253 in terms of the two indepen-
dent solutions (“elements of the null space”) of the homogeneous Eq.(4.43)
on page 263 with f = 0.

This raises an important question: Are the null space representation and
the spectral representation really one and the same function? The answer is,
of course, “yes” because of the uniqueness of the Green’s function for a given
problem. This fact was the subject of Green’s function uniqueness theorem
on page 248.

We shall now take advantage of this uniqueness in order to obtain from
the null space representation of the Green’s function the complete set of
orthonormal eigenfunctions of the linear system. The beauty of this method
is that one directly obtains the eigenvalues and these eigenfunctions without
having to evaluate any normalization integrals. Thus the Green’s function of
a system lives up to its reputation of being able to give everything one wants
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...
λ λ λ λ1 20 n

...
λ λ λ λ1 20 n

complex λ− plane complex λ− plane

Figure 4.7: The integration path in the complex λ-plane is to be large enough
to enclose all the eigenvalues of the Sturm-Liouville problem, the poles of the
Green’s function. That integration path is deformed into a union of small
circles, each one enclosing a single eigenvalue.

to know about the internal workings of a linear system but never dared to
ask.

However, the story does not end there. The Green’s function gives one
a quick method for checking the completeness of a set of eigenfunctions, i.e.
whether they span the whole vector space of functions satisfying the same
homogeneous boundary conditions. This completeness was already validated
in Section 1.7 (page 54) using Rayleigh’s quotient as the starting point. But
with the Green’s function at hand, the completeness property can be easily
validated by merely evaluating an integral.

Spectral Representation

Consider the spectral representation of the Green’s function Gλ(x; ξ). Viewed
as a function of the variable λ, this function has poles in the complex λ-
plane. These poles are the eigenvalues of the Sturm-Liouville problem. If
the problem is self-adjoint, these poles lie along the real axis (Theorem 2 on
page 24). However, in general they may lie anywhere in the complex plane.

Suppose we consider the contour integral

1

2πi

∮

Gλ(x; ξ) dλ
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around a closed integration path which is large enough to enclose all the
poles of the Green’s function. According to the Cauchy-Goursat theorem, if
one deforms the integration contour of this integral from the large circle in
Figure 4.7 into the union of the little circles around the poles λ0, λ1, λ2, · · · of
the integrand, then the value of the integral will not change; in other words,

1

2πi

∮

C

Gλ(x; ξ) dλ =
1

2πi

∮

⋃
Cn

n

Gλ(x; ξ) dλ

=
∞∑

n=0

1

2πi

∮

Cn

Gλ(x; ξ) dλ (4.46)

Each term on the right hand side equals the residue of Gλ at its respective
pole λn. According to Eq.(4.45) this residue is

Res
λ = λn

Gλ(x; ξ) = lim
λ→λn

(λ− λn)Gλ(x; ξ)

= −un(x)un(ξ)
Thus

∞∑

n=0

1

2πi

∮

Cn

Gλ(x; ξ) dλ = −
∞∑

n=0

un(x)un(ξ) (4.47)

Consequently, the contour integral, Eq.(4.46), is

1

2πi

∮

C

Gλ(x; ξ) dλ = −
∞∑

n=0

un(x)un(ξ) , (4.48)

This is a remarkable relation. It says that if one somehow can determine the
λ-parametrized Green’s function for the problem

(
d

dx
p(x)

d

dx
− q(x) + λρ(x)

)

Gλ(x; ξ) = −δ(x− ξ)

B1(Gλ) = 0

B2(Gλ) = 0 ,

then this function yields the corresponding complete set of orthonormalized
eigenfunctions of the Sturm-Liouville operator. This can be done whenever
one can find a closed expression for Gλ(x; ξ). The example below illustrates
this.
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Completeness via Green’s function

What can one say about the value of 1
2πi

∮

C
Gλ(x; ξ) dλ on the left hand

side? If one knows that the set of eigenfunctions {un(x)} forms a complete
set, then Eq.(2.20) on page 87 tells us that

δ(x− ξ)
ρ(x)

=
∞∑

k=1

uk(x)uk(ξ) . (4.49)

This is a necessary and sufficient condition for completeness. Combining it
with Eq.(4.48), one finds that

∮

C

Gλ(x; ξ) dλ =
δ(x− ξ)
ρ(x)

. (4.50)

This is the new criterion for completeness:
Equation (4.50) holds if and only if the spectral representation of Gλ is based
on a complete set of eigenfunctions.
This means that, if upon evaluating the left hand side of Eq.(4.46) along
an asymptotically infinite circular contour C, one finds that Eq.(4.50) holds,
then one in guaranteed that the set of eigenfunctions obtained from Eq.(4.47)
forms a complete set. The example of a free string in the next section illus-
trates this computational criterion.

4.10.4 String with Free Ends: Green’s Function, Spec-
trum, and Completeness

Consider the following boundary value problem:

d2u

dx2
+ λu = 0

u′(0) = 0

u′(ℓ) = 0 .

Green’s Function

To construct the Green’s function for this system, find any two solutions, say
w(x, λ) and z(x, λ), which satisfy the two respective boundary conditions:

w(x, λ) = cos
√
λx ,

z(x, λ) = cos
√
λ(x− ℓ) .
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The Green’s function is

Gλ(x; ξ) =
−1
c
w(x<, λ)z(x>, λ)

=
−1
c(λ)

{
cos
√
λx cos

√
λ(ξ − ℓ) x ≤ ξ

cos
√
λξ cos

√
λ(x− ℓ) ξ ≤ x .

Here

c(λ) = p(x) (w(x)z′(x) − w′(x)z(x))

= 1
(

cos
√
λx (−)

√
λ sin

√
λ(x− ℓ) −

√
λ sin

√
λx cos

√
λ(x− ℓ)

)

= −
√
λ sin

√
λ(x− ℓ− x) =

√
λ sin

√
λℓ

Thus

Gλ(x; ξ) =







−cos
√
λx cos

√
λ(ξ − ℓ)√

λ sin
√
λℓ

x ≤ ξ

−cos
√
λξ cos

√
λ(x− ℓ)√

λ sin
√
λℓ

ξ ≤ x .

Spectrum via Green’s Function

In order to evaluate the contour integral of Gλ(x; ξ) one must know its singu-
lar points in the complex λ-plane. It is clear that on this domain the Green’s
function has the form

Gλ(x; ξ) =
g(λ)

c(λ)
,

where both g(λ) and c(λ) are analytic for all λ, even though each one depends
manifestly on the nonanalytic function

√
λ. Thus the singular points of

Gλ are located at the zeroes of c(λ), the eigenvalues of the Sturm-Liouville
system:

c(λ) ≡
√
λ sin

√
λℓ = 0 ⇒ λn =

(nπ

ℓ

)2

, n = 0, 1, 2, · · · .

At these points c′(λn) 6= 0. Consequently, λ = λn is a simple pole in whose
neighborhood the ratio g/c has the expansion

Gλ =
g(λ)

c(λ)
=

α0

λ− λn
+ α1 + α2(λ− λn) + · · · .
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Here α0 is the residue of Gλ, and one must find it. To do this, consider

g(λ)

c(λ)
(λ− λn) = α0 + α1(λ− λn) + α2(λ− λn)2 + · · ·

and take the limit. Thus

α0 = lim
λ→λn

g(λ)(λ− λn)
c(λ)

= lim
λ→λn

g(λ)

c′(λ)

=
g(λn)

c′(λn)

where the second step used L’Hospital’s rule. The residue of Gλ is therefore

Res
λ = λn

Gλ(x; ξ) =
g(λn)

c′(λn)

Its evaluation is based on the following expressions

g(λ) = − cos
√
λx< cos

√
λ(x> − ℓ)

c(λ) =
√
λ sin

√
λℓ

c(λn) = 0 →
√

λn =
nπ

ℓ
, n = 0, 1, 2, · · ·

c′(λn) =
1

2
√
λ
sin
√
λℓ +

√
λ(cos

√
λℓ)

ℓ

2
√
λ

∣
∣
∣
∣
λ=λn

=
ℓ

2
cosnπ when λn 6= 0

=
ℓ

2
+
ℓ

2
when λn = 0
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It follows that Gλ has a closed contour integral given by

1

2πi

∮

C

Gλ(x; ξ) dλ = −1

ℓ
−

∞∑

n=1

cos
√
λx< cos

√
λ(x> − ℓ)

c′(λ)

∣
∣
∣
∣
∣√
λ=nπ

ℓ

= −1

ℓ
−

∞∑

n=1

cos nπ
ℓ
x< cos nπ

ℓ
(x> − ℓ)

ℓ
2
cosnπ

= −1

ℓ
− 2

ℓ

∞∑

n=1

cos nπ
ℓ
x< cos nπ

ℓ
x> cosnπ

cosnπ

= −1

ℓ
− 2

ℓ

∞∑

n=1

cos
nπ

ℓ
x cos

nπ

ℓ
ξ (4.51)

Compare this bilinear expression with the fundamental formula, Eq.(4.48) on
page 269, and read out the complete set of orthonormalized eigenfunctions

{um(x)} =
{√

1

ℓ
,

√

2

ℓ
cos

mπ

ℓ
x : m = 1, 2, · · ·

}

.

Completeness

To validate the completeness of these eigenfunctions one must evaluate

1

2πi

∮

C

Gλ(x; ξ) dλ =
1

2πi

∮

C

− cos
√
λx cos

√
λ(ξ − ℓ)√

λ sin
√
λℓ

dλ (4.52)

along the very large (in the limit infinite) circular contour

C = {λ = Reiθ : 0 < θ < 2π}

before we deformed it into
⋃∞
n=0Cn. This evaluation is facilitated by intro-

ducing √
λ = k and hence

dλ√
λ
= 2dk .

This transforms the integration contour into a very large semicircle

k =
√
Reiφ

=
√
R cosφ+ i

√
R sinφ, 0 < φ < π (4.53)
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k= φ
R R

complexλ−plane

λ

complex −planek

θ

Figure 4.8: Integration contour C in the λ-plane and its semicircular image
the k-plane

The integral to be evaluated is therefore

1

2πi

∮

C

Gλ(x; ξ) dλ =
−1
2πi

∫ √
Reiπ

√
R

cos kx cos k(ξ − ℓ)
sin kℓ

︸ ︷︷ ︸
N
D

2dk (4.54)

In light of Eq.(4.53) one finds that

cos kx =
eikx + e−ikx

2
→ e−ikx

2
as
√
R→∞ (4.55)

cos k(ξ − ℓ) = eik(ξ−ℓ) + e−ik(ξ−ℓ)

2
→ eik(ξ−ℓ)

2
as
√
R→∞ (4.56)

sin kℓ =
eikℓ − e−ikℓ

2i
→ −e

−ikℓ

2i
as
√
R→∞ (4.57)

so that

(4.58)

N

D
→ (e−ikx/2)(eik(ξ−ℓ)/2)

−(e−ikℓ)/2 =
−i
2
eik(ξ−x) (4.59)

Consequently,

1

2πi

∮

C

Gλ(x; ξ) dλ =
−1
2π

∫ √
R

−
√
R

eik(ξ−x)dk (4.60)

The integrand is analytic in the semidisk bounded by the semicircle and the
the real interval [−

√
R,
√
R] as in the righthand picture of Figure 4.8. Thus

one can use the Cauchy-Goursat theorem to deform the semicircular contour
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into a straight line just barely above the real k-axis. This changes Eq.(4.60)
into an integral along the real axis,

1

2πi

∮

C

Gλ(x; ξ) dλ =
−1
2π

∫ √
R

−
√
R

eik(ξ−x)dk → − δ(ξ − x) as R→∞ .

(4.61)

This shows that the set of orthonormal eigenfunctions forms a complete set.
Indeed, comparing this expression with Eq.(4.51) one has

δ(x− ξ) = 1

ℓ
+

2

ℓ

∞∑

m=1

cos
mπx

ℓ
cos

mπξ

ℓ
whenever 0 < x, ξ < ℓ .

This is the requisite completeness relation.
From a different perspective this relation is also the spectral representa-

tion of the Dirac delta function, which one may compare with that of the
Green’s function,

Gλ(x; ξ) = −
1

ℓ(λ− 0)
− 2

ℓ

∞∑

m=1

cos
mπx

ℓ
cos

mπξ

ℓ

(λ− m2π2

ℓ2
)

.

Lecture 34

4.11 Boundary Value Problem

via Green’s Function: Integral Equation

It is difficult to overstate the importance of Green’s functions. This is true
in particular in regard to their role in boundary value problems, be they
scattering problems, where the domain is infinite (exterior boundary value
problems), or cavity problems, where the domain is finite (interior boundary
value or bound state problems).
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4.11.1 One-dimensional Scattering Problem: Exterior
Boundary Value Problem

Scattering of radiation by bodies is ubiquitous. The mathematical formu-
lation of this process can be reduced, more often than not, to an exterior
boundary value problem, namely finding the solution to the following homo-
geneous b.v. problem:

− d

dx
p(x)

dψ

dx
− v(x)ψ = λρ(x)ψ a < x <∞ (4.62)

ψ(a) = 0 (4.63)

lim
x→∞

ψ(x) = finite (4.64)

The scattering is due to v(x), the potential of the body. The body is finite.
Consequently, its potential vanishes for large x:

lim
x→∞

v(x) = 0 .

If the scattering body is absent, there is no scattering potential at all. In
that case the boundary value problem is

− d

dx
p(x)

dψ0

dx
= λρ(x)ψ0 a < x <∞ (4.65)

ψ0(a) = 0 (4.66)

lim
x→∞

ψ0(x) = finite . (4.67)

The solution to this problem, ψ0, is called the unscattered solution or the
incident wave. It is characterized by the physical parameter λ, which usu-
ally expresses a squared frequency, a squared wave number, an energy or
something else, depending on the nature of the wave.

If the scattering body is present, v(x) 6= 0. To find the scattered wave,
i.e. the solution to the homogeneous Eqs.(4.62)-(4.64), one writes this system
with the help of Eqs.(4.65)-(4.67) in the form

d

dx
p(x)

d{ψ(x)− ψ0(x)}
dx

+ λρ(x){ψ(x)− ψ0(x)} = −v(x)ψ a < x <∞
(4.68)

{ψ(a)− ψ0(a)} = 0 (4.69)

lim
x→∞
{ψ(x)− ψ0(x)} = 0 , (4.70)
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and views the r.h.s., v(x)ψ(x), as an inhomogeneity for the corresponding
Green’s function problem

[
d

dx
p(x)

dψ

dx
+ λρ(x)

]

Gλ(x; ξ) = −δ(x− ξ) a < x <∞

Gλ(a; ξ) = 0

lim
x→∞

Gλ(x; ξ) = 0 .

Solutions to problems like this one are discussed in the next Section 4.12.3
starting on page 291. It follows from Eq.(4.34) on page 247 that

ψ(x) = ψ0(x) +

∫ ∞

a

Gλ(x; x
′)v(x′)ψ(x′) dx′ . (4.71)

However, unlike Eq.(4.34), Eq.(4.71) is not an explicit solution because the
unknown function ψ appears inside the integral. The physical reason is that
the source of the scattered wave on the r.h.s. of Eq.(4.68) is nonzero if and
only if an incident wave ψ0 is present, i.e.

ψ0(x) 6= 0⇐⇒ ψ(x) 6= 0 a < x <∞ .

Equation (4.71) is an integral equation for the to-be-determined solution
ψ(x). This equation not only implies the differential Eq.(4.62), but also the
associated boundary conditions. In fact, the integral equation is mathemat-
ically equivalent to the homogeneous boundary value problem, Eqs.(4.62)-
(4.64).

The reformulation in terms of an integral equation constitutes a step
forward. By condensing three concepts into one, one has implemented the
principle of unit-economy5, and thereby identified the essence – the most
consequential aspect – of the external boundary value problem. That this is
indeed the case is borne out by the fact that Eq.(4.71) lends itself to being
solved by a process of iteration without having to worry about boundary
conditions.

The first iterative term, with ψ(x′) inside the integral replaced by ψ0(x
′),

yields what in scattering theory is called the first Born approximation:

ψ1(x) = ψ0(x) +

∫ ∞

a

Gλ(x; x
′)v(x′)ψ0(x

′) dx′

= ψ0(x) + ∆(1)ψ(x) .

5As identified in the footnote on page 192
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Successive terms in this iteration yield

ψ2(x) = ψ0(x) +

∫ ∞

a

Gλ(x; x
′)v(x′)ψ1(x

′) dx′

=

ψ1(x)
︷ ︸︸ ︷

ψ0(x) +

∫ ∞

a

Gλ(x; x
′)v(x′)ψ0(x

′) dx′

+

∫ ∞

a

∫ ∞

a

Gλ(x; x
′)v(x′)Gλ(x

′; x′′)v(x′′)ψ0(x
′′) dx′′dx′

≡ ψ0(x) + ∆(1)ψ(x) + ∆(2)ψ(x)

...

The nth iteration involves a multiple integral of the form

∆(n)ψ(x) =

∫ ∞

a

∫ ∞

a

· · ·
∫ ∞

a

Gλ(x; x
′)v(x′)Gλ(x

′; x′′)v(x′′)

· · ·Gλ(x
(n−1); x(n))v(x(n))ψ0(x

(n)) dx(n) · · · dx′′dx′

For n = 1 such a term corresponds to a scattering process in which the
incident wave is scattered by the potential at x′ before it arrives at x. The
integration over x′ expresses the fact that the total total wave amplitude at
x is a linear superposition of the waves due to the scattering process taking
place at x′.

By induction one concludes that for any n such a term refers to a mul-
tiple scattering process : the incident wave is scattered by the potential at
x(n), x(n−1), · · · , x′′, x′ before it arrives at x, where it is observed.

Thus the solution to the external boundary value problem, Eq.(4.71), has
the form

ψ(x) = ψ0(x) + ∆(1)ψ(x) + ∆(2)ψ(x) + · · ·+∆(n)ψ(x) + · · · .

The scattered wave is represented by a Born series, a sum of the unscat-
tered wave ψ0(x), a wave ∆(1)ψ(x) that was scattered once, a wave ∆(2)ψ(x)
that was scattered twice, and so on. The Born series converges if the scat-
tering potential is small enough. By truncating this series one obtains an
approximate solution to the given exterior boundary value problem.
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4.11.2 One-dimensional Cavity Problem: Interior Bound-
ary Value Problem

The process of solving the inhomogeneous boundary value problem

d

dx
p
du

dx
+ [q(x) + λρ(x)]u = −f(x) a < x < b

B1(u) = d

B2(u) = e

is somewhat awkward from a numerical and even a conceptual point of view.
Solving the differential equation is a local process: one determines the func-
tion and its properties at x+ dx from those at x. One repeats this step-like
process until one has found u(x) for a ≤ x ≤ b. Upon completion one checks
whether the boundary conditions B1 and B2 have been satisfied. If not, one
alters the function u at the point where one started solving the differential
equation and then starts all over again. Thus one might have to solve the
differential equation many times before one finally obtains the solution to
the desired degree of accuracy.

It is evident that this undersirable drudgery is due to the fact that the key
property, boundary conditions, which determine the qualitatively important
features of the solution u, are stated separately and are not an intrinsic part
of the differential equation.

This deficiency can be removed by recasting the boundary value problem
in the form of an integral equation. The one-dimensional Sturm-Liouville
system with, say, inhomogeneous Dirichlet boundary conditions,

d

dx
p
du

dx
+ [q(x) + λρ(x)]u = 0

u(a) = d

u(b) = e ,

illustrates the general principle. To convert this sytem into a single integral
equation, one considers the corresponding Green’s function problem

[
d

dx
p
d

dx
+ q(x)

]

G(x; ξ) = −δ(x− ξ)

G(a; ξ) = 0

G(b; ξ) = 0 .
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One transposes the term λρ(x)u(x) to the right hand side of the S-L equation
and considers it as an inhomogeneous equation. Multiply this equation by
G(x; ξ), multiply the Green’s function equation by u(x). One finds

G(x; ξ)

[
d

dx
p
du

dx
+ q(x)u

]

= −λG(x; ξ)ρ(x)u

and

u(x)

[
d

dx
p
d

dx
+ q(x)

]

G(x; ξ) = −δ(x− ξ)u(x) .

Upon subtracting one finds that the q(x)-terms cancel and that the left hand
side becomes a total derivative (Lagrange’s identity!):

l.h.s. = G(x; ξ)
d

dx
p
du

dx
− u(x) d

dx
p
dG(x; ξ)

dx

=
d

dx

{

G(x; ξ)p(x)
du(x)

dx
− u(x)p(x)dG(x; ξ)

dx

}

.

The r.h.s. becomes

r.h.s. = −λG(x; ξ)ρ(x)u(x) + δ(x− ξ)u(x) .
Integration of l.h.s.=r.h.s. yields

p(x)

[

G(x; ξ)
du(x)

dx
− dG(x; ξ)

dx
u(x)

]x=b

x=a

= −λ
∫ b

a

G(x; ξ)ρ(x)u(x)dx+ u(ξ) .

Switching variables x↔ ξ, one finds

u(x) = λ

∫ b

a

G(ξ; x)ρ(ξ)u(ξ)dξ (4.72)

+p(a)u(a)
dG(ξ; x)

dξ

∣
∣
∣
∣
ξ=a

− p(b)u(b) dG(ξ; x)
dξ

∣
∣
∣
∣
ξ=b

.

This is an integral equation for u(x). Note that the boundary conditions for
u(x) are an intrinsic part of the equation: the boundary conditions do not
have to be stated separately. Also note that if u(x) satisfies the homogeneous
Dirichlet conditions u(a) = 0, u(b) = 0, then the integral equation becomes

u(x) = λ

∫ b

a

G(x; ξ)ρ(ξ)u(ξ)dξ , (4.73)

which is an eigenvalue equation for the function u.
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4.11.3 Eigenfunctions via Integral Equations

To illustrate this integral equation, consider the boundary value problem for
several of the familiar orthogonal functions.

1. Trigonometric functions:

d2u

dx2
+ λu = 0 u(0) = u(ℓ) = 0

u(x) = λ

∫ ℓ

0

G(x; ξ)u(ξ)dξ

G(x; ξ) =
1

ℓ

{
x(ℓ− ξ) when x < ξ
ξ(ℓ− x) when ξ < x

Eigenfunction: un(x) = sin nπx
ℓ
; λ =

(
nπ
ℓ

)2
; n = integer.

2. Bessel functions:

1

x

d

dx
x
du

dx
+

(

λ− n2

x2

)

u = 0 u finite at x = 0 , ∞

u(x) = λ

∫ ∞

0

G(x; ξ)u(ξ)ξdξ

G(x; ξ) =
1

2n

{ (
x
ξ

)n

when x < ξ
(
ξ
x

)n
when ξ < x

Eigenfunction: un(x) = Jn(
√
λx); 0 < λ <∞

3. Legendre polynomials:

d

dx
(1− x2)du

dx
+ λu = 0 u is finite at x = ±1

u(x) = λ

∫ 1

−1

G(x; ξ)u(ξ)dξ − 1

2

∫ 1

−1

u(ξ)dξ

G(x; ξ) =
1

2

{

ln
(

1+x
1−ξ

)

when x < ξ

ln
(
1+ξ
1−x
)

when ξ < x

un(x) = Pn(x) ; λ = n(n+ 1) ; n = integer .
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4.11.4 Types of Integral Equations

It is evident that different types of boundary value problems give rise to
different types of integral equations.
A. Fredholm Equations

The inhomogeneous boundary value problem gave rise to Eq.(4.72), whose
form is

u(x) = λ

∫ b

a

K(x; ξ)u(ξ)dξ + ϕ(x) . (4.74)

In this case, K(x; ξ) = G(x; ρ)ρ(ξ) and ϕ are known functions, and u is the
unknown function.

The integration limits a and b are fixed. An integral equation for u(x) of
the form Eq. (4.74) is called inhomogeneous Fredholm equation of the second
kind. The expression K(x; ξ) is called the “kernel” of the integral equation.

A homogeneous Fredholm equation of the second kind is obtained by drop-
ping the function ϕ(x),

u(x) = λ

∫ b

a

K(x; ξ)u(ξ)dξ .

Equation (4.73) and the subsequent eigenvalue equations are examples of
such equations.

A Fredholm equation of the first kind has the form

ϕ(x) =

∫ b

a

K(x; ξ)u(ξ)dξ

whenever ϕ(x) is a known function and u(ξ) is the unknown function.
B. Volterra Equations

Fredholm equations are based on definite integrals. If the integration
limits are variable, then the corresponding integral equations are Volterra
equations. An inhomogeneous Volterra equation of the second kind, corre-
sponding to Eq. (4.74), has the form

u(x) =

∫ x

a

K(x; ξ)u(ξ)dξ + ϕ(ξ) . (4.75)

If ϕ = 0, then one has a homogeneous Volterra equation of the second kind.
By contrast, a Volterra equation of the first kind has the form

ϕ(x) =

∫ x

a

K(x, ξ)u(ξ)dξ ,
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where ϕ is known and u is the unknown function. A Volterra integral equa-
tion may be viewed as a Fredholm equation whose kernel vanishes for x < ξ.
Thus letting

M(x; ξ) = 0 x < ξ

M(x; ξ) = K(x; ξ) ξ < x ,

one finds that the Volterra Eq. (4.75) becomes

u(x) =

∫ b

a

M(x; ξ)u(ξ)dξ + ϕ(ξ) ,

whose form is that of a Fredholm equation.
One of the prominent examples giving rise to Volterra’s integral equations

are initial value problems. To illustrate this point, consider the motion of a
simple harmonic oscillator governed by the equation

d2u

dτ 2
+ ω2u = 0 (4.76)

and the initial conditions

u(0) = d

u̇(0) = e .

The Green’s function for this problem is depicted in Figure 4.5 on page 256.
It is the response to the impulse δ(t− τ), and it satisfies

d2GR(t; τ)

dt2
= −δ(t− τ) ; GR(0; τ) = 0 ,

dGR(t; τ)

dt

∣
∣
∣
∣
t=0

= 0

or

d2GR(t; τ)

dτ 2
= −δ(t− τ) ; GR(t, τ) = 0 , for all t < τ , (4.77)

in spite of the fact that GR(t; τ) 6= GR(τ ; t) (Why? Hint: what is the second
derivative of a function that depends only on t− τ?). To obtain the integral
equation multiply Eq. (4.76) by GR(t; τ) and Eq. (4.77) by u(τ). One finds

GR(t; τ)

[
d2u

dτ 2
+ ω2

]

u = 0

u(τ)
d2GR(t; τ)

dτ 2
= −δ(t− τ)u(τ)
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Subtraction yields a l.h.s. whose second derivative terms consolidate into a
total derivative (Lagrange’s identity!):

d

dτ

{

GR(t; τ)
du

dτ
− u(τ)dG

R(t; τ)

dτ

}

+ ω2GR(t; τ)u(τ) = −δ(t− τ)u(τ)

Next perform the integration
∫ t+

0
· · · dτ , where t+ signifies taking the limit of

the integral as τ → t from the side for which τ > t. One obtains

∫ t+

0

dτ

{

GR(t; τ)
d2u(τ)

dτ 2
− u(τ)d

2GR(t, τ)

dτ 2

}

+ ω2

∫ t+

0

GR(t, τ)u(τ)dτ = u(t)

or with the help of the property GR(t; τ) = 0 whenever t < τ ,

u(t) = ω2

∫ t+

0

GR(t; τ)u(τ)dτ + u(0)
dGR(t; τ)

dτ

∣
∣
∣
∣
τ=0

− u̇(0)GR(t; 0) .

Here u(0) and u̇(0) are the initial amplitude and velocity of the simple har-
monic oscillator, and they are now intrinsically incorporated in an inhomo-
geneous Volterra equation of the second kind. In this integral equation u(τ)
is the unknown function to be determined. However, the utility of this inte-
gral equation, which is based on the Green’s function GR(t; τ), is eclipsed by
an integral equation which is based a another Green’s function, say gR(t; τ),
satisfying

d2gR(t; τ)

dτ 2
+ ω2gR(t; τ) = −δ(t− τ) ; gR(t, τ) = 0 , for all t < τ

similar to Eq.(4.76). Following the same derivation steps, one finds that the
ω2-term gets cancelled.

u(t) = u(0)
dgR(t; τ)

dτ

∣
∣
∣
∣
τ=0

− u̇(0)gR(t; 0) .

The integral has diappeared. One is left with the solution to the problem
one is actually trying to solve. The overall conclusion is this: Picking the
right Green’s function for the problem speeds up the process of reaching one’s
goal.
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Exercise 4.11.1 (TRANSLATION INVARIANT INTEGRATION KERNEL)
Consider the inhomogeneous Fredholm equation of the second kind,

u(x) = λ
1√
2π

∫ ∞

−∞
K(x; ξ) u(ξ) dξ + φ(x).

Here λ is a parameter and φ is a known and given function. So is the integration
kernel K, which in this problem is given to be translation invariant, i.e. you
should assume that K(x; ξ) = v(x− ξ), where v is a given function whose Fourier
transform

v̂(k) =
1√
2π

∫ ∞

−∞
e−ikxv(x) dx

exists. SOLVE the integral equation by finding the function u(x) in terms of what
is given.

Exercise 4.11.2
Look up an integral equation of the 2nd kind, either of the Volterra or of the
Fredholm type. Submit it and its solution.

Lecture 35

4.12 Singular Boundary Value Problem:

Infinite Domain

All our observations of nature are specific and hence finite. In order to
extend our grasp from the finite to those aspects nature termed “infinite”,
one starts with a one parameter family of (finite) systems. By letting this
parameter become asymptotically large one can ask: are there any properties
of the system that don’t change as we let that parameter become arbitrarily
large? An affirmative answer to this question yields a new perspective on the
system. The constellation of properties subsumed under the existence of this
mathematical limit is a new concept, the “infinite system” corresponding to
the finite sytems giving rise to it.

The purpose of the method of the “infinite system” is to extend our grasp
of nature from the direct perceptual level of awareness to the conceptual level
which has no spatial and temporal bounds.
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φλ (x)

Im 

Re

complex
-plane

λ

λ

λ
Im 

Re

complex
-plane

φ

φ
φ

with x=fixed

Figure 4.9: The λ-parametrized family of functions φλ(x) as a map from the
complex λ-plane onto the complex φ-plane

The archetypical system we shall study is the uniform string of length ℓ.
We shall determine its response to a unit force, and after that let ℓ → ∞.
This is done in Section 4.12.4 on Page 294. We shall find the remarkable
(but not necessarily unexpected) result that as ℓ→∞, the string’s response
becomes independent of the particular mixed Dirichlet-Neumann boundary
conditions one may have imposed at ℓ.

It will turn out that when one lets ℓ become infinitely large, it is necessary
to impose some other homogeneous boundary condition. The mixed D-N
conditions are simply inappropriate for an (in the limit) infinite string. They
get replaced by the so-called “ingoing” or “outgoing” wave conditions. They
comply with what is observed.

In order to become familiar with the key attributes of an infinite string
consider again the differential equation

d2φ

dx2
+ λφ = 0 , −∞ < x <∞

but without specifying any boundary conditions as yet. The general solution
to this differential equation has the form

φλ(x) = A + Bx for λ = 0

φλ(x) = Ceiλ
1/2x + De−iλ

1/2x for λ 6= 0

The expression for φλ(x) is a λ-parametrized family of solutions to a λ-
parametrized family of differential equations. The parameter may be, and in
general is, complex. Consequently, φλ(x) should be viewed as a function of
the complex variable λ. For fixed x this function maps the complex λ-plane
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into the complex φ-plane

Complex φ(x) Complex
λ− plane −→ φ− plane

λ ∼∼❀ φλ(x) = Cei
√
λx + De−i

√
λx

The analytic properties of this function depend on the properties of the
square root function λ1/2, which has two analytic branches

λ1/2 = α + iβ =

{ √
λ β > 0

−
√
λ β < 0

and a branch cut which separates them. They all play a key role in determin-
ing the behaviour of the function φλ(x). Thus a quick review is appropriate.

4.12.1 Review: Branches, Branch Cuts, and Riemann
Sheets

The square root function and its branches are defined as follows:

(i) The square root function λ1/2

Let λ = |λ|eiθ. A function is defined by giving its formula and specify-
ing its domain. The square root function λ1/2 is defined by

λ1/2 = |λ|1/2eiθ/2 (Formula)

where
θ is any real number (Domain)

(ii) The first branch of λ1/2.

This function, denoted by
√
λ, is defined by

√
λ = |λ|1/2eiθ/2 (Formula)

where
0 ≤ θ < 2π (Domain)

More succinctly, we have

1st branch of λ1/2 ≡
√
λ

= |λ|1/2eiθ/2 0 ≤ θ < 2π

See Figure 4.10
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λ

complexλ - plane

θ
complex - planek

Figure 4.10: The first branch of the map λ1/2 maps the complex λ-plane onto
the upper half of the complex k-plane

(iii) The second branch of λ1/2.

This function, denoted by −
√
λ, is obtained by restricting the domain

of λ1/2 to 2π ≤ θ < 4π. In other words, −
√
λ is defined by

−
√
λ = |λ|1/2eiθ/2 (Formula)

where

2π ≤ θ < 4π (Domain)

Equivalently, the second branch is defined by

−
√
λ = −|λ|1/2eiθ′/2 (Formula)

where

0 ≤ θ′ < 2π (Domain)

See Figure 4.11

λ

complexλ - plane

θ
complex - plane

’
-

’ k

Figure 4.11: The second branch of the map λ1/2 maps the complex λ′-plane
onto the lower half of the complex k-plane

(iv) The Riemann sheets of λ1/2.
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The two branches
√
λ and −

√
λ are the two components of the sin-

gle function λ1/2 whose domain consists of two copies of the complex
λ-plane. The points along the real λ-axis are glued together (i.e. iden-
tified) in the manner depicted in Figure 4.12.

We are forced to accept these two copies if one writes the image of λ
as

[λ]1/2 = α + iβ

in the k-plane of Figure 4.12. Then the first Riemann sheet consists of
the set of λ’s for which β > 0, while the second Riemann sheet consists
of those λ’s for which β < 0. These sheets are joined continuously
along their positive x-axes by the requirement that the function

[λ]1/2 = |λ|1/2eiθ/2 (4.78)

be continuous for all values of θ. As a result of this requirement the
two sheets are joined in the manner depicted in Figure 4.12.

It is quite true that, by itself, the complex number λ does not tell
whether λ is on the first or the second Riemann sheet. This information
is found neither in the real nor in the imaginary part of λ. Instead, it
is inferred from the square root function, Eq.(4.78) Indeed, one has

0 < θ < 2π =⇒ λ ∈ 1st Riemann sheet

2π < θ < 4π =⇒ λ ∈ 2nd Riemann sheet (4.79)

The set of points θ = 2π lies on both Riemann sheets; so does the set of
points θ = 0. However, these two sets are distinct: they lie on opposite
sides of the branch cut of the upper or the lower λ-plane.

An alternative way of characterizing the square root function is to collapse
its domain, the two Riemann sheets, into a single λ-plane. Such a simplifica-
tion comes, however, at a price: the square root function is now two-valued,
it has two formulas, the two branches

√
λ and −

√
λ. The domain for both

of them is the λ-plane with a branch cut along the positive real axis across
which each branch is discontinuous.

4.12.2 Square Integrability

Let us determine how the location of the point λ controls the square-integrability
of the exponential solution eiλ

1/2x on the inteval [0,∞).
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λ =1st branch

λ- =2nd branch

k= λ
1/ 2

k-plane

Riemann sheet

Riemann sheet

1st

2nd
sam

e points
sam

e points

.

.

.

.

Figure 4.12: The map λ1/2 whose domain consists of the upper and the lower
Riemann sheets and whose range is the the complex k-plane. The circle in
the first Riemann sheet gets mapped into a semi-circle in the upper k-plane,
and the cirle in the second Riemann sheet gets mapped into a semi-circle in
the lower k-plane. A pair of points one above the other in the two Riemann
sheets gets mapped into a pair of diametrically opposite points in the k-plane.
The points common to the two Riemann sheets get mapped into the real axis
in the k-plane.

With
λ1/2 ≡ α + iβ

the λ-parametrized function

φλ(x) = eiλ
1/2x =

{

ei
√
λx = eiαxe−βx 0 < β

e−i
√
λx = eiαxe−βx β ≤ 0

has entirely different integrability properties depending on whether λ lies in
the first Riemann sheet (λ1/2 =

√
λ, i.e. β > 0) or in the second Riemann

sheet (λ1/2 = −
√
λ, i.e.β < 0), that is to say, in the domain of which branch

of λ1/2 the point λ happens to lie. In fact, from
∫ ∞

0

| exp{iλ1/2x}|2 dx =

∫ ∞

0

| exp{i(α + iβ)x}|2 dx

=

∫ ∞

0

e−2βx dx =
1

2β
for all α, but β > 0 (4.80)



4.12. SINGULAR BOUNDARYVALUE PROBLEM:INFINITE DOMAIN291

we see that exp{iλ1/2x} is square-integrable ( ∈ L2[0,∞) ) only when β > 0,
but the integral diverges whenever β ≤ 0. In other words,
exp{iλ1/2x} is square-integrable on [0,∞) whenever λ lies on the 1st Rie-
mann sheet, and not on the real λ-axis, nor on the 2nd Riemann sheet.

An analogous statement holds for exp{iλ1/2x} being square-integrable on
(−∞, 0]. In that circumstance the requirement is that λ lies on the 2nd
Riemann sheet:
∫ 0

−∞
| exp{iλ1/2x}|2 dx =

∫ ∞

0

| exp{−i(α + iβ)x}|2 dx

=

∫ ∞

0

e2βx dx =
−1
2β

for all α, but β < 0 (4.81)

Thus the requirement of square integrability relates the Riemann sheets of
λ1/2 to the two semi-infinite integration domains of exp(iλ1/2x):

λ ∈ 1st Riemann sheet⇐⇒ exp(iλ1/2x) ∈ L2[0,∞)

and

λ ∈ 2st Riemann sheet⇐⇒ exp(iλ1/2x) ∈ L2(−∞, 0]

whenever λ 6= real. Thus,

exp(iλ1/2x) is square integrable on [0,∞)⇒ exp(iλ1/2x) = exp(i
√
λx)

and

exp(iλ1/2x) is square integrable on (−∞, 0]⇒ exp(iλ1/2x) = exp(−i
√
λx) .

Lecture 36

4.12.3 Infinite String

Even though in nature one never observes an infinite string, such a string
is a concept with properties which are directly observable and which lend
themselves to easy mathematical analysis. This means that the infinite string
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is a natural way by which to grasp the properties and behavior of any system
which exhibits these attributes. All the essential properties of a string are
contained in the solution to the following
Problem: Construct the Green’s function for the system

d2Gλ

dx2
+ λGλ = −δ(x− ξ) 0 < x <∞

subject to

1. Gλ(0; ξ) = 0

2. Gλ(x; ξ) expresses an “outgoing” wave for very large x, i.e., Gλ ∼
eiλ

1/2x.

3. Gλ(x; ξ) is square-integrable.

Comment
Such a boundary value problem arises in the solution to a vibrating semi-

infinite string which is imbedded in an elastic medium, and which responds
to a harmonically varying force:

∂2ψ

∂x2
− ∂2ψ

∂t2
− k2ψ = −f(x)e−iωt .

The steady state solution to this system is

ψ(x, t) = u(x)e−iωt

where
d2u

dx2
+ λu(x) = −f(x)

with λ = ω2 − k2. If the harmonic driving force is localized to a point, then
the solution is

ψ(x, t) = Gλ(x; ξ)e
−iωt .

Being square integrable, for large (ξ < x) the solution is

ψ ∼ ei
√
λxe−iωt = ei(α+iβ)xe−iωt, ,

where √
λ = ±|α|+ iβ with 0 < β≪ 1 .
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It is evident that the upper sign expresses an outgoing wave and the lower
sign an incoming wave on 0 < x < ∞. This is because the locus of the
constant amplitude

±|α|x− ωt = const

is a point with phase velocity

dx

dt
= ± ω

|α| .

The upper sign refers to a wave moving towards larger x. It is an outgoing
wave. The difference between an outgoing and an incoming wave is the
difference between the driving force emitting and absorbing wave energy. In
both cases 0 < β6 .

The Green’s function is constructed in the usual way:

Gλ(x; ξ) =
−1
c
u1(x<)u2(x>)

where

u1(x) = sinλ1/2x (u1(0) = 0)

u2(x) = exp iλ1/2x (outgoing b.c. : λ1/2 = |α|+ iǫ)

c = u1u
′
2 − u′1u2

= λ1/2(i sinλ1/2x− cosλ1/2x)eiλ
1/2x

= −λ1/2 .

Thus the Green function is

Gλ(x; ξ) =
sinλ1/2x<
λ1/2

eiλ
1/2x> .

Here

λ1/2 =

{
|λ|1/2 + iǫ for “outgoing” wave at large x
−|λ|1/2 + iǫ for “incoming” wave at large x

6On the other hand, if the wave propagation domain were −∞ < x < 0, then an
outgoing (resp. incoming) wave

e−i
√
λxe−iωt = ei(α+iβ)xe−iωt

would be characterized by α = −|α| (resp. α = |α|), while square integrability demands
that β < 0, i.e. that λ1/2 be evaluated on its 2nd branch.
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From the perspective of physics, a non-zero but neglegible ǫ expresses the
presence of damping. The exponential damping factor e−ǫx gurantees that
Gλ is square integrable on [0,∞), but it has no effect on the shape of the
Green’s function because ǫ→ 0. It can thus be written as

Goutgoing
λ (x; ξ) =

sinλ1/2x<
λ1/2

e(i|λ|
1/2−0+)x> ,

while

Gincoming
λ (x; ξ) =

sinλ1/2x<
λ1/2

e(−i|λ|
1/2−0+)x> .

The branch cut of λ1/2 has a significant effect on the exponential. However,
the sinc function remains uneffected because it is an analytic function of λ.

4.12.4 Infinite String as the Limit of a Finite String

It seems that the properties and behavior of an infinite string are irreconcil-
ably different from those of a finite string. However, it is possible to consider
the former as a limiting form of the latter. This fact, together with the
the associated role of the square root function, is brought out by comparing
the solutions of two simple strings, both of length |ℓ|. One extends into the
positive, the other into the negative x-direction:

Problem: Consider the Green’s functions g+ and g− of the two linear systems
with symmetrically located domains.

(i) The first one is governed by the differential

d2g+
dx2

+ λg+ = −δ(x− ξ) 0 < x, ξ < ℓ (4.82)

(4.83)

with Dirichelet boundary conditions at x = 0:

g+(x = 0) = 0 ,

and with mixed Dirichelet-Neumann boundary conditions at x =
ℓ:

b1g+(ℓ) + b2g
′
+(ℓ) = 0 . (4.84)
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(ii) The second one is governed by the same differential equation, but
on a domain which extends symmetrically to the left:

d2g−
dx2

+ λg− = −δ(x− ξ) ℓ < x, ξ < 0 (4.85)

(4.86)

with Dirichelet boundary conditions also at x = 0:

g−(x = 0) = 0 ,

and with the mixed Dirichelet-Neumann boundary conditions, but
located at x = ℓ = −|ℓ|:

b1g−(ℓ) + b2g
′
−(ℓ) = 0 . (4.87)

Thus the domain of g+ is [0, ℓ], while that of g−is [−|ℓ|, 0].
Compare the respective Green’s functions g+ and g− in the limit as |ℓ| → ∞.

Remark : We shall find three noteworthy results: First of all, each
Green’s function has two asymptotic limits: one is square integrable,
the other is not. Second, these limits are entirely independent of the
mixed Dirichlet-Neumann conditions, Eq.(4.84), (4.87). Finally, each
of these limits accomodates two radiation conditions: outgoing and
incoming.

Solution: (i) The first step consists of constructing the Green’s function in the
usual way. This task is based on

u1 = sinλ1/2x ,

which satisfies u1(0) = 0, and on

u2 = A cosλ1/2x+B sinλ1/2x

whose coefficients A and B are related so as to satisfy the given bound-
ary conditions, Eqs.(4.84) and (4.87) at x = ℓ. These boundary condi-
tions demand that

A(b1 cosλ
1/2ℓ− b2λ1/2 sinλ1/2ℓ

︸ ︷︷ ︸

D

) + B(b1 sinλ
1/2ℓ+ b2λ

1/2 cosλ1/2ℓ
︸ ︷︷ ︸

N

) = 0
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or

A = −BN
D

. (4.88)

To construct the Green’s functions

g±(x; ξ) =

{ −1
c
u1(x) u2(ξ) when |x| < |ξ|

−1
c
u1(ξ) u2(x) when |ξ| < |x|

we need the Wronskian determinant

c =

∣
∣
∣
∣

u1 u2
u′1 u′2

∣
∣
∣
∣

=

∣
∣
∣
∣

sinλ1/2x A cosλ1/2x+B sinλ1/2x
λ1/2 cosλ1/2x −λ1/2A sinλ1/2x+ λ1/2B cosλ1/2x

∣
∣
∣
∣

= −λ1/2 A
= λ1/2 B

N

D

Using Eq.(4.88), write down the Green’s functions. For |ξ| < |x| one
has

g±(x; ξ) =
−1
c
u1(ξ) u2(x)

=
−1

λ1/2 B N
D

sinλ1/2ξ

[

(−)BN
D

cosλ1/2x+ B sinλ1/2x

]

=
sinλ1/2ξ

λ1/2
cosλ1/2x

︸ ︷︷ ︸

“particular solution”

− sinλ1/2ξ

λ1/2
sinλ1/2x

N
D

︸ ︷︷ ︸

“solution to the homogeneous problem”

(4.89)

(ii) The second step consists of taking the limit of this Green’s function
as the boundary |ℓ| → ∞. Note that there is no ℓ-dependence whatso-
ever in the “particular solution” part of g±(x; ξ). In fact, it is totally
independent of the specific boundary condition that has been imposed
at x = ℓ.

This is different for the second part, the “solution to the homogeneous
equation”. It depends on the boundary condition by virtue of the ratio

N

D
=
b1 sinλ

1/2ℓ+ b2λ
1/2 cosλ1/2ℓ

b1 cosλ1/2ℓ− b2λ1/2 sinλ1/2ℓ
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and hence also on the length ℓ. However, in the limit as ℓ → ∞
something remarkable happens: the ratio N/D, and hence the Green’s
function 4.89, becomes independent of the mixed Dirichlet-Neumann
boundary condition at x = ℓ. In order to determine the value of the
limiting ratio

lim
ℓ→∞

N

D
,

set
λ1/2 = α + iβ ,

so that

sinλ1/2ℓ =
1

2i
(eiαℓe−βℓ − e−iαℓeβℓ)

cosλ1/2ℓ =
1

2
(eiαℓe−βℓ + e−iαℓeβℓ) .

Introduce these expressions into the ratio N/D. It is evident that this
ratio has no limit when β = 0. However, for β 6= 0 one finds that

lim
βℓ→∞

N

D
= lim

βℓ→∞

b1
2i
(−)e−iαℓeβℓ + b2λ1/2

2
e−iαℓeβℓ

b1
2
e−iαℓeβℓ + b2λ1/2

2i
e−iαℓeβℓ

= i

and

lim
βℓ→−∞

N

D
= −i .

Applying these two limits to the Green’s function, Eq.(4.89), one ob-
tains

lim
βℓ→∞

g±(x; ξ) =
sinλ1/2ξ

λ1/2
eiλ

1/2x

{
upper sign for ℓ→∞
lower sign for ℓ→ −∞ (4.90)

and

lim
βℓ→−∞

g±(x; ξ) =
sinλ1/2ξ

λ1/2
e−iλ

1/2x

{
upper sign for ℓ→∞
lower sign for ℓ→ −∞

(4.91)
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The allowed values of λ1/2 = α + iβ are no longer determined by the
Dirichelet-Neumann conditions. Instead, for an (in the limit) infinite
system the two parts of λ1/2 are determined by the two boundary con-
ditions

1. square integrability of g±, and

2. outgoing (or incoming) signal propagation condition.

These are two boundary conditions which determine the two parts of
the complex number λ1/2 = α + iβ, and hence of the eigenvalue λ1/2.
The first condition is met by fulfilling the requirement that

for g+ : β > 0 i.e. λ ∈ 1st Riemann sheet of λ1/2

for g− : β < 0 i.e. λ ∈ 2nd Riemann sheet of λ1/2

The second condition for outgoing (resp. incoming) signal propagation
is met by fulfilling the reqirement that

for g+ : λ1/2 =

{
|a|+ iǫ outgoing (to the “right”) wave
−|a|+ iǫ incoming (from the “right”) wave

for g− : λ1/2 =

{
−|a| − iǫ outgoing (to the “left”) wave
|a| − iǫ incoming (from the “left”) wave

These are the mathematical conditions on λ1/2 = α+ iβ for an asymp-
totically infinite string. Inserting them into Eqs.(4.90) and (4.91), one
finds that the Green’s functions satisfying these conditions are

goutgoing± =
sinλ1/2ξ

λ1/2
e±i(|a|+iǫ)x

gincoming± =
sinλ1/2ξ

λ1/2
e±i(−|a|+iǫ)x







× e−iωτ for |ξ| < |x| .

Figure 4.13 depicts the real part of the graph of these functions.

4.13 Spectral Representation of the Dirac Delta

Function

The physical difference between a finite and an infinite system has a profound
impact on the mathematical structure of the corresponding Green’s functions.
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g

−goutgoing

incoming

outgoingg

+
incomingg

−

+

outgoing

incoming

x

outgoing

incoming

Figure 4.13: Instantaneous amplitude profiles of waves with outgoing and
incoming phase velocities. In the first case the source emits energy; in the
second case the source absorbs energy.

For a finite system, exemplified by a finite string, the Green’s function
is singular only at its poles, the eigenvalues of the system. By contrast, for
an infinite system, for example, an infinite string, the Green’s function is
singular along each point of a line segment, a branch cut in the complex
λ-plane.

4.13.1 Coalescence of Poles into a Branch Cut

To appreciate the non-analyticity of the Green’s function, consider how the
the isolated poles of a finite string Green’s function merge so that they form
the branch cut when the string becomes infinitely long. To illustrate the
point, start with a string of length ℓ which satisfies the Dirichlet boundary
conditions at both ends.

d2gλ
dx2

+ λgλ = −δ(x− ξ) 0 < x, ξ < ℓ

gλ(0; ξ) = 0

gλ(ℓ; ξ) = 0 .

The Green’s function is

gλ(x; ξ) =
1

λ1/2 sinλ1/2ℓ
sin{λ1/2x<} sin{λ1/2(ℓ− x>)}
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l
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π4 2

l
2

π29
l
2

π2
. . .

isolated poles

l= finite l
limit

branch cut

Figure 4.14: Eigenvalue spectra in the complex λ-plane

Observe that in the complex λ-plane its poles are isolated and located at

λn =
n2π2

ℓ2
n = 1, 2, 3, · · ·

along the real λ-axis. Their separation

△λn = λn+1 − λn
=

π2

ℓ2
(2n+ 1)

tends to zero as ℓ → ∞. Thus, as depicted in Figure 4.14, as ℓ → ∞ the
isolated poles of gλ(x; ξ) coalesce into a continuous barrier, the branch cut,
which separates the “outgoing” from the “incoming” wave numbers λ1/2 on
the same Riemann sheet of λ1/2.
Remark. How would a change in boundary conditions, from Dirichlet to,
say, mixed Dirichlet-Neumann conditions, have altered the coalescence of the
poles of the Green’s function? It is evident that the positions of these poles
depend continuously on the parameters that specify the Dirichlet-Neumann
boundary conditions. A change in these boundary conditions would merely
have shifted these poles along the real λ axis in a continuous way. However,
as ℓ→∞, they still would have coalesced and formed the branch cut across
which the limiting Green’s function is discontinuous in the λ plane.

4.13.2 Contour Integration Around the Branch Cut

Lecture 37
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If the poles of a Green’s function coalesce into a branch cut, can one expect
that the sum over the discrete eigenfunctions, Eq.(4.46), mutates into a cor-
responding integral? The answer is ‘yes’, and this means that instead of rep-
resenting a function as a discrete sum of eigenfunctions, one now represents
a function as an integral transform. The Green’s function for a semi-infinite
string furnishes us with the archetypical recipe for obtaining this integral
transform. It is a two step process:

1. Evaluate the contour integral of Gλ(x; ξ) over a circle with unlimited
large radius:

∮

Gλ(x; ξ) dλ =

∮
sin
√
λx√
λ

ei
√
λ ξ dλ 0 < x < ξ

When 0 < ξ < x one interchanges x and ξ on the right hand side. The
contour path of integration is

λ(θ) = Reiθ 0 < θ < 2π .

In terms of the complex variable

k =
√
λ

this contour integral extends over a semicircle from k = |k| to k = |k|eiπ
∮

Gλ dλ = lim
|k|→∞

∫ |k|eiπ

|k|

eik(x+ξ) − e−ik(x−ξ)
2i

2 dk .

The integrand is analytic in k. Consequently, the semicircle can be
straightened out into a line segment along the real axis. The integral
becomes therefore

∮

Gλ dλ = i

∫ ∞

−∞

[
eik(x+ξ) − e−ik(x−ξ)

]
dk

= 2πi [δ(x+ ξ)− δ(x− ξ)]

For a semi-infinite string the domain variables are only positive, 0 <
x < ξ. Therefore the first Dirac delta function vanishes. We are left
with

1

2πi

∮

Gλ dλ = −δ(x− ξ) . (4.92)
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2. The second step also starts with the closed contour integral
∮

Gλ(x; ξ) dλ , (4.93)

but this time the circular contour gets deformed into two linear paths
on either side of the positive real axis [0,∞), the branch cut of

Gλ(x; ξ) =
sin
√
λx<√
λ

ei
√
λx> .

Designate the two values of Gλ(x; ξ) on opposite sides of the branch
cut by G+ and G−. The integral is therefore

∮

Gλ(x; ξ) dλ =

∫ 0

∞
G+ dλ+

∫ ∞

0

G− dλ

=

∫ ∞

0

[G− −G+] dλ . (4.94)

To evaluate the difference G− −G+ note that the value of
√
λ is

G−

G+

1st Riemann sheet ofλ1/2λ-plane:

..

Figure 4.15: Evaluation of the Green’s function just above and just below
the branch cut of λ1/2 on its first Riemann sheet.

√
λ =

{
|λ|1/2 just above the branch cut
−|λ|1/2 just below the branch cut

Consequently, the value of the Green’s function at these locations is

G+ =
sin |λ|1/2x<
|λ|1/2 exp{i|λ|1/2x>}

G− =
sin |λ|1/2x<
|λ|1/2 exp{−i|λ|1/2x>}
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The discontinuity across the branch cut is therefore

G+ −G− ≡ [Gλ] =
2i

|λ|1/2 sin |λ|
1/2x< sin |λ|1/2x>

=
2i

|λ|1/2 sin |λ|
1/2x sin |λ|1/2ξ (4.95)

Insert this result into Eq.(4.94), change the integration variable to
|λ|1/2 = k and obtain the result that

1

2πi

∮

Gλ(x; ξ) dλ =
−1
π

∫ ∞

0

sin |λ|1/2x sin |λ|1/2ξ
|λ|1/2 dλ

=
−2
π

∫ ∞

0

sin kx sin kξ dk (4.96)

This two step procedure yields two alternative expressions, Eqs.(4.92) and
(4.96) for the contour integral of the Green’s function. Their equality yields
the spectral representation of the Dirac delta function for a semi-infinite
string,

δ(x− ξ) = 2

π

∫ ∞

0

sin kx sin kξ dk (4.97)

4.13.3 Fourier Sine Theorem

Spectral representations like Eq.(4.97) yield pairs of functions which are
transforms of each other. Let f(x) be an integrable function f(x) defined on
the real interval 0 ≤ x < ∞. Multiply Eq.(4.97) by f(ξ) and integrate over
the half line 0 ≤ ξ <∞. The result is

f(x) =

√

2

π

∫ ∞

0

F (k) sin kx dk ,

where

F (k) =

√

2

π

∫ ∞

0

f(ξ) sin kξ dξ

These two function are the Fourier sine transforms of each other.
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Exercise 4.13.1 (VERY LONG STRING: STEADY STATE RESPONSE)
Over the interval −∞ < x <∞ consider

d2G

dx2
+ λG = −δ(x− ξ)

d2u

dx2
+ λu = −f(x) and

d2ϕ

dx2
+ λφ = 0.

We are looking for solutions in L2(−∞,∞) and assume that f is in L2(−∞,∞).

(a) Show that there are two candidates for G, namely

G = Gout(x|ξ;λ) =
i

2
√
λ
exp(−i

√
λξ) exp(i

√
λx) ξ < x

=
i

2
√
λ
exp(−i

√
λx) exp(i

√
λξ) x < ξ

=
i

2
√
λ
exp(i

√
λ|x− ξ|).

and

G = Gin(x|ξ;λ) =
−i
2
√
λ
exp(−i

√
λ|x− ξ|).

(b) Given the fact that
√
λ = α + iβ with β > 0, point out why only one of

them is square-integrable.

(c) Consider the contour integral
∮
G(x|ξ;λ) dλ over a large circle of radius R.

Demonstrate that

lim
R→∞

1

2πi

∮

G(x|ξ;λ) dλ = −δ(x− ξ) .

(d) Next deform the contour until it fits snugly around the branch cut of
√
λ,

and show that

δ(x− ξ) =
∫ ∞

0
· · · dλ (∗)

and then show that (∗) can be rewritten as

δ(x− ξ) = 1

2π

∫ ∞

−∞
eiω(x−ξ)dω for x < ξ and ξ < x .

(d) Express u(x) as a Fourier integral in terms of f .
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(e) Express G(x|ξ;λ) in the same way, i.e. obtain the bilinear expansion for G.

Exercise 4.13.2 (STEADY STATE RESPONSE VIA FOURIER)
Again consider

d2G

dx2
+ λG = −δ(x− ξ)

d2u

dx2
+ λu = −f(x) and

d2ϕ

dx2
+ λφ = 0.

over the interval −∞ < x < ∞, but leave the boundary conditions as-yet-
unspecfied.

(a) Express u(x) as a Fourier integral in terms of f .

(b) Express G(x|ξ;λ) in the same way, i.e. obtain the bilinear expansion for G.

(c) How, do you think, should one incorporate boundary conditions into these
expressions?
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Chapter 5

Special Function Theory

We shall now reconsider the eigenvalue problem

Lu = λu ,

but we take λ to be a degenerate eigenvalue. This means that we take λ
to have more than one eigenvector. These eigenvectors span a subspace, the
eigenspace of L corresponding to λ. This subspace has a basis of eigenvectors,
but its choice is not unique.

In spite of this we ask: Is there a way of constructing a basis which is
dictated by objective criteria (for our purposes, by geometry and/or physics)
and not by subjective preferences?

The answer to this question is “yes” whenever one can identify a linear
transformation, call it T , with the following three properties:

(i) The domain of T coincides with that of L,

(ii) the transformation T commutes with L, i.e.

TL = LT ,

and

(iii) the eigenvalues of T are non-degenerate.

A transformation with these properties determines a unique eigenbasis for
each eigenspace of the original eigenvalue problem. Indeed, let u be an eigen-
vector of T :

Tu = τu .

309
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Then

T (Lu) = L(Tu) = τ Lu ,

i.e., Lu is again an eigenvector of T corresponding to the same eigenvalue τ .
The non-degeneracy of τ implies that Lu is a multiple of u; in other words,

Lu = λu .

Thus u is also an eigenvector of L. Conversely, if u belongs to the λ-
eigenspace of L, then Tu also belongs to this subspace. The set of all the
eigenvectors of T which lie in this λ-subspace form a basis for this subspace.
This basis is orthonormal if T and L are hermitian. The elements of this
T -determined basis are uniquely labelled by the real eigenvalues τ and, of
course, by the subspace label λ. A set of commuting linear transformations,
such as L and T , whose eigenvalues uniquely label their common eigenvectors,
is called a complete set of commuting operators.

The operator T is not unique. Suppose there is another hermitian opera-
tor, say S, which together with L forms another complete set of commuting
operators. This means that one now has two orthonormal bases for the
λ-eigenspace of L, one consisting of the eigenvectors of T , the second con-
sisting of the eigenvectors of S. Furthermore, these two bases are related by
a unitary transformation, i.e. by a rotation in the complex eigenspace of L.

One of the most far reaching applications of this geometrical framework
consists of identifying

• the operator L with the Laplacian on E2, the Euclidean two-dimensional
plane,

• the operator T with the generator of translations in E2,

• the operator S with the generator of rotations in E2,

• the eigenvectors of T with the plane-wave solutions to the Helmholtz
equation,

• the eigenvectors of S with the cylinder (Bessel) solutions to the Helmholtz
equation, and

• the unitary transformation with the Fourier series representation of a
plane wave in terms of the Bessel solutions.
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5.1 The Helmholtz Equation

Lecture 38

If the Sturm Liouville equation is the most important equation in one di-
mension, then the Helmholtz equation

(∇2 + k2)ψ = 0

is the most important, and simplest, eigenvalue equation in two dimensions.
The two-dimensional domains we consider are first the Euclidean plane and
later the surface of a sphere.

The Helmholtz equation can be written down and then solved relative to
any one of many coordinate systems. In three dimensional Euclidean space
there are at least eleven such coordinate systems.

5.1.1 Cartesian versus Polar Coordinates

Relative to the standard rectilinear Cartesian coordinates Helmholtz’s equa-
tion has the form

−∇2ψ ≡ −
(
∂2

∂x2
+

∂2

∂y2

)

ψ = k2ψ .

If one uses

x = r cos θ

y = r sin θ

to make a transition to polar coordinates, the Helmholtz equation assumes
the form

−∇2ψ ≡ −
(
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ

)

ψ = k2ψ .

(Nota bene: To show that the Laplacian relative to polars has the form
indicated, it is easiest to actually start with that polar expression and then
use the above coordinate transformation to recover the Cartesian expression
for ∇2. Going the other way is, of course, equivalent but takes a little extra
work.)
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Given these two representations of the Laplacian ∇2, how do their eigen-
functions compare and how are they related?

This is a very fruitful question to ask, because in answering it, we shall
not only obtain a deep and thorough understanding of waves on the flat
Euclidean plane, but also develop the framework for dealing with waves on
a sphere as well as with waves in three dimensional Euclidean space.

isograms
of equal
phase r

k

α θ x

y

Figure 5.1: An instantaneous plane wave consists of a set of parallel phase
fronts, the isograms of the phase function. Its gradient, which is perpendic-
ular to these isograms, is the wave propagation vector ~k.

Plane wave solutions play a key role in the development. Thus we must
have a natural and precise way of identifying them relative to Cartesian as
well as polar coordinates.

The solutions to
∂2ψ

∂x2
+
∂2ψ

∂y2
+ k2ψ = 0

are the “plane wave” solutions

ei
~k·~x = ei(kxx+kyy) (relative to Cartesians).

Such a solution is characterized by its wave propogation vector

~k = (kx, ky) .

The polar representation of this vector,

~k = (k cosα, k sinα)
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where

k2 = k2x + k2y ,

is appropriate relative to polar coordinates. The wave propagation vector ~k
is the gradient of the phase for a plane wave solution. This phase has the
form

phase ≡ kxx+ kyy (relative to Cartesians)

= kr(cosα cos θ + sinα sin θ)

= kr cos(α− θ) (relative to polars) .

Consequently,

ei
~k·x = eikr cos(α−θ) (relative to polars) .

Thus relative to polar coordinates, a plane wave is represented by the mag-
nitude k, and the direction angle α of its propagation vector ~k.

5.1.2 Degenerate Eigenvalues

Every eigenvalue of the eigenvalue equation

−∇2ψ = k2ψ

is highly degenerate. In fact, each eigenvalue k2 is infinitely degenerate.
This means that for one and the same eigenvalue k2, there is an infinite set
of eigenfunctions, namely,

{ei(kxx+kyy) : k2x + k2y = k2}

or
{eikr cos(α−θ) : α is a constant} .

These solutions form a basis for the subspace of solutions to the Helmholtz
equation

(∇2 + k2)ψ = 0 .

Any solution to this equation is a unique superposition of the basis elements.
We shall refer to this subspace as the eigenspace of the (degenerate) eigen-
value k2.
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A matrix, and more generally an operator, is diagonal relative to its
eigenvector basis. The Helmholtz operator −∇2 can, therefore, be viewed as
an infinite diagonal matrix

−∇2 =












. . .

k2 0
. . .

0 k2

. . .












with degenerate eigenvalues k2 along the diagonal.
The question now is, how does one tell the difference between the eigen-

functions having the same eigenvalue k2? Physically one says that these
eigenfunctions are plane waves propagating into different directions. How-
ever, one also would like to express the difference algebraically.

5.1.3 Complete Set of Commuting Operators

There is only one way of doing this. It is very direct, and it consists of
exhibiting another “matrix”, i.e., operator, which

1. has the same domain as ∇2,

2. has the same eigenvectors that ∇2 has, but

3. has eigenvalues which are different for different eigenvectors.

Examples of such “matrices” are

1

i

∂

∂x
≡ Px and

1

i

∂

∂y
≡ Py .

Their eigenvectors are the plane wave solutions,

Pxe
i~k·~x = kxe

i~k·~x and Pye
i~k·~x = kye

i~k·~x ,

a fact which is also the case for the Helmholtz operator,

−∇2ei
~k·~x = k2 · ei~k·~x .
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However, note that the eigenvalues, kx and ky, are different for different plane
wave solutions. Thus one has available a very succinct way of characterizing
the elements of each degenerate subspace for each eigenvalue k2 of −∇2. This
way consists of the statement that the eigenbasis spanning this subspace be
labelled by the eigenvalue triplet

(kx, ky, k
2)

of the corresponding three operators

{Px, Py,−∇2} .

This labelling is unique, i.e., the correspondence

{(kx, ky, k2)} ↔ {ei(kxx+kyy) = ψkx,ky ,k2(x, y)}

is unique.The operators {Px, Py,∇2} form what is called a complete set of
commuting operators because their eigenvalues (kx, ky, k

2) serve as sufficient
labels to uniquely identify each of their (common) eigenbasis elements for the
vector space of solutions to the Hermholtz equation. No additional labels are
necessary.

In addition, notice the following: that the three operators (Px, Py,−∇2 ≡
P 2
x + P 2

y ) have the same eigenvectors implies that they commute

[Px, Py] = [Px,∇2] = [Py,∇2] = 0 .

In fact, one can show that two operators, each having an eigenbasis for the
vector space, commute if and only if they have an eigenbasis in common.
This commutativity is a representation independent way of stating that the
invariant subspaces of one operator coincide with the invariant subspaces of
the other operator, even though their eigenvalues do not. An alternate way
of saying this is that

span{ei(kxx+kyy) : k2x + k2y = k2}

is a subspace invariant under Px, Py, and ∇2. To illustrate the commonality
of these subspaces, consider the one-dimensional subspace spanned by the
eigenvector of the nondegenerate eigenvalue kx of Px,

Pxψ = kxψ.
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What can one say about ∇2ψ? To find out consider Px∇2ψ. Using the fact
that Px∇2 = ∇2Px one has

Px∇2ψ = ∇2Pxψ = kx∇2ψ .

The fact that the eigenvalue kx is nondegenerate implies that ∇2ψ is a mul-
tiple of ψ:

∇2ψ = λψ .

Thus ψ is also an eigenvector of ∇2. Thus we have proved an important
Theorem

Suppose that

[Px,∇2] = 0

and ψ is an eigenvector belonging to the nondegenerate eigenvalue kx:

Pxψ = kxψ;

then ψ is also an eigenvector of ∇2.

5.1.4 Translations and Rotations in the Euclidean Plane

Lecture 39

What is the significance of the operators

Px =
1

i

∂

∂x
Py =

1

i

∂

∂y
,

and what are they good for? The answer is that they express the transla-
tion invariance of the Euclidean plane and that they generate the rectilinear
translations of the wave system governed by the Helmholtz equation

(∇2 + k2)ψ = 0 .

Let us see what this means and why this is so.
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Point Transformations

The Euclidean plane is characterized by various symmetry transformations
which leave invariant the distance

ds2 ≡ dx2 + dy2 = dr2 + r2dθ2

as well as the Laplacian

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
=

1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
. (5.1)

There are two obvious types of such transformations:

(i) Translations in the Euclidean plane E2

(a) along the x-axis by a fixed amount a:

Xa : E2 → E2

(x, y) (x′, y′) = (x+ a, y) (5.2a)

(b) along the y-axis by a fixed amount b:

Yb : E2 → E2

(x, y) (x′, y′) = (x, y + b) (5.2b)

(c) and more generally along some generic direction by the fixed vec-
torial amount ~a:

T~a : E2 → E2

(x, y) (x′, y′) = (x+ a, y + b) ≡ T~a(x, y); (5.2)

(ii) Rotations in the Euclidean plane around a chosen origin by an angle γ:

Rγ : E2 → E2

(r, θ) (r′, θ′) = (r, θ + γ ). (5.3)
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These are point transformations. Even though a transformation takes each
point of the Euclidean plane into another, the distance between a pair of
points before the transformation is the same as the distance after this pair
has been transformed to a new location. This is expressed by the equality

dx′2 + dy′2 = dx2 + dy2 (invariant)

dr′2 + r2dθ′2 = dr2 + r2dθ2 (invariant)

or, in brief,

ds′2 = ds2 (invariant)

i.e., the distance ds2 in the Euclidean plane is invariant under translations
and rotations. It is also obvious that

∇′2 = ∇2 . (invariant)

ψ(x,y) ψ(x-a,y)

x

y

a

Figure 5.2: The point transformation x→ x′ = x+ a induces a transforma-
tion which acts on functions according to the rule: ψ(x, y) → ψ(x − a, y).
Because of the minus sign, the transformed function is called the “pull-back”
of ψ(x, y). What is the line of reasoning giving rise to this pullback? The
key is the observation that the value of the new function, say ψ′ at the new
point, say x′, must equal the old function ψ at the old point x. In other
words, ψ(x, y) = ψ′(x′, y). In light of the fact that x = x′ − a, one has
ψ(x′ − a, y) = ψ′(x′, y) for all x′. Dropping the “prime”, one arrives at
ψ(x, y)→ ψ′(x, y) = ψ(x− a, y).
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Transformations on the Space of Functions

Point transformations such as Eqs.(5.2)-(5.3) induce corresponding transfor-
mations T~a∗ on the vector space H of functions defined on E2,

H T~a∗−→ H
ψ  T~a∗[ψ] = ψ′. (5.4)

The logical leap from the given function ψ to its transform ψ′ consists of the
requirement that the new function at the new point be qual to the old function
at the corresponding old point, and that this equality hold for all transformed
points. As shown in Figure 5.2, this means that the isograms of ψ (“loci of
points where the function has the same value”) get pushed forward by T~a∗,

ψ′(x′, y′) =ψ(x, y).

In light of Eq.(5.2) one has

ψ′(x′, y′) =ψ(x′ − a, y′ − b) for all (x′, y′). (5.5)

Dropping the prime, one finds that the transformed function is

ψ′(x, y) =ψ(x− a, y − b). (5.6)

This is the explicit form of the function induced by T~a, Eq.(5.2):

T~a∗[ψ](x, y) = ψ(x− a, y − b). (5.7)

Similarly, corresponding to the point transformations Eqs.(5.2a)-(5.3), one
has

Xa∗[ψ](x, y) = ψ(x− a, y), (5.7 a)

Yb∗[ψ](x, y) = ψ(x, y − b), (5.7 b)

and

Rγ∗[ψ](r, θ) = ψ(r, θ − γ). (5.8)
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Each of the functions on the r.h.s. of Eqs.(5.7)-(5.8) is evaluated at a
point shifted by a fixed amount. This suggests a Taylor series around the
unshifted point. For example,

ψ(x− a, y) =
∞∑

0

(−a)n
n!

∂nψ(x, y)

∂xn
(5.9)

≡e−a ∂
∂xψ(x, y) (5.10)

=e−iaPxψ(x, y) . (5.11)

See Figure 5.2. Thus, by exponentiating the operator Px = 1
i

∂
∂x

in a way
which is identical to exponentiating a matrix, one obtains a linear operator
which expresses a translation along the x-axis. This operator

e−iaPx = 1− iaPx +
(−ia)2

2!
P 2
x + · · · ≡ Xa∗

is, therefore, called a translation operator. It translates a wave pattern, a
solution to the Helmholtz equation from one location to another, i.e.,

Xa∗ψ(x, y) = ψ(x− a, y) .

This translation transformation is evidently generated by the translation
generator

Px =
1

i

∂

∂x
.

The effect of the translation operator Xa∗ is particularly simple when that
operator is applied to an “eigenvector” of Px,

Pxe
i(kxx+kyy) = kxe

i(kxx+kyy) .

In that case, one obtains a power series in the eigenvalue kx,

Xa∗e
i(kxx+kyy) = e−iaPxei(kxx+kyy)

=

[

1− iakx +
(−ia)2

2!
k2x + · · ·

]

ei(kxx+kyy)

= e−ikxaei(kxx+kyy) .

Thus, except for the phase factor e−ikxa, the plane wave remaines unchanged.
It is a translation eigenfunction. In other words, a plane wave is invariant
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(i.e. gets changed only by a constant phase factor) under translation along
the x-axis. This result is the physical significance of the mathematical fact
that a plane wave solution is an “eigenvector” of Px = 1

i
∂
∂x
. It expresses

the physical fact that a plane wave is a translation invariant solution of the
Helmholtz equation.

Analogous considerations lead to the definition of translations along the
y-axis and rotations around the origin. Thus, corresponding to the three
point transformations (i), (ii), and (iii) earlier in this section, one has the
three generators

1. Px =
1
i

∂
∂x

“x-translation generator”

2. Py =
1
i

∂
∂y

“y-translation generator”

3. ~P = Px + Py “generic translation generator”

4. Lθ =
1
i

∂
∂θ

“rotation generator”

which generate the finite transformations

1. Xa∗ = e−i a Px “x-translation by a ”

2. Yb∗ = e−i b Py “y-translation by b ”

3. T~a∗ = e−i~a ·
~P “generic translation by ~a ”

4. Rγ∗ = e−i γ Lθ “θ-rotation by γ ”

when they are applied to functions defined on the Euclidean plane. For
example, the application of the rotation operator Rγ∗ to ψ(r, θ) yields

Rγ∗ψ(r, θ) = ψ(r, θ − γ) .

5.1.5 Symmetries of the Helmholtz Equations

It is easy to see that if
(∇2 + k2)ψ = 0

then
Xa∗ψ , Yb∗ψ and Rγ∗ψ
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are also solutions to the Hermholtz equation. In other words,

(∇2 + k2)(Xaψ) = 0 , etc.

This is because the partial derivative can be interchanged and the coefficient
of ∇2 are independent of x, y, and θ. One refers to this independence by
saying that x, y and θ are cyclic coordinates, or equivalently, that Xa∗, Yb∗,
and Rγ∗ are symmetries of ∇2.

This independence implies that the eigenspace of ∇2 is invariant under
Xa∗, Yb∗, and also Rγ∗. This is a very powerful result. It says that if ψ is a
solution, then one obtains the additional solutions

Xa∗ψ, Yb∗ψ, and Rγ∗ψ ,

which are parametrized by the translation parameter a and b, and by the
angle γ respectively.

5.1.6 Wanted: Rotation Invariant Solutions to the Helmholtz
Equation

A plane wave solution ei
~k·~x is also an eigenfunction of the translation opera-

tor:

Xa∗e
i~k·~x = e−ikxaei

~k·~x

Yb∗e
i~k·~x = e−ikybei

~k·~x

but

Rγ∗e
ikr cos(α−θ) ≡ eikr cos(α−θ−γ) 6= λeikr cos(α−θ)

for any λ!. In other words, a plane wave solution is not an eigenfunction of
the rotation operator! Nevertheless, we know that Rγ is a transformation
which takes eigenfunctions of ∇2 into eigenfucntions belonging to the same
eigenvalue. This leads to the following question:
Which linear combination of plane waves (having the same k2) is an eigen-
function of Rγ?

We need a solution to the Helmholtz equation of the form

ψ = Z(kr)eiνθ (ν = complex constant)
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so that

Rγ∗ψ = e−iνγψ (“Rotation eigenfunction ψ”) .

If we can find Z(kr) such that

(∇2 + k2)Z(kr)eiνθ = 0 ,

then we shall have what we are looking for, namely a solution which is also
an eigenfunction of the rotation operator.

Using the polar representation of ∇2, and cancelling out the factor eiνθ,
we have {

d2

dr2
+

1

r

d

dr
+

(

k2 − ν2

r2

)}

Z(kr) = 0 ,

or with ρ = kr,

{
d2

dρ2
+

1

ρ

d

dρ
+

(

1− ν2

ρ2

)}

Z(ρ) = 0 .

In other words, Z(ρ) must satisfy Bessel’s equation.
The first impulse is to solve this equation using infinite series. How-

ever, we shall take note of STOKE’S observation: “series solutions have the
advantage of being generally applicable, but are wholly devoid of elegance”.
In our case “elegance” means ability to capture the geometric and physical
properties of the Euclidean plane.

Lecture 40

Instead of a series solution, we shall take the question on the previous page
seriously and construct an appropriate superposition of plane wave solutions
with a direction-dependent phase shift that varies linearly (∝ α) from one
plane wave to the next. Such a phase shift is expressed by the phase factor

eiνα ,

where ν is a constant. The superposition is therefore given by

ψ =

∫ α2

α1

eikr cos(α−θ)eiναdα . (5.12)
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Different choices of ν will yield different linear combinations. Is each such
solutions invariant (i.e. gets changed only by a constant phase factor) under
a rotation? To find out, let α = α + θ so that

ψ =

∫ α2=α2−θ

α1=α1−θ
eikr cosαeiναdα

︸ ︷︷ ︸

Z(kr)

eiνθ .

This superposition has the desired form

Z(kr)eiνθ

provided the effect of the θ-dependence in the integration limits can be re-
moved. In other words, expression (5.12), which is a solution of

0 = ∇2 + k2 =

(
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
+ k2

)

ψ ,

is an eigenfunction of Lθ =
1
i

∂
∂θ

if

Z ≡
∫ α2−θ

α1−θ
eikr cosαeiναdα

can be shown to be independent of θ. In that case Z = Z(kr), and it
necessarily satisfies

[
1

r

d

dr
r
d

dr
+ k2 − ν2

r2

]

Z(kr) = 0 ,

which is Bessel’s equation, with ν equal to any complex constant.
Let us, therefore, consider more closely the complex line integral

Zν(ρ) =

∫

C

eiρ cosα+iναdα

Here we assume, for the time being, that ρ = |ρ| because

ρ = kr ,

a product of two positive numbers. The integration contour C is a curve in
the complex α-plane, whose points are

α = p+ iq p, q real .
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We shall find that the chosen integration contour will start far away from
the origin at a point with large positive or negative imaginary part, q = ±∞,
and terminate at another such point, again with q = ∞ or q = −∞. This
choice has a dual purpose. (i) It guarantees, as we shall see, that the integral
converges, and (ii) it guarantees, as we shall see, that the contour integral
will be independent of the real angle θ, which is the amount by which the two
end points get shifted horizontally in the complex α-plane. The value of the
integral itself is independent of the integration path because the integrand is
analytic in the whole complex α-plane.

Where shall the starting and termination points of the contour integral
be located? This question is answered by the asymptotic behaviour of the
dominant terms in the exponent of the integrand,

i cosα = i cos(p+ iq)

= i cos p cosh q + sin p sinh q .

When the real part of this expression becomes large and negative (sin p sinh q →
−∞), then the convergence of the integral will be guaranteed because in that
case the term sin p sinh q dominates over all other contributions to the expo-
nent of the integrand. This is true for all complex numbers ν. The integration

C

1

C

2

H

(1)

�

H

(2)

�

�2�

��

0

�

2�

omplex �-plane

p

q

1

Figure 5.3: Contour integration paths C1 and C2 for the two Hankel functions
H

(1)
ν andH

(2)
ν . The shaded regions are the regions of convergence as q → ±∞.
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contour we choose has endpoints which lie far in the upper α-plane or in the
lower plane (q →∞ or q → −∞).

To obtain an integral which converges, one must have sin p sinh q → −∞
at both endpoints. This implies that if q → ∞, then the value of p must
satisfy

sin p < 0 , i.e., − π < p < 0 mod 2π .

On the other hand, if q → −∞, then the value of p must satisfy

0 < sin p , i.e., 0 < p < π mod 2π .

Thus the integration contour can start and terminate only in one of the
shaded regions in the complex α-plane of Figure 5.3.

There are only two basic contour integrals that one needs to consider, and
they give rise to the two kinds of fundamental functions. They are H

(1)
ν (ρ),

the Hankel function of the first kind , and H
(2)
ν (ρ), the Hankel function of

the second kind. All other integration contours give rise to contour integrals
which merely are linear combinations of these two fundamental functions.

Moving forward, we shall use in the next subsection these two functions
to deduce 23 of their mathematical wave mechanical properties and applica-
tions.

Exercise 5.1.1 (DIFFERENT INTEGRATION CONTOUR)
Evaluate the integral

∫

C

eiρ cosα+iναdα

along the curve C (in the complex α-plane below) in terms of the two kinds of

Hankel functions H
(1)
ν (ρ) and H

(2)
ν (ρ)
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�2�

��

0

�

2�

C

omplex �-plane

1

Exercise 5.1.2 (STRIPS OF CONVERGENCE)
In the complex β-plane determine those semi-infinite strip regions where the line
integral ∫

C

eiρ coshβ−iωβdβ

converges if the integration limits of the integration path C are extended to infinity
in each of a pair of such strips.

Exercise 5.1.3 (HANKEL FUNCTION AS A DEFINITE INTEGRAL)
By slightly deforming the integration path prove or disprove that the integral

∞∫

−∞

eiρ coshβ−iωβdβ

can be expressed in terms of a Hankel function. Which kind and which order?

Exercise 5.1.4 (WAVE EQUATION IN PSEUDOPOLAR COORDINATES)
Instead of applying

x = r cos θ

y = r sin θ

to the Helmholtz equation

∂2ψ

∂x2
+
∂2ψ

∂y2
+ k2ψ = 0

to obtain
1

r

∂

∂r
r
∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
+ k2ψ = 0 ,
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apply

t = ξ cosh τ 0 < ξ <∞
z = ξ sinh τ −∞ < τ <∞

to the wave equation

−∂
2ψ

∂t2
+
∂2ψ

∂z2
− k2ψ = 0 (5.13)

in order to obtain the wave equation relative to the coordinates ξ and τ . To do
this, take advantage of the fact that letting

r = ξ

θ = iτ

and

x = t

y = iz

yields the hyperbolic transformation and the wave equation (5.13).

a) Write down the wave equation in terms of the (“pseudo”) polar coordinates
ξ and τ .

b) Consider a solution which is a (“pseudo”) rotation eigenfunction ψω:

∂ψω
∂τ

= −iωψω

and determine the differential equation

[α(ξ)
d2

dξ2
+ β(ξ)

d

dξ
+ γ(ξ)]ψω = 0

it satisfies.

c) Verify that the translation (in the t, z-plane) eigenfunction

ψ = e−i(k0t−kzz)

is a solution to the wave Eq.(5.13) whenever the two constants k0 (“fre-
quency”) and kz (“wave number”) satisfy the dispersion relation

k20 − k2z = k2 .

Then, using k0 = k coshα, kz = k sinhα (with k > 0) and t = ξ cosh τ, z =
ξ sinh τ , and the hyperbolic angle addition formula, rewrite the phase and
hence the wave function ψ in terms of ξ and τ .



5.2. PROPERTIES OF HANKEL AND BESSEL FUNCTIONS 329

d) Construct a superposition (as an integral over α) of waves ψ which is a
(“pseudo”) rotation eigenfunction, i.e. satisfies

∂ψω
∂τ

= −iωψω,

where ψω is that superposition.

e) Exhibit two independent solutions ψω to Eq.(5.13) corresponding to two
different integration contours. What are they? If your solutions are propor-
tional to Hankel functions, specify what kind, and identify their order.

5.2 Properties of Hankel and Bessel Func-

tions

Associated with the two kinds of Hankel functions are two solutions to the
Helmholtz equation. They are the “cylinder harmonics” or order ν,

ψ1(kr, θ) = c1

∫ ε−i∞

−ε+i∞
eiρ cos(α−θ)+iναdα

= c1

∫ ε−i∞−θ

−ε+i∞−θ
eiρ cosα+iναdαeiνθ ≡ H(1)

ν eiνθ (5.14)

and

ψ2(kr, θ) = c2

∫ π+ε+i∞

π−ε−i∞
eiρ cos(α−θ)+iναdα

= c2

∫ π+ε+i∞−θ

π−ε−i∞−θ
eiρ cosα+iναdαeiνθ ≡ H(2)

ν eiνθ (5.15)

Here

c1 = c2 =
e−iνπ/2

π
are normalization constants whose values are derived below (see Property 11
below).

The name “cylinder harmonic” arises from the fact that these two func-
tions emerge from those solutions of the Helmholtz equation whose level sur-
faces mold themselves naturally to the cylindrical geometry of its domain.
These functions have the following properties:
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Property 1
They are linear superpositions of plane waves.

Property 2
Their integration contours in the complex α-plane are as indicated in Fig-
ure 5.3.

Property 3 (No angular dependence)
The integral representatives

H
(1)
ν

H
(2)
ν

}

=
e−iνπ/2

π

∫ α2−θ

α1−θ
eiρ cosαeiναdα

of the two Hankel functions do not depend on any real changes in the inte-
gration limits.

This means that the θ-dependent shift in the limits of the integral has no
effect on the value of the integral itself, whenever the integration limits α1

and α2 each lie near infinity in a strip of convergence of the integral.

p

α2

α1

0
π

q

©1

Figure 5.4: Integration contour for a Hankel function. If the integration
limits are such that Im α1 = +∞ and Im α2 = −∞ then the integral does
not change under horizontal shifts.
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Suppose the integration contour is taken to be the curve labelled ©1 ,
where α1 is near the vertical line p = 0 and α2 is near p = π. Then for
0 ≤ θ < π we see that

∫ α2

α1

eiρ cosα+iναdα =

∫ α2−θ

α1−θ
eiρ cosα+iναdα . (5.16)

This equality is a result of two facts:

1. The dominant contribution comes from the path between α1 − θ and
α2 − θ, and that path can be deformed into the original curve ©1 and
by the Cauchy-Goursat theorem the integral will remain unchanged.

2. The θ-dependent change due to the shift in the end points α1 − θ and
α2 − θ is neglegible, because the integrand is already neglegibly small
at these points.

When −π < θ ≤ 0, then the path of integration can again be deformed into
a standard one, but in that case one starts with α1 and α2 are near p = −π
and p = 0 instead.

To summarize: ∫ α2

α1

eiρ cos(α−θ)+iναdα

represents a continuous function of θ whenever −π < θ < π. When this
inequality is fulfilled one has

∫ α2

α1

eiρ cos(α−θ)+iναdα =

∫ α2

α1

eiρ cosα+iναdα eiνθ (5.17)

If this inequality is not fulfilled, then the right hand side of this equation
diverges and is therefore not valid. This is because in this case the contour
of the integral on r.h.s. of Eq.(5.16) cannot be deformed into that of the l.h.s.:
The integration limits would fall outside the shaded strips of convergence, the
integral would diverge, and the r.h.s. of Eq.(5.17) would loose its meaning.

As usual, the circumstance θ = −π or θ = π are defined in terms of limits
as θ → ±π from the inside of the interval..

Thus we conclude that H
(1)
ν = H

(1)
ν (kr) and H

(2)
ν = H

(2)
ν (kr) are inde-

pendent of θ indeed. The result is that the two cylinder harmonics have the
form

ψ(r, θ) = Zν(ρ)e
iνθ , ρ = kr
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a product of two functions, each one depending separately on its own variable,
but independent of the other.

Property 4 (Eigenfunction of rotations in the Euclidean plane)
The cylinder harmonics are eigenfunctions of the rotation generator Lθ =
1
i

∂
∂θ
,

Lθψ = νψ ;

that is to say, they are invariant (modulo a constant multiplicative factor)
under rotation around the origin

Rγ∗ψ ≡ e−iγLθψ

= e−iγνZν(ρ)e
iνθ .

Property 5 (Solution to the Helmholtz equation)
They satisfy the Helmholtz’s equation, which in polar coordinates becomes
Bessel’s equation

0 = [∇2 + k2]ψ

=

[
1

r

∂

∂r
r
∂

∂r
+ k2 +

1

r2
∂2

∂θ2

]

ψ

=

[
1

r

∂

∂r
r
∂

∂r
+ k2 − ν2

r2

]

Zν(kr)e
iνθ

= k2
[
d2

dρ2
+

1

ρ

d

dρ
+ 1− ν2

ρ2

]{

H
(1)
ν (ρ)

H
(2)
ν (ρ)

}

eiνθ .

Even through the eigenvalue k2 of the operator −∇2 is infinitely degen-
erate, the eigenvalues of Lθ in the equation

1

i

∂

∂θ

{

H
(1)
ν (ρ)

H
(2)
ν (ρ)

}

eiνθ = ν

{

H
(1)
ν (ρ)

H
(2)
ν (ρ)

}

eiνθ ,

serve to distinguish the elements of the degenerate set.

Property 6 (Cylinder waves)
The domain of a cylinder harmonic is the r and θ coordinatized transverse
cross section of a cylinder. A cylinder harmonic itself is the r and θ dependent
part of a cylinder wave
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z
r θ

Figure 5.5: The domain of a cylinder harmonic is the perpendicular cross
section of a cylindrical configuration.

ψ = Hν(kr)e
iνθeikzze−iωt ,

which satisfies the wave equation

[
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
− 1

c2
∂2

∂t2

]

ψ = 0

whenever the constants k, kz and ω satisfy the dispersion relation

ω2

c2
= k2 + k2z .

Lecture 41

Property 7 (Two kinds of Hankel functions)
The ρ = kr dependent factors of these cylinder harmonics,

H(1)
ν (ρ) = c1

∫

C1

eiρ cosα+iναdα

H(2)
ν (ρ) = c2

∫

C2

eiρ cosα+iναdα ,

are called Hankel functions of the first and second kind of (complex) order
ν. The constants c1 and c2 are not arbitrary. Their values, as shown in
Properties 8 and 11, are equal and are given by Eq.(5.22). Thus one has
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H(1)
ν (ρ) =

e−iνπ/2

π

∫

C1

eiρ cosα+iναdα (5.18)

H(2)
ν (ρ) =

e−iνπ/2

π

∫

C2

eiρ cosα+iναdα . (5.19)

It is worthwhile to reemphasize that the integral representations of H
(1)
ν and

H
(2)
ν converge and are well defined for any complex number ν.

Property 8 (Bessel function)
Having equal normalization constants,

c1 = c2 ≡ c(ν) .

the two Hankel functions, Eqs. (5.14) and (5.15), determine the Bessel func-
tion of (complex) order ν,

Jν(ρ) =
1

2
[H(1)

ν (ρ) +H(2)
ν (ρ)] . (5.20)

One arrives at this definition by means of the union of the two paths C1

and C2 which define H
(1)
ν and H

(2)
ν . By the Cauchy-Goursat theorem these

paths can be deformed into a single path as depicted in Figure 5.7

Nν

Nν NνJν Jν

−2π −π
0

π
2π

complex α-plane

p

q

If c1 were not equal to c2, then the contributions to the complex integral
from the lower parts of C1 and C2 would not cancel.
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Figure 5.6: Contour integration paths for the Bessel function Jν . The integra-
tion contour for the Neumann function Nν is the union of the two indicated
paths.

Property 9 (Neumann function)
Their difference

Nν(ρ) ≡ Yν(ρ) ≡
1

2i
[H(1)

ν (ρ)−H(2)
ν (ρ)] (5.21)

is the Neumann function of (complex) order ν.

Its integral representation requires the two integration contours depicted in
Figure 5.6.

Property 10 (Analogue to trigonometric and exponential functions)
The Hankel functions are the analogues of the exponential functions in trigonom-
etry. In fact, as we shall see, one has the following scheme

∼=

eix ; e−ix ; cos x ; sin x

H
(1)
ν (ρ) ; H

(2)
ν (ρ) ; Jν(ρ) ; Nν(ρ) .

√
2
πρ
ei[ρ−(ν+

1
2)π/2] ;

√
2
πρ
e−i[··· ] ;

√
2
πρ

cos[· · · ] ;
√

2
πρ

sin[· · · ]

for large ρ, as we shall see later.

The next property asks and answers the the question: How do the Bessel
and the Neuman functions depend on their complex order ν? With the
universally agreed-upon value for the normalization constant c(ν), the answer
could be no simpler: For real ν these functions are real and for complex ν
these functions are their analytic extensions into the complex domain. More
precisely, we have

Property 11 (Reflection Principle)
1. If the order ν is real then their sum (the “Bessel function”)

(a) Jν(ρ) =
1
2
[H

(1)
ν (ρ) +H

(2)
ν (ρ)] is real when ν is real and

(b) J0(0) = 1
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provided the normalization constant c(ν) is

c1 = c2 ≡ c(ν) =
e−iνπ/2

π
. (5.22)

2. If ν is complex, then, for fixed positive ρ, both Jν(ρ) and Nν(ρ) are an-
alytic functions of their order ν. Furthermore, they obey the reflection
principle:

Jν(ρ) = Jν(ρ) and Nν(ρ) = Nν(ρ)

That the Bessel and the Neumann functions are analytic in their order ν
follows from their defining integral representations and the form of the nor-
malization constant c(ν).

The reflection principle is a general property which analytic functions
enjoy whenever their values are real on the real (ν) axis. It is shown below
that the form of the normalization constant c(ν) guarantees this. Indeed,
for the Bessel function Jν(ρ) the proof consists of three steps below. (We
delay the application of the reflection principle to the Neumann function
until after we have exhibited the complex conjugation property applied to
the two Hankel functions on page 341.)

Step 1: Deform the integration path into straight lines. The result is

Jν(ρ) =
c(ν)

2

[
∫ −π

2

−π
2
+i∞

+

∫ 3π
2

−π
2

+

∫ 3π
2
+i∞

3π
2

]

eiρ cosα+iναdα .

−π
2

0
π

3π
2

©1

©2

©3
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Figure 5.7: Three-part integration contour for the Bessel function.

Step 2: Symmetrize the integrals by shifting the integration limits to the left.
This is achieved by introducing the new dummy variable

β = α− π

2
, α = β +

π

2
.

The result is

Jν(ρ) =
c(ν)

2









©1
︷ ︸︸ ︷
∫ −π

−π+i∞
+

©2
︷︸︸︷∫ π

−π
+

©3
︷ ︸︸ ︷
∫ π+i∞

π









eiρ sin βeiνβdβ eiνπ/2 .

Reminder: We have not shifted the path of integration. Instead, we have only
altered the coordinate labelling used to describe that path in the complex
plane.
Step 3:

1. Fix the normalization constant c(ν) by requiring that Jν be real when
ν is real. This is achieved by setting c(ν) = 1

π
e−iνπ/2. This cancels out

the last factor.

2. To bring this reality of Jν to light, combine the first and third integral
by introducing

β = −π + iγ for ©1
β = π + iγ for ©3

} to make the
integration limits
equal!

The result, after dropping the bar, is

Jν(ρ) =
1

2π

∫ γ=∞

0

e−ρ sinh γ−νγdγ [

©1
︷ ︸︸ ︷

(−i)e−iνπ +
©3
︷︸︸︷

ieiνπ]
︸ ︷︷ ︸

−2 sin νπ
+

1

2π

∫ π

−π
e−iρ sinβ+iνβdβ

︸ ︷︷ ︸

1

π

∫ π

0

cos(ρ sin β − νβ)dβ
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Conclusion: When ν is real, then

Jν(ρ) is real

J0(0) = 1 ,

also, if ν is complex, then by inpection one finds

Jν(ρ) = Jν(ρ) ,

which is what we set out to show.

Property 12 (Bessel function of integral order)
The Bessel functions of integral order (ν = m = 0, 1, 2, . . . ) is given by

Jm(ρ) =
1

2π

∫ π

−π
e−iρ sinβ+imβdβ

=
1

2π

∫ π

−π
eiρ sinβ−imβdβ

=
1

π

∫ π

0

cos(ρ sin β −mβ)dβ .

Furthermore, the set {Jm, J−m} forms a linearly dependent set. Indeed,

J−m(ρ) = (−1)mJm(ρ) m = 0, 1, 2 . . . . (5.23)

This equation is the result of changing the integration variable β. Letting
β = π − β, one obtains

Jm(ρ) =
1

2π

∫ 0

2π

e−iρ sinβ−imβ(−1)m(−)dβ

= (−1)m 1

2π

∫ π

−π
e−iρ sinβ−imβdβ

= (−1)mJ−m(ρ) .

Exercise 5.2.1 (HANKEL AND NEUMANN FUNCTIONS OF INTEGRAL ORDER)
Show that

H
(1)
−n(ρ) = (−1)nH(1)

n (ρ)

H
(2)
−n(ρ) = (−1)nH(2)

n (ρ)

N−n(ρ) = (−1)nNn(ρ)
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Lecture 42

Property 13 (Power series)
The Bessel function Jν(ρ) of complex order and for real ρ has the following
Frobenious expansion around the origin

Jν(ρ) =
(ρ

2

)ν
[

1

Γ(ν + 1)
− 1

1!Γ(ν + 2)

(ρ

2

)2

+
1

2!Γ(ν + 3)

(ρ

2

)4

− · · ·
]

=
(ρ

2

)ν
∞∑

k=0

(−ρ/2)2k
Γ(1 + ν + k)k!

(5.24)

Remark: Near ρ = 0 the dominant behaviour of Jν(ρ) is given by

Jν(ρ) =
1

Γ(1 + ν)

(ρ

2

)ν

ρ≪ 1 .

The power series, together with its normalization constant, follows from the
integral representation

Jν(ρ) =
e−iνπ/2

2

∫

C

eiρ cosα+iναdα ,

where C is the integration contour indicated in Figure 5.7. Indeed, introduce
the new variable of integration

z =
ρ

2
e−i(α−3π/2), dα = i

dz

z
, eiα =

ρ

2

1

z
ei3π/2 .

Under this change, the new integration contour is the one depicted in Fig-
ure 5.8, which is based on the following scheme:

α = i∞− π
2
| −π

2
| 0 | π

2
| 3π

2
| i∞+ π

2

z = ∞ | ρ
2
| ρ

2
exp 3πi

2
| ρ

2
exp πi | ρ

2
exp πi

2
| ∞ .

The integral becomes

Jν(ρ) = −
eiνπ

2πi

(ρ

2

)ν
∫

Z0

e−z+
ρ2

4z z−ν−1dz .
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Z0

complex z-plane

Figure 5.8: The transformed integration contour in the complex z-plane sur-
rounds and touches the branch cut of the multiple-valued function z−(ν+1).

By expanding the exponential e
ρ2

4z in a Taylor series one obtains Eq.(5.24),
provided one sets

1

Γ(ν + 1)
=
eiπ(ν+1)

2πi

∫

Z0

e−zz−(ν+1)dz ,

which is one of the definitions of the gamma function. This contour integral
is meaningless unless one specifies the branch of the multiple-valued function
z−(ν+1). The branch is dictated by the requirement that

1

Γ(m+ 1)
=

1

m!
.

For this branch the domain is restricted to 0 < arg z < 2π whenever the cut
for this branch is the positive x-axis, as in Figure 5.8.

Let us look at the solutions to Bessel’s equation from the viewpoint of lin-
ear algebra. The solution space is two dimensional. There are two important
spanning sets. The first one,

{

Jν ≃
(ρ/2)ν

Γ(1 + ν)
, J−ν ≃

(ρ/2)−ν

Γ(1− ν)

}

is simple whenever ρ≪ 1. By contrast, the second one

{

H(1)
ν ≃

√
2

πρ
ei[ρ−(ν+ 1

2
)π
2
], H(2)

ν ≃
√

2

πρ
e−i[ρ−(ν+ 1

2
)π
2
]

}
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is simple whenever 1≪ ρ. However, we know that these two bases are related
by a linear transformation.

[

H
(1)
ν H

(2)
ν

]

=
[
Jν J−ν

]
[
a b
c d

]

The question is: what is this linear transformation? The answer is provided
by the following

Property 14 (Hankel-Bessel relation)
When the order of a Bessel function is not an integer (ν 6= m), then the set
of Bessel functions {Jν , J−ν} form an independent set. Moreover, one has

H(1)
ν (ρ) =

e−iνπJν(ρ)− J−ν(ρ)
−i sin πν (5.25)

H(2)
ν (ρ) =

eiνπJν(ρ)− J−ν(ρ)
i sin πν

. (5.26)

Once one recalls the defining equation for the Bessel equation, Eq.(5.20), i.e.

that H
(2)
ν = 2Jν − H

(1)
ν , one finds that Eq.(5.25) is a mere consequence of

Eq.(5.26). Thus one’s primary concern is the validity of that second equa-
tion. However, before validating it, let us identify some consequences of the
fundamental identities, Eqs.(5.25) and (5.26).

Property 15 (Complex conjugation property)
If the Hankel functions are of real order ν (and ρ = |ρ|), then

H
(2)
ν (ρ) = H(1)

ν (ρ) ,





This is analogous to

e−ix = eix for
real x





i.e., they are complex conjugates of each other. This follows from equations
5.25 and 5.26 of Property 13.

Remark: There are three additional consequences:
First of all, it follows from Property 12 that if ν is complex, then

Jν(ρ) = Jν(ρ)⇒ H
(2)
ν (ρ) = H

(1)
ν (ρ) .

Second, apply this complex conjugation property to the defining Eq.(5.21)
and obtain the reflection principle applied to the Neumann functions

Nν(ρ) = Nν(ρ) .
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Third, if ρ is complex also, then

H
(2)
ν (ρ) = H

(1)
ν (ρ) .

Returning to the validation of the Hankel-Bessel identities, one finds that
this process consists of four steps. They consist primarily of manipulating
the intergration paths of the integral representations of Jν and J−ν .
Step 1. Recall the definition of J−ν(ρ):

2πe−iνπ/2J−ν(ρ) =

∫

C0

eiρ cosα−iναdα

= −
∫

C

eiρ cosα+iαdα α = −α , and then drop the “bar”

Here the C is the path inversion symmetric to C0. It is obtained by drawing
a straight line through the origin and extending it by an equal amount to
the corresponding old point on C.

0 π 2π
−π−2π

C0

C

Figure 5.9: Integration path C0 and C, its inversion symmetric twin.

The rest of the proof consists of
Step 2. Subtract this from an analogous expression for Jν .
Step 3. Deform the contour and reexpress the r.h.s. in terms of H

(2)
ν . This

yields the desired equation.
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Step 4. Use Property 8 to obtain the expression for H
(1)
ν .

The details of these remaining steps are

Step 2. Subtract the expression in Step 1 from the analogous expression for
Jν . After a slight deformation of the two respective integration path, obtain

2π(eiνπ/2Jν − e−iνπ/2J−ν) =

[∫

C0

+

∫

C

]

eiρ cosα+iναdα

=

[
∫

C2

+

∫

C′

2

]

eiρ cosα+iναdα .

Here C2 is the integration contour for H
(2)
ν and C ′

2 is −C2 shifted by 2π to
the left.

0 π 2π
−π−2π

C ′
2

C2

Figure 5.10: The two paths in Figure 5.9 have been deformed into C ′
2 and

C2.

Step 3.

1. Recall from Property 7 that

∫

C2

eiρ cosα+iναdα = πeiνπ/2H2
ν (ρ) .
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2. In addition, we have

∫

C′

2

eiρ cosα+iναdα =

∫ −π−ε−i∞

−π+ε+i∞
eiρ cosα+iναdα α = α + 2π

=

∫ π−ε−i∞

π−ε+i∞
eiρ cosα+iναdαe−iν2π

= (−)πeiνπ/2H(2)
ν (ρ)e−iν2π .

3. Introduce the results of 1. and 2. into the last expression in Step 2,
and obtain

2π(eiνπ/2Jν − e−iνπ/2J−ν) = π(eiνπ/2 − e−i3πν/2)H(2)
ν .

Using
eνπ/2 − e−3πν/2 = 2ie−iπν/2 sin νπ ,

and solving for H
(2)
ν one obtains

H(2)
ν =

eiνπJν − J−ν
i sin νπ

.

Step 4. Use Property 8 to obtain

H(1)
ν = 2Jν −H(2)

ν = 2Jν −
eiνπJν − J−ν
i sin νπ

=
−e−iνπJν + J−ν

i sin νπ
.

These are the two expressions for the two kinds of Hankel functions in terms
of Bessel functions of order ν and −ν.

Property 16 (Contiguity relations)
Let Zν = H

(1)
ν or H

(2)
ν or Jν or Nν(≡ Yν) be any solution to Bessel’s equation

of complex order ν. Then

Zν+1(ρ) + Zν−1(ρ) =
2ν

ρ
Zν(ρ) (5.27)

Zν+1(ρ)− Zν−1(ρ) = −2 d
dρ
Zν(ρ) . (5.28)



5.2. PROPERTIES OF HANKEL AND BESSEL FUNCTIONS 345

Proof (in two steps):
Step 1. Apply the definition to the sum and difference

I1
I2

}

=
π

2
{Hν+1 ±Hν−1}

=

∫

C

eiρ cosαeiν(α−
π
2 ) 1

2
[ei(α−

π
2 ) ± e−i(α−π

2 )]dα .

Step 2. Observe that

1

2
[ei(α−

π
2 ) ± e−i(α−π

2 )] =

{
cos
(
α− π

2

)
= sinα

i sin
(
α− π

2

)
= −i cosα

Consequently,

I1 =
−1
iρ

∫

C

d

dα
(eiρ cosα)eiν(α−

π
2 )dα

=
−1
iρ

∫

C

(−)eiρ cosα d

dα
(eiν(α−

π
2 ))dα = π

ν

ρ
Hν

I2 = −π d
dρ
Hν .

These are the two recursion relations (5.27) and (5.28).
These relations are quite useful. Note that by adding and subtracting the

recursion relations one obtains

Zν+1(ρ)e
i(ν+1)θ = −eiθ

(
∂

∂ρ
+
i

ρ

∂

∂θ

)

Zν(ρ)e
iνθ

Zν−1(ρ)e
i(ν−1)θ = e−iθ

(
∂

∂ρ
− i

ρ

∂

∂θ

)

Zν(ρ)e
iνθ .

Let us call

eiθ
(
∂

∂ρ
+
i

ρ

∂

∂θ

)

=
1

k

(
∂

∂x
+ i

∂

∂y

)

≡ L+ the raising operator

and

−e−iθ
(
∂

∂ρ
− i

ρ

∂

∂θ

)

= −1

k

(
∂

∂x
− i ∂

∂y

)

≡ L− the lowering operator .

These operators yield
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Property 17 (Raising and lowering the order of Zν)

L+Zν(ρ)e
iνθ = −Zν+1(ρ)e

i(ν+1)θ

L−Zν(ρ)e
iνθ = −Zν−1(ρ)e

i(ν−1)θ

and

L+L− = L−L+ = − 1

k2

(
∂2

∂x2
+

∂2

∂y2

)

= −
[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂θ2

]

≡ − 1

k2
∇2 , (5.29)

which is the (rotationally and translation) invariant Laplacian operator.

Comment: (Factorization Method for Finding Cylinder Harmonics.)
It is difficult to exclude these raising and lowering operators as the fastest way
for establishing relationships between normal modes in a cylindrical cavity.
For example, suppose one knows explicitly the rotationally symmetric (ν = 0)
mode J0(ρ)e

i0·θ. Then all the other modes

Jm(ρ)e
imθ = (−1)m(L+)

mJ0(ρ) ,

can be obtained by repeated application of the raising operator L+. The
lowering operator undoes the work of the raising operators

L−L+Zνe
iνθ = Zνe

iνθ ,

i.e.,

(∇2
ρ + 1)Zνe

iνθ = 0 .

This feature also illustrates the fact that the 2-dimensional Laplacian ∇2 =
−L−L+ (in E2) can be factorized into a product of first order operators. This
method is purely algebraic and its essentials are as follows:

Recalling the definition of the rotation generator Lθ = 1
i
∂
∂θ

in Section
5.1.4, notice that

[Lθ, L±] ≡ LθL± − L±Lθ = ±L± .

This commutation relation is fundamental for the following reason:
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Suppose we have a solution to the Helmholtz equation

(∇2 + k2)ψm = 0 ,

and suppose that the solution is a rotation eigenfunction, i.e.

Lθψm = mψm .

Then the commutation relation implies

LθL+ψm = (L+Lθ + L+)ψm

= (m+ 1)L+ψm .

In other words, L+ψm is another rotation eigenfunction. Furthermore,

(∇2 + k2)L+ψm = (−k2L+L− + k2)L+ψm

= L+(−k2L−L+ + k2)ψm

= L+(∇2 + k2)ψm

= 0 , (5.30)

i.e. the new rotation eigenfunction

L+ψm ≡ ψm+1

is again a solution to the Helmholtz equation. The analogous result holds
for L−ψm.
To summarize: The algebraic method for solving the Helmholtz equation is
a two step process: (i) Factor the Laplacian, Eq.(5.1) into two factors L+

and L−, and (ii) for each eigenspace of ∇2 construct a basis using L+ and
L−, whose capability as raising and lowering operators is implied by the two
commutation relations

[Lθ, L±] = ±L± . (5.31)

These operators obviously commute,

[L+, L−] = 0 . (5.32)

This is evident from Eq.(5.29). Furthermore, as we have seen from Eq.(5.30),
the fact that

[∇2, L±] = 0 (5.33)
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acts as a guarantee that all the basis elements obtained from these raising and
lowering operators lie in the same subspace characterized by the degenerate
eigenvalue −k2 of the Laplacian.

For illustrative purposes we compute the first few cylinder harmonics.
Starting with Z0(ρ) = Z0(kr), one obtains:

Z1e
iθ = −eiθ

(
∂

∂ρ
+
i

ρ

∂

∂θ

)

Z0

⇒ Z1 = −Z ′
0 (5.34)

Z2e
2iθ = −eiθ

(
∂

∂ρ
+
i

ρ

∂

∂θ

)

(−)eiθZ ′
0

= e2iθ
(

Z ′′
0 −

1

ρ
Z ′

0

)

⇒ Z2 = Z ′′
0 −

1

ρ
Z ′

0

Z3e
3iθ = −eiθ

[
∂

∂ρ
+
i

ρ

∂

∂θ

]

e2iθZ2

= −e3iθ
[(

Z ′′
0 −

1

ρ
Z ′

0

)′
− 2

ρ

(

Z ′′
0 −

1

ρ
Z ′

0

)]

= −e3iθ
[

Z ′′′
0 −

3

ρ
Z ′′

0 +
3

ρ2
Z ′

0

]

⇒ Z3 = −Z ′′′
0 +

3

ρ
Z ′′

0 −
3

ρ2
Z ′

0

Z4e
4iθ = −eiθ

[
∂

∂ρ
+
i

ρ

∂

∂θ

]

e3iθZ3

= −e4iθ
[(

−Z ′′′
0 +

3

ρ
Z ′′

0 −
3

ρ2
Z ′

0

)′
− 3

ρ

(

−Z ′′′
0 +

3

ρ
Z ′′

0 −
3

ρ2
Z ′

0

)]

= e4iθ
[

Ziv
0 −

6

ρ
Z ′′′

0 +
12

ρ2
Z ′′

0 −
15

ρ3
Z ′

0

]

⇒ Z4 = Ziv
0 −

6

ρ
Z ′′′

0 +
12

ρ2
Z ′′

0 −
15

ρ3
Z ′

0 . (5.35)
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Property 18 (Plane wave as a combination of cylinder waves)
Recall that the cylinder harmonics of (complex) order ν where constructed
as a linear superposition of plane wave solutions

ψ(r, θ) = Hν(kr)e
iνθ

=
e−iνπ/2

π

∫

C

eikr cos(α−θ)eiναdα .

Let us now consider that harmonic which satisfies (i) the periodicity require-
ment

ψ(r, θ + 2π) = ψ(r, θ)

and (ii) the requirement of being finite at the origin r = 0. These boundary
conditions give rise to the cylinder waves

Jm(kr)e
imθ =

e−imπ/2

2π

∫ 2π

0

eikr cosαeimαdα eimθ m = 0,±1, . . .

=
1

2π

∫ 2π

0

eikr sinαe−imαdα eimθ α =
π

2
− α

We see that this is the mth Fourier coefficient of eikr sin θ in disguise:

eikr sin θ =
∞∑

m=−∞
Jm(kr)e

imθ . (5.36)

This represents a plane wave propagating along the y axis, and it is easy to
remember.

θ

r

More generally, an arbitrary plane wave is also represented as a linear com-
bination of cylinder waves.
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Figure 5.11: Isograms of Re eikr sin θ. The arrow points into the direction of
increasing phase.

r

θ α

Figure 5.12: Isograms of Re eikr cos(θ−α).

Indeed, if one replaces θ with π
2
− (α− θ) in Eq.(5.36), one obtains

ei(kxx+kyy) = eikr cos(θ−α)

=
∞∑

m=−∞
Jm(kr)i

meim(θ−α) . (5.37)

This means that any plane wave in the Euclidean plane can be represented
as a linear combination of cylinder harmonics of integral order.
Remark: The plane waves eikr sin θ and eikr cos(θ−α) are sometimes called gen-
erating functions of the Bessel functions of integral order. By considering
appropriate derivatives and power series expansions one obtains various iden-
tities among these Bessel functions.

5.3 Applications of Hankel and Bessel Func-

tions

Being rotation eigenfunctions, cylinder harmonics are the natural framework
for the solution of a variety of boundary value problems. Their solutions are
fundamental because the underlying philosophy can be readily extended to
higher dimensions and other geometries.
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5.3.1 Exterior Boundary Value Problem: Scattering

Let us apply the properties of the Bessel function to solve the following
exterior boundary value (“scattering”) problem:
Find that solution to the Helmholtz equation (∇2+k2)ψ = 0 in the Euclidean
plane which satisfies

1. the Dirichlet boundary condition on the circular boundary r = a and

2. the condition that its asymptotic form, as r → ∞, is that of a plane
wave propagating into the x-direction,

ψinc = eikr cos θ

plus only outgoing waves, if any; i.e. no incoming waves.

Mathematically the second condition is a type of boundary condition at
infinity. It is evident that this boundary condition states that the solution
consists of “plane wave + outgoing wave”. The physical meaning of this
condition is that it represents a scattering process.

ψ = ψincident + ψscattered

Figure 5.13: Scattering by a cylinder. An incoming plane wave ψincident in
the presence of a cylindrical boundary gives rise to a circular scattered wave
ψscattered which at large radii propagates away from the cylindrical boundary.

If the circular boundary were absent, then there would have been no
scattering. The Dirichlet boundary condition 1. would have been replaced
by the regularity requirement that ψ = finite at r = 0 while the second
boundary condition 2. at r = ∞ would have remained the same. In that
case the resulting “no scattering” solution is immediate, namely,

ψ = eikr cos θ =
∞∑

m=−∞
Jm(kr)i

meimθ .
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By contrast, if the circular boundary is present as stipulated by the prob-
lem, then this solution must be augmented so that the Dirichlet boundary
conditions are satisfied,

ψ = eikr cos θ + ψscatt .

This augmentation can be implemented with Hankel functions of the first
kind, or of the second kind, or with a combination of the two. The boundary
condition that the solution represent a plane wave plus a scattered wave,
outgoing only, demands that the augmentation have the form

ψscatt =
∞∑

m=−∞
amH

(1)
m (kr)imeimθ .

It expresses the requisite outgoing wave condition for e−iωt time dependence.
This is because as r →∞,

H(1)
m (kr) ≃

√

2

πkr
ei[kr−(m+ 1

2)π/2] .

By contrast, at r = a, the Dirichlet boundary condition demands that

0 = ψ(r = a, θ)

=
∞∑

m=−∞
Jm(ka)i

meimθ + amH
(1)
m (ka)imeimθ .

The fact that this holds for all angles θ implies that each term (= “partial
wave amplitude”) in the sum must vanish. Consequently,

am = − Jm(ka)

H
(1)
m (ka)

m = 0,±1, . . . .

It follows that the hard cylinder scattering process yields the modified plane
wave

ψ = eikr cos θ +
∞∑

m=−∞
(−) Jm(ka)

H
(1)
m (ka)

imH(1)
m (kr)eimθ

=
∞∑

m=−∞

{

Jm(kr)−
Jm(ka)

H
(1)
m (ka)

H(1)
m (kr)

}

imeimθ .

This solution to the Helmholtz equation represents the incident plane wave
plus the scattered outgoing cylinder waves.
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5.3.2 Finite Interior Boundary Value Problem: Cavity
Vibrations

Lecture 44

Let us extend our study of wave amplitudes from the two-dimensional Eu-
clidean plane to three-dimensional Euclidean space plus temporal dimension
as determined by the wave equation.

∇2ψ − 1

c2
∂2ψ

∂t2
= 0 .

The spatial domain we consider is the interior of a finite cylinder of length
L and radius a







L

a

Figure 5.14: Cylindrical Cavity.

Its geometry demands that the wave equation, which governs the wave
amplitude inside that cylinder for all times, be expressed relative to cylindri-
cal coordinates,

1

r

∂

∂r
r
∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
+
∂2ψ

∂z2
− 1

c2
∂2ψ

∂t2
= 0 . (5.38)
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The wave field ψ is finite and single valued (obviously!) inside the cylinder,
and vanishes on its boundary. These observations are expressed by the fact
that ψ satisfies the following three pairs of boundary conditions for all times.

ψ = 0 at z = 0 (5.39)

ψ = 0 at z = L ;

ψ = finite at r = 0 (5.40)

ψ = 0 at r = a ;

ψ(θ = 0) = ψ(θ = 2π) (5.41)

ψ′(θ = 0) = ψ′(θ = 2π) .

We shall see that these homogeneous boundary conditions characterize
three Sturm-Liouville eigenvalue problems, with their three sets of eigenval-
ues.

Suppose we know in addition the initial amplitude and velocity profiles

ψ(r, θ, z, t = 0) = f(r, θ, z)

and

∂ψ

∂t
(r, θ, z, t = 0) = g(r, θ, z)

at t = 0. The functions f and g are called the initial value data for the wave
equation. The problem before us is to determine, from this initial value data,
ψ(r, θ, z, t), namely, the amplitude inside the cylinder for all times.

The first step is to solve the wave equation, Eq. 5.38, by the method of
“separation of variables”. It consists of finding those solutions which have
the product form

ψ = R(r)Θ(θ)Z(z)T (t) .

Introducing it into the wave equation, dividing by the product of these four
factors, one obtains

1

R

1

r

d

dr
r
dR

dr
+

1

r2
1

Θ

d2Θ

dθ2
+

1

Z

d2Z

dz2
− 1

c2
1

T

d2T

dt2
= 0 .
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Bring the z-term to the right hand side. The resulting equality holds for all
r, θ, z, and t. Thus the right hand must be independent of r, θ and t, while
the left hand side must be independent of z. But the two sides are equal.
Thus the common quantity must be independent of r, θ, t, and z, i.e., it must
be some constant. Call it k2z . Consequently, Z(z) satisfies

1

Z

d2Z

dz2
= −k2z . (5.42)

Next isolate the Θ term, and by the analogous argument obtain

1

Θ

d2Θ

dθ2
= −ν2 . (5.43)

Similarly obtain

1

R

[
1

r

d

dr
r
dR

dr
− ν2

r2
R

]

= −k2 . (5.44)

Here k2z , ν
2 and k2 are three arbitrary constants. For obvious reasons they

are called separation constants. Finally, the wave equation, together with
these three equations, implies

d2T

dt2
+ ω2T = 0

where
ω2 = (k2z + k2)c2 .

The initial value data f and g is nonzero at t = 0. Consequently, none of the
four factors, whose products constitutes the solution to the wave equation, is
allowed to be identically zero. Thus the boundary conditions Equations 5.39,
5.40, and 5.41, are conditions on the solutions to the differential equations,
Equations 5.42, 5.43, and 5.44. There are three of each. They give rise to
three Sturm-Louiville systems

1. d2Z
dz2

+ k2zZ = 0 Z(0) = 0 Z(L) = 0

2. d2Θ
dz2

+ ν2Θ = 0 Θ(0) = Θ(2π) Θ′(0) = Θ′(2π)

3. 1
r

d
dr
r dR
dr

+
(

k2 − ν2

r2

)

R = 0 R(0) =finite R(a)=0 .
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Each of these three S-L eigenvalue problems determines its own eigenvalue
spectrum, namely

kz = nπ
L

n = 1, 2, . . .

ν = m m = 0,±1, . . .
k = kmj Jm(ka) = 0, jth root of the Bessel function Jm(x) .

For each triplet of eigenvalues there is a corrsponding amplitude profile,

Rmj(r)Θm(θ)Zn(z) .

The product of the first two factors,

Rmj(r)Θm(θ) ,

is the amplitude profile in the transverse plane. The last factor, Zn(z), is the
amplitude profile along the longitudinal direction.

The eigenvalue spectra are an expression of the boundary condition.
Change the boundary conditions, and the eigenvalue spectra and their am-
plitude profiles will change. However, the boundary conditions remain fixed
for all times. Consequently, the eigenvalue spectra and the corresponding
amplitude profiles remain the same for all times.

Each triplet of eigenvalues
(
kz =

2π
L
, ν = m, k = kmj

)
determines three

corresponding eigenfunctions and hence a solution to the wave equation,
whose consequent reduced form is

1

c2
∂2ψmjn
∂t2

+ c2
[

k2mj +
(nπ

L

)2
]

ψmjn = 0 .

Here

ψmjn(r, θ, z, t) = Rmj(r)Θm(θ)Zn(z)T (t) .

Such a product solution, ψmjn, to the wave equation is called a normal mode.
Normal modes have the same (oscillatory) time dependence at every point
of its domain. The unique features of any particular normal mode are deter-
mined by the three integers (m, j, n) of the three eigenvalues (kz, ν, k). This
is true not only for its spatial amplitude profile

Rmj(r)Θm(θ)Zn(z) ,
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but also for its oscillatory frequency

ω = c

(

k2mj +
(nπ

L

)2
)1/2

≡ ωmjn

which determines its oscillatory behavior as a function of time

ψmjn(r, θ, z, t) = Rmn(r)Θm(θ)Zn(z)[Amjn cosωmjnt+ Bmjn sinωmjnt] .

In brief, the boundary conditions determine the spectrum of allowed oscil-
latory frequencies of its normal modes. Furthermore, a cylindrical cavity
illustrates a universal feature which is shared by all linear systems governed
by a wave equation: a finite system always has a discrete eigenvalue spectrum.

Any vibratory system governed by linear wave equation obeys the lin-
ear superposition principle. Consequently, the general solution to the wave
equation is a linear combination of normal modes

ψ =
∞∑

m=−∞

∞∑

j=1

∞∑

n=1

Rmj(r)Θm(θ)Zn(z)[Amjn cosωmjnt+Bmjn sinωmjnt] .

This is a generalized triple Fourier series. The two sets of Fourier coefficients
{Amjn} and {Bmjn} are determined by the initial value data f(r, θ, z) and
g(r, θ, z):

Amjn =

∫ a

0

∫ 2π

0

∫ L

0

Rmj(r)Θm(θ)Zn(z)f(r, θ, z)rdrdθdz

ωmjnBmjn =

∫ a

0

∫ 2π

0

∫ L

0

Rmj(r)Θm(θ)Zn(z)g(r, θ, z)rdrdθdz .

5.3.3 Infinite Interior Boundary Value Problem: Waves
Propagating in a Cylindrical Pipe

Let us compare waves vibrating in a finite cylindrical cavity (0 ≤ z ≤ L)
with waves propagating in an infinite cylinder (−∞ < z <∞).

The wave equation is the same in both cases,

∇2ψ − 1

c2
∂2ψ

∂t2
= 0 . (5.45)



358 CHAPTER 5. SPECIAL FUNCTION THEORY

The boundary conditions along the radial and angular direction (“transverse
direction”) are also the same in both cases:

ψ(r = 0, θ, z, t) = finite

ψ(r = a, θ, z, t) = 0 (Dirichlet b.c.)

ψ(r, θ, z, t) = ψ(r, θ + 2π, z, t) (Periodic b.c.) .

These are the familiar two sets of boundary conditions for the two Sturm-
Liouville problems on the radial and the angular domain.What do their so-
lutions tell us?
I.) Their eigenfunctions yield the amplitude profile across any transverse cross
section (z = const.) at any time (t = const.). These cross sectional profiles
are determined by the two sets of eigenvalues,

m = 0,±1, , · · · and kmj : Jm(kmja) = 0; j = 1, 2, · · ·

II.) By virtue of the wave equation (5.45) each of these transverse eigensolu-
tions determines the properties of a wave disturbance

ψ = ψmj(t, z)Jm(kmjr)e
imθ .

propagating along the longitudinal direction. The wave equation tells us that
these properties are captured by

1

c2
∂2ψ

∂t2
− ∂2ψ

∂z2
+ k2mjψ = 0 . (5.46)

The mathematical behavior of its solutions is the same as that of a string
imbedded in an elastic medium as discussed on page 12. If one happens
to be familiar with its physical properties, one can infer the mathematical
properties of wave propagation along the z-direction.

The problem of waves trapped in a cavity is similar to that of waves
propagating along a pipe: both are most efficiently attacked in terms of
normal modes, which satisfy

∂ψ

∂t
= −iωψ → ψ ∝ e−iωt ,

However, the difference in the boundary conditions on the z-domain de-
mands a different point of view in regard to what is given and what is to be
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determined. First of all, instead of Dirichlet boundary conditions, the new
condition is that for a given frequency ω the normal modes express waves
travelling along the z-direction. This implies that a normal mode satisfies

∂ψ

∂t
∓ i ω

kz

∂ψ

∂z
= 0

so that
ψ ∝ Rmj(r)Θm(z)e

±ikzze−iωt .

Second, the fact that this mode satisfies the wave equation,

1

c2
∂2ψ

∂t2
+ (k2mj + k2z)ψ = 0 ,

implies that

−ω
2

c2
+ k2mj + k2z = 0

or

k2z =
ω2

c2
− k2mj .

Third, and finally, our viewpoint is now necessarily different. Instead of kz
being determined by an eigenvalue problem, we now take ω to be the given
frequency of the wave ψ to be launched into the positive (+) or negative (−)
z-direction and ask: for what values of ω will kz be real so that ψ expresses
a travelling wave

ψ ∝ Rmj(r)Θm(θ)e
±i|kz |ze−iωt

and for what values of ω will kz be imaginary so that ψ expresses a spatially
damped (or antidamped) wave

ψ ∝ Rmj(r)Θm(θ)e
±|kz |ze−iωt .

It is evident, that the answer is to be inferred from the dispersion relation

kz = ±
(
ω2

c2
− k2mj

)1/2

.

This relation between kz and ω depends on the eigenvalues kmj for the am-
plitude profile in the transverse plane. A wave which decays exponentially
along its putative direction of propagation is called an evanescent wave. This
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happens when the frequency of the launched wave is low enough. It is evident
that there is a critical frequency

ωcritical = c kmj

at which the wave changes from being a propagating to being an evanescent
wave. The eigenvalues kmj are, of course, determined by the given Dirichlet
boundary condition. For a hollow cylinder these eigenvalues are the roots of
the equation

Jm(ka) = 0 .

This implies that the smaller the radius of the cylindrical pipe the higher the
critical frequency below which no wave can propagate. A wave which meets
such a small radius pipe gets simply reflected.

Exercise 5.3.1 (AXIALLY SYMMETRIC AMPLITUDES)
The transverse amplitude of an axially symmetric wave propagating in a cylindrical
pipe of radius a is determined by the following eigenvalue problem:

− d

dr
r
du

dr
= k2ru 0 ≤ r ≤ a

u(0) = finite

u(a) = 0.

The eigenfunctions are um(r) = J0(rkm) where the boundary condition J0(akm) =
0 determines the eigenvalues k2m m = 1, 2, . . . .

(a) Show that {J0(rkm)} is an orthogonal set of eigenfunctions on (0, a).

(b) Using the problem “How to normalize an eigenfunction” on page 30, find
the squared norm of J0(rkm).

(c) Exhibit the set of orthonormalized eigenfunctions.

(d) FIND the Green’s function for the above boundary value problem.

Exercise 5.3.2 (NORMAL MODES FOR A VIBRATING DRUM)
On a circular disc of radius a FIND an orthonormal set of eigenfunctions for the
system defined by the eigenvalue problem

−∇2ψ = k2ψ

∂ψ

∂r
(r = a, θ) = 0 a = radius of disc

ψ(r = 0, θ) = finite 0 ≤ θ ≤ 2π .
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Here ∇2 = 1
r
∂
∂rr

∂
∂r +

1
r2

∂2

∂θ2
,

and EXIBIT these eigenfunctions in their optimally simple form, i.e. without
referring to any derivatives.

Exercise 5.3.3 (CRITICAL FREQUENCIES FOR WAVE PROPAGATION)
Consider a wave disturbance ψ which is governed by the wave equation

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2

]

ψ =
1

c2
∂2ψ

∂t2
.

Let this wave propagate inside an infinitely long cylinder; in other words, it satisfied

∂ψ

∂z
= ikzψ

where kz is some real number, not equal to zero. Assume that the boundary
conditions satisfied by ψ is

ψ(r = a) = 0 with a = radius of cylinder

ψ(r = 0) = finite

(a)Find the “cut off” frequency, i.e. that frequency ω = ωcritical below which no

propagation in the infinite cylinder is possible.
(b)Note that this frequency depends on the angular integerm and the radial integer
j. For fixed j, give an argument which supports the result that smaller m means
smaller critical frequency.
(c)What is the smallest critical frequency, ωcritical, in terms of a and c to an
accuracy of 2% or better?

Exercise 5.3.4 (PIE-SHAPED DRUM)
Consider the circular sector

S : 0 ≤ r ≤ a
0 ≤ θ ≤ α

α

(a) Exhibit the set of those normalized eigenfunctions for this sector which sat-
isfy

(∇2 + k2)ψ = 0

ψ = 0 on the boundary of S
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(b) Compare the set of normal modes of a circular drum with the set of normal
modes in Part A when α = 2π

Exercise 5.3.5 (VIBRATING MEMBRANES)
Consider

(a) a circular membrane of radius a

(b) a square membrane

(c) a rectangular membrane which is twice as long as it is wide.

Assume the two membranes

(i) have the same area.

(ii) obey the same wave equation ▽2ψ =
1

c2
∂2ψ

∂t2

(iii) Have the same boundary conditions ψ = 0 at their boundaries

(A) TABULATE

(i) the 3 lowest frequencies for each of the two membranes

(ii) all the concomitant normal modes.

(B) For each of the normal modes of the circular membrane DRAW a picture of
the nodes,
i.e. the locus of points where ψ = 0. LABEL each of the normal mode
pictures.

(C) Do the same for the other membrane. (Caution: Watch out for degenera-
cies!)

Roots. λj is the jth root of the Bessel Functions Jm(λj):

m = 0 m = 1 m = 2 m = 3 m = 4

j = 1 2.405 3.832 5.136 6.380 7.586

j = 2 5.520 7.016 8.417 9.760 11.064

j = 3 8.654 10.173 11.620 13.017 14.373

j = 4 11.792 13.324 14.796 16.223 16.223

Lecture 45
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5.4 More Properties of Hankel and Bessel Func-

tions

Plane waves, i.e. disturbances with planar wave fronts, can be subjected to
translations in the Euclidean plane. They can also be used as basis functions
for the two-dimensional Fourier transform. Both of these features extend to
cylinder harmonics. The first one is captured by Property 19, the second
one by Eq.(5.56) of Property 21. An example of a problem which uses the
translation property for cylinder harmonics is a scattering problem similar
to the one on page 351:
Consider a cylindrical source of waves and some distance away from it there
is a scatterer also cylindrical in shape. Given the distance between these two
cylinders, find the scattered wave field.

a

ψ = ψemitted + ψscattered

Figure 5.15: Scattering of a cylindrical disturbance by a cylinder. A cylin-
drical wave ψincident emanating from a source on the left gives rise in the
presence of a cylindrical boundary to a circular scattered wave ψscattered on
the right.

Property 19 (Addition theorem for cylinder harmonics)
A displaced cylinder harmonic is a linear superposition of the undisplaced
cylinder harmonics. Mathematically one states this fact by the equation

Hν(kR)e
iν(Ω−θ0) =

∞∑

m=−∞
Jm(kr0)Hν+m(kr)e

i(ν+m)(θ−θ0) . (5.47)
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This equation is also known as the “addition theorem” for cylinder harmon-
ics, be they singular or non-singular at the origin R = 0. The geometrical
meaning of this theorem is as follows: Consider a displacement in the Eu-
clidean plane by the vectorial amount ~x0 and express this displacement in
terms of polar coordinates:

~x0 : x0 + iy0 = r0e
iθ0 .

Next, consider a point of observation, also expressed in terms of polar coor-
dinates,

~x : x+ iy = reiθ .

Finally, consider this same point of observation, but relative to the displaced
origin at ~x0. In terms of polar coordinates one has

~X ≡ ~x− ~x0 : X + iY = (x− x0) + i(y − y0)
ReiΩ = reiθ − r0eiθ0 = |~x− ~x0|eiΩ , (5.48)

where

R cosΩ = r cos θ − r0 cos θ0 ≡ x− x0
R sinΩ = r sin θ − r0 sin θ0 ≡ y − y0

R2 = r2 + r20 − 2rr0 cos(θ − θ0)

e2iΩ =
ReiΩ

Re−iΩ
=

reiθ − r0eiθ0
re−iθ − r0e−iθ0

are the observation coordinates relative to the displaced origin.

x

y

X

Y

observation point

R

Ω

θ

r
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Figure 5.16: Displaced cylinder harmonic and its displaced coordinate sys-
tem. The observation point is labelled (“coordinatized”) in two different
ways; by (r, θ) and by (R,Ω). The dotted vector is the displacement vector
~x0 : r0e

iθ0 .

The problem is this: express a typical displaced cylinder harmonic,

Hν(kR)e
iνΩ = Hν(k|~x− ~x0|)eiνΩ

a solution to the Helmholtz equation, in terms of the undisplaced cylinder
harmonics,

Hν(kr)e
iνθ = Hν(k|~x|)eiνθ, |~x| =

√

x2 + y2 , (5.49)

which are also solutions to the same Helmholtz equation.
The solution to this problem is given by the “addition theorem”, Eq.(5.47).

It is interesting to note that both R and Ω, and hence Hν(kR)e
iνΩ are

periodic functions of θ. Indeed, one notices that

~X = ~x− ~x0

or, equivalently, that

ReiΩ = reiθ − r0eiθ0 .

As a consequence, the old and the new polar coordinates are related by

R2 = r2 + r20 − 2rr0 cos(θ − θ0)

and

e2iΩ =
ReiΩ

Re−iΩ
=

reiθ − r0eiθ0
re−iθ − r0e−iθ0

.

Thus one is confronted with the problem of finding the Fourier series of the
periodic function

Hν(kR)e
iν(Ω−θ0) = Hν

(

k
√

r2 + r20 − 2rr0 cos(θ − θ0)
)(

r0 − rei(θ−θ0)
r0 − re−i(θ−θ0)

)ν/2
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The solution to this problem is given by the “addition theorem”, Eq.(5.47).
We shall refrain from validating this Fourier series by a frontal assault. In-
stead, we give a simple three-step geometrical argument. It accomplishes the
task of expressing the displaced cylinder harmonics in terms of the undis-
placed cylinder harmonics

(i) Represent the displaced harmonic as a linear combination of plane
waves in the usual way

Hν(kR)e
iνΩ =

e−iνπ/2

π

∫

eikR cos(α−Ω)eiναdα , (5.50)

(ii) take each of these plane waves and reexpress them relative to the undis-
placed origin:

eikR cos(α−Ω) ≡ ei
~k· ~X = ei

~k·(~x−~x0) = e−i
~k·~x0ei

~k·~x

The phase shift factor is a plane wave amplitude in its own right, which
depends periodically on the angel θ0, and is therefore, according to
Property 18, a linear combination of Bessel harmonics

e−i
~k·~x0 ≡ e−ikr0 cos(α−θ0)

=
∞∑

m=−∞
Jm(kr0)e

imαe−im(θ0+
π
2 ) .

(iii) Reintroduce the translated plane wave

ei
~k·~x = eikr cos(α−θ)

and its concomitant phase shift factor e−i
~k·~x0 from step (ii) into the

displaced cylinder harmonic. The result is a linear sum of phase shifted
cylinder harmonics, Eq.(5.50),

Hν(kR)e
iνΩ ≡ e−iνπ/2

π

∫

ei
~k·~xe−i

~k·~x0eiναdα

=
e−iνπ/2

π

∞∑

m=−∞
Jm(kr0)

∫

eikr cos(α−θ)ei(ν+m)α dα e−im(θ0+
π
2 )

=
∞∑

m=−∞
Jm(kr0)

e−i(ν+m)π/2

π

∫

eikr cos(α−θ)ei(ν+m)α dα
︸ ︷︷ ︸

Hν+m(kr)ei(m+ν)θ

e−imθ0 .



5.4. MORE PROPERTIES OF HANKEL AND BESSEL FUNCTIONS367

According to the definitions, Eqs.(5.14)-(5.15), the integral is a cylinder har-
monic of order ν +m. Consequently, one obtains

Hν(kR)e
iνΩ =

∞∑

m=−∞
Jm(kr0)Hν+m(kr)e

i(m+ν)θe−imθ0 .

Multiplying both sides by e−iνθ0 yields the following geometrically perspicu-
ous result:

Hν(kR)e
iν(Ω−θ0) =

∞∑

m=−∞
Jm(kr0)Hν+m(kr)e

i(m+ν)(θ−θ0)

Note that the left hand side is a displaced cylinder harmonic of order ν
relative to the new x-axis which point along the displacement vector ~x0 and
whose origin lies along the tip of this vector. The angle Ω − θ0 is the new
angle of observation relative to the new tilted x-axis and the new origin.

The sum on the right is composed of the cylinder harmonics of order
ν +m undisplaced relative to the tilted x-axis. The angle θ − θ0 is the old
angle of observation relative to the tilted x-axis and the old origin.

The displacement formula can be summarized as follows

(
displaced wave

of order ν

)

=
∑

m

Jm(kr0)×
(

undisplaced wave
of order ν +m

)

.

Property 20 (Translations represented by cylinder harmonics)
It is amusing to specialize to the case where ν = n is an integer and Hν = Jn
is a Bessel function of integral order n. In that case the displacement formula
becomes

Jn(kR)e
inΩ =

∞∑

m=−∞

[
Jn+m(kr)e

i(n+m)θ
]
Jm(kr0)e

−imθ0

=
∞∑

m=−∞

[
Jn−m(kr)e

i(n−m)θ
]
Jm(kr0)e

im(θ0+π) ,

or equivalently, after changing the summation index,

Jn−ℓ(kR)e
i(n−ℓ)Ω =

∞∑

m=−∞

[
Jn−m(kr)e

i(n−m)θ
] [

Jm−ℓ(kr0)e
i(m−ℓ)θ0

]

(5.51)
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where
θ0 = θ0 + π ,

while Eq.(5.48) for the vector triangle becomes

ReiΩ = reiθ + r0e
iθ0 . (5.52)

Compare Eq.(5.52) with Eq.(5.51). Observe that (i) for each translation in
the Euclidean plane, say reiθ, there is a corresponding infinite dimensional
matrix

{Jn−m(kr)ei(n−m)θ : n,m = 0,±1,±2, · · · }
and (ii) the result of successive translations, such as Eq.(5.52), is represented
by the product of the corresponding matrices, Eq.(5.51).

Exercise 5.4.1 (ADDITION FORMULA FOR BESSEL FUNCTIONS)
Express Jn(x1 + x2) as a sum of products of Bessel functions of x1 and x2 respec-
tively.

Property 21 (Completeness)
The cylinder waves form a complete set. More precisely,

δ(r − r0)δ(θ − θ0)
r

=
∞∑

m=−∞

1

2π

∫ ∞

0

kdkJm(kr)Jm(kr0)e
im(θ−θ0) . (5.53)

This relation is the cylindrical analogue of the familiar completeness relation
for plane waves,

δ(x− x0)δ(y − y0) =

∫ ∞

−∞

∫ ∞

−∞
dkxdky

ei(kxx+kyy)

2π

e−i(kxx0+kyy0)

2π

=

∫ ∞

0

∫ 2π

0

kdkdα
eikr cos(α−θ)

2π

e−ikr0 cos(α−θ0)

2π
. (5.54)

In fact, the one for plane waves is equivalent to the one for cylinder waves.
The connecting link between the two is the plane wave expansion, Eq.(5.37),

eikr cos(θ−α) =
∑

imJm(kr)e
im(θ−α) .
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Introduce it into Eq.(5.54) and obtain

δ(x− x0)δ(y − y0) =
∑

m

∫ ∞

0

kdk

∫ 2π

0

dαJm(kr)i
m e

im(θ−α)

2π

∑

m′

Jm′(kr0)
e−im

′(θ0−α)

2π
(−i)m′

.

Using the orthogonality property

∫ 2π

0

dα
ei(m

′−m)α

2π
= δmm′ , (5.55)

the definition

δ(x− x0)δ(y − y0)dxdy = δ(r − r0)δ(θ − θ0)drdθ ,

and
dxdy = rdrdθ ,

one obtains

δ(r − r0)δ(θ − θ0)
r

=
∞∑

m=−∞

1

2π

∫ ∞

0

kdkJm(kr)Jm(kr0)e
im(θ−θ0) ,(5.56)

the completeness relation for the cylinder waves.

Property 22 (Fourier-Bessel transform)
The Bessel functions {Jm(kr) : 0 ≤ k < ∞} of fixed integral order form a
complete set

δ(r − r0)
r

=

∫ ∞

0

Jm(kr)Jm(kr0)kdk . (5.57)

This result is a direct consequence of Property 21. Indeed, multiply the
cylinder wave completeness relation, Eq.(5.53) by e−im

′θ, integrate over θ
from 0 to 2π, again use the orthogonality property, Eq. 5.55, and cancel out
the factor common factor e−im

′θ0 from both sides. The result is Eq.(5.57),
the completeness relation for the Bessel functions on the positive r-axis.
Remark: By interchanging the roles of k and r one obtain from Eq.(5.57)

δ(k − k0)
k

=

∫ ∞

0

Jm(kr)Jm(k0r)rdr .
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Remark: The completeness relation, Eq.(5.57), yields

f(r) =

∫ ∞

0

F (k)Jm(kr)kdk

where

F (k) =

∫ ∞

0

f(r)Jm(kr)rdr .

This is the Fourier-Bessel transform theorem.
It is interesting to note that the completeness relation, Eq.(5.57), is in-

dependent of the integral order of Jm(kr). One therefore wonders whether
Eq.(5.57) also holds true if one uses Jν(kr), Bessel functions of any complex
order ν. This is ideed the case.

Property 23 (Bessel transform)
The Bessel functions {Jν(kr) : 0 < k,∞ } of complex order ν form a complete
set

δ(r − r0)
r

=

∫ ∞

0

Jν(kr)Jν(kr0)kdk . (5.58)

This result gives rise to the transform pair

f(r) =

∫ ∞

0

F (k)Jν(kr)kdk (5.59)

F (k) =

∫ ∞

0

f(r)Jν(kr)rdr . (5.60)

and it is obvious that mathematically Property 22 is a special case of Property
23.

5.5 The Method of Steepest Descent and Sta-

tionary Phase

Lecture 46

The repeated encounter with complex integrals such as

Hν(ρ) =

∫ α2

α1

eiρ cosαeiναdα ,
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especially when ρ ≫ 1, demands that we have at our disposal a systematic
method for evaluating, at least approximately, integrals of the type

I(ρ) =

∫ B

A

X(z)eρf(z)dz ; 1≪ ρ . (5.61)

This is an integral in the complex z-plane along a curve which starts at A
and terminates at B. The exponential is a rapidly changing function because
1 ≪ ρ. The function X(z), by contrast, is a slowly varying function. The
success of the method hinges on the following circumstance: the dominant
contribution to the integral comes from only a small segment of the integra-
tion contour, and the accuracy of that dominant contribution improves with
increasing ρ.

The value of the integral depends obviously on the behavior of the in-
tegrand along the integration path. However, the Cauchy-Goursat theorem
implies that the integration path between the fixed limits A and B can be
quite arbitrary provided that

f(z) = f(x+ iy) = u(x, y) + iv(x, y)

is analytic, i.e., all its derivatives exist. This is usually, if not always, the
case. Analyticity of f(z) = f(x+ iy) is equivalent to

∂f

∂x
=

∂f

∂(iy)

∂u

∂x
+ i

∂v

∂x
=

1

i

∂u

∂y
+
∂v

∂y
,

which yields the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
;
∂u

∂y
= −∂v

∂x
.

They imply
[
∂2

∂x2
+

∂2

∂y2

]{
u
v

}

= 0

or
∂2f

∂x2
+
∂2f

∂y2
= 0 ,

i.e., f is “harmonic”. (Nota bene: a harmonic function need not be analytic.)
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Let z0 be an extremum of f , i.e.,

∂f

∂x
= 0 and

∂f

∂y
= 0, or equivalently

∂f

∂z
= 0 .

At such a critical point, f has neither a maximum nor a minimum, it has a
saddle point instead, because ∂2f

∂x2
= −∂2f

∂y2
prevents f from having a maximum

or minimum anywhere.

0 π 2π
−π−2π

Figure 5.17: Critical points of the function f(z) = iρ cos z. The solid contours
in the shaded regions (“valleys”) are the isograms of Re f which are below
zero elevation, while the dashed contours in the unshaded regions (“mountain
ranges”) are the isograms of Re f which are above zero elevation. Each solid
dot is located in a mountain pass which connects two valleys by a path of
steepest ascent and descent.

Example:

f(z) = i cos z = i cos x cosh y + sin x sinh y

f ′(z) = −i sin z
z0 = nπ , n = 0 , ± 1 , ± 2 (location of critical points)

The integrand of I(ρ) is

X(z)eρf(z) = X(z)eρu(x,y)+iρv(x,y)
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and the integration path is assumed to start and end where this integrand
vanishes, i.e., where

u(A) = −∞
u(B) = −∞ .

This means that, in the example, points A and B would lie in different shaded
strips in Figure 5.17.

The integration path between these end points can be deformed without
changing the value of the integral. The method of steepest descent takes
advantage of this fact by deforming the integration path so that it goes
through the critical point z0 in such a way that

Ref(z0) = maximun along the path

and that the rate at which Ref(z0) decreases along either direction away
from z0 as rapidly as possible.

One suspects that the integral

∫ B

A

X(z)eρu(x,y)+iρv(x,y)dz

gets its major contribution along this path through z0. A possible objection
against such a suspicion is that along this path the integrand

X(z)eρf(z) = X(z)eρu(x,y)eiρv(x,y)

might oscillate very rapidly. One might blame such a behaviour on the phase
factor

eiρv(x,y) .

As a consequence, one might think that the value of the integral would av-
erage to approximately zero and make its evaluation through z0 not give
the dominant contribution to the total integral. Fortunately this can never
happen. Remarkably enough, the opposite is the case, the path of steepest
ascent and descent is also the path of stationary phase. In other words, the
direction along which u(x, y) changes must rapidly, namely,

~∇u =

(
∂u

∂x
,
∂u

∂y

)

(“gradient of u”)
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is also the direction along which

v = v(x(τ), y(τ))

is constant ; indeed,

dv

dτ
=

dx

dτ

∂v

∂x
+
dy

dτ

∂v

∂y

=
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

=
∂v

∂y

∂v

∂x
− ∂v

∂x

∂v

∂y
= 0 .

Thus v is constant along the direction of the gradient of u. In still other
words, the level surfaces of u(x, y) and v(x, y) are perpendicular to each
other, a direct consequence of the Cauchy-Riemann equations.

z0

complex z−plane

Figure 5.18: Path of steepest ascent and descent through the critical point
z0 of the function f(z). The dotted lines are the isograms of Im f (=
v(x, y)), the locus of points where the phase of the integrand eρf is constant.
Perpendicular to these are the solid lines. They are the isograms of Re f (=
u(x, y)). The heavily dotted directed line through z0 is the integration path
of stationary phase and steepest descent.

The important conclusion is, therefore, this:

eiρv(x,y)
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has constant phase along the direction of ~∇u. It is clear that if ~∇u were not
tangent to the line of constant phase, then the method of steepest descent
would not work.

We now expand f(z) in the neighborhood of the critical point z0:

f(z) = f(z0) +
1

2
(z − z0)2f ′′(z0) +

1

3!
(z − z0)3f ′′′(z0) + · · ·

= f(z0) +
1

2
(z − z0)2eiδ0 |f ′′(z0)|+ · · · (5.62)

Here δ0 is the phase of f ′′(z0). We are assuming that the third and higher
derivative terms make a negligible contribution in controlling the asymptotic
behavior of

eρf(z) .

This is a good assumption provided the second derivative of f(z) does not
vanish at z0,

f ′′(z0) 6= 0 .

Assuming that this is the case, we now must choose the integration path
through z0. The linear part of this path is

z = z0 + eiφτ . (5.63)

so that
dz = eiφdτ . (5.64)

Here τ is the path parameter and eiφ controls the direction of the path. Now
comes the important step: We choose the direction of the path so that in the
process of passing through z0 the function f(z) makes the integrand

eρf(z)

rise as fast as possible to a maximum at z0 and subsequently makes that
integrand decrease as rapidly as possible. Such a path is exhibited in Figure
5.18. Along this path the function f(z) has the form

f(z) = f(z0)−
1

2
τ 2|f ′′(z0)|+ · · ·

This form must coincide with Eq.(5.62) along the path. Consequently,

(z − z0)2eiδ0 ≡ e2iφτ 2eiδ0 = −τ 2 .
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This condition determines the angle φ of the integration path.

e2iφeiδ0 = −1 (= e±iπ) . (5.65)

The path itself is
z − z0 = e−iδ0/2e±iπ/2τ .

The (±) ambiguity expresses the fact that the integration may proceed into
the forward direction or the backward direction. The two directions obviously
differ by π radians. The ambiguity is resolved by the fact that the integral
∫ B

A
· · · dz has its integration path along a direct path from A over the critical

point z0 to B. For example, the complex integrals for the Hankel functions

Hν(ρ) =
e−iπν/2

π

∫ B

A

eiρ cos z+iνzdz

have the integrand eiρ cos z whose critical points are located at z0 = 0,±π, · · · ,
as in Figure 5.17. A cursory inspection of this integrand reveals quite readily
through which of these critical points the directed integration path must pass.

In general, the ambiguity in

dz = ei(±π/2−δ0/2)dτ

can only be resolved by drawing a global picture in which the direct, and
hence directed, integration path connecting A→ z0 → B is exhibited.

After the global ambiguity has been settled, the evaluation of the inte-
gral becomes straightforward. The integral, Eq.(5.61), is approximated by
restricting the integration to the path segment −τ1 ≤ τ ≤ τ1 centered around
the saddle point:

I(ρ) = eρf(z0)
∫ τ1

−τ1
X(z0 + eiφτ)e−

ρ
2
τ2|f ′′(z0)|dτ

dz

dτ

∣
∣
∣
∣
z0

(5.66)

The accuracy of this approximation is determined by two seemingly irrecon-
cilable demands. On one hand we are neglecting cubical (and higher) order
terms in the exponential, and this is permitted only if

τ 21 |f ′′| ≫ τ 31 |f ′′′| or equivalently τ1 ≪
∣
∣
∣
∣

f ′′

f ′′′

∣
∣
∣
∣
. (5.67)

On the other hand, at first glance one would think that τ1 would have to be
large enough in order not to miss any contributions to the to-be evaluated
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integral. However, there is no conflict. The highly localized nature of the
gaussian guarantees that the integral be independent of its limts ±τ1, even
when τ1 is small, i.e. satisfies Eq.(5.67). This is because the localized nature
of the exponential is controlled by the positive parameter ρ. To make the
value of the integral independent of τ1, this parameter must be so large that

τ1 ≫
2

√

ρ|f ′′(z0)|

(

=
width of neighborhood

where integrand is non-neglegible

)

(5.68)

Comparing Eq.(5.68) with (5.67), one finds
∣
∣
∣
∣

f ′′

f ′′′

∣
∣
∣
∣
≫ τ1 ≫

2
√

ρ|f ′′(z0)|
.

This chain of inequalities reconciles the two seemingly contradictory de-
mands. The more the two length scales |f ′′ |/|f ′′′ | and 2/

√

ρ|f ′′(z0)| differ
from each other the better the chain of inequalities can be satisfied., and the
greater the accuracy with which the given integral Eq.(5.61) gets approxi-
mated by Eq.(5.66).

Moving forward, expand the slowly varying function X in a Taylor series
and obtain

I(ρ) = eρf(z0)
∞∑

n=0

dnX

dzn

∣
∣
∣
∣
z0

einφ

n!

∫ τ1

−τ1
τne−

ρ
2
τ2|f ′′(z0)|dτ

dz

dτ

∣
∣
∣
∣
z0

=
eρf(z0)

√

ρ|f ′′(z0)|
dz

dτ

∣
∣
∣
∣
z0

∞∑

n=0

dnX

dzn

∣
∣
∣
∣
z0

(

eiφ
√

ρ|f ′′(z0)|

)n
1

n!

∫ τ1
√
ρ|f ′′|

−τ1
√
ρ|f ′′|

tne−
1
2
t2dt

One can simplify this expression in two ways:
First of all, it is permissible to replace the integration limits by t = ±∞
whenever

τ1
√

ρ|f ′′| ≫ √n ≥ 1 .

Under this condition the integral may be replaced by its limiting value,

1

n!

∫ ∞

−∞
tne−t

2/2 dt =
√
2π ×







0 n = odd
1 n = 0
1

2mm!
n = 2m

It is obvious that the inequality is violated for sufficiently large n. How-
ever, this will not happen if the Taylor series representation of X(z) can
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be truncated without compromising the accuracy with which X(z) is to be
represented.
Secondly, one may apply Eqs.(5.65) and (5.62) to

e2iφ

|f ′′(z0)|
=
−e−iδ0
|f ′′(z0)|

≡ −1
f ′′(z0)

. (5.69)

With these two simplifications the steepest descent evaluation of the contour
integral Eq.(5.61) yields the following series in inverse powers of ρ:

∫ B

A

X(z)eρf(z)dz =

√
2π

ρ

eρf(z0)

[−f ′′(z0)]1/2

N∑

m=0

d2mX

dz2m

∣
∣
∣
∣
z0

(−1)m
m!

(
1

2ρf ′′(z0)

)m

(5.70)
Here N is the mandatory truncation integer, and

[−f ′′

(z0)]
1/2 = |f ′′

(z0)|1/2e−iφ (= |f ′′

(z0)|1/2eiδ0/2e±iπ/2)
is that root which has the phase factor e−iφ whose angle φ points along the
integration path through the critical point z0.
Example: Evaluate

H(1)
ν =

e−iπν/2

π

∫

C1

eiρ cos zeiνzdz

=
e−iπν/2

π

∫

C1

eρf(z)X(z)dz . (5.71)

to second order accuracy in 1/ρ. Here

X(z) = eiνz

f(z) = i cos z

f ′(z) = −i sin z
f

′′

(z) = −i cos z
The critical points determined by f ′(z) = 0 are

z = 0,±π, · · · .
The integration limits of H

(1)
ν in the complex z−plane are indicated in Fig-

ure 5.3. They dictate that the most direct path of steepest descent passes
through the critical point

z0 = 0 .
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Consequently,

f
′′

(z0) = −i = e−iπ/2

X(z0) = 1

X
′′

(z0) = −ν2

The phase angle φ of the integration path z− z0 = τeiφ is determined by the
condition that

(z − z0)2f
′′

(z0) = −τ 2|f
′′

(z0)| .
Consequently, Eq.(5.65) becomes

e2iφe−iπ/2 = −1 (= e±iπ)

or
eiφ = ±e−iπ/4

The fact that the path goes from the second to the fourth quadrant (as in
Figure 5.18) requires that one choose the upper sign,

eiφ = e−iπ/4

Thus, in light of Eq.(5.69, namely

−f ′′

(z0) = |f
′′

(z0)|e2iφ ,
one has

[−f ′′

(z0)]
1/2 = eiπ/4 .

This is because1 the square root of a polar representation is unique2 It follows
that the large ρ expansion of Eq.(5.71) is

H(1)
ν (ρ) =

e−iπν/2

π

√
2π

ρ
eiρe−iπ/4

[

1− ν2−1
1

(
1

2ρ(−i)

)1

+ · · ·
]

=

√
2

πρ
eiρ−i(ν+1/2)π

2

[

1 + i
ν2

2ρ
+ · · ·

]

(5.72)

1See the discussion surrounding Figures 4.10 and 4.11 on page 288.
2Indeed, another polar representation, namely,

−f ′′

(z0) = |f
′′

(z0)|e2iφ+2πi

would have given the wrong result

[−f ′′

(z0)]
1/2 = −eiπ/4 .
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Exercise 5.5.1 (STEEPEST DESCENT)
(a) Using the method of steepest descent FIND an asymptotic expression for

H
(2)
ν (ρ) and for Jν(ρ) when ν << ρ.

(b) The gamma function Γ(w + 1) which for Re w > −1 is represented by

Γ(w + 1) =

∫ ∞

0
e−ττwdτ

Using the steepest descent approach, FIND an asymptotic expression for
Γ(w + 1) when Re w >> 1. Why does’t it work? Try again by substituting
wz for τ , and obtaining

Γ(w + 1) = ww+1

∫ ∞

0
e−wzzwdz = ww+1

∫ ∞

0
ew(ln z−z)dz

5.6 Boundary Value Problems in Two Dimen-

sions

Consider the following problem: A vibrating system has an amplitude re-
sponse ψ to a source function f which is governed by the inhomogeneous
Helmholtz equation

(∇2 + k2)ψ(~x) = −f(~x) . (5.73)

Assume that this equation applies to a 2-dimensional region R whose bound-
ary is designated by ∂R. Suppose that on this boundary the response ampli-
tude satisfies the inhomogeneous mixed Dirichlet-Neumann boundary condi-
tion [

a(~x)ψ(~x) + ~n · ~∇ψ(~x)
]

∂R
= g(~x)|∂R . (5.74)

Find the response amplitude ψ(~x)!
This problem is characterized by

1. the shape of the as-yet-unspecified region R,

2. the as-yet-unspecified inhomogeneities f and g, and
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3. the as-yet-unspecified effective stiffness of the boundary, the function
a(~x).

Thus, by omitting reference to the particular measurement of these prop-
erties, one has mentally subsumed a vast number of particular problems,
which govern the response of a vast number of linear systems, into a new
concept 3, an equivalence class of problems. A representative class member
is characterized by Eqs.(5.73) and (5.74).

5.6.1 Solution via Green’s Function

The most delightful aspect about this problem is that its solution can readily
be expressed in terms of the Green’s function for the given linear system.

The reasoning leading to this solution is an extension into two dimensions
of the 1-dimensional problem considered in Sections 4.2 (p. 235) and 4.9
(p. 257). As in that case, the solution is easily given in terms of the associated
Green’s function G(~x; ~x0). It satisfies

(∇2 + k2)G(~x; ~x0) = −δ2(~x− ~x0) ≡







−δ(x− x0)δ(y − y0) in Cartesian
coordinates

−δ(r − r0)
r

δ(θ − θ0) in polar co-
ordinates

(5.75)
and [

a(~x)G(~x; ~x0) + ~n · ~∇G(~x; ~x0)
]

∂R
= 0 . (5.76)

The solution process to this 2-dimensional problem parallels the one for one
dimension. First of all, use Lagrange’s identity

ψ∇2G−G∇2ψ = ∇ · (ψ~∇G−G~∇ψ)

Its integral over the region R yields the Green’s identity
∫

R

∫

(ψ∇2G−G∇2ψ)d2x =

∮

∂R

(ψ~∇G−G~∇ψ) · ~n ds

3It is worthwhile to point out that the process of measurement omission is the process by
which all concepts are formed. This observation and the procedure for implementing this
process were first spelled out by Ayn Rand in Chapters 1-2 of Introduction to Objectivist

Epistemology, 2nd Edition, edited by H. Binswanger and L. Peikoff. Penguin Books, Inc.,
New York, 1990.
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R

R
n

ds

Figure 5.19: Integration region R with boundary ∂R having outward pointing
normal ~n perpendicular to each boundary element ds.

Secondly, applying the inhomogeneous Helmholtz equation, Eq.(5.73), and
Eq.(5.75) to the left hand side, one obtains

∫

R

∫
[
ψ(~x)(−)δ2(~x− ~x0) +G(~x; ~x0)f(~x)

]
d2x =

∮

∂R

(ψ~∇G−G~∇ψ) · ~n ds .

Finally, substituting the two boundary conditions, Eqs.(5.74) and (5.76) into
the right hand side, one finds that

ψ(~x0) =

∫

R

∫

f(~x)G(~x; ~x0)d
2x−

∮

∂R

g(~x)G(~x; ~x0)|∂R ds .

Thus, knowledge of the Green’s function G, automatically yields the response
amplitude ψ in terms of its values on the boundary ∂R and in terms of the
source distribution f in the region R.

5.6.2 Green’s Function via Dimensional Reduction

To find the Green’s function whose domain dimension is two or higher, in-
troduce a technique whose virtue is that it reduces the problem to a Green’s
function problem in just one dimension. The potency of this technique is
a consequence of the fact that it leads to success whenever the Helmholtz
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equation is separable relative to the curvilinear coordinate system4 induced
by the boundarie(s) of the given domain.

Polar coordinates is a case in point. It is illustrated by the following
Problem (Green’s Function for Radiation in the Euclidean Plane)
The equation for the Green’s function relative to polar coordinates is

[
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
+ k2

]

Gk(~x; ~x0) = −
δ(r − r0)

r
δ(θ − θ0) . (5.77)

Let the homogeneous boundary conditions for G be

(i) Sommerfeld’s outgoing radiation condition

0 =
√
r
(

a(~x)Gk(~x; ~x0) + ~n · ~∇G(~x; ~x0)
)∣
∣
∣
∂R
≡ lim

r→∞

√
r

(

(−)ikG+
∂

∂r
G

)

(ii) Gk(~x; ~x0) is finite at r = 0, where θ is undefined.

Solution
This problem is solved by expanding the Green’s function as a Fourier series
on [0, 2π]:

Gk(~x; ~x0) =
∞∑

−∞
gm(r; r0)

eim(θ−θ0)

2π
(5.78)

with to-be-determined Fourier coefficients. The method of dimensional re-
duction consists of establishing that each of them satisfies a 1-dimensional
Green’s function problem. Next one constructs its solution using formula
Eq.(4.38) on page 253. Finally one introduces this solution into the Fourier
series expansion. This yields the desired 2-dimensional Green’s function. As
an additional benefit one finds that this expansion can be summed into a
closed form expression given by a familiar function.

The details of this four step procedure are as follows: Introduce the
Fourier expansion into the 2-dimensional Green’s function equation and ob-
tain

∞∑

−∞

eim(θ−θ0)

2π

[
1

r

d

dr
r
d

dr
+

(

k2 − m2

r2

)]

gm(r; r0) = −
δ(r − r0)

r
δ(θ − θ0) .

(5.79)

4In three dimensions the Helmholtz equation is separable in eleven coordinate systems.
They are listed and depicted at the end of chapter five of reference [3]
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To isolate the equation obeyed by the each of the coefficient functions gm(r; r0)
introduce the Fourier representation of the Dirac delta function restricted to
[0, 2π]:

δ(θ − θ0) =
∞∑

−∞

eim(θ−θ0)

2π
,

and make use of the linear independence of the functions eim(θ−θ0). Alterna-
tively, multiply both sides of Eq.(5.79) by e−im

′(θ−θ0), integrate
∫
e−im

′(θ−θ0)(· · · )dθ,
make use of orthogonality, and finally drop the prime to obtain

[
d

dr
r
d

dr
+

(

rk2 − m2

r

)]

gm(r; r0) ,= −δ(r − r0)

the equation for the 1-dimensional Green’s function. The boundary condi-
tions for G imply that the solution

gm(r; r0) =
−1
c

{
u1(r)u2(r0) for r < r0
u1(r0)u2(r) for r0 < r

satisfies

gm(r = 0; r0) = finite

gm(r; r0) ∼
eikr√
r
for very large r

This is a set of 1-dimensional Green’s function problems whose solutions
yield the 2-d Green’s funtion, Eq.(5.78). The two functions which satisfy the
homogeneous differential equation and the respective boundary conditions
are

u1 = Jm(kr)

and

u2 = H(1)
m (kr) ,

while their Wronskian is

u1u
′
2 − u′1u2 =

2i

πr
.
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Consequently, the 1-dimensional Green’s function is

gm(r; r0) =







πi

2
Jm(kr)H

(1)
m (kr0) r ≤ r0

πi

2
Jm(kr0)H

(1)
m (kr) r0 ≤ r

The 2-dimensional Green’s function, Eq.(5.78), for outgoing radiation in the
Euclidean plane is therefore

Gk(~x; ~x0) =
∞∑

−∞

i

4
eim(θ−θ0)Jm(kr<)H

(1)
m (kr>) .

This expression can be simplified by means of the displacement formula for
cylinder modes, Property 19, on page 363,

Hν(k|~x− ~x0|)eiν(Ω−θ0) =
∞∑

m=−∞
ei(ν+m)(θ−θ0)Jm(kr0)Hν+m(kr)

Set ν = 0, compare the Green’s function with the right hand side of the
displacement formala, and conclude that

Gk(~x; ~x0) =
i

4
H0(k|~x− ~x0|) ; (5.80)

in other words,

(
∇2 + k2

) i

4
H0(k|~x− ~x0|) = −δ2(~x− ~x0) (5.81)

Thus one has obtained an expression for the 2-dimensional Green’s function
which exhibits the rotational and translational symmetry of the linear sys-
tem. It represents an asymtotically (large |~x| !) outgoing wave whose source
is located at |~x0|. This is the amplitude profile of a wave that you make when
you stick your wiggling finger at |~x0| into an otherise motionless pond.

5.6.3 Green’s Function: 2-D Laplace vs. (Limit of)
2-D Helmholtz

It is instructive to attempt to solve Eq.(5.77) and its boundary conditions
by simply computing the limit of the solution, Eq.(5.80),

lim
k→0

i

4
H0(kR); R = |~x− ~x0| ,
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and compare this limit with the result obtained by directly solving the bound-
ary value
Problem (Green’s Function for the Potential of an Isolated Source)
Setting k = 0 in the previous problem, find the Green’s function which
satisfies

[
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2

]

G0(~x; ~x0) = −
δ(r − r0)

r
δ(θ − θ0) . (5.82)

together with

(i)

0 =
√
r~n · ~∇G0(~x; ~x0)

∣
∣
∣
∂R
≡ lim

r→∞

√
r
∂

∂r
G0

and

(ii) G0(~x; ~x0) is finite at r = 0, where θ is undefined.

Solution: Using the method of dimensional reduction, one again starts with

G0(~x; ~x0) =
∞∑

−∞
gm(r; r0)

eim(θ−θ0)

2π
(5.83)

and the implied boundary conditions

gm(r = 0; r0) = finite

lim
r→∞

=
√
r
∂gm
∂r

= 0 .

The solution can be summed into the closed form

G0(~x; ~x0) = −
1

2π
ln |~x− ~x0| whenever r 6= r0 (5.84)

How does this Green’s function compare with the asymptotic limit of the
Helholtz Green’s function, Eq.(5.80),

lim
k→0

Gk(~x; ~x0) ?

The answer is contained in a comparison with the following
Problem (Potential Green’s Function as an Asymtotic Limit)
Exhibit the limiting form of Eq.(5.80) as k → 0.
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Solution

Using Property 14 on page 341,

H(1)
ν (kR) = e−iνπ/2

e−iνπ/2Jν(kR)− eiνπ/2J−ν(kR)
−i sin πν ,

one needs to calculate

lim
k→0

H
(1)
0 (kR) = lim

k→0
lim
ν→0

H(1)
ν (kR)

This is a double limit which one obtains by evaluating

lim
ν→0

H(1)
ν (kR)

for kR≪ 1, and then by examining the behaviour of the resulting expression
as k → 0.

The evaluation yields

lim
ν→0

H(1)
ν (kR) =

0

0
.

Consequently, l’Hospital’s rule

lim
ν→0

H(1)
ν (kR) = lim

ν→0

d

dν

(
e−iνπ/2Jν(kR)− eiνπ/2J−ν(kR)

)

d

dν
(−i sin πν)

(5.85)

= lim
ν→0

e−iνπ/2
[

−iπ
2
Jν(kR) +

dJν
dν

]

− eiνπ/2
[

iπ
2
J−ν(kR) +

dJ−ν
dν

]

−iπ cos πν

must be used. Taking advantage of the asymptotic small-k expansion of
Jν(kR), Eq.(5.24),

Jν(kR) ≈
(
kR

2

)ν
1

Γ(1 + ν)
,

d

dν

(
kR

2

)ν

=

(
kR

2

)

ln

(
kR

2

)

,
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and

lim
ν→0

d

dν

(
1

Γ(1 + ν)

)

= lim
ν→0

−1
Γ(1 + ν)

× Γ′(1 + ν)

Γ(1 + ν)

= −1× (−)C ; C = .5772 (Euler-Mascheroni constant)

≡ ln γ ; γ = 1.781

one finds that

dJν(kR)

dν
=

(
kR

2

)ν

ln

(
kR

2

)

+ ln γ

=

(
kR

2

)ν

ln

(
γkR

2

)

Consequently, l’Hospital’s rule tells us that

lim
ν→0

H(1)
ν (kR) =

[−iπ
2

+ ln
γkR

2

]

× 2

−iπ
= 1 +

2i

π
ln
γkR

2

Thus the small-k form of the 2-D helmholtz Green’s function, Eq.(5.80), is

Gk(~x; ~x0) =
i

4
H0(k|~x− ~x0|) (5.86)

= − 1

2π
ln |~x− ~x0|+

(
i

4
− 1

2π
ln
γkR

2

)

whenever k ≪ 1.

This is the solution to the problem and it expresses the amplitude profile
of a membrane responding to a unit force applied at ~x0. This membrane
is imbedded in an elastic medium whose local force of restitution (per unit
area) is proportional to k2:

Gk × k2∆(area) = ∆(force of restitution)

Thus k2 is the Young’s modulus of the elastic medium in which the membrane
is imbedded. As k2 → 0 there is nothing to push the membrane back towards
its zero-amplitude equilibrium. Consequently, the smaller that Young’s mod-
ulus is, the further the membrane gets pushed away from this equilibrium
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by the Dirac delta function force density. This is why Gk(~x; ~x0) → ∞ as
k2 → 0. Equation (5.86) expresses this fact quantitatively.

By contrast G0(~x; ~x0) as given by Eq.(5.84) does not presume any elastic
medium. The asymptotic Neumann boundary condition that went into G0

forbids it being interpreted as the amplitude of any membrane. Instead G0

expresses the potential due to an electrostatic charge.

5.7 Wave Equation for Spherically Symmet-

ric Systems

Lecture 47

The formulation of linear wave phenomenon in terms of the wave equation,
the Helmholtz equation, and its solutions in terms of orthonormal function on
the Euclidean plane can be extended readily to three dimensional Euclidean
space. For this space the wave equation

∇2ψ − 1

c2
∂2ψ

∂t2
= 0

can be solved relative to various orthogonal coordinate systems (there are
at least eleven of them). The choice of coordinates is invariably dictated by
symmetry and boundary conditions. This means that the coordinates are
usually chosen so one or more of the coordinate surfaces mold themselves
onto boundaries where the boundary conditions are specified. In terms of
ubiquity, the three most important coordinate systems are the rectangular,
cylindrical, and the spherical coordinates.

We shall now consider the wave equation relative to spherical coordinates
given by

x = r sin θ cosϕ 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π
y = r sin θ sinϕ 0 ≤ r <∞
z = r cos θ

The angles ϕ and θ are called the azimuthal and the polar angle respectively.
Relative to these coordinates, the Laplace operator has the form

∇2ψ =
1

r2
∂

∂r
r2
∂ψ

∂r
+

1

r2

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]

ψ .
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A useful observation, rather valuable as we shall see momentarily, is the fact
that the first term can be written in the form

1

r2
∂

∂r
r2
∂

∂r
ψ =

(
1

r

∂

∂r
r

)2

ψ ≡ 1

r

∂2

∂r2
rψ .

Another useful observation is that the second term is easy to remember.
Indeed, for small θ (θ ≪ 1) one has

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
≈ 1

θ

∂

∂θ
θ
∂

∂θ
+

1

θ2
∂2

∂ϕ2
,

the familiar two-dimensional Laplacian, Eq.(5.1) on P317, for the Euclidean
plane. This is as it should be: around the north pole of a sphere the spherical
coordinates reduce to the polar coordinates of the Euclidean plane around
the origin.

The physically and mathematically most revealing solutions are the nor-
mal modes. They are time translation eigenfunctions and, as we have already
learned from Section 5.1.4, they satisfy the equation

∂

∂t
Ψ = iωΨ .

A normal mode has the form

Ψ(r, θ, ϕ, t) = ψ(r, θ, ϕ)eiωt .

Here ψ(r, θ, ϕ) is the spatial amplitude profile which satisfies the Helmholtz
equation

(∇2 + k2)ψ = 0 , k2 =
ω2

c2

or {
1

r

∂2

∂r2
r +

1

r2

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]

+ k2
}

ψ = 0 ,

relative to spherical coordinates. This partial differential equation lends itself
to being separated into a system of ordinary differential equations. Letting
ψ = j(r)Y (θ, ϕ), dividing by j(r), multiplying by r2, and tranferring the r-
dependent term to the right hand side, one finds that the r.h.s. is independent
of θ and φ, while the l.h.s. is independent of r. But these two sides are equal
and hence are independent of all three variables. Thus both the l.h.s. and
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the r.h.s. are equal to the same constant, the separation constant, say −λ.
This yields two equations for Y (θ, φ) and j(r) respectively. Explicitly one
has

1

sin θ

∂

∂θ
sin θ

∂Y

∂θ
+

1

sin2 θ

∂2Y

∂ϕ2
= −λY ; (5.87)

and
{
d2

dr2
+

2

r

d

dr
+

(

k2 − λ

r2

)}

j(r) = 0 (5.88)

These are two eigenvalue equations. The separation constant λ is the eigen-
value determined by the boundary conditions on the angular function, and k2

is the eigenvalue determined by the boundary conditions on the radial func-
tion j(r). One of the allowed eigenvalues for λ expresses the circumstance
where the amplitude profile is spherically symmetric, i.e. is independent of
the angles θ and φ. For this circumstance the solutions to the Helmholtz
equation can be found immediately.

5.7.1 Spherically Symmetric Solutions

Spherically symmetric solutions are those whose form is characterized by
Y (θ, φ) ≡const. so that λ = 0. Consequently, the radial part j(r) of the
solution obeys

[
1

r

d2

dr2
r + k2

]

j = 0

so that

j(r) =
eikr

r
,
e−ikr

r
,
sin kr

r
,
cos kr

r
,

or any of their linear combinations. Which one it is, and what the allowed
values of k are, depends entirely on the given boundary conditions. The
concomitant spherically symmetric normal modes have the form

Ψ = e−iωt
eikr

r
, e−iωt

e−ikr

r
, etc.

For example, the amplitudes of the spherically symmetric normal modes
confined to the interior of a hard sphere of radius a are

Ψ = e−iωt
sinnπr/a

r
ω =

nπ

ca
, n = 1, 2, · · ·
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A pure sound note in a spherical resonator is an example of such a normal
mode. It vibrates with frequency ω

2π
= n

2ca
.

5.7.2 Factorization Method for Solving a Partial Dif-
ferential Equation: Spherical Harmonics

Now back to the remaining eigenvalues, λ 6= 0. The radial equation can be
changed into a familiar one by letting

j =
J√
r
.

This results in
d2J

dr2
+

1

r

dJ

dr
+

(

k2 − λ+ 1
4

r2

)

J = 0

which is the familiar Bessel equation of order
√

λ+ 1
4
. Its solutions are

H
(1)√
λ+ 1

4

(kr) and H
(2)√
λ+ 1

4

(kr), where λ is to be determined.

Lecture 48

The value of λ is not arbitrary. It is one of the (degenerate) eigenval-
ues of Eq.(5.87), the two-dimensional Helmholtz equation on the unit two-
sphere. As already observed on page 390, for θ ≪ 1 this equation reduces to
Helmholtz’s equation on the Euclidean plane. This observation is very useful
for several reasons. One of them is that it implies, as shown on page 346,
that there is a simple algebraic way of generating a complete basis for each
degenerate eigenspace of

∇2Y = −λY .

We shall now extend this algebraic method from the eigenfunctions of ∇2 on
the two-dimensional Euclidean plane to those of ∇2 on the two-dimensional
surface of a unit sphere.

The factorization method of solving a partial (or ordinary) differential
equation is remarkable. This method differs from a power series or a nu-
merical approach in that one solves a calculus problem without the use of
calculus: one obtains the linear algebraic aspects of the problem (eigenvalues,
all normalized eigenvectors, their properties, etc.) in one fell swoop without
ever having to determine explicitly the detailed functional form ( i.e. local
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behaviour) of the solutions. To be sure, one can readily determine and ex-
hibit these solutions in explicit form in terms of Legendre and associated
Legendre polynomials, and we shall do so. However, this is a straight for-
ward, but secondary, calculus exercise which is an implied but not an integral
part of the algebraic approach.
Important Reminder: Throughout the ensuing discussion an eigenfunction
on the unit sphere refers to a function which is square-integrable, i.e.

0 < 〈Y, Y 〉 ≡
∫ π

0

∫ 2π

0

|Y (θ, ϕ)|2 sin θdθdϕ <∞ . (5.89)

One will see that the very existence of the eigenvalue spectrum of ∇2 on the
unit sphere hinges on this fact. For this reason, the extension of this alge-
braic method is considerably more powerful. It yields not only the basis for
each eigenspace of ∇2, but also the actual value for each allowed degenerate
eigenvalue.
Global Analysis: Algebra

Global analysis deals with the solutions of a differential equation “whole-
sale”. It characterizes them in relationship to one another without specifying
their individual behaviour on their domain of definition. Thus one focusses
via algebra, linear or otherwise, on “the space of solutions”, its subspaces,
bases etc.

Local analysis (next subsubsection), by contrast, deals with the solutions
of a differential equation “retail”. Using differential calculus, numerical anal-
ysis, one zooms in on individual functions and characterizes them by their
local values, slopes, location of zeroes, etc.
1. Factorization
The algebraic method depends on factoring

∇2 =
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

into a pair of first order operators which are adjoints of each other. The
method is analogous to factoring a quadratic polynomial, except that here
one has differential operators ∂/∂θ and ∂/∂ϕ instead of the variables x and
y. Taking our cue from Properties 16 and 17, one attempts

∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

?
= eiφ

(
∂

∂θ
+

i

sin θ

∂

∂ϕ

)

e−iφ
(
∂

∂θ
− i

sin θ

∂

∂ϕ

)
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However, one immediately finds that this factorization yields 1
sin θ

∂
∂θ

for a
cross term. This is incorrect. What one needs instead is cos θ

sin θ
∂
∂θ
. This leads

us to consider

eiφ
(
∂

∂θ
+ i

cos θ

sin θ

∂

∂ϕ

)

e−iφ
(
∂

∂θ
− icos θ

sin θ

∂

∂ϕ

)

=
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

i

sin2 θ
(1− cos2 θ)

∂

∂ϕ
+

cos2 θ

sin2 θ

∂2

∂ϕ2

=
1

sin2 θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
− ∂2

∂ϕ2
− 1

i

∂

∂ϕ

≡ ∇2 + L2
ϕ − Lϕ (5.90)

Here we have introduced the self-adjoint operator

Lϕ =
1

i

∂

∂ϕ
.

It generates rotations around the polar axis of a sphere. This operator,
together with the two mutually adjoint operators

L± = ±e±iφ
(
∂

∂θ
± icos θ

sin θ

∂

∂ϕ

)

are of fundamental importance to the factorization method of solving the
given differential equation. In terms of them the factorized Eq.(5.90) and its
complex conjugate have the form

L±L∓ = −∇2 − L2
ϕ ± Lϕ . (5.91)

This differs from Eq.(5.29), (Property 17 on page 346), the factored Laplacian
on the Euclidean plane.
2. Fundamental Relations
In spite of this difference, the commutation relations corresponding to Eqs.(5.31),
(5.32), and (5.33) are all the same, except one. Thus, instead of Eq.(5.32),
for a sphere one has

[L+, L−] = 2Lϕ . (5.92)

This is obtained by subtracting the two Eqs.(5.91). However, the commu-
tation relations corresponding to the other two equations remain the same.
Indeed, a little algebraic computation yields

LϕL∓ = L±Lϕ ± Lϕ ,
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or
[Lϕ, L±] = ±L± . (5.93)

Furthermore, using Eq.(5.91) one finds

[∇2, L+] = [−L+L− − L2
ϕ + Lϕ, L+]

= −[L+L−, L+]− [L2
ϕ, L+] + [Lϕ, L+]

= −L+(L−L+ − L+L−)

− Lϕ(LϕL+ − L+Lϕ)− (LϕL+ − L+Lϕ)Lϕ

+ (LϕL+ − L+Lϕ)

= 0 . (5.94)

The last equality was obtained with the help of Eqs.(5.92) and (5.93). To-
gether with the complex conjugate of this equation, one has therefore

[∇2, L±] = 0 . (5.95)

In addition, one has quite trivially

[∇2, Lϕ] = 0 (5.96)

The three algebraic relations, Eqs.(5.92)-(5.93) and their consequences, Eq.(5.95)-
(5.96), are the fundamental equations from which one deduces the allowed
degenerate eigenvalues of Eq.(5.87) as well as the corresponding normalized
eigenfunctions.
3. The Eigenfunctions
One starts by considering a function Y m

λ which is a simultaneous solution to
the two eigenvalue equations

LϕY
m
λ = mY m

λ

∇2Y m
λ = −λY m

λ .

This is a consistent system, and it is best to postpone until later the easy
task of actually exhibiting non-zero solutions to it. First we deduce three
properties of any given solution Y m

λ .
The first property is obtained by applying the operator L+ to this solu-

tion. One finds that

Lϕ(L+Y
m
λ ) = (L+Lϕ + L+)Y

m
λ

= (m+ 1)(L+Y
m
λ )
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Similarly one finds

Lϕ(L−Y
m
λ ) = (m− 1)(L−Y

m
λ ) .

Thus L+Y
m
λ and L−Y

m
λ are again eigenfunctions of Lϕ, but having eigenvalues

m + 1 and m − 1. One is, therefore, justified in calling L+ and L− raising
and lowering operators. The “raised” and “lowered” functions L±Y

m
λ have

the additional property that they are still eigenfunctions of ∇2 belonging to
the same eigenvalue λ. Indeed, with the help of Eq.(5.95) one finds

∇2L±Y
m
λ = L±∇2Y m

λ = −λL±Y
m
λ .

Thus, if Y m
λ belongs to the eigenspace of λ, then so do L+Y

m
λ and L−Y

m
λ .

4. Normalization and the Eigenvalues
The second and third properties concern the normalization of L±Y

m
λ and the

allowed values of λ. One obtains them by examining the sequence of squared
norms of the sequence of eigenfunctions

Lk±Y
m
λ , k = 0, 1, 2, · · · .

All of them are square-integrable. Hence their norms are non-negative. In
particular, for k = 1 one has

0 ≤
∫ π

0

∫ 2π

0

|L±Y
m
λ (θ, ϕ)|2 sin θdθdϕ ≡ 〈L±Y

m
λ , L±Y

m
λ 〉

= 〈Y m
λ , L∓L±Y

m
λ 〉

= 〈Y m
λ , (−)(∇2 + L2

ϕ ± Lϕ)Y m
λ 〉

= [λ−m(m± 1)]〈Y m
λ , Y

m
λ 〉 (5.97)

This is the second property. It is a powerful result for two reasons:
First of all, if Y m

λ has been normalized to unity, then so will be

1

[λ−m(m± 1)]1/2
L±Y

m
λ (θ, ϕ) ≡ Y m±1

λ (θ, ϕ) (5.98)

This means that once the normalization integral has been worked out for
any one of the Y m

λ ’s, the already normalized Y m±1
λ are given by Eq.(5.98);

no additional normalization integrals need to be evaluated. By repeatedly
applying the operator L± one can extend this result to Y m±2

λ , Y m±3
λ , etc.

They all are already normalized if Y m
λ is. No extra work is necessary.
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Secondly, repeated use of the relation (5.97) yields

〈Lk±Y m
λ , L

k
±Y

m
λ 〉 = [λ− (m± (k − 1)) (m± k)] · · · [λ−m(m± 1)]〈Y m

λ , Y
m
λ 〉

This relation implies that for sufficiently large integer k the leading factor
in square brackets must vanish. If it did not, the squared norm of Lk±Y

m
λ

would become negative. To prevent this from happening, λ must have very
special values. This is the third property: The only allowed values of λ are
necessarily

λ = ℓ(ℓ+ 1) ℓ = 0, 1, 2, · · · .
(Note that ℓ = −1,−2, · · · would give nothing new.) Any other value for λ
would yield a contradiction, namely a negative norm for some integer k. As
a consequence, one has the result that for each allowed eigenvalue there is a
sequence of eigenfunctions

Y m
ℓ (θ, ϕ) m = 0,±1,±2, · · · (5.99)

(Nota bene: Note that these eigenfunctions are now labelled by the non-
negative integer ℓ instead of the corresponding eigenvalue λ.) Of particular
interest are the two eigenfunctions Y ℓ

ℓ and Y −ℓ
ℓ . The squared norm of L+Y

ℓ
ℓ ,

‖L+Y
ℓ
ℓ ‖2 = [ℓ(ℓ+ 1)− ℓ(ℓ+ 1)]‖Y ℓ

ℓ ‖2

is not positive. It vanishes. This implies that

Y ℓ+1
ℓ ∝ L+Y

ℓ
ℓ = 0 . (5.100)

In other words, Y ℓ+1
ℓ and all subsequent members of the above sequence,

Eq.(5.99) vanish, i.e. they do not exist. Similarly one finds that

Y −ℓ−1
ℓ ∝ L−Y

−ℓ
ℓ = 0 . (5.101)

Thus members of the sequence below Y −ℓ
ℓ do not exist either. It follows

that the sequence of eigenfunctions corresponding to ℓ(ℓ + 1) is finite. The
sequence has only 2ℓ+ 1 members, namely

Y −ℓ
ℓ (θ, ϕ), Y −ℓ+1

ℓ (θ, ϕ), · · · , Y −1
ℓ (θ, ϕ), Y 0

ℓ (θ, ϕ), Y
1
ℓ (θ, ϕ), · · · , Y ℓ−1

ℓ (θ, ϕ), Y ℓ
ℓ (θ, ϕ)

for each integer ℓ. The union of these sequences forms a semi-infinite lattice
in the (ℓ,m) as shown in Figure 5.20.
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ℓ

m

m
=
ℓ

m
= −

ℓ

Figure 5.20: Lattice of eigenfunctions (spherical hamonics) labelled by the
angular integers ℓ and m. Application of the raising operator L+ increases
m by 1, until one comes to the top of each vertical sequence (fixed ℓ). The
lowering operator L− decreases m by 1, until one reaches the bottom. In
between there are exactly 2ℓ + 1 lattice points, which express the (2ℓ + 1)-
fold degeneracy of the eigenvalue ℓ(ℓ+1). There do not exist any harmonics
above or below the dashed boundaries.

For obvious reasons it is appropriate to refer to this sequence as a ladder
with 2ℓ+1 elements, and to call Y ℓ

ℓ the top, and Y −ℓ
ℓ the bottom of the ladder.

The raising and lowering operators L± are the ladder operators which take
us up and down the (2ℓ + 1)-element ladder. It is easy to determine the
elements Y ±ℓ

ℓ at the top and the bottom, and to use the ladder operators to
generate any element in between.
5. Orthonormality and Completeness

The operators{∇2, Lφ} form a complete set of commuting operators. This
means that their eigenvalues (ℓ,m) serve as sufficient labels to uniquely iden-
tify each of their (common) eigenbasis elements for the vector space of solu-
tions to the Hermholtz equation

[∇2 + ℓ(ℓ+ 1)]Y m
ℓ (θ, ϕ) = 0
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on the two-sphere. No additional labels are necessary. The fact that these
operators are self-adjoint relative to the inner product, Eq.(5.89), implies
that these eigenvectors (a.k.a spherical harmonics) are orthonormal :

〈Y m
ℓ , Y

m′

ℓ′ 〉 = δℓℓ′δmm′

The semi-infinite set {Y m
ℓ (θ, ϕ) : − ℓ ≤ m ≤ ℓ; ℓ = 0, 1, · · · } is a basis

for the vector space of functions square-integrable on the unit two-sphere.
Let g(θ, ϕ) be any such function. Then

g(θ, ϕ) =
∞∑

ℓ=0

ℓ∑

m=−ℓ
Y m
ℓ (θ, ϕ)〈Y m

ℓ , g〉

=
∞∑

ℓ=0

ℓ∑

m=−ℓ
Y m
ℓ (θ, ϕ)

∫ π

0

sin θ′dθ′
∫ 2π

0

dϕ′Y m
ℓ (θ′, ϕ′)g(θ′, ϕ′)

In other words, the spherical harmonics are the basis elements for a general-
ized double Fourier series representation of the function g(θ, ϕ). If one leaves
this function unspecified, then this completeness relation can be restated in
the equivalent form

∞∑

ℓ=0

ℓ∑

m=−ℓ
Y m
ℓ (θ, ϕ)Y m

ℓ (θ′, ϕ′) =
δ(θ − θ′)
sin θ

δ(ϕ− ϕ′)

in terms of the Dirac delta functions on the compact domains 0 ≤ θ ≤ π and
0 ≤ ϕ ≤ 2π.
Local Analysis: Calculus

What is the formula for a harmonics Y m
l (θ, φ)? An explicit functional

form determines the graph, the location of its zeroes, and other aspects of
its local behaviour.
1. Spherical Harmonics: Top and Bottom of the Ladder

Each member of the ladder sequence satisfies the differential equation

LϕY
m
ℓ ≡

1

i

∂

∂ϕ
Y m
ℓ (θ, ϕ) = mY m

ℓ (θ, ϕ) .

Consequently, all eigenfunctions have the form

Y m
ℓ (θ, ϕ) = cℓmP

m
ℓ (θ)

eimϕ√
2π

. (5.102)
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Here cℓm is a normalization factor. The two eigenfunctions Y ℓ
ℓ and Y −ℓ

ℓ at the
top and the bottom of the ladder satisfy Eqs.(5.100) and (5.101) respectively,
namely

L±Y
±ℓ
ℓ ≡ ±eiφ

(
∂

∂θ
± icos θ

sin θ

∂

∂ϕ

)

P±ℓ
ℓ (θ)e±iℓϕ = 0 (5.103)

It is easy to see that their solutions are

Y ℓ
ℓ = cℓ sin

ℓ θeiℓϕ

Y −ℓ
ℓ = cℓ sin

ℓ θe−iℓϕ .

The normalization condition

∫ π

0

∫ 2π

0

|Y ±ℓ
ℓ (θ, ϕ)|2 sin θdθdϕ = 1

implies that

Y ℓ
ℓ (θ, φ) =

(−1)ℓ
2ℓℓ!

√

(2ℓ+ 1)!

4π
sinℓ θeiℓφ. (5.104)

The phase factor (−1)ℓ is not determined by the normalization. Its form is
chosen so as to simplify the to-be-derived formula for the Legendre polyno-
mials, Eq.(5.108).
2. Spherical harmonics: Legendre and Associated Legendre polynomials

The functions Y m
ℓ (θ, ϕ) are obtained by applying the lowering operator

L− to Y ℓ
ℓ (θ, ϕ). A systematic way of doing this is first to apply repeatedly

the lowering relation

Y m−1
ℓ (θ, ϕ) =

=
1

√

ℓ(ℓ+ 1)−m(m− 1)
L−Y

m
ℓ (θ, ϕ)

=
1√

ℓ2 −m2 + ℓ+m
(−1)e−iϕ

(
∂

∂θ
− icos θ

sin θ

∂

∂ϕ

)

Y m
ℓ (θ, ϕ)

=
−1

√

(ℓ+m)(ℓ−m+ 1)
e−iϕ

(
∂

∂θ
+m

cos θ

sin θ

)

Y m
ℓ (θ, ϕ)

=
1

√

(ℓ+m)(ℓ−m+ 1)

1

sinm−1 θ

∂

∂(cos θ)
sinm θe−iϕY m

ℓ (5.105)
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to Y ℓ
ℓ (θ, ϕ) until one obtains the azimuthally invariant harmonic Y 0

ℓ (θ, ϕ) =
Y 0
ℓ (θ). Then continue applying this lowering relation, or alternatively the

raising relation

Y m
ℓ (θ, ϕ) =

=
1

√

ℓ(ℓ+ 1)−m(m− 1)
L+Y

m−1
ℓ (θ, ϕ)

=
−1

√

(ℓ+m)(ℓ−m+ 1)
sinm θ

∂

∂(cos θ)

1

sinm−1 θ
eiϕY m−1

ℓ (5.106)

until one obtains the desired harmionic Y m
ℓ (θ, ϕ). The execution of this two-

step algorithm reads as follows:
Step 1: Letting m = |m|, apply Eq.(5.105) m times and obtain

Y 0
ℓ (θ, ϕ) =

√

(ℓ−m)!

(ℓ+m)!
L−L− · · ·L−
︸ ︷︷ ︸

m times

Y m
ℓ (θ, ϕ)

=

√

(ℓ−m)!

(ℓ+m)!

∂m

∂(cos θ)m
sinm θe−imϕY m

ℓ (θ, ϕ),

which, because of Eq.(5.102), is independent of ϕ. Now let m = ℓ, use
Eq.(5.104), and obtain

Y 0
ℓ (θ, ϕ) =

(−1)ℓ
2ℓℓ!

√

(2ℓ+ 1)

4π

∂ℓ

∂(cos θ)ℓ
sin2ℓ θ (5.107)

≡
√

(2ℓ+ 1)

4π
Pℓ(cos θ).

The polynomials in the variable x = cos θ

Pℓ(x) ≡
1

2ℓℓ!

dℓ

dxℓ
(x2 − 1)ℓ (5.108)

are called the Legendre polynomials. They have the property that at the
North pole they have the common value unity, while at the South pole their
value is +1 whenever Pℓ(x) is an even polynomial and −1 whenever it is odd:

Pℓ(x = ±1) = (±1)ℓ.
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Step 2: To obtain the harmonics having positive azimuthal integer m, apply
the raising operator L+ m times to Y 0

ℓ . With the help of Eq.(5.106) one
obtains (for m = |m|)

Y m
ℓ (θ, ϕ) =

√

(ℓ−m)!

(ℓ+m)!
L+L+ · · ·L+
︸ ︷︷ ︸

m times

Y 0
ℓ (θ, ϕ)

=

√

(ℓ−m)!

(ℓ+m)!
(−1)m sinm θ

∂m

∂(cos θ)m
eimϕY 0

ℓ (θ, ϕ)

=

√

(ℓ−m)!

(ℓ+m)!

(−1)ℓ+m
2ℓℓ!

√

2ℓ+ 1

4π
sinm θ

∂ℓ+m

∂(cos θ)ℓ+m
sin2ℓ θeimϕ

=

√

(ℓ−m)!

(ℓ+m)!

√

2ℓ+ 1

4π
Pm
ℓ (cos θ) eimϕ (5.109)

The polynomials in the variable x = cos θ

Pm
ℓ (x) ≡ (−1)m

2ℓℓ!
(1− x2)m/2 d

ℓ+m

dxℓ+m
(x2 − 1)ℓ (5.110)

are called the associated Legendre polynomials. Inserting Eq.(5.109) into
Eq.(5.87), one finds that they satisfy the differential equation

[
1

sin θ

d

dθ
sin θ

d

dθ
+ ℓ(ℓ+ 1)− m2

sin2 θ

]

Pm
ℓ (cos θ) = 0 .

Also note that P−m
ℓ (cos θ) satisfies the same differential equation. In other

words, P−m
ℓ and Pm

ℓ must be proportional to each other. (Why?) Indeed,

P−m
ℓ (cos θ) = (−1)m (ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ) . (5.111)

This one sees by comparing the right hand side of Eq.(5.109) with the right
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hand side of

Y
|m|
ℓ (θ, ϕ) =

√

(ℓ+ |m|)!
(ℓ− |m|)! L−L− · · ·L−

︸ ︷︷ ︸

ℓ−|m| times

Y ℓ
ℓ (θ, ϕ)

=

√

(ℓ+ |m|)!
(ℓ− |m|)!

1

sin|m| θ

∂ℓ−|m|

∂(cos θ)ℓ−|m| sin
ℓ θ e−i(ℓ−|m|)ϕ Y ℓ

ℓ (θ, ϕ)

=

√

(ℓ+ |m|)!
(ℓ− |m|)!

1

sin|m| θ

∂ℓ−|m|

∂(cos θ)ℓ−|m|
(−1)ℓ
2ℓℓ!

√

2ℓ+ 1

4π
sin2ℓ θei|m|ϕ

=

√

(ℓ+ |m|)!
(ℓ− |m|)!

√

2ℓ+ 1

4π
(−1)mP−|m|

ℓ (cos θ) ei|m|ϕ . (5.112)

This validates Eq.(5.111), but only for m = |m|. One sees, however, that
this formula is also true for m = −|m|. Could it be that formulas Eqs.(5.109)
and (5.110) are also true whenever m = −|m|? The answer is ‘yes’. This
follows from considering the m = −|m| harmonics. They are obtained by
using Eq.(5.105) |m| times starting with Y 0

ℓ :

Y
−|m|
ℓ (θ, ϕ) =

√

(ℓ− |m|)!
(ℓ+ |m|)! L−L− · · ·L−

︸ ︷︷ ︸

|m| times

Y 0
ℓ (θ, ϕ)

=

√

(ℓ− |m|)!
(ℓ+ |m|)! sin

|m| θ
∂|m|

∂(cos θ)|m| e
−i|m|ϕY 0

ℓ (θ, ϕ)

=

√

(ℓ− |m|)!
(ℓ+ |m|)!

(−1)ℓ
2ℓℓ!

√

2ℓ+ 1

4π
sin|m| ∂ℓ+|m|

∂(cos θ)ℓ+|m| sin
2ℓ θe−i|m|ϕ

=

√

(ℓ− |m|)!
(ℓ+ |m|)!

√

2ℓ+ 1

4π
(−1)mP |m|

ℓ (cos θ) e−i|m|ϕ (5.113)

=

√

(ℓ+ |m|)!
(ℓ− |m|)!

√

2ℓ+ 1

4π
P

−|m|
ℓ (cos θ) e−i|m|ϕ (5.114)

(Nota bene: The first line was obtained by using Eq.(5.105) and letting
m = −1,−2, · · · ,−|m|, the third, fourth, and fifth line used Eqs.(5.107),
(5.110), and (5.111), respectively. ) Comparison with Eq.(5.109) verifies
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that the spherical harmonic

Y m
ℓ (θ, ϕ) =

√

(ℓ−m)!

(ℓ+m)!

√

2ℓ+ 1

4π
Pm
ℓ (cos θ) eimϕ (5.115)

is indeed correct for all positive and negative integers m that satisfy −ℓ <
m < ℓ.

A second result is obtained by comparing Eq.(5.113) with Eq.(5.109).
This comparison yields the complex conjugation formula

Y m
ℓ (θ, ϕ) = (−1)mY −m

ℓ (θ, ϕ),

which holds for both for positive and negative azimuthal integers m.

5.8 Static Solutions

Lecture 49

Solutions to the wave equation which are static, are characterized by ∂2ψ
∂t2

= 0,
and hence by k2 = 0. The governing equation becomes

∇2ψ = 0 .

Relative to spherical coordinates this equation reads

∇2ψ =

{
1

r

∂2

∂r2
r +

1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)}

ψ = 0 .

Its solution is a superposition of solutions having the simple product form,

ψℓm(t, θ, ϕ) = Rℓ(r)Y
m
ℓ (θ, ϕ) .

They give rise to the two ordinary differential equations

{
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
+ λ

}

Y m
ℓ (θ, ϕ) ,

where
λ = ℓ(ℓ+ 1) , ℓ = 0, 1, 2, . . .
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and hence
1

r

{
d2

dr2
− ℓ(ℓ+ 1)

r2

}

rRℓ(r) = 0 .

This equation is Euler’s differential equation whose solutions are rℓ and
r−(ℓ+1). Thus, the static solution is a superposition

ψ =
∞∑

ℓ=0

ℓ∑

m=−ℓ
(Aℓmr

ℓ + Bℓmr
−(ℓ+1))Y m

ℓ (θ, ϕ)

whose coefficients, the A’s and the B’s, are determined by the given boundary
conditions. These coefficients are called the multipole moments of the source
of the field.

5.8.1 Static Multipole Field

The manner in which static multipole moments of a source give rise to a
multipole field is illustrated by the following
Problem (Multipole field of an asymmetric static source).
Given:

1. The potential inside and outside a sphere of radius r = r0 satisfies the
Laplace equation

∇2ψ = 0 .

2. The value of the potential on the sphere is

ψ(r0, θ, ϕ) =
g(θ, ϕ)

r0
.

Find the potential ψ(r, θ, ϕ) inside (r < r0) and outside (r0 < r) the
sphere.

The potential may be an electrical potential, in which case its value on the
sphere is determined by the charge distribution on sphere. By contrast, if the
potential is a gravitational potential, its value on the sphere is determined
by the mass distribution.

In either case, the governing equation would be

∇2ψ = −δ(r − r0)
r2

g(θ, ϕ) ,
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as one can verify after we have found the solution to the given problem.
There are two boundary conditions implicit in the given problem, namely

ψ(r = 0, θ, ϕ) = finite

and
ψ(r =∞, θ, ϕ) = 0 .

The second boundary condition expresses the fact that there are no
masses (or charges) distributed at very large r. The two boundary conditions
demand that the radial part of the potential be

Rℓ(r) ∝







(
r
r0

)ℓ

r < r0
(
r0
r

)ℓ+1
r0 < r

The total solution is, therefore,

ψ(r, θ, φ) =
∞∑

ℓ=0







1
r0

(
r
r0

)ℓ

1
r0

(
r0
r

)ℓ+1







ℓ∑

m=−ℓ
Y m
ℓ (θ, ϕ)〈Y m

ℓ , g〉
INSIDE

OUTSIDE ,

where

〈Y m
ℓ , g〉 =

∫ π

0

∫ 2π

0

Y
m

ℓ (θ, ϕ)g(θ, ϕ) sin θdθdϕ .

Let us exhibit explicitly the exterior potential. It is a superposition of various
“multipole” potential fields,

ψ = Y 0
0 (θ, ϕ)

〈Y 0
0 , g〉
r

+
1∑

m=−1

Y m
1 (θ, ϕ)

〈Y m
1 , g〉r0
r2

+
2∑

m=−2

Y m
2 (θ, ϕ)

〈Y m
2 , g〉r20
r3

+ · · ·

They are called the monopole, dipole, quadrupole, ... and 2ℓ-pole fields re-
spectively. The constant numerators express the source strengths of the
fields. These numerators are called the monopole moment, dipole moment
(which has three components), quadrupole moment (which has five compo-
nents), . . . and 2ℓ-pole moment (which has 2ℓ+1 components). Each one of
them is an example of a multipole moment.
Analogous descriptive names hold for the interior field.
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5.8.2 Addition Theorem for Spherical Harmonics

One can use the static multipole solution in order to infer the behavior of
the spherical harmonics under rotation. We consider an arbitrary orthogonal
coordinate rotation

z

y

x

y’

z’

x’

P

For any fixed point P the effect of this change is given

(x(P), y(P), z(P)) ∼→ (x′(P), y′(P), z′(P))
(θ, ϕ) ∼→ (θ′, ϕ′)

but the radius and the Laplacian remain fixed;

√

x2 + y2 + z2 = r =
√

x′2 + y′2 + z′2

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

∂2

∂x′2
+

∂2

∂y′2
+

∂2

∂z′2
.

Thus for any fixed point P the potential ψ determined relative to the
rotated coordinate system is the same as that relative to the unrotated one,

ψ(r(P), θ(P), ϕ(P)) = ψ(r′(P), θ′(P), ϕ′(P)) .

In other words, relabelling the coordinates of a fixed point has no effect on
the (measured) potential at this point. This equality holds for all radii r.

It follows that the coresponding 2ℓ-pole fields are equal for each integral.
Thus

ℓ∑

m=−ℓ
Y m
ℓ (θ, ϕ)〈Y m

ℓ , g〉 =
ℓ∑

m=−ℓ
Y m
ℓ (θ′, ϕ′)〈Y m

ℓ , g〉 .
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This equality also holds for all boundary value functions g. Consequently,

ℓ∑

m=−ℓ
Y m
ℓ (θ, ϕ)Y

m

ℓ (θ0, ϕ0) =
ℓ∑

m=−ℓ
Y m
ℓ (θ′, ϕ′)Y m

ℓ (θ′0, ϕ
′
0) ,

ℓ = 0, 1, 2, . . . . This is a remarkable statement: it says that this particular
sum of products is unchanged under a rotation. It is a scalar, even though
each individual factor does get altered.
Question: What is this rotationally invariant sum equal to?
To find out, orient the z′-axis so that it passes through the source point P0,
which now becomes the new North pole. Relative to the new (x′, y′, z′) frame
the spherical coordinates of the source point P0 and the observation point P
are given by

Source point P0 (“new North Pole”) :

{
θ′0 = 0
ϕ′
0 = indeterminate

Observation point P :

{
θ′ = Θ
ϕ′ = Φ

Suppose we reexpress the spherical harmonics in terms of the associated
Legendre polynomials Pm

ℓ (cos θ). Then

Y m
ℓ (θ, ϕ) =

√

2ℓ+ 1

2

√

ℓ−m!

ℓ+m!
(−1)mPm

ℓ (cos θ)
eimϕ√
2π

.

These polynomials satisfy

Pm
ℓ (cos 0) = 0 m 6= 0

and

P 0
ℓ (cos 0) = 1 .

Consequently,

Y
m

ℓ (0, ϕ
′
0) = δm0

√

2ℓ+ 1

4π

Y 0
ℓ (Θ,Φ) =

√

2ℓ+ 1

4π
Pℓ(cosΘ) .
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The rotationally invariant sum simplifies into

Pℓ(cosΘ) =
ℓ∑

m=−ℓ

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)Pm

ℓ (cos θ0)e
im(ϕ−ϕ0) .

We conclude that Pℓ(cosΘ), which is an amplitude pattern azimuthally sym-
metric around the new North pole (θ0, ϕ0), is a finite linear combination of
amplitude patterns centered around the old North pole.

5.8.3 The Bessel-Legendre Connection

The spherical harmonics of this section constitute the main elements arising
from the application of spherical symmetry to the Helmholtz equation. We
have already learned in the previous section that the same is true about the
cylinder harmonics arising from the application of rotational and transla-
tional symmetry applied to that same equation

Recall from page 390 that, upon letting θ → 0 and ℓ→∞ in such a way
that θℓ remains finite, the associated Legendre equation

[
1

sin θ

d

dθ
sin θ

d

dθ
+ ℓ(ℓ+ 1)− m2

sin2 θ

]

Pm
ℓ = 0

becomes [
1

θ

d

dθ
θ
d

dθ
+ ℓ2 − m2

θ2

]

Pm
ℓ = 0 .

Consequently,

Pm
ℓ → Jm(ℓθ) ≡ Jm(kr) . (5.116)

Furthermore, recall the expression for the translated cylinder wave, Eq.(5.47)
on page 363,

Hν(k|~x− ~x0|)eiν(φ−ϕ0) =
∞∑

m=−∞
Hν+m(kr)Jm(kr0)e

i(ν+m)(ϕ−ϕ0) .

Specialize to the case where the wave is rotationally symmetric around the
point ~x0 : (r0, ϕ0). Consequently, ν = 0. This, together with the requirement
that the wave amplitudes be finite everywhere leads to

J0(k|~x− ~x0|) =
∞∑

m=−∞
Jm(kr)Jm(kr0)e

im(ϕ−ϕ0) .
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It is evident that, with the help of Equation 5.116, this is the “small θ, large
ℓ” asymptotic limit of the spherical addition theorem

Pℓ(cosΘ) =
ℓ∑

m=−ℓ

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)Pm

ℓ (cos θ0)e
im(ϕ−ϕ0) .

These equations illustrate the relational nature of our knowledge: In the limit
of large ℓ the spherical harmonics becomes indistinguishable from the Bessel
hamonics. Learning about one allows us more readily to grasp the other.
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Chapter 6

Partial Differential Equations

Linear algebra is the mathematical guide of choice for implementing the prin-
ciple of unit-economy1 applied to partial differential equations. The present
chapter considers two kinds:

1. Single linear partial differential equations corresponding to the linear
system

A~u = ~0 .

However, instead of merely exhibiting general solutions to such a sys-
tem, we shall take seriously the dictum which says that a differential
equation is never solved until “boundary” conditions have been imposed
on its solution. As identified in the ensuing section, these conditions are
not arbitrary. Instead, they fall into three archetypical classes deter-
mined by the nature of the physical system which the partial differential
equation conceptualizes.

2. Systems of pde’s corresponding to an over-determined system

A~u = ~b . (6.1)

The idea for solving it takes advantage of the fundamental subspaces2of
A [5]. Let A be a 4×4 matrix having rank 3. Such a matrix, we recall,

1As identified in the footnote on Page 192.
2Besides the domain and the target space, there are four of them:

(i) the column space of A, denoted by R(A),
(ii) the nullspace (or kernel) of A, denoted by N (A), or also by Ker(A),

(iii) the row space of A, denoted by R(AT ), and

413



414 CHAPTER 6. PARTIAL DIFFERENTIAL EQUATIONS

has a vector ~ur which satisfies A~ur = ~0, or, to be more precise

A~urc0 = ~0 , (6.2)

where c0 is any non-zero scalar. Thus ~ur spans A’s one-dimensional
nullspace

N (A) = span{~ur} .
This expresses the fact that the columnes of A are linearly dependent.

In addition we recall that the four rows of A are linearly dependent
also, a fact which is expressed by the existence of a vector ~uℓ which
satisfies

~uTℓ A = ~0 , (6.3)

and which therefore spans A’s one-dimensional left nullspace

N (AT ) = span{~uTℓ } .

In general there does not exist a solution to the over-determined system
Eq.(6.1). However, a solution obviously does exist if and only if ~b satisfies

~uTℓ
~b = 0 .

Under such a circumstance there are infinitely many solutions, each one dif-
fering from any other merely by a multiple of the null vector ~ur. The most
direct path towards these solutions is via eigenvectors.

One of them is, of course, the vector ~ur in Eq.(6.2). The other three, which
(for the A under consideration) are linearly independent, satisfy A~vi = λi~vi
with λi 6= 0, or, in the interest of greater precision (which is needed in Section
6.2.3),

A~v1c1 = λ1~v1c1 (6.4)

A~v2c2 = λ2~v2c2 (6.5)

A~v3c3 = λ3~v3c3 (6.6)

where, like c0, the ci’s are any non-zero scalars. Because of the simplicity of
~uTℓ for the A under consideration one can find the eigenvectors {~v1, ~v2, ~v3},
(iv) the left nullspace of A, denoted by N (AT ).
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and hence their eigenvalues, by a process of inspection. These vectors span
the range of A,

R(A) = span{~v1, ~v2, ~v3} ,
and therefore determine those vectors ~b for which there exists a solution to
Eq.(6.1). Such vectors belong to R and thus have the form

~b = ~v1b1 + ~v2b2 + ~v3b3 .

These eigenvectors also serve to represent the corresponding solution,

~u = ~urc0 + ~v1c1 + ~v2c2 + ~v3c3 .

This, the fact that A~u = ~b, and the linear independence of the ~v′is imply that
the scalars ci satisfy the three equations

λ1c1 = b1 (6.7)

λ2c2 = b2 (6.8)

λ3c3 = b3 . (6.9)

As expected, the contribution c4 along the direction of the nullspace element
is left indeterminate. These ideas from linear algebra and their application to
solving a system, such as Eq.(6.1), can be extended to corresponding systems
of partial differential equations. The Maxwell field equations, which we shall
analalyze using linear algebra, is a premier example. In this extension the
scalar entries of A and ~uTℓ get replaced by differential operators, the vectors

~u and ~b by vector fields, the scalars bi and ci by scalar fields, the eigenvalues
λi by a second order wave operator, and the three Eqs.(6.7)-(6.9) by three
inhomogeneous scalar wave equations corresponding to what in physics and
engineering are called

• transverse electric (TE),

• transverse magnetic (TM), and

• transverse electric magnetic (TEM),

modes respectively.

Lecture 50
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6.1 Single Partial Differential Equations: Their

Origin

There are many phenomena in nature, which, even though occuring over
finite regions of space and time, can be described in terms of properties that
prevail at each point of space and time separately. This description originated
with Newton, who with the aid of his differential calculus showed us how to
grasp a global phenomenon, for example, the elliptic orbit of a planet, by
means of a locally applied law, for example F = ma.

This manner of making nature comprehensible has been extended from
the motion of single point particles to the behavior of other forms of matter
and energy, be it in the form of gasses, fluids, light, heat, electricity, signals
traveling along optical fibers and neurons, or even gravitation.

This extension consists of formulating or stating a partial differential
equation governing the phenomenon, and then solving that differential equa-
tion for the purpose of predicting measurable properties of the phenomenon.

There exist many partial differential equations, but from the view point
of mathematics, there are basically only three types of partial differential
equations.

They are exemplified by

1. Laplaces equation
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= 0 ,

which governs electrostatic and magnetic fields as well as the velocity
potential of an incompressible fluid, by

2. the wave equation

∇2ψ − 1

c2
∂2ψ

∂t2
= 0

for electromagnetic or sound vibrations, and by

∂2ψ

∂x2
− 1

c2
∂2ψ

∂t2
= 0

for the vibrations of a simple string, and by

3. the diffusion equation

∇2ψ − 1

k

∂ψ

∂t
= 0
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for the temperature in three dimensional space and in time, or by

∂2ψ

∂x2
− 1

k

∂ψ

∂t
= 0

for the temperature along a uniform rod.

6.1.1 Boundary Conditions of a Typical Partial Differ-
ential Equation in Two Dimensions

For the purpose of simplicity, we shall start our consideration with partial dif-
ferential equations in only two variables and linear in the second derivatives.
Such equations have the general form

A(x, y)
∂2ψ

∂x2
+ 2B(x, y)

∂2ψ

∂x∂y
+ C(x, y)

∂2ψ

∂y2
= Φ

(

x, y, ψ,
∂ψ

∂x
,
∂ψ

∂y

)

.

Such an equation is called a quasilinear second order partial differential equa-
tion. If the expression Φ where linear in ψ, i.e., if

Φ = D(x, y)
∂ψ

∂x
+ E(x, y)

∂ψ

∂y
+ F (x, y)ψ +G(x, y) ,

then the equation would be a linear p.d.e., but this need not be the case.
The equation has a nondenumerable infinity of solution. In order to single

out a unique solution, the to-be-found function ψ(x, y) must satisfy additional
conditions. They are usually specified at the boundary of the domain of the
p.d.e.

In three dimensional space, this boundary is a surface, but in our two
dimensional case, we have a boundary line which can be specified by the
parametrized curve

x = ξ(s)

y = η(s) ,

where s is the arclength parameter

s =

∫

ds =

∫
√

dx2 + dy2 .
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The tangent to this curve has components

(
dξ

ds
,
dη

ds

)

.

They satisfy
(
dξ

ds

)2

+

(
dη

ds

)2

= 1 .

The normal to this boundary curve has components

(
dη

ds
,−dξ

ds

)

= ~n .

We assume that ~n points towards the interior of the domain where the
solution is to be found. If this is not the case, we reverse the signs of the
components of it.

The additional conditions which the to-be-found solution ψ is to satisfy
are imposed at this boundary curve, and they are conditions on the partial
derivatives and the value of the function ψ evaluated at the curve.

The boundary curve accomodates three important types of boundary con-
ditions.

1. Dirichlet conditions: ψ(s) is specified at each point of the boundary.

2. Neumann conditions: dψ
dn
(s) = ~n · ∇ψ, the normal componet of the

graident of ψ is specified at each point of the boundary.

3. Cauchy conditions: ψ(s) and dψ
dn
(s) are specified at each point of the

boundary. The parameter s is usually a time parameter. Consequently,
Cauchy conditions are also called intial value conditions or initial value
data or simply Cauchy data.

There exists also the mixed Dirichlet-Neumann conditions. They are
intermediate between the Dirichlet and the Neumann boundary conditions,
and they are given by

α(s)ψ(s) + β(s)
dψ

dn
(s) = f(s) .

Here α(s), β(s), and f(s) are understood to be given on the boundary.
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We recall that in the theory of ordinary second order differential equa-
tions, a unique solution was obtained once the solution and its derivative
were specified at a point. The generalization of this condition to partial
differential equations consists of the Cauchy boundary conditions.

Consequently, we now inquire whether the solution of the partial dif-
ferential equation is uniquely determined by specifying Cauchy boundary
conditions on the boundary (ξ(s), η(s)).

6.1.2 Cauchy Problem and Characteristics

In order to compute the function ψ(x, y) at points off the boundary curve,
we resort to the Taylor series on two dimensions;

ψ(x, y) = ψ(ξ, η) + (x− ξ)∂ψ
∂x

+ (y − η)∂ψ
∂y

+
1

2!

[

(x− ξ)2∂
2ψ

∂x2
+ 2(x− ξ)(y − η) ∂2ψ

∂x∂y
+ (y − ξ)2∂

2ψ

∂y2

]

+ · · · .

Here the derivatives are to be evaluated on the boundary.
The problem we are confronted with is this:
Determine all partial derivatives, starting with the first partials on up

from the given Cauchy boundary conditions, the given boundary, and the
given partial differential equation!

We shall do this first for the first derivatives.
From the Cauchy data we obtain two equations

dψ(s)

dn
=

dη

ds

∂ψ

∂x
− dξ

ds

dψ

dy
dψ(s)

ds
=

dξ

ds

∂ψ

∂x
+
dη

ds

dψ

dy







at (x, y) = (ξ(s), η(s)) . (6.10)

From these we obtain the first partial derivatives of ψ evaluates on the bound-
ary (

∂ψ

∂x

)

(ξ,η)

=
dψ(s)

dn

dη

ds
+
dψ

ds

dξ

ds
(
∂ψ

∂y

)

(ξ,η)

= −dψ(s)
dn

dη

ds
+
dψ

ds

dξ

ds
.

(6.11)

The procurement of the second derivatives is more interesting. We differ-
entiate the (known) first derivatives along the boundary. Together with the
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given p.d.e. we have

d

ds

(
∂ψ

∂x

)

=
dξ

ds

∂2ψ

∂x2
+
dη

ds

∂2ψ

∂y∂x

d

ds

(
∂ψ

∂y

)

=
dξ

ds

∂2ψ

∂x∂y
+
dη

ds

∂2ψ

∂y2

Φ = A
∂2ψ

∂x2
+ 2B

∂2ψ

∂x∂y
+ C

∂2ψ

∂y2
.

The left hand sides of these three equations are known along the whole
boundary. So are the coefficients of the three unknown partial derivatives on
the right hand side. One can solve for these partial derivatives unless

∣
∣
∣
∣
∣
∣
∣
∣
∣

dξ

ds

dη

ds
0

0
dξ

ds

dη

ds
A 2B C

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0

or

A

(
dη

ds

)2

− 2B
dη

ds

dξ

ds
+ C

(
dξ

ds

)2

= 0 .

If this determinant does not vanish, one can solve for the second deriva-
tives evaluated on the boundary. Differentiating along the boundary yields

d

ds
ψxx =

dξ

ds
ψxxx +

dη

ds
ψyxx

d

ds
ψxy =

dξ

ds
ψxxy +

dη

ds
ψyxy

Φx + · · · = Aψxxx + 2Bψxyx + Cψxyy .

Subscripts refer to partial derivatives. The last equation was obtained dif-
ferentiating the given p.d.e. with respect to x. The left hand side contains
only lower order derivatives, which are known on the boundary.

We see that one can solve for

ψxxx , ψyxx , ψxyy

on the boundary unless the determinant, the same one as before, vanishes.
It is evident that one can continue the process of solving for the other higher
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order derivatives, provided the determinant of the system does not vanish.
We are led to the conclusion that one can expand ψ(x, y) in a Taylor series at
every point of the boundary and that the coefficients of the series are uniquely
determined by the Cauchy boundary conditions on the given boundary.

We must now examine the vanishing of the system determinant

A(x, y)

(
dy

ds

)2

− 2B(x, y)
dy

ds

dx

ds
+ C(x, y)

(
dx

ds

)2

= 0 (6.12)

at every point of the domain of the partial differential equation.
Depending on the coefficientsA, B, and C, this quadratic form determines

two characteristic curves, λ(x, y) = const. and µ(x, y) = const., through each
point (x, y). We distinguish between three cases:

1. AC−B2 > 0: elliptic type in which the two characteristics λ and µ are
complex conjugates of each other.

2. AC − B2 < 0: hyperbolic type in which case for each (x, y) the char-
acteristics λ and µ are real. They sre two curves intersecting at (x, y).
As one varies (x, y) one obtains two distinct families.

3. AC − B2 = 0: parabolic type in which there is only one family of
characteristics.

These three cases imply three different types of differential equations. By
utilizing the characteristic, one can introduce new coordinates relative to
which a differential equation of each type assumes a standard normal form.
Let the new coordinate surfaces be

λ(x, y) = const µ(x, y) = const .

Then the coordinate transformation

u+ iv = λ and u− iv = µ

yields a normal form of the elliptic type,

∂2ψ

∂u2
+
∂2ψ

∂v2
= Φ

(

u, v, ψ,
∂ψ

∂u
,
∂ψ

∂v

)

.

By contrast the coordinate transformation

λ = λ(x, y) and µ = µ(x, y)
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yields a normal form of the hyperbolic type,

∂2ψ

∂λ∂µ
= Φ

(

λ, µ, ψ,
∂ψ

∂λ
,
∂ψ

∂µ

)

. (6.13)

Finally, the coordinate transformation

λ = λ(x, y) = µ(x, y), x = x

yields a normal form of the parabolic type,

∂2ψ

∂λ2
= Φ

(

x, λ, ψ,
∂ψ

∂x
,
∂ψ

∂λ

)

.

We recognize that elliptic partial differential equations express an equilibrium
or a static potential phenomenon.

By introducing the standard coordinates

t = λ+ µ and z = λ− µ

in terms of which

λ =
1

2
(t+ z) and µ =

1

2
(t− z) ,

one finds that
∂2ψ

∂t2
− ∂2ψ

∂z2
= Φ′

(

t, z, ψ,
∂ψ

∂t
,
∂ψ

∂z

)

,

the wave equation of a general vibrating string. We, therefore, recognize that
a hyperbolic p.d. equation expresses the phenomenon of a propagating wave
or disturbance.

Finally, a parabolic p.d. equation expresses a diffusion process. In fact,
the two dimensional Laplace equation, the equation for a vibrating sting, and
the heat conduction equation are the simplest possible examples of elliptic,
hyperoblic, and parabolic equations.

6.1.3 Hyperbolic Equations

The quadratic form, Eq.(6.12), determined by the coefficients A, B, and C
of the given p.d.e. can be factored into two ordinary differential equation

Ady = (B +
√
B2 − AC) dx and Ady = (B −

√
B2 − AC) dx .
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These are the equations for the two families of characteristic curves of the
given p.d.e.

Their significance, we recall, is this: if the boundary line coincides with
one of them, then specifying Cauchy data on it will not yield a unique so-
lution. If, however, the boundary line intersects each family only once, then
the Cauchy data will yields a unique solution.

This point becomes particularly transparent if one introduces the curvi-
linear coordinates λ and µ relative to which the given p.d.e. assumes its
standard form, Eq.(6.13). We shall consider the hyperbolic case by assuming
that

B2(x, y)− A(x, y)C(x, y) > 0

throughout the (x, y) domain.
We shall demand the new coordinates λ and µ – the characteristic coor-

dinates – have the property that their isograms (“loci of points of constant
values”) contain the characteristic lines (x(s), y(s)), i.e.,

λ(x(s), y(s)) = const and µ(x(s), y(s)) = const

for all s. This implies that

λx
dx

ds
+ λy

dy

ds
= 0 and µx

dx

ds
+ µy

dy

ds
= 0

where, as usual

λx =
∂λ

∂x
, etc.

Substituting these equations into Eq.(6.12), the equation for the charac-
teristic directions, one obtains

A

(
∂λ

∂x

)2

+ 2B
∂λ

∂x

∂λ

∂y
+ C

(
∂λ

∂y

)2

= 0 . (6.14)

An equation with the same coefficients is obtained for the other function
µ(x, y). The two solutions λ(x, y) and µ(x, y) are real valued functions.
Their isograms, the characteristics of the hyperbolic equation, give us the
new curvilinear coordinate system

λ = λ(x, y) µ = µ(x, y) .
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The partial derivatives of the given differential equation are now as follows

∂2ψ

∂x2
=

∂2ψ

∂λ2
(λx)

2 + 2
∂2ψ

∂λ∂µ
λxµx +

∂2ψ

∂µ2
(µx)

2 + · · ·

∂2ψ

∂x∂y
=

∂2ψ

∂λ2
λxλy +

∂2ψ

∂λ∂µ
(λxµy + µxλy) +

∂2ψ

∂µ2
µxµy + · · ·

∂2ψ

∂y2
=

∂2ψ

∂λ2
λ2y + 2

∂2ψ

∂λ∂µ
λyµy +

∂2ψ

∂µ2
µ2
y + · · · .

Here + · · · refers to additional terms involving only the first partial deriva-
tives of ψ. Inserting these expressions into the given p.d. equation, one
obtains

[Aλ2x + 2Bλxλy + Cλ2y]
∂2ψ

∂λ2
+ [2Aλxµx + B(λxµy + µxλy) + 2Cλyµy]

∂2ψ

∂λ∂µ

+ [Aµ2
x + 2Bµxµy + Cµ2

y]
∂2ψ

∂µ2

= Φ′
(

λ, µ, ψ,
∂ψ

∂λ
,
∂ψ

∂µ

)

. (6.15)

It follows from Equation 6.14 that the coefficients of ψλλ and ψµµ vanish.

Solving for ∂2ψ
∂λ∂µ

yields Equation 6.13, the hyperbolic equation in normal
form.

The coordinates λ and µ, whose surfaces contain the characteristic lines,
are called the characteristic coordinates or null coordinates of the hyperbolic
equation.

These coordinates are important for at least two reasons. First of all, they
are boundaries across which a solution can be nonanalytic. If λ(x, y) = λ0
is one of the isograms (“locus of points where λ has constant value”) of the
solution to Eq.(6.14), then the first term of the p.d. Eq.(6.15)

[Aλ2x + 2Bλxλy + Cλ2y]
∂2ψ

∂λ2
= finite

even if ∂
2ψ
∂λ2
→∞ as λ→ λ0. In other words, there are solutions to Eq.(6.15)

for which the first derivative ∂ψ
∂λ

has a discontinuity across the characteristic
λ(x, y) = λ0. Similarly, there exist solutions to Eq.(6.15) whose first deriva-
tive ∂ψ

∂µ
has a discontinuity across µ(x, y) = µ0 whenever µ(x, y) satisfies

Eq.(6.14) with λ replaced by µ.
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Secondly, these coordinates depict the history of a moving disturbance.
The simple string illustrates the issue involved.

Example: The Simple string The governing equation is

∂2ψ

∂z2
− 1

c2
∂2ψ

∂t2
= 0 .

Its characteristic coordinates are the “retarded” and the “advanced” times

λ = ct− z and µ = z + ct

and its normal form is

∂2ψ

∂λ∂µ
= 0 .

The solution is

ψ = f(λ) + g(µ)

where f and g are any functions of λ and µ.

Next consider the initial value data at t = 0:

ψ0(z) ≡ ψ(t = 0, z) = f(−z) + g(z) “initial amplitude”

V0(z) ≡
∂ψ(t, z)

∂t

∣
∣
∣
∣
t=0

=
∂λ

∂t

∂ψ

∂λ

∣
∣
∣
∣
λ=−z

+
∂µ

∂t

∂ψ

∂µ

∣
∣
∣
∣
µ=z

“initial velocity”

= cf ′(−z) + cg′(z) .

These equations imply

f(λ) =
1

2
ψ0(−λ) +

1

2c

∫ −λ

0

V0(z
′)dz′

g(µ) =
1

2
ψ0(µ) +

1

2c

∫ µ

0

V0(z
′)dz′ .

Consider the intersection of the two families of characteristics with the bound-
ary line t = 0 as in the figure below.
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R S

P

Qµ = −1
0

1
2

-2
-1

0
1

2
λ

ct

z

Figure 6.1: Characteristic coordinate lines µ and λ as determined by the
wave equation for a simple string.

Note that f is constant along the λ characteristics (i.e., where λ =constant),
while g is constant along the µ characteristics. It follows that if f is known
on the boundary segment RS, then f is known along all the λ-characteristics
intersecting RS. Similarly, if g is known along RS, then g is known along
all the µ-characteristics intersecting RS. And this is precisely the case be-
cause the Cauchy data on RS determine the values of both f and g on that
segment.

Being the sum of the two functions, the solution to the wave equation is

ψ(z, t) = f(ct− z) + g(ct+ z)

=
1

2
ψ0(z − ct) +

1

2
ψ0(z + ct) +

1

2c

∫ z+ct

z−ct
V0(z

′)dz′ (6.16)

Thus one sees that any disturbance on a string consists of two parts: one
propagating to the right the other to the left. The propagation speeds are
±c, the slopes of the characteristics relative to the t-z coordinate system.
The idiosyncratic aspect of the simple string is that these two parts do not
change their shape as they propagate along the string.

A general linear hyperbolic system does not share this feature. However,
what it does share with a simple string is that its solution is uniquely de-
termined in the common region traversed by the two sets of characteristics
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which intersect RS. In fact, the Cauchy data on RS determine a unique
solution ψ(z, t) at every point in the region PRQS. This is why it is called
the domain of dependence of RS. To justify these claims it is neccessary
to construct this unique solution to a general second order linear hyperbolic
differential equation.

6.1.4 Riemann’s Method for Integrating the Most Gen-
eral 2nd Order Linear Hyperbolic Equation

In its most general form a linear second order hyperbolic equation is

0 =
∂2ψ

∂u∂v
+D

∂ψ

∂u
+ E

∂ψ

∂v
+ Fψ ≡ L(ψ) . (6.17)

In compliance with standard practice one designates the characteristic coor-
dinates by u and v. The problem to be solved is this:
Given
(a) the differential Eq.(6.17) and
(b) the initial value data (=Cauchy conditions) ψ(s) and its normal derivative
dψ(s)
dn

on the given curve in Figure 6.2,
Find: the function ψ(u, v) which satisfies (a) and (b).

Riemann’s method of solving this problem is a three-step process whose
essence parallels the Green’s function method described on page 235:

1. Identify Cauchy Data in Characteristic Form

By means of the derivative dψ(s)
ds

the Cauchy data

dψ(s)

dn
=

dη

ds

∂ψ

∂x
− dξ

ds

dψ

dy
dψ(s)

ds
=

dξ

ds

∂ψ

∂x
+
dη

ds

dψ

dy







at (x, y) = (ξ(s), η(s)) .

determines the partial derivatives ∂ψ/∂x and ∂ψ/∂y. Alternatively, the
known characteristics

u = u(x, y)

v = v(x, y)

also yield the partial derivatives ∂ψ/∂u and ∂ψ/∂v on the given curve.
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P

Q

19.1

19.2

19.3

19.4

19.5

17.2

17.3

17.4

R S

v=17.1

u

v

x

y

boundary line: (s); y=η ξ (s)x=

Figure 6.2: Characteristic coordinates of a hyperbolic differetial equation in
two dimensions.

2. Determine Green’s Identity for the Given Differential Operator

To construct in a systematic way the solution to the differential equation
specified by (a) and (b) above, one introduces the adjoint differential equation
and its solution. This philosophy is an extension of the approach already used
to solve ordinary differential equations of second order.

Central to this approach was the consideration of the linear operator

Lψ =
d2ψ

dx2
+ β

dψ

dx
+ γψ

and its adjoint

L∗φ =
d2φ

dx2
− βdφ

dx
+ γφ

which was determined by the compatibility condition, the Lagrange identity
Eq.(1.15)

φLψ − ψL∗φ =
d

dx
P (φ, ψ) . (6.18)

Here the right hand side was the derivative of

P (φ, ψ) = φ
dψ

dx
− ψdφ

dx
+ βφψ ,
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the “bilinear concomitant” introduced with Eq.(4.20) on page 233 for a one-
dimensional domain.

The extension of Lagrange’s identity to a two-dimensional domain is
straight forward. Given the differential operator, Eq.(6.17), one seeks the
corresponding adjoint, L∗φ, which is determined by the compatibility condi-
tion

φLψ − ψL∗φ =
∂Pu
∂u

+
∂Pv
∂v

(6.19)

Here the right hand side is the divergence of a two-component vectorial con-
comitant. It replaces the total derivative of the scalar concomitant, Eq.(6.18).

What are L∗φ and (Pu, Pv)? Comparing the sought-after expressions in
Eq.(6.19), with the known result, Eq.(6.18), one finds with a little scrutiny
that

L∗φ =
∂2φ

∂u∂v
− ∂Dφ

∂u
− ∂Eφ

∂v
+ Fφ (6.20)

and

Pu =
1

2

(

φ
∂ψ

∂v
− ψ∂φ

∂v

)

+Dφψ (6.21)

Pv =
1

2

(

φ
∂ψ

∂u
− ψ∂φ

∂u

)

+ Eφψ (6.22)

The boxed Eq.(6.19) is the key to success. By integrating it over a triangular
region, say RSQ in Figure 6.2, one obtains Green’s identity adapted to the
given differential operator, Eq.(6.17). Indeed, applying Stokes’ theorem to
the right hand side, one obtains

∫

RSQ

∫

(φLψ − ψL∗φ)du dv =

∫

S→Q→R→S

Pudv − Pvdu (6.23)

This equation relates a behavior of φ and ψ inside the 2-d domain RSQ to
their behaviour on its boundary.

3. Apply Green’s Identity

One obtains the solution ψ(u, v) to the given hyperbolic equation by express-
ing it in terms of its Cauchy data and in terms of a simple solution to the
adjoint differential equation, namely

L∗φ = 0 ,
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subject to the boundary conditions

∂φ

∂u
− Eφ = 0 along SQ where v is constant (6.24)

∂φ

∂v
−Dφ = 0 along RQ where u is constant , (6.25)

and
φ(u, v) = 1 at (u, v) = (uQ, vQ) . (6.26)

Riemann noticed that if one can solve this adjoint boundary value problem,
the solution to the given problem is obtained as follows:

Apply the fact that ψ and φ satisfy their respective differential equations.
Green’s identity, Eq.(6.23) becomes

0 =

∫

SQ

Pudv − Pvdu+
∫

QR

Pudv − Pvdu+
∫

RS

Pudv − Pvdu . (6.27)

The left hand side vanishes because L∗φ = 0 and because the given differ-
ential Eq.(6.17) has no source. The r.h.s. is a line integral along a closed
figure, here the boundary of the triangle SQR. The goal is to infer the value
of ψ at Q from (a) its values along RS and from (b) the value of φ along SQ
and RQ.

Consider the first integral. The integration segment SQ consists of

SQ :

{
v = const. ≡ vQ

uS < u < uQ
(6.28)

Consequently, one is left with
∫

SQ

Pudv − Pvdu 1
= −

∫ uQ

uS

Pv|vQdu

2
= −1

2

∫ [

φ
∂ψ

∂u
− ψ∂φ

∂u
+ 2Eφψ

]

vQ

du

3
= −1

2

∫ [
∂(φψ)

∂u
+ 2ψ

(

Eφ− ∂φ

∂u

)]

vQ

du

4
= −1

2

[
φψ|uQuS

]

vQ

5
= −1

2
ψ(uQ, vQ) +

1

2
φ(uS, vS)ψ(uS, vS)

6≡ −1

2
ψ(Q) +

1

2
φ(S)ψ(S) .
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(Equality 1 uses the fact that
∫

SQ
Pudv = 0 because v is constant; 2 uses

Eq.(6.22); 3 adds and subtracts ∂φ/∂u; 4 uses Eq.(6.24); 5 uses Eq.(6.26). )
Equality 6 introduces the short hand notation

ψ(Q) = ψ(uQ, vQ), φ(S) = φ(uS, vS), etc.

Similarly the second integral reduces to

∫

QR

Pudv − Pvdu =

∫ vR

vQ

Pu|uQdv

= −1

2
ψ(Q) +

1

2
φ(R)ψ(R) .

Consequently, the vanishing of the closed line integral, Eq.(6.27), implies

ψ(Q) =
1

2
φ(S)ψ(S) +

1

2
φ(R)ψ(R) +

∫

RS

Pudv − Pvdu . (6.29)

This is Riemann’s representation of the solution ψ to the hyperbolic differ-
ential equation in terms of the given initial value data on the curve segment
RS. A function such as ψ(u, v) establishes a quantitative relationship be-
tween two sets of measurements:

1. The quantity ψ which typically expresses a measured amplitude or
voltage and

2. the coordinates (u, v) which, for a hyperbolic system, indirectly express
measurements of time and place, namely

u = t− z
v = t+ z

in terms of the familiar laboratory space and time coordinates.

Thus it is necessary to express the solution, Eq.(6.29), in terms of these
coordinates. Using

du = dt− dz
dv = dt+ dz
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and

∂ψ

∂v
+
∂ψ

∂u
=

∂ψ

∂t
∂ψ

∂v
− ∂ψ

∂u
=

∂ψ

∂z

one finds that with the help of Eqs.(6.21)-(6.22) that the solution is

ψ(tQ, zQ) =
1

2
φ(R)ψ(R) +

1

2
φ(S)ψ(S) + (6.30)

∫ S

R

{[
1

2

(

φ
∂ψ

∂z
− ψ∂φ

∂z

)

+ (D − E)φψ
]

dt+

[
1

2

(

φ
∂ψ

∂t
− ψ∂φ

∂t

)

+ (D + E)φψ

]

dz

}

Example: String Imbedded in an Elastic Medium
Let us illustrate the integration method with a simple string imbedded

in an elastic medium. The governing equation is the Klein-Gordon wave
equation in 1+1 dimensions,

0 =
∂2ψ

∂t2
− ∂2ψ

∂z2
+ k2ψ .

Its solution is to satisfy at t = 0 the initial value conditions

ψ(t = 0, z) = ψ0(z) (6.31)

∂ψ

∂t
(t = 0, z) = V0(z) . (6.32)

Here ψ0(z) and V0(z) are the given initial value data (“Cauchy data”) asso-
ciated with this initial value problem.

The equation for the characteristic coordinate functions is

(
∂S

∂t

)2

−
(
∂S

∂z

)2

= 0

Being a quadratic, this equation has two distinct real solutions

S(x, y) =

{
u(t, z) = t− z
v(t, z) = t+ z

Its characteristic coordinate functions are

u = t− z and v = z + t (6.33)



6.1. SINGLE PARTIAL DIFFERENTIAL EQUATIONS: THEIR ORIGIN433

and its normal form is

L(ψ) =
∂2ψ

∂λ∂µ
+
k2

4
ψ = 0 .

Thus one has D = E = 0, which means that the hyperbolic operator is
formally self-adjoint. Consequently, the adjoint differential equation is

L∗(φ) =
∂2φ

∂v∂u
+
k2

4
φ = 0 .

The adjoint boundary conditions are

∂φ

∂u
= 0 along SQ : v = vQ (6.34)

∂φ

∂v
= 0 along RQ : u = uQ , (6.35)

and

φ(u, v) = 1 at observation point Q: (u, v) = (uQ, vQ) . (6.36)

Remark. One can draw a very useful conclusion from Eqs.(6.34)-(6.36). The
solution φ to the hyperbolic problem adjoint to the given one under consid-
eration is constant along the two characteristics through point Q:

φ(u, vQ) = 1

φ(uQ, v) = 1 .

Note that the two points R and S in Figure 6.2 lie on these charateristics.
Consequently,

φ(R) = φ(S) = 1 .

This simplifies the solution to the solution, Eq.(6.30), to the given problem
considerably.

The solution to the adjoint boundary boundary value problem is achieved
by recalling that the Bessel function of order zero, J0(x), satisfies

d2J0
dx2

+
1

x

dJ0
dx

+ J0 = 0 .

Letting
x = k

√
uv ,
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one finds

∂J0(k
√
uv)

∂v
=

1

2
k

√
u

v
J ′
0(k
√
uv)

∂2J0(k
√
uv)

∂u ∂v
=

1

4
k

1√
vu
J ′
0(k
√
uv) +

k2

4
J0

′′(k
√
uv)

= −k
2

4
J0(k
√
uv) .

Consequently,
[

∂2

∂v ∂u
+
k2

4

]

J0

(

k
√

(uQ − u)(vQ − v)
)

= 0

Furthermore, note that

φ(u, v) = J0

(

k
√

(uQ − u)(vQ − v)
)

satisfies the three required boundary conditions

∂φ(u, v)

∂u

∣
∣
∣
∣
v=vQ

= 0

∂φ(u, v)

∂v

∣
∣
∣
∣
u=uQ

= 0

φ(uQ, vQ) = 1 ,

and also
φ(u, vQ) = φ(uQ, v) = 1 ,

as required.
The solution, Eq.(6.30), to the given problem is determined by the ini-

tial value data, Eqs.(6.31)-(6.32) at t = 0. Substituting this data into the
expression for this solution, taking note of the fact

R : (t, z) = (0, zQ − tQ)
S : (t, z) = (0, zQ + tQ) ,

introducing (with the help of Eq.(6.33))

φ = J0

(

k
√

(uQ − u)(vQ − v)
)

= J0

(

k
√

(t− tQ)2 − (z − zQ)2
)



6.1. SINGLE PARTIAL DIFFERENTIAL EQUATIONS: THEIR ORIGIN435

into the integrand, and setting t = 0, one finds that the solution is

ψ(tQ, zQ) =
1

2
ψ0(zQ − tQ) +

1

2
ψ0(zQ + tQ) +

1

2

∫ zQ+tQ

zQ−tQ

[

J0

(

k
√

(t− tQ)2 − (z − zQ)2
)

V0(z)−

ψ0(z)
∂

∂t
J0

(

k
√

(t− tQ)2 − (z − zQ)2
)]

t=0

dz

or in terms of standard variables,

ψ(t, z) =
1

2
ψ0(z − t) +

1

2
ψ0(z + t) + (6.37)

1

2

∫ z+t

z−t

[

J0

(

k
√

(t′ − t)2 − (z′ − z)2
)

V0(z
′)−

ψ0(z
′)
∂

∂t′
J0

(

k
√

(t′ − t)2 − (z′ − z)2
)]

t′=0

dz′ .

Compare this result with Eq.(6.16) and observe the influence of the elastic
medium on the propagation of a disturbance along the string:

In the absence of that medium an initial pulse separates into two pulses also
highly localized in the same way. They move into opposite directions, but
they don’t change their shapes and amplitudes. The region between these
pulses is a widening gap having zero amplitude.

However, the presence of an elastic medium (k2 6= 0) changes all this.
An initial pulse also separates into two pulses, but each one leaves a nonzero
trailing wake which fills the widening gap between them with a space-time
dependent amplitude. It decreases with time in a manner dictated by the
behaviour of the Bessel function in the integrand of Eq.(6.37).

Equations (6.16) and (6.37) are in perfect harmony. Indeed, the first is
the k2 = 0 limit of the second. This is as it must be. It is a mathematical
consequence of the fact that J0(0) = 1 and that J ′

0(0) = 0 in the integrand
of Eq.(6.37).

Lecture 513

3Presentation given 10/3/2006 at the OSU Electro Science Lab.
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6.2 System of Partial Differential Equations:

How to Solve Maxwell’s Equations Using

Linear Algebra

The theme of the ensuing development is linear algebra, but the subject is an
overdetermined system of partial differential equations, namely, the Maxwell
field equations. The objective is to solve them via the method of eigenvectors
and eigenvalues. The benefit is that the task of solving the Maxwell system of
p.d. equations is reduced to solving a single inhomogeneous scalar equation4

(
∂2x + ∂2y + ∂2z − ∂2t

)
= −4πS(t, ~x) ,

where S is a time and space dependent source. The impatient reader will
find that once this master equation, or its manifestation in another coordi-
nate system, has been solved, the electric and magnetic fields are entirely
determined as in Tables 6.1-6.9.

The starting point of the development is Maxwell’s equations. There is
the set of four functions, the density of charge

ρ = ρ(~x, t)

[
(charge)

(volume)

]

(6.38)

and the charge flux

~J = ~J(~x, t)

[
(charge)

(time)(area)

]

, (6.39)

which are usually given. These space and time dependent charge distributions
give rise to electric and magnetic fields, ~E(~x, t) and ~B(~x, t). The relationship
is captured by means of Maxwell’s gift to twentieth century science and
technology,

∇ · ~B = 0 (“No magnetic monopoles”) (6.40)

∇× ~E +
∂ ~B

∂t
= 0 (“Faraday’s law”) (6.41)

4For the purpose of putting the time derivative on the same footing as the space deriva-
tives, we express the conventional time tconv. in terms of the geometrical time t, which is
measured in units of length, by the equation t = c tconv..
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and

∇ · ~E = 4πρ (“Gauss’ law”) (6.42)

∇× ~B − ∂ ~E

∂t
= 4π ~J (“Ampere’s law”) , (6.43)

Maxwell’s field equations5.

Exercise 6.2.1 (Charge Flux-Density of an Isolated Charge)
Microscopic observations show that charged matter is composed of discrete point
charges. On the other hand, macroscopic observations show that charged matter is
the carrier of an electric fluid which is continuous. Dirac delta functions provide the
means to grasp both attributes from a single perspective. This fact is highlighted
by the following problem.
Consider the current-charge density due to an isolated moving charge,

~J(x, y, z, t) = q

∫ ∞

−∞

d ~X(τ)

dτ
δ(x−X(τ))δ(y − Y (τ))δ(z − Z(τ))δ(t− T (τ)) dτ

ρ(x, y, z, t) = q

∫ ∞

−∞

dT (τ)

dτ
δ(x−X(τ))δ(y − Y (τ))δ(z − Z(τ))δ(t− T (τ)) dτ

a) Show that this current-charge density satisfies

∇ · ~J +
∂ρ

∂t
= 0 .

Remark. The four-vector
(
d ~X(τ)
dτ , dT (τ)dτ

)

is the charge’s four-velocity in spacetime.

The parameter τ is the “wristwatch” time (as measured by a comoving clock)
attached to this charge.
b) By taking advantage of the fact dT (τ)

dτ > 0, evaluate the τ -integrals, and obtain

explicit expressions for the components ~J and ρ.
Answer:

ρ(x, y, z, t) = q δ(x−X(t))δ(y − Y (t))δ(z − Z(t))

~J(x, y, z, t) =
d ~X

dt
q δ(x−X(t))δ(y − Y (t))δ(z − Z(t))

5The introduction of geometrical time t is extended to the introduction of charge flux

in geometrical units, ~J ( (charge)
(volume) ). Its relation to the charge flux in conventional units,

~Jconv. (
(charge)

(time)(area) ), is given by the equation ~J = ~Jconv./c .
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where

~X(t) = ~X(τ) evaluated at τ as determined by δ(t− T (τ)) .

6.2.1 Maxwell Wave Equation

The first pair of Maxwell’s equations, (6.40) and (6.41), imply that there

exists a vector potential ~A and scalar potential φ from which one derives the
electric and magnetic fields,

~B = ∇× ~A (6.44)

~E = −∇φ− ∂ ~A

∂t
. (6.45)

Conversely, the existence of these potentials guarantees that the first pair of
these equations is satisfied automatically. By applying these potentials to
the differential expressions of the second pair of Maxwell’s equations, (6.42)-
(6.43), one obtains the mapping

[
φ
~A

]

A∼❀ A
[
φ
~A

]

, (6.46)

where

A
[
φ
~A

]

≡







−∇2φ−∇ · ∂
~A

∂t

∇×∇× ~A+∇∂φ
∂t

+
∂2 ~A

∂t2






. (6.47)

It follows that Maxwell’s field equations reduce to Maxwell’s four-component
wave equation,







−∇2φ−∇ · ∂
~A

∂t

∇×∇× ~A+∇∂φ
∂t

+
∂2 ~A

∂t2






= 4π

[
ρ
~J

]

. (6.48)

Maxwell’s wave operator is the linch pin of his theory of electromagnetism.
This is because it has the following properties:
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1. It is a linear map from the space of four-vector fields into itself, i.e.

R4 A−→ R4

at each point event (t, ~x).

2. The map is singular. This means that there exist nonzero vectors ~Ur
and ~Uℓ such that

A ~Ur = ~0

and

~UTℓ A = ~0 .

In particular, one has

(a) the fact that

A
[ −∂t

~∇

]

Λ =

[ −∇2∂t − ∂t∇2

0− ∂t~∇∂t + ∂2t
~∇

]

Λ =

[
0
~0

]

(6.49)

for all three-times differentiable scalar fields Λ(t, ~x). Thus

~Ur ≡
[ −∂t

~∇

]

∈ N (A) .

The null space of A is therefore nontrivial and 1-dimensional at
each (t, ~x).

(b) the fact that

[

∂t ~∇·
]

A
[
φ
~A

]

= −∂t∇2φ+∂2t
~∇· ~A+0+∂t∇2φ+ ~∇·∂2t ~A = 0 ,

for all 4-vectors

[
φ
~A

]

. Thus

~UTℓ ≡
[

∂t ~∇·
]

∈ left null space of A , (6.50)

or

~Uℓ ∈ N (AT ) . (6.51)

The left null space of A is therefore also 1-dimensional at each
(t, ~x).
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In light of the singular nature of A, the four-component Maxwell wave equa-
tion

A
[
φ
~A

]

= 4π

[
ρ
~J

]

(6.52)

has no solution unless the source

[
ρ
~J

]

also satisfies

~UTℓ
[
ρ
~J

]

= 0 .

This is the linear algebra way of expressing

∂tρ+ ~∇ · ~J = 0 , (6.53)

the differential law of charge conservation. Thus Maxwell’s equations apply
if and only if the law of charge conservation holds. If charge conservation did
not hold, then Maxwell’s equations would be silent. They would not have a
solution. Such silence is a mathematical way of expressing the fact that at
its root theory is based on observation and established knowledge, and that
arbitrary hypotheses must not contaminate the theoretical.

6.2.2 The Overdetermined System A~u = ~b

The linear algebra aspects of Maxwell’s wave operator A are illustrated by
the following problem from linear algebra:

Solve A~u = ~b for ~u, under the stipulation that

A : R4 −→ R4

~ur : A~ur = ~0 so that N (A) = span{~ur}
~uTℓ : ~uTℓ A = ~0 so that N (AT ) = span{~uℓ}
~b : ~b ∈ R(A) so that ~uTℓ

~b = 0 (6.54)

The fact that A is singular and ~b belongs to the range of A makes
the system over-determined but consistent. This means that there are
more equations than there are unknowns.
One solves the problem in two steps.
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Step I: Let {~v1, ~v2, ~v3} be the set of eigenvectors having non-zero eigenval-
ues. Whatever A is, the task of finding three vectors that satisfy

A~v1c1 = ~v1λ1c1
A~v2c2 = ~v2λ2c2
A~v3c3 = ~v3λ3c3






λi 6= 0, ci are scalars (6.55)

and

A~urc4 = ~0 . (6.56)

Being spanned by the three eigenvectors with non-zero eigenval-
ues, the range space of A,

R(A) = span{~v1, ~v2, ~v3} ,

is well-determined. However, the scalars ci are at this stage as yet
undetermined.

Step II: Continuing the development, recall that quite generally

A~u = ~b has a solution⇔ ~b ∈ R(A)
⇔ ~b = ~v1b1 + ~v2b2 + ~v3b3 , (6.57)

and that if

~u = ~v1c1 + ~v2c2 + ~v3c3 + ~u4c4 ,

then

A~u = ~v1λ1c1 + ~v2λ2c2 + ~v3λ3c3 . (6.58)

It is appropriate to alert the reader that in the ensuing section the vectors
~vi and the eigenvalues λi become differential operators which act on scalar
fields ci and that the three subscript labels will refer to the TE, TM, and
TEM eletromagnetic6 vector potentials respectively.

6The acronyms TE, TM, as well as TEM stand for transverse electric, transverse mag-

netic, and transeverse electric magnetic The justification for these apellations are given
on Pages 448, 448, and 449, repectively.
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Equating (6.57) and (6.58), one finds that the linear independence of {~v1, ~v2, ~v3}
implies the following equations for c1, c2, and c3:

λ1c1 = b1 −→ c1 =
1

λ1
b1 (6.59)

λ2c2 = b2 −→ c2 =
1

λ2
b2 (6.60)

λ3c3 = b3 −→ c3 =
1

λ3
b3 (6.61)

Consequently, the solution is

~u = ~v1
1

λ1
b1 + ~v2

1

λ2
b2 + ~v3

1

λ3
b3 + ~u4c4

where ~u4c4 is an indeterminate multiple of the null space vector ~u4.
If one represents the stated problem A~u = ~b (~u determines ~b) as an input-

output process, as in Figure 6.3,

u u bA =A

Figure 6.3: The matrix A defines an input-output process.

then its solution is represented by the inverse input-output process as in
Figure 6.4.

In general, the task of finding the eigenvectors of a 4×4 matrix can be a
nontrivial task. However, given the fact that the solution to

~uTℓ A = ~0

is already known, one finds that the associated constraints on the eigenvec-
tors,

~uTℓ ~vi = 0

make the task quite easy, if not trivial.
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v1b1

b2v2

b3v3

λ11/

λ21/

λ31/

v1

v2

c1

c2

v3c3

c4ur

b
u

Figure 6.4: The solution to A~u = ~b defines an inverse input-output process.

6.2.3 Maxwell Wave Equation (continued)

The above linear algebra two-step analysis of an overdetermined (but con-

sistent) system A~u = ~b is an invaluable guide in solving Maxwell’s wave
equation

A







φ
Az
Ax
Ay






= 4π







ρ
Jz
Jx
Jy







}

longitudinal components
}

transverse components,
(6.62)

2+2 Decomposition

We now interrupt the development to emphasize that this linear algebra
analysis is not restricted to rectilinear coordinates. We shall see that the
coordinates relative to which the Maxwell system can be decoupled (and
solved) via the method of eigenvectors and eigenvalues are the cartesian,
cylindrical, spherical, and other coordinate orthogonal coordinate systems,
with time added as the fourth coordinate. For these the spacetime version of
the infinitesimal interval (Pythagorean theorem) assumes the familiar form

ds2 = −dt2 + dz2 + dx2 + dy2 cartesian

ds2 = −dt2 + dz2 + dr2 + r2dθ2 cylindrical

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dϕ2) spherical

or more generally

ds2 = gAB(x
C)dxAdxB +R2(xC)(dθ2 + sin2 θ dϕ2)

general
spherical
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Their conceptual common denominator is that the first two coordinates –
the longitudinal coordinates – are orthogonal to the last two – the transverse
coordinates. The longitudinal spatial direction is the propagation direction
of e.m. radiation, say in the direction of a cylindrical wave guide or the
radial direction of a spherical coordinate system. The two spatial transverse
directions point along the cross sectional area of that wave guide or the
angular directions of the concentric spheres of constant radii.

This two-plus-two decomposition applies not only to the coordinates and
their differentials, but also to four-dimensional vector fields tangent to such
coordinate surfaces, e.g.,







φ
Az
Ax
Ay







and







ρ
Jz
Jx
Jy







}

longitudinal components
}

transverse components,
(6.63)

the four-vector potential and the charge density-flux four-vector respectively.

We shall decompose the four-vector potential

[
φ
~A

]

into three parts. The

key finding from this decomposition is that these parts are eigenvectors of the
Maxwell wave operator A, Eq.(6.47), and that they are identified with the
transverse electric (TE), transverse magnetic (TM), and transverse electric-
magnetic (TEM) fields of Maxwell theory 7.

The eigenvector decomposition takes advantage of the fact that any two-
dimensional vector field, be it longitudinal or transverse, can be decomposed
uniquely into the gradient of a scalar function and into what amounts to a
pure curl vector field in three dimensions. As a consequence, any four-vector
such as those in Eq.(6.63) has the unique decomposition






φ
Az
Ax
Ay






=







0
0
∂y
−∂x






ΦTE

︸ ︷︷ ︸

transverse
curl

+







−∂z
∂t
0
0






ΦTM

︸ ︷︷ ︸

longitudinal
curl

+







0
0
∂x
∂y






Ψ

︸ ︷︷ ︸

transverse
gradient

+







−∂t
∂z
0
0






Φ

︸ ︷︷ ︸

longitudinal
gradient

.

(6.64)

7The justification for these apellations are given on on Pages 448, 448, and 449, repec-
tively.



6.2. SYSTEMOF PARTIAL DIFFERENTIAL EQUATIONS: HOWTO SOLVEMAXWELL’S EQUATIONS

This 2+2 decomposition establishes a one-to-one correspondence between
four-vector fields and the scalar fields Φ,ΦTE and Ψ,ΦTM in the transverse
and longitudinal planes respectively.

The existence and uniqueness of this 2+2 decomposition is established in
Exercise 6.2.2 on page 463.

Divergenceless Vector Fields

We now resume the development by recalling that the wave operator A sat-
isfies

[∂t ∂z ∂x ∂y]A
[
φ
~A

]

= ~0 (6.65)

for all four-vectors

[
φ
~A

]

, and that, as a consequence, the wave Eq.(6.62)

implies that

[
ρ
~J

]

has zero divergence (which is an expression of charge

conservation)

[∂t ∂z ∂x ∂y]







ρ
Jz
Jx
Jy






= 0 (6.66)

whenever a solution exists. Our interest lies in the converse:

Given that the source

[
ρ
~J

]

satisfies charge conservation, does there exist a

solution to the Maxwell wave equation?
An affirmative answer is obtained by construction. It is based on decompos-
ing the source four-vector into a linear combination each part of which is so
simple that it separately satisfies charge conservation. This decomposition is






ρ
Jz
Jx
Jy






=







0
0
∂y
−∂x







︸ ︷︷ ︸

≡~V(1)

STE +







−∂z
∂t
0
0







︸ ︷︷ ︸

≡~V(2)

STM +







0
0
∂x
∂y






I +







−∂t
∂z
0
0






J

︸ ︷︷ ︸

≡ ~W(3)I+ ~W(4)J

(6.67)

Charge conservation, ∂t + ~∇ · ~J = 0, holds for all scalar fields STE, STM , I
and J provided the latter two satisfy

0 =
(
−∂2t + ∂2z

)
J +

(
∂2x + ∂2y

)
I
(

= ∂t + ~∇ · ~J
)

. (6.68)
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The Eigenvector Fields of A
The task of identifying and determining those eigenvector fields of A which
have nonzero eigenvalues is facilitated by the fact that Eq.(6.65) demands
that they be divergenceless. The three vector fields in Eq.(6.67) do satisfy
this condition. That they span the eigenspaces in the range of A is veri-
fied by three explicit calculations, one for each the three eigenvector fields.
Inserting them into the Maxwell wave equation, one finds that their linear
independence results in the following three independent vector equations:

A







0
0
∂y
−∂x






ΦTE =







0
0
∂y
−∂x






(−)

(
−∂2t + ∂2z + ∂2x + ∂2y

)

︸ ︷︷ ︸

λ1

ΦTE = 4π







0
0
∂y
−∂x






STE

(6.69)

A







−∂z
∂t
0
0






ΦTM =







−∂z
∂t
0
0






(−)

(
−∂2t + ∂2z + ∂2x + ∂2y

)

︸ ︷︷ ︸

λ2

ΦTM = 4π







−∂z
∂t
0
0






STM

(6.70)

and

A







−∂tΦ
∂zΦ
∂xΨ
∂yΨ






=







(
−∂t
∂z

)
(
∂2x + ∂2y

)
(Ψ− Φ)

(
∂x
∂y

)

(∂2t − ∂2z ) (Ψ− Φ)






= 4π







(
−∂t
∂z

)

J
(
∂x
∂y

)

I







(6.71)

What is remarkable about these equations is that each of them is an in-
tegrable system which can be integrated by inspection. Doing so results in
what in linear algebra corresponds to the three equations (6.59)-(6.61) on
page 442 for the eigenvector amplitudes ci. Here. however, the result is three
scalar wave equations for the scalar fields ΦTE,ΦTM ,Ψ and Φ, namely8

(
∂2x + ∂2y + ∂2z − ∂2t

)
ΦTE = −4πSTE (6.72)

(
∂2x + ∂2y + ∂2z − ∂2t

)
ΦTM = −4πSTM (6.73)

8The superscripts TE, TM, as well as TEM below are acronyms which stand for trans-
verse electric, transverse magnetic, and transeverse electric magnetic The justification for
these apellations are given on Pages 448, 448, and 449, repectively.
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and

(∂2x + ∂2y)(Φ−Ψ) = −4πJ (6.74)

(∂2z − ∂2t )(Φ−Ψ) = +4πI . (6.75)

The last two equations are the TEM equations, a Poisson and a wave equa-
tion, for one and the same quantity, the difference Φ−Ψ. These two equations
are consistent, and hence integrable, because the TEM source scalars I and
J are guaranteed to satisfy Eq.(6.68) on page 445. Put differently, any two
of the three equations (6.74), (6.75), and (6.68) imply the third.

The Electric and the Magnetic Fields

The electric and the magnetic fields, Eqs.(6.44) and (6.45), are obtained for
each type of e.m. field from the three respective vector potentials,







φ
Az
Ax
Ay






=







0
0

∂yΦ
TE

−∂xΦTE







︸ ︷︷ ︸

Transverse
Electric

,







−∂zΦTM

∂tΦ
TM

0
0







︸ ︷︷ ︸

Transverse
Magnetic

,







−∂tΦ
∂zΦ
∂xΨ
∂yΨ







︸ ︷︷ ︸

Transverse
Electric
Magnetic

. (6.76)

It needs to be reemphasized that for the TEM field it is unnecessary (and,
in fact, uncalled for) to calculate the scalars Φ and Ψ individually. All that
is necessary (and sufficient) is the difference Φ−Ψ.

From the perspective of the principle of conceptual unit-economy9 the
e.m. potential is superior to the electric and magnetic field. This is because
the mathematical characterization of the e.m. potential is simpler than that
of the e.m. field. However, in the hierarchy of concepts, the e.m. field is much
closer to the electromagnetism’s foundation, namely that which is directly
accessible to measurements. Thus, in order to comply with this hierarchy and
prevent the e.m. potential from being a floating abstraction disconnected
from reality, it is mandatory that one explicitly exhibit the e.m. field. We
shall do this for TE, TM, and TEM fields relative to cartesian coordinates,
and later extend the result to cylindrical and spherical coordinates.

9As identified in the footnote on Page 192
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The TE Field: The result of deriving the e.m. field, Eqs.(6.44)-(6.45), from the TE
potential in Eq.(6.76), together with the corresponding TE source, have
been consolidated into Table 6.1. Any e.m. field of the type exhibited

TE Potential TE Electric Field
Ax Ay Az φ Ex Ey Ez
∂ΦTE

∂y
−∂ΦTE

∂x
0 0 − ∂

∂y
∂ΦTE

∂t
∂
∂x

∂ΦTE

∂t
0

TE Source TE Magnetic Field
Jx Jy Jz ρ Bx By Bz

∂STE

∂y
−∂STE

∂x
0 0 ∂

∂x
∂ΦTE

∂z
∂
∂y

∂ΦTE

∂z
−
(
∂2

∂x2
+ ∂2

∂y2

)

ΦTE

Table 6.1: The TE system: The components of a TE e.m. field ( ~E, ~B) are

derived from a four-vector TE potential ( ~A, φ), a solution the inhomogeneous
Maxwell wave Eq.(6.52) on page 440. Its source is the divergenceless TE

charge density-flux four-vector ( ~J, ρ).

in this table is called purely transverse electric (TE). This is because

the electric field vector ~E is nonzero only in the transverse (x, y)-plane,
the plane perpendicular to the longitudinal direction, the z-axis. The
longitudinal electric field component,

Elong. ≡ Ez = 0 ,

of a TE electromagnetic field vanishes!

The TM Field: The result of deriving the e.m. field, Eqs.(6.44)-(6.45), from the TM
potential in Eq.(6.76), together with the corresponding TM source,
have been consolidated into Table 6.2. Any e.m. field of the type
exhibited in this table is called purely transverse magnetic (TM). This

is because the magnetic field vector ~B is nonzero only in the transverse
(x, y)-plane, the plane perpendicular to the longitudinal direction, the
z-axis: the longitudinal magnetic field component,

Blong. ≡ Bz = 0 ,

of a TM electromagnetic field vanishes!
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TM Potential TM Electric Field
Ax Ay Az φ Ex Ey Ez

0 0 ∂ΦTM

∂t
−∂ΦTM

∂z
∂
∂x

∂ΦTM

∂z
∂
∂y

∂ΦTM

∂z

(
∂2

∂z2
− ∂2

∂t2

)

ΦTM

TM Source TM Magnetic Field
Jx Jy Jz ρ Bx By Bz

0 0 ∂STM

∂t
−∂STM

∂z
∂
∂y

∂ΦTM

∂t
− ∂
∂x

∂ΦTM

∂t
0

Table 6.2: The TM system: The components of a TM e.m. field ( ~E, ~B) are

derived from a four-vector TM potential ( ~A, φ), a solution the inhomogeneous
Maxwell wave Eq.(6.52) on page 440. Its source is the divergenceless TM

charge density-flux four-vector ( ~J, ρ).

Remark. Note that the TM field is the same as the TE field except
that the roles of ~E and ~B are essentially reversed:

~E −→ − ~B
~B −→ ~E (whenever ΦTM satisfies the sourceless wave equation)

TEM Potential TEM Electric Field
Ax Ay Az φ Ex Ey Ez
∂Ψ
∂x

∂Ψ
∂y

∂Φ
∂z

−∂Φ
∂t

∂
∂x

∂(Φ−Ψ)
∂t

∂
∂y

∂(Φ−Ψ)
∂t

0

TEM Source TEM Magnetic Field
Jx Jy Jz ρ Bx By Bz

∂ITEM

∂x
∂ITEM

∂y
∂J
∂z

−∂J
∂t

∂
∂y

∂(Φ−Ψ)
∂z

− ∂
∂x

∂(Φ−Ψ)
∂z

0

Table 6.3: The TEM system: The components of a TEM e.m. field ( ~E, ~B)

are derived from a four-vector TEMpotential ( ~A, φ), a solution the inhomo-
geneous Maxwell wave Eq.(6.52) on page 440. Its source is the divergenceless

TEM charge flux-density four-vector ( ~J, ρ).

The TEM Field: The result of deriving the e.m. field, Eqs.(6.44)- (6.45), from the TEM
potential in Eq.(6.76), together with the corresponding TEM source,
have been consolidated into Table 6.3.

Any e.m. field of the type exhibited in the table is called purely trans-
verse electric and magnetic (TEM). This is because both the ~E field
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and the ~B field lie strictly in the trasverse (x, y)-plane. There are no
longitudinal components:

Elong. ≡ Ez = 0 and Blong. ≡ Bz = 0 . (6.77)

6.2.4 Cylindrical Coordinates

The benefits of the linear algebra viewpoint applied to Maxwell’s equations
can be extended by inspection from rectilinear cartesian to cylindrical coor-
dinates. This is because the four-dimensional coordinate system lends itself
to being decomposed into two orthogonal sets of coordinate surfaces. For
cylindricals these are spanned by the transverse coordinates (r, θ) in the
transverse plane, and the longitudinal coordinates (z, t) in the longitudinal
plane.

The transition from a rectilinear to a cylindrical coordinate frame is based
on the replacement of the following symbols:

dx −→ dr ; dy −→ rdθ (6.78)

∂

∂x
−→ ∂

∂r
;

∂

∂y
−→ 1

r

∂

∂θ
(6.79)

and

∂2

∂x2
+

∂2

∂y2
−→ 1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
. (6.80)

Such a replacement yields the vector field components relative to an or-
thonormal (o.n.) basis tangent to the coordinate lines. To emphasize this
orthonormality, hats (̂ ) are placed over the vector components.

This replacement is very powerful. It circumvents the necessity of having
to repeat the previous calculations that went into exhibiting the individual
components of Maxwell’s TE, TM , and TEM systems of equations. We
shall again take advantage of the power of this algorithm in the next section
when we apply it to Maxwell’s system relative to spherical coordinates.

Applying it within the context of cylindrical coordinates, one finds that
the source and the vector potential four-vectors are as follows:

1. for a TE source

(ρ, Ĵz, Ĵr, Ĵθ) =

(

0, 0,
1

r

∂STE

∂θ
,−∂S

TE

∂r

)

, (6.81)
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the solution to the Maxwell field equations has the form

(φ, Âz, Âr, Âθ) =

(

0, 0,
1

r

∂ΦTE

∂θ
,−∂Φ

TE

∂r

)

; (6.82)

2. for a TM source

(ρ, Ĵz, Ĵr, Ĵθ) =

(

−∂S
TM

∂z
,
∂STM

∂t
, 0, 0

)

, (6.83)

the solution to the Maxwell field equations has the form

(φ, Âz, Âr, Âθ) =

(

−∂Φ
TM

∂z
,
∂ΦTM

∂t
, 0, 0

)

; (6.84)

and

3. for a TEM source

(ρ, Ĵz, Ĵr, Ĵθ) =

(

−∂J
∂t

,
∂J

∂z
,
∂I

∂r
,
1

r

∂I

∂θ
,

)

, (6.85)

the solution to the Maxwell field equations has the form

(φ, Âz, Âr, Âθ) =

(

−∂Φ
∂t
,
∂Φ

∂z
,
∂Ψ

∂r
,
1

r

∂Ψ

∂θ

)

. (6.86)

The corresponding electromagnetic fields and their master scalar wave equa-
tions are then as follows:

The TE Field

The result of deriving the Maxwell TE electromagnetic field components
Eqs.(6.44)-(6.45) from the TE potential Eq.(6.82), arising from the corre-
sponding TE source – all relative to the o.n. cylindrical coordinate basis –
have been consolidated into Table 6.4.

The TE master scalar ΦTE from which this result is obtained satisfies the
wave equation

(
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
− ∂2

∂t2

)

ΦTE = −4πSTE . (6.87)
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TE Potential

Âr Âθ Âz φ
1
r
∂ΦTE

∂θ
−∂ΦTE

∂r
0 0

TE Electric Field

Êr Êθ Êz

−1
r
∂
∂θ

∂ΦTE

∂t
∂
∂r

∂ΦTE

∂t
0

TE Magnetic Field

B̂r B̂θ B̂z

∂
∂z

∂ΦTE

∂r
1
r
∂
∂θ

∂ΦTE

∂z
−
(

1
r
∂
∂r
r ∂
∂r

+ 1
r2

∂2

∂θ2

)

ΦTE

TE Source

Ĵr Ĵθ Ĵz ρ
1
r
∂STE

∂θ
−∂STE

∂r
0 0

Table 6.4: The TE system: All components of any TE e.m. field ( ~E, ~B), as

well as those of any four-vector TE potential ( ~A, φ), are derived from a single
master scalar function ΦTE. Its source scalar STE determines the vectorial
charge flux vector field, which is purely transverse, i.e. it is tangent to the
set of nested cylinders.

The TM Field

The result of deriving the TM electromagnetic field components Eqs.(6.44)-
(6.45) from the TM potential Eq.(6.84), arising from the corresponding TM
source – all relative to the o.n. cylindrical coordinate basis – have been
consolidated into Table 6.5.

The TM master scalar ΦTM for these results satisfies the wave equation

(
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
− ∂2

∂t2

)

ΦTM = −4πSTM . (6.88)

The TEM Field

The Maxwell TEM electromagnetic field components relative to the o.n.
cylindrical coordinate basis, the corresponding vector potential and its source
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TM Potential

Âr Âθ Âz φ

0 0 ∂ΦTM

∂t
−∂ΦTM

∂z

TM Electric Field

Êr Êθ Êz
∂
∂r

∂ΦTM

∂z
1
r
∂
∂θ

∂ΦTM

∂z

(
∂2

∂z2
− ∂2

∂t2

)

ΦTM

TM Magnetic Field

B̂r B̂θ B̂z

1
r
∂
∂θ

∂ΦTM

∂t
− ∂
∂r

∂ΦTM

∂t
0

TM Source

Ĵr Ĵθ Ĵz ρ

0 0 ∂r2STM

∂t
−∂r2STM

∂z

Table 6.5: The TM system: All components of any TM e.m. field ( ~E, ~B),

as well as those of any four-vector TM potential ( ~A, φ), are derived from
a single master scalar function ΦTM . Its source scalar STM determines the
vectorial charge flux vector field, which is purely longitudinal.

have been consolidated into Table 6.6.
The underlying master scalar is the difference function Φ−Ψ. It satisfies

the two separate equations. The first is an equation for the two-dimensional
amplitude profile in the transverse plane,

(
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2

)

(Φ−Ψ) = −4πJ . (6.89)

The second is the equation for the propagation of this profile along the z-
direction,

(
∂2

∂z2
− ∂2

∂t2

)

(Φ−Ψ) = 4πI . (6.90)

these two equations are consistent because the source satisfies the charge
conservation law

(
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2

)

I +

(
∂2

∂z2
− ∂2

∂t2

)

J = 0 ,
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TEM Potential

Âr Âθ Âz φ
∂Ψ
∂r

1
r
∂Ψ
∂θ

∂Φ
∂z

−∂Φ
∂t

TEM Electric Field

Êr Êθ Êz
∂
∂r

∂(Φ−Ψ)
∂t

1
r
∂
∂θ

∂(Φ−Ψ)
∂t

0

TEM Magnetic Field

B̂r B̂θ B̂z

1
r
∂
∂θ

∂(Φ−Ψ)
∂z

− ∂
∂θ

∂(Φ−Ψ)
∂z

0

TEM Source

Ĵr Ĵθ Ĵz ρ
∂I
∂r

1
r
∂I
∂θ

∂J
∂z

−∂J
∂t

Table 6.6: The TEM system: All components of any TEM e.m. field ( ~E, ~B)
are derived from a single master scalar function, the difference Φ−Ψ between
the two scalar functions. Even though both, separately, are necessary for the
definition of the TEM vector potential ( ~A, φ), it is only their difference which
is determined by an inhomogeneous Poisson equation and an inhomogeneous
wave equation, Eqs.(6.89) and (6.90).

which is the polar coordinate version of Eq.(6.68).

6.2.5 Spherical Coordinates

One of the chief virtues of the linear algebra viewpoint applied to Maxwell’s
equations is that it directs attention to the system’s fundamental vector
spaces and their properties. The easiest way to identify them in a compu-
tational way happens when the underlying coordinate system permits a 2+2
decomposition into what amounts to longitudinal and transverse surfaces.
Spherical coordinates provide a nontrivial example of this. There a trans-
verse surface is a sphere spanned by (θ, φ), while the longitudinal coordinates
are (r, t).

The distinguishing feature of spherical coordinates, as compared to recti-
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linear or cylindrical coordinates, is that coordinate rectangles on successive
transverse surfaces (nested spheres) are not congruent. Instead, they have
areas that scale with the square of the radial distance from the origin. This
scaling alters the representation of the divergence of a vector field and hence
the Maxwell wave operator. Nevertheless, the eigenvalue method with its
resulting TE-TM-TEM decomposition of the e.m. field readily accomodates
these alterations.

Left Null Space

The key to success is to identify the divergence

∂ρ

∂t
+∇ · ~J = 0

as an element of the to-be-diagonalized Maxwell wave operator. Relative to
the o.n. spherical coordinate basis { ∂

∂r
, 1
r
∂
∂θ
, 1
r sin θ

∂
∂ϕ
} one has

∂t(1 · ρ) +
1

r2
∂r(r

2 · Ĵr) +
1

r sin θ
∂θ(sin θ · Ĵθ) +

1

r sin θ
∂ϕ(1 · Ĵφ) = 0 (6.91)

or

~UTℓ







ρ

Ĵr
Ĵθ
Ĵϕ






= 0 .

(6.92)

Here

~UTℓ = [∂t
1

r2
∂rr

2 1

r sin θ
∂θ sin θ

1

r sin θ
∂ϕ] (6.93)

is the left nullspace element of A, the spherical representative of Eq.(6.50) on
page 439. By inspecting the above four-dimensional divergence expression
one readily identifies the following three divergenceless independent 4-vector
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fields











ρ

Ĵr

Ĵθ

Ĵϕ











=







0
0

1
r sin θ

∂STE

∂ϕ

−1
r
∂STE

∂θ






,










− 1
r2
∂ (r2STM )

∂r

1
r2
∂ (r2STM )

∂t

0
0










,









0

0
1
r
∂ I
∂θ

1
r sin θ

∂I
∂ϕ









+










− 1
r2
∂ (r2J)
∂t

1
r2
∂ (r2J)
∂r

0
0










.

(6.94)
Here STE and STM are arbitrary scalar functions, while J and I are required
to satisfy

∂2(r2J)

∂r2
− ∂2(r2J)

∂t2
+

(
1

sin θ

∂

∂θ
sin θ

∂ I

∂θ
+

1

sin2 θ

∂2I

∂ϕ2

)

= 0 ,

the spherical coordinate version of Eq.(6.68)

Eigenvector Fields

According to the method of eigenvalues and eigenvectors we wish to arrive
at a solution to

A







φ

Âr
Âθ
Âϕ






= 4π







ρ

Ĵr
Ĵθ
Ĵϕ







(6.95)

in terms of those eigenvectors of Maxwell’s wave operator A which are pro-
portional to the divergenceless sources in Eq.(6.94). We achieve this goal by
first validating that the vector fields







φ

Âr
Âθ
Âϕ






=







0
0

1
r sin θ

∂ϕΦ
TE

−1
r
∂θΦ

TE







︸ ︷︷ ︸

≡~V(1)ΦTE

,







−∂r ΦTM

∂t Φ
TM

0
0







︸ ︷︷ ︸

≡~V(2)ΦTM

,







0
0

1
r
∂θ Ψ

1
r sin θ

∂ϕΨ






+







−∂t Φ
∂r Φ
0
0







︸ ︷︷ ︸

≡ ~W(3)Ψ+ ~W(4)Φ

.

(6.96)
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are invariant under A, i.e. there exist functions F TE, F TM , G and H such
that

A~V (1)ΦTE = α~V (1)F TE (6.97)

A~V (2)ΦTM = β~V (2)F TM (6.98)

A[ ~W (3)Ψ+ ~W (4)Φ] = γ ~W (3)G+ δ ~W (4)H , (6.99)

where α, β, γ, and δ are unique coefficients which are determined by A. The
verification of the form of these three equations and the determination of
their scalars F TE, F TM , G and H in terms of ΦTE,ΦTM ,Φ and Ψ is not
unfamiliar. It constitutes relative to spherical coordinates what was done in
Section 6.2.3 on page 446 relative to cartesian coordinates.

There, we recall, we diagonalized the operator A by exhibiting the TE,
TM, and the TEM eigenvector fields and their respective eigenvalues, all rel-
ative to cartesian coordinates. Here we shall do the same relative to spherical
coordinates.

At first sight this seems like a computationally intense task, especially
because one has to calculate the curl of a curl, ∇ × ∇ × ~A, in Eq.(6.47)
relative to these coordinates. However, the task becomes managable, in fact,
downright pleasant, if one extends to curvilinear coordinates the familiar
determinantal expression for the curl,

∇× ~A =

∣
∣
∣
∣
∣
∣

~i ~j ~k
∂x ∂y ∂z
Ax Ay Az

∣
∣
∣
∣
∣
∣

.

Suppose one has orthogonal curvilinear coordinates (x1, x2, x3) whose scale
factors are hi(x

1, x2, x3), i = 1, 2, 3. Then one has

dx2 + dy2 + dz2 = h21(dx
1)2 + h22(dx

2)2 + h23(dx
3)2 ,

and the determinantal expression for the curl is10

∇× ~A =

∣
∣
∣
∣
∣
∣

h1~e1 h2~e2 h3~e3
∂x1 ∂x2 ∂x3

h1Â1 h2Â2 h3Â3

∣
∣
∣
∣
∣
∣

1

h1h2h3
.

10This result is a consequence of Stoke’s theorem applied to infinitesimal elements of
area expressed in terms of these curvilinear coordinates.



458 CHAPTER 6. PARTIAL DIFFERENTIAL EQUATIONS

Here ~e1, ~e2, ~e3 are the o.n. basis vectors tangent to the coordinate lines, and
Â1, Â2, Â3 are the components of ~A relative to this o.n. basis. Relative to
spherical coordinates one has therefore

dx2 + dy2 + dz2 = dr2 + r2dθ2 + r2 sin2 θ dϕ2

and

∇× ~A =

∣
∣
∣
∣
∣
∣

~er r~eθ r sin θ ~eϕ
∂r ∂θ ∂ϕ
Âr rÂθ r sin θ Âϕ

∣
∣
∣
∣
∣
∣

1

r2 sin θ
. (6.100)

To exhibit the TE, TM, and TEM eigenvector fields, one inserts each of the
vector potential four-vector fields, Eq.(6.96) into Eqs.(6.47) on page 438 and
uses Eq.(6.100). One also uses the corresponding sources, Eq.(6.94). The
result is as follows:

TE:







0
0

1
r sin θ

∂ϕ
−1
r
∂θ







{

−∂2t + ∂2r +
1

r2

(
1

sin θ
∂θ sin θ ∂θ +

1

sin2 θ

)}

ΦTE

= 4π







0
0

1
r sin θ

∂ϕ
−1
r
∂θ






STE , (6.101)

TM:

1

r2







∂r
−∂t
0
0






r2
{

−∂2t + ∂2r +
1

r2

(
1

sin θ
∂θ sin θ ∂θ +

1

sin2 θ

)}

ΦTM

= 4π
1

r2







−∂r
∂t
0
0







(
r2STM

)
, (6.102)
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TEM:







0
0

1
r
∂θ

1
r sin θ

∂ϕ







{
−∂2t + ∂2r

}
(Φ−Ψ) = 4π







0
0

1
r
∂θ

1
r sin θ

∂ϕ






I

(6.103)

−1
r2







−∂t
∂r
0
0







(
1

sin θ
∂θ sin θ ∂θ +

1

sin2 θ

)

(Φ−Ψ) = 4π
1

r2







−∂t
∂r
0
0






J .

(6.104)

These three systems of vector field equations constitute a step forward in
one’s understanding of Maxwell’s equations. This is because each system,
which can be integrated by inspection, yields three master wave equations
which

1. are decoupled and hence independent,

2. are inhomogeneous scalar wave equations, each one with its own scalar
source,

3. can be solved with the methods developed in Chpter 5 and 6,

4. have solutions from which one derives the three (TE, TM, and TEM)
types e.m. fields corresponding to the three types of concomitant e.m.
sources.



460 CHAPTER 6. PARTIAL DIFFERENTIAL EQUATIONS

These three master scalar equations are

TE:

{

−∂2t + ∂2r +
1

r2

(
1

sin θ
∂θ sin θ ∂θ +

1

sin2 θ
∂2ϕ

)}

ΦTE = −4πSTE

(6.105)

TM:

{

−∂2t + ∂2r +
1

r2

(
1

sin θ
∂θ sin θ ∂θ +

1

sin2 θ
∂2ϕ

)}

ΦTM = −4πSTM

(6.106)

TEM:
(
−∂2t + ∂2r

)
(Φ−Ψ) = +4πI

(6.107)
(

1

sin θ
∂θ sin θ ∂θ +

1

sin2 θ
∂2ϕ

)

(Φ−Ψ) = −4πJ
(6.108)

The TEM system results in a pair coupled differential equations. However,
they are integrable. Their source functions satisfy

(
−∂2t + ∂2r

)
(r2J) = −

(
1

sin θ
∂θ sin θ ∂θ +

1

sin2 θ

)

I . (6.109)

This is because the left nullspace element ~UTℓ , Eq.(6.93), annihilates the
sum of the two TEM vectors, Eqs.(6.103) and (6.104). This guarantees that
one can find a function Φ − Ψ which satisfies Eqs.(6.107) and (6.108). The
validation of this claim is consigned to Exercise 6.2.7 on page 469.

Whereas the TE and the TM systems are characterized by a single wave
equation in 3+1 dimensions, the TEM system is characterized by two dif-
ferent problems in the form of two independent equations:

• A potential problem expressed by Poisson’s equation on the transverse
(θ, φ)-surface, and

• a wave propagation problem expressed by the wave equation on the
longitudinal (r, t)-plane.

The domain of these two problems are orthogonal and independent, but their
solutions are not. In fact, they are one and the same. This means that the
existence of a solution Φ − Ψ implies that the source scalars J and I are
not independent either. Instead, they are related so as to guarantee that the
law of charge conservation ~∇ · ~J + ∂ρ

∂t
= 0, i.e. Eq.(6.109), is satisfied.

Conversely, as shown in Exercise 6.2.7, this conservation law implies the
existence of a solution, Φ−Ψ, to the two differential equations.
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6.2.6 Electromagnetic Fields in a Spherical Coordinate
System

TE Potential

Âθ Âφ Âr φ
1

r sin θ
∂ΦTE

∂φ
−1
r
∂ΦTE

∂θ
0 0

TE Electric Field

Êθ Êφ Êr

− 1
r sin θ

∂
∂φ

∂ΦTE

∂t
1
r
∂
∂θ

∂ΦTE

∂t
0

TE Magnetic Field

B̂θ B̂φ B̂r

1
r
∂
∂θ

∂ΦTE

∂r
1

r sin θ
∂
∂φ

∂ΦTE

∂r
− 1
r2

(
1

sin θ
∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂φ2

)

ΦTE

TE Source

Ĵθ Ĵφ Ĵr ρ
1

r sin θ
∂STE

∂φ
−1
r
∂STE

∂θ
0 0

Table 6.7: The TE system: All components of any TE e.m. field ( ~E, ~B), as

well as those of any four-vector TE potential ( ~A, φ), are derived from a single
master scalar function ΦTE. Its source scalar STE determines the vectorial
charge flux vector field. It is purely transverse: it is tangent to the set of
nested two-spheres.

A spherical coordinate system induces a decomposition into a set of nested
transverse manifolds (concentric spheres) spanned by the angular coordinates
and a longitudinal manifold spanned by the radial and the time cordinates.

Such a coordinate decomposition induces a corresponding one in the
Maxwell field equation. Following our experience with cylindrical coordi-
nates, we make a corresponding transition to spherical coordinates according
to the following heuristic replacement recipe:

dx→ rdθ; dy → r sin θ dφ; dz → dr; dt→ dt

∂

∂x
→ 1

r

∂

∂θ
;

∂

∂y
→ 1

r sin θ

∂

∂φ
;

∂

∂z
→ ∂

∂r
;

∂

∂t
→ ∂

∂t
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TM Potential

Âθ Âφ Âr φ

0 0 ∂ΦTM

∂t
−∂ΦTM

∂r

TM Electric Field

Êθ Êφ Êr
1
r
∂
∂θ

∂ΦTM

∂r
1

r sin θ
∂
∂φ

∂ΦTM

∂r

(
∂2

∂r2
− ∂2

∂t2

)

ΦTM

TM Magnetic Field

B̂θ B̂φ B̂r

1
r sin θ

∂
∂φ

∂ΦTM

∂t
−1
r
∂
∂θ

∂ΦTM

∂t
0

TM Source

Ĵθ Ĵφ Ĵr ρ

0 0 1
r2
∂r2STM

∂t
− 1
r2
∂r2STM

∂r

Table 6.8: The TM system: All components of any TM e.m. field ( ~E, ~B),

as well as those of any four-vector TM potential ( ~A, φ), are derived from
a single master scalar function ΦTM . Its source scalar STM determines the
vectorial charge flux vector field, which is purely longitudinal.

and

∂2

∂x2
+

∂2

∂y2
→ 1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)

As already mentioned, once the cartesian components of Maxwell’s TE, TM ,
and TEM system have been exhibited explicitly, one can apply this recipe
also to spherical coordinates. The results are given in Tables 6.7, 6.8, and
6.9 respectively.

The recipe guarantees that all electric and magnetic field components in
these tables satisfy the first half, Eq.(6.40)-(6.41), of Maxwell’s field equa-
tions. Furthermore, the application of this recipe to the TE, TM , and
TEM cartesian master scalar Eqs.(6.72), (6.73), (6.74), and (6.75), yields
Eqs.(6.105)-(6.108), the corresponding master equations relative to spherical
coordinates. The above replacement recipe applies to the e.m. field and its
vector potential.

However, the relation between the concentric spheres introduces the squared
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TEM Potential

Âθ Âφ Âr φ
1
r
∂Ψ
∂θ

1
r sin θ

∂Ψ
∂φ

∂Φ
∂r

−∂Φ
∂t

TEM Electric Field

Êθ Êφ Êr
1
r
∂
∂θ

∂(Φ−Ψ)
∂t

1
r sin θ

∂
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TEM Magnetic Field
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1
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∂
∂φ

∂(Φ−Ψ)
∂r
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r
∂
∂θ

∂(Φ−Ψ)
∂r

0

TEM Source

Ĵθ Ĵφ Ĵr ρ
1
r
∂I
∂θ

1
r2

1
r sin θ

∂I
∂φ

1
r2

∂J
∂r

1
r2

−∂J
∂t

1
r2

Table 6.9: The TEM system: All components of any TEM e.m. field ( ~E, ~B)
are derived from a single master scalar function, the difference Ψ−Φ between
the two scalar functions. Even though both, separately, are necessary for the
definition of the TEM vector potential ( ~A, φ), it is only their difference which
is determined by an inhomogeneous Poisson equation and an inhomogeneous
wave equation, Eqs.(6.107) and (6.108).

radius as a conformal factor between their squared elements of arclength and
hence their areas. This conformal factor enters only into the the TM source
and the longitudinal part of the TEM source, and hence does not seem to be
under the purview of the above recipe. It is, however, taken into account by
the explicit calculations that lead to Eqs.(6.101)-(6.108).

Exercise 6.2.2 (Existence and Uniqueness of the 2+2 Decomposition)
a) Exhibit the partial differential equation which each of the scalars Φ, · · · ,ΦTM

satisfies, point out why each solution is unique and hence why

[φ,Az, Ax, Ay]
T ↔ (Φ,ΦTE ,Ψ,ΦTM ) (6.110)

is a one-to-one mapping.
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Solution: Given [φ,Az, Ax, Ay]
T , one has the following system of equations

for the scalars Φ and ΦTE ,

∂Φ

∂x
+
∂ΦTE

∂y
= Ax (6.111)

∂Φ

∂y
− ∂ΦTE

∂x
= Ay . (6.112)

Taking the two-dimensional curl and divergence of this system, one finds

∂2ΦTE

∂x2
+
∂2ΦTE

∂y2
=
∂Ax
∂y
− ∂Ay

∂x
(6.113)

∂2Φ

∂x2
+
∂2Φ

∂y2
=
∂Ax
∂x

+
∂Ay
∂y

. (6.114)

With appropriate boundary conditions in the x-y plane, these 2-d Poisson
equations have unique scalar solutions ΦTE and Φ. Similarly one obtains

∂2ΦTM

∂t2
− ∂2ΦTM

∂z2
=
∂Az
∂t

+
∂φ

∂z
(6.115)

∂2Ψ

∂z2
− ∂2Ψ

∂t2
=
∂Az
∂z

+
∂φ

∂t
. (6.116)

(6.117)

With appropriate initial conditions in the z-t plane, these inhomogeneous
2-d wave equations have unique scalar solutions ΦTM and Ψ.

On the other hand, given the four scalar fields, Eq.(6.64) implies the unique
four-vector field (φ, ~A). Thus Eq.(6.110) is a one-to-one mapping indeed.

b) Point out why the four vectors












0
0
∂y
−∂x






,







−∂z
∂t
0
0






,







−∂t
∂z
0
0






,







0
0
∂x
∂y













(6.118)

form a linearly independent set, i.e. why the only solution to






0
0
∂y
−∂x






ΦTE +







−∂z
∂t
0
0






ΦTM +







−∂t
∂z
0
0






Φ+







0
0
∂x
∂y






Ψ =







0
0
0
0







(6.119)

is the trivial one, ΦTE = ΦTM = Φ = Ψ ≡ 0 .
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c) Show that the set of vectors






~V(1) =







0
0
∂y
−∂x






, ~V(2) =







−∂z
∂t
0
0






, ~V(3) =







∂tc
−∂zc
∂xd
∂yd






, ~Ur =







−∂t
∂z
∂x
∂y













,

(6.120)
where

c = ∂2x + ∂2y (6.121)

and

d = ∂2z − ∂2t , (6.122)

also forms a linearly independent set.

Exercise 6.2.3 (TE SCALAR WAVE EQUATION: ITS MAXWELL ORIGIN)
Consider a TE e.m. potential and its source,

[φ,Az, Ax, Ay] = [0, 0, ∂yΦ
TE ,−∂xΦTE ] (6.123)

[ρ, Jz, Jx, Jy] = [0, 0, ∂yS
TE ,−∂xSTE ] . (6.124)

a) Which two of the Maxwell field equations

∇ · ~E = 4πρ

∇× ~B − ∂t ~E = 4π ~J

are satisfied trivially (0 = 0), and which imply the nontrivial result

∂

∂y
{· · · }TE = 0

∂

∂x
{· · · }TE = 0 ?

b) What is {· · · }TE?

Solution.

a) Introducing the ~E-field, the ~B-field, and the charge flux-density ( ~J, ρ)
into Eqs.(6.42) and (6.43) yields the following results:

∇ · ~E = 4πρ : 0 = 0

(∇× ~B)z −
∂Ez
∂t

= 4πJz: 0 = 0
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(∇× ~B)x −
∂Ex
∂t

= 4πJx :

∂

∂y
(−)

(
∂2ΦTE

∂x2
+
∂2ΦTE

∂y2

)

− ∂

∂z

(
∂

∂y

∂ΦTE

∂z

)

− ∂

∂t

(
∂

∂y
(−)∂Φ

TE

∂t

)

= 4π
∂STE

∂y

or equivalently

∂

∂y

{
(∂2x + ∂2y + ∂2z − ∂2t )ΦTE + 4πSTE

}
= 0 . (6.125)

Similarly, and finally,

(∇× ~B)y −
∂Ey
∂t

= 4πJy

yields
∂

∂x

{
(∂2x + ∂2y + ∂2z − ∂2t )ΦTE + 4πSTE

}
= 0. (6.126)

b) {· · · }TE ≡
(
∂2x + ∂2y + ∂2z − ∂2t

)
ΦTE + 4πSTE .

Exercise 6.2.4 (TM SCALAR WAVE EQUATION: ITS MAXWELL ORIGIN)
Consider a TM e.m. potential and its source,

[φ,Az, Ax, Ay] = [0, 0, ∂yΦ
TM ,−∂xΦTM ] (6.127)

[ρ, Jz, Jx, Jy] = [0, 0, ∂yS
TM ,−∂xSTM ] . (6.128)

a) Which two of the Maxwell field equations

∇ · ~E = 4πρ

∇× ~B − ∂t ~E = 4π ~J

are satisfied trivially (0 = 0), and which imply the nontrivial result

∂

∂z
{· · · }TM = 0

∂

∂t
{· · · }TM = 0 ?

b) What is {· · · }TM?
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Solution.

a) Introducing the ~E-field, the ~B-field, and the charge flux-density ( ~J, ρ)
into Eqs.(6.42) and (6.43) yields the following result:

∇ · ~E = 4πρ :
∂

∂z

{
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− ∂2

∂t2

}

ΦTM = −4π∂S
TM

∂z

or equivalently

∂

∂z

{
(∂2x + ∂2y + ∂2z − ∂2t )ΦTM + 4πSTM

}
= 0 .

(6.129)

(∇× ~B)x −
∂Ex
∂t

= 4πJx: 0 = 0

(∇× ~B)y −
∂Ey
∂t

= 4πJy : 0 = 0

(∇× ~B)z −
∂Ez
∂t

= 4πJz :

∂

∂x
(−)∂

2ΦTM

∂x ∂t
− ∂

∂y

∂2ΦTM

∂y ∂t

− ∂

∂t

(
∂2

∂z2
− ∂2

∂t2

)

ΦTM = 4π
∂STM

∂t

or equivalently

∂

∂t

{
(∂2x + ∂2y + ∂2z − ∂2t )ΦTM + 4πSTM

}
= 0 . (6.130)

b) {· · · }TM ≡
(
∂2x + ∂2y + ∂2z − ∂2t

)
ΦTM + 4πSTM .

Exercise 6.2.5 (TEM SCALAR WAVE EQUATIONS: THEIR MAXWELL ORIGIN)
Consider a TEM e.m. potential and its source,

[φ,Az, Ax, Ay] = [−∂tΦ, ∂zΦ, ∂xΨ, ∂yΨ] (6.131)

[ρ, Jz, Jx, Jy] = [−∂tJ, ∂zJ, ∂xI, ∂yI] . (6.132)

a) Which two of the Maxwell field equations

∇ · ~E = 4πρ

∇× ~B − ∂t ~E = 4π ~J
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imply

∂

∂t
{· · · }TEM = 0

∂

∂z
{· · · }TEM = 0 ,

and which two imply

∂

∂x
[· · · ]TEM = 0

∂

∂y
[· · · ]TEM = 0 ?

b) What is {· · · }TEM? What is [· · · ]TEM?

Solution.

a) Introducing the ~E-field, the ~B-field, and the charge flux-density ( ~J, ρ)
into Eqs.(6.42) and (6.43) yields the following result:

∇ · ~E = 4πρ :
∂

∂t

(
∂2

∂x2
+

∂2

∂y2

)

(Φ−Ψ) = 4π(−)∂J
∂t
(6.133)

(∇× ~B)z −
∂Ez
∂t

= 4πJz : −
∂

∂z

(
∂2

∂x2
+

∂2

∂y2

)

(Φ−Ψ) = 4π
∂J

∂z
(6.134)

(∇× ~B)x −
∂Ex
∂t

= 4πJx :
∂

∂x

(
∂2

∂z2
− ∂2

∂t2

)

(Φ−Ψ) = 4π
∂I

∂x
(6.135)

(∇× ~B)y −
∂Ey
∂t

= 4πJy :
∂

∂y

(
∂2

∂z2
− ∂2

∂t2

)

(Φ−Ψ) = 4π
∂I

∂y
(6.136)

b) {· · · }TEM ≡
(
∂2x + ∂2y

)
(Φ−Ψ) + 4πJ ;

[· · · ]TEM ≡
(
∂2z − ∂2t

)
(Φ−Ψ)− 4πI.

Exercise 6.2.6 (TE, TM, AND TEM SCALAR WAVE EQUATIONS)
Point out why the previous three exercises imply

(
∂2x + ∂2y + ∂2z − ∂2t

)
ΦTE = −4πSTE (6.137)

(
∂2x + ∂2y + ∂2z − ∂2t

)
ΦTM = −4πSTM (6.138)

and

(∂2x + ∂2y)(Φ−Ψ) = −4πJ (6.139)

(∂2z − ∂2t )(Φ−Ψ) = +4πI . (6.140)
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Exercise 6.2.7 (TEM MASTER SCALAR SYSTEM IS INTEGRABLE)
Show that if I and J satisfy Eq.(6.68) then there exists a scalar, call it Φ − Ψ,
such that Eqs.(6.139) and (6.140) are satisfied.
Hint: Use Green’s function.

Exercise 6.2.8 (MAGNETIC DIPOLE MOMENT AS A TE FIELD SOURCE)
The total energy of a charge flux and charge density distribution ( ~J, ρ) interacting

with the electromagnetic potential ( ~A, φ) is

W =
1

2

∫ ∫ ∫

( ~J · ~A+ ρφ)d3x .

(Nota bene: This energy is the work which an external agent expends to assem-
ble such a distribution against the quasistatic electric and magnetic force fields
generated by the distribution at any moment of time.)

a) Show that for the Transverse Electric vector potential in Eq.(6.76), this
energy is

W =
1

2

∫ ∫ ∫

STEBzd
3x .

Comment. If one assumes that the TE source density STE is localized to such a
small region that the magnetic field Bz is constant across it, then

W =
1

2
BzM .

Here

M =

∫ ∫ ∫

STEd3x

is called the magnetic dipole moment along the z-axis, and STE is the magnetic

moment density, also known as the magnetization along the z-direction.

b) Let

θ(x) =

{
1 0 ≤ x
0 x < 0

(6.141)

be the Heaviside unit step function so that

dθ

dx
= δ(x)

is the Dirac delta function.
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Consider a charge flux distribution confined to the boundary of a rectangular
cylinder,

Jx =+ J(z, t)θ(x)θ(L1 − x) [δ(y)θ(L2 − y)− θ(y)δ(L2 − y)]
Jy =− J(z, t)θ(y)θ(L2 − y) [δ(x)θ(L1 − x)− θ(x)δ(L1 − x)]
Jz =0

ρ =0 .

x

y

z

I(t)

I(t)

I(t)

I(t)

L1

L2

Figure 6.5: Current distributed in the form of a rectangular loop of
aerea L1L2. This loop has linear current density J(z, t) = I(t) δ(z).

(i) Show that it satisfies the conservation law, Eq.(6.53).

(ii) Find the magnetic dipole density STE .

Answer: STE = J(z, t) θ(x)θ(L1 − x)θ(y)θ(L2 − y).

(iii) Point out why the magnetic moment is

M = I ×Area
where Area = L1L2 and

I(t) =

∫

J(z, t) dz

is the current circulating around the rectangular boundary. The linear cur-
rent density exemplified in Figure 6.5 has the form J(z, t) = I(t) δ(z).
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Exercise 6.2.9 (ELECTRIC DIPOLE AS A SOURCE OF TM RADIATION)
Consider the rate at which a given external agent does work on two charges q1 and
q2 in order to keep them on their symmetrically placed trajectories

~X(t) = (0, 0, Z(t)) (6.142)

and

− ~X(t) = (0, 0,−Z(t)) . (6.143)

q1 q2

z = Z(t)z = − Z(t)

z

t

Figure 6.6: Spacetime trajectories of two charges, q1 = −q and q2 = q, sym-
metrically placed and moving into opposite directions.Their dipole moment
is q × (separation) = 2qZ(t).

Given that they move in an environment having an electric field ~E(x, y, z, t),
the power expended by this agent is

d(Energy)

dt
= q2

d ~X(t)

dt
· ~E(0, 0, Z(t), t)− q1

d ~X(t)

dt
· ~E(0, 0,−Z(t), t) (6.144)

=

∫ ∫ ∫

~J(x, y, z, t) · ~E(x, y, z, t) d3x (6.145)

where

~J(x, y, z, t) = δ(x)δ(y)

[

q2 δ (z − Z(t))
d ~X

dt
− q1 δ (z + Z(t))

d ~X

dt

]

. (6.146)
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is the total charge flux vector due to these two charges.

a) Taking advantage of linear superposition, find the charge flux-density four-
vector (Jx, Jy, Jz, ρ) such that it expresses the conservation of charge,

~∇ · ~J +
∂ρ

∂t
= 0

Answer: Jx = 0

Jy = 0

Jz = q2
dZ(t)

dt
δ(x)δ(y)δ(z − Z(t))− q1

dZ(t)

dt
δ(x)δ(y)δ(z + Z(t))

ρ = q2 δ(x)δ(y)δ(z − Z(t)) + q1 δ(x)δ(y)δ(z + Z(t))

Note: Even though we shall (in compliance with physical observations)
ultimately set

q2 = −q1 ≡ q , (6.147)

it is somewhat easier to keep track of distinguishing contributions to
the charge flux vector ~J by assigning correspondingly distinguishing
labels to them.

b) Show that there exists a function STM such that

Jz =
∂STM

∂t
, ρ = −∂S

TM

∂z
.

Do this by expressing the answer in terms of the Heaviside unit step function
θ, Eq.(6.141), on page 469.

Answer: STM = −δ(x)δ(y) [q2 θ (z − Z(t)) + q1 θ (z + Z(t))]

c) In compliance with the observation of many cases of interest, assume that
the fractional temporal rate of change of Ez is neglegibly small compared to
that of Z(t):

1

Ez

∂Ez
∂t
≪ 1

Z

∂Z

∂t
=

1

STM
∂STM

∂t

In light of this observation, point out why the power expended by the ex-
ternal agent, Eq.(6.145), can be written as

d(Energy)

dt
=

d

dt

∫ ∫ ∫

STMEz d
3x . (6.148)
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d) Designating
∫ ∫ ∫

STMEz d
3x as the energy of the (q1, q2)-system, exhibit

(i) its form whenever q2 = −q1 ≡ q, Eq.(6.147), as well as
(ii) its explicit value when in addition Ez is constant on [−Z,Z], the sup-

port of STM , i.e.

∂Ez
∂z
|Z(t)| ≪ Ez . (6.149)

Answer:

(i)
∫ ∫ ∫

STMEz d
3x =

∫ ∫ ∫
(−)δ(x)δ(y)q [θ (z − Z(t))− θ (z + Z(t))]Ez d

3x

(ii)
[∫ ∫ ∫

STM d3x
]
Ez(0, 0, 0, t0)

where
∫ ∫ ∫

STM d3x = 2Z(t)q is the “dipole moment” of the system.

Comment: The quantity
∫ ∫ ∫

STM d3x is called the dipole moment of the “mi-
croscopic” [as identified by the inequality (6.149)] (q1, q2)-system. The function

STM (x, y, z, t) =
(dipole moment)

(volume)

is called its dipole moment density, and ~Ez(0, 0, 0, t0) is the electric field at the
location of the system.
Comment: If one has an aggregate of such systems, then their total energy is their
sum. Under suitable circumstances it can be approximated by the integral

∫ ∫ ∫

STM (x, y, z, t)Ez(x, y, z, t0) d
3x

(

=

∫ ∫ ∫

~J · ~E d3x
)

where Ez(x, y, z, t0) refers to the average electric field associated with the micro-
scopic dipole moment centered around (x, y, z).
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APPENDIX

YOU AND YOUR RESEARCH:

A stroke of genius: striving for greatness in

all you do
by

Richard W. Hamming

Little has been written on managing your own research (and very little
on avoiding other people managing your research); However, your research
is much more under your control than you may realize.

We are concerned with great research here. Work that will get wide recog-
nition, perhaps even win a Nobel Prize. As most people realize, the average
paper is read by the author, the referee, and perhaps one other person. Clas-
sic papers are read by thousands. We are concerned with research that will
matter in the long run and become more than a footnote in history.

If you are to do important work then you must work on the right problem
at the right time in the right way. Without any one of the three, you may
do good work but you will almost certainly miss real greatness.

Greatness is a matter of style. For example, after learning the elements of
painting, you study under a master. While studying you pay attention what
the master says in discussing your work, but you know if you are to achieve
greatness then you must find your own style. Furthermore, a successful style
in one age is not necessarily appropriate for another age. Cubism would not
have gone over big during the realism period.

Similarly, there is no simple formula for doing great science or engineering,
I can only talk around the topic. The topic is important because, so far
as we have any solid evidence, you have but one life to live. Under these
circumstances it seems better to live a life in which you do important things
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(important in your eyes, of course) than to merely live out your life. No
sense in frittering away your life on things that will not even appear in the
footnotes.

Choosing the problem

I begin with the choice of problem. Most scientists spend their time working
on problems that even they admit are neither great or are likely to lead to
great work; hence, almost surely, they will not do important work. Note that
importance of the results of a solution does not make the problem important.
In all the 30 years I spent at Bell Telephone Laboratories (before it was
broken up) no one to my knowledge worked on time travel, teleportation,
or antigravity. Why? Because they had no attack on the problem. Thus
an important aspect of any problem is that you have a good attack, a good
starting place, some reasonable idea on how to begin.

To illustrate, consider my experience at BTL (Bell Telephone Laborato-
ries). For the first few years I ate lunch with the mathematicians. I soon
found that they were more interested in fun and games than in serious work,
so I shifted to eating with the physics table. There I stayed for a number
of years until the Nobel Prize, promotions, and offers from other companies
removed most of the interesting people. So I shifted to the corresponding
chemistry table, where I had a friend.

At first I asked what were the important problems in chemistry, then
what important problems they were working on, problems that might lead
to important results. One day I asked, “If what they were working on was
not important, and was not likely to lead to important things, then why were
they working on them?” After that I had to eat with the engineers!

About four months later my friend stopped me in the hall and remarked
that my question had bothered him. He had spent the summer thinking
about the important problems in his area, and while he had not changed
his research he thought it was well worth the effort. I thanked him and
kept walking. A few weeks later I noticed that he was made head of the
department. Many years later he became a member of the National Academy
of Engineering. The one person who could hear the question went on to do
important things, and all the others – so far as I know– did not do anything
worth public attention.

There are many right problems, but very few people search carefully for
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them. Rather they simply drift along doing what comes to them, following
the easiest path to tomorrow. Great scientists spend a lot of time and effort
examining the important problems in their field. Many have a list of 10 to 20
problems that might be important if they had a decent attack. As a result,
when they notice something new that they had not known but seems to be
relevant, then they are prepared to turn to the corresponding problem, work
on it and get there first.

Some people work with their doors open in clear view of those who pass
by, while others protect themselves from interruptions. those with the door
open get less work done each day, but those with their door closed tend not
to know what to work on, nor are they apt to hear the clues to the missing
piece to one of their “list” problems. I cannot prove that the open door
produces the open mind, or the other way around. I can only observe the
correlation. I suspect that each reinforces the other, that an open door will
more likely lead you to important problems than will a closed door.

Hard work is a trait which most scientists have. Edison said that genius
was 99 % perspiration and 1 % inspiration. Newton said that if others worked
as hard as he did then they would get similar results. Hard work is necessary
but it is not sufficient. Most people do not work as hard as they easily could.
However, many who do work hard – work on the wrong problem, at the
wrong time, in the wrong way, and have very little to show for it.

You are all aware that frequently more than one person starts working
on the same problem at about the same time. In biology, both Darwin and
Wallace had the idea of evolution at about the same time. In the area of
special relativity, many people besides Einstein were working on it, including
Poincaré. However, Einstein worked on it in the right way.

The first person to produce definite results generally gets all the credit.
Those who come in second are soon forgotten. Thus working on the problem
at the right time is essential. Einstein tried to find a unified theory, spent
most of his later life working on it, and died in a hospital still working on it
with no significant results. Apparently he attacked the problem too early, or
perhaps it was the wrong problem.

There are a pair of errors that are often made when working on what you
think is the right problem at the right time. One is to give up too soon, the
other is to persist and never get any results. The second is quite common.
Obviously. if you start on the wrong problem and refuse to give up, you are
automatically condemned to waste the rest of your life (see Einstein above).
Knowing when to persist is not easy—if you are wrong then you are stubborn;
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but, you turn out to be right, then you are strong willed.
I now turn to the major excuse given for not working on important prob-

lems. People are always claiming that success is a matter of luck, but as
Pasteur pointed out, “Luck favors the prepared mind.”

A great deal of direct experience, vicarious experience through the ques-
tioning of others, and reading extensively, convinces me of the truth of this
statement. Outstanding successes are too often done by the same people for
it to be a matter of random chance.

For example, when I met Feynman at Los Alamos during the WWII, I
believed that he would get a Nobel Prize. His energy, his style, his abilities, all
indicated that he would do many things, and at least one would be important.
Einstein, around the age of 12 or 14, asked himself what a light wave would
look like when he went at the speed of light. He knew that Maxwell’s theory
did not support a local, stationary maximum, but was what he ought to see if
the current theory was correct. So it is not surprising that he later developed
the special theory of relativity - he had prepared his mind long before.

Many times a discussion with a person who has done something important
will produce a description of how they were led, almost step by step, to the
result. It is usually based on things they had done, or intensely thought
about years ago. You succeed because you have prepared yourself with the
necessary background long ago, without, of course, knowing then that it
would prove to be a necessary step to success.

Personal traits

These traits are not all essential, but tend to be present in most doers of
great things in science. First, successful people tend to exhibit more activity,
energy, than most people do. They look more places, they work harder, they
think longer than less successful people. Knowledge is much like compound
interest - the more you do the more you can do, and the more opportunities
are open for you. Thus, among other things, it was Feynman’s energy and
his constantly trying new things that made one think he would succeed.

This trait must be coupled with emotional commitment. Perhaps the
ablest mathematician I have watched up close seldom, if ever, seemed to care
deeply about the problem he was working on. He has done a great deal of
first class work, but not of the highest quality. Deep emotional commitment
seems to be necessary for success. The reason is obvious. The emotional
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commitment keeps you thinking about the problem morning, noon, and night,
and that tends to beat out mere ability.

While I was at Los Alamos after the war, I got to thinking about the
famous Buffon needle problem where you calculate the probability of a needle
tossed at random of crossing one of a series of equally spaced parallel lines.
I asked myself if was essential that the needle be a straight line segment (if
I counted multiple crossings)? No. Need they be equally spaced or is it only
the average density of the lines on the plane? Is it surprising that some years
later at Bell Telephone Laboratories when I was asked by some metallurgists
how to measure the amount of grain boundary on some microphotographs
I simply said, “Count the crossings of a random line of fixed length on the
picture?” I was led to it by the previous, careful thought about an interesting,
and I thought important, result in probability. The result is not great, but
illustrates the mechanism of preparation and emotional involvement.

The above story also illustrates what I call the “extra mile.” I did more
than the minimum, I looked deeper into the nature of the problem. This
constant effort to understand more than the surface features of a situation
obviously prepares you to see new and slightly different applications of your
knowledge. You cannot do many problems such as the above needle problem
before you stumble on an important application.

Courage is an attribute of those who do great things. Shannon is a good
example. For some time he would come to work at about 10:00 a.m., play
chess until about 2:00 p.m. and go home.

The important point is how he played chess. When attacked he seldom,
if ever, defended his position, rather he attacked back. Such a method of
playing soon produces a very interrelated board. He would then pause a
bit, think, and advance his queen saying, “I ain’t ascaired of nothin’.” It
took me a while to realize that of course that is why he was able to prove
the existence of good coding methods. Who but Shannon would think to
average over all random codes and expect to find that the average was close
to the ideal? I learned from him to say the same to myself when stuck, and
on some occasions his approach enabled me to get significant results.

Without courage you are unlikely to attack important problems with
any persistence, hence not likely to do important things. Courage brings
selfconfidence, an essential feature for doing difficult things. However, it can
border on overconfidence at times, which is more of a hindrance than a help.

There is another trait that took me many years to notice, and that is
the ability to tolerate ambiguity. Most people want to believe what they
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learn is the truth; there are a few people who doubt every thing. If you
believe too much then you are not likely to find the essentially new view that
transforms a field, and if you doubt too much you will not be able to do much
at all. It is a fine balance between believing what you learn and at the same
time doubting thing things. Great steps forward usually involve a change of
viewpoint to outside the standard ones in the field.

While you are learning things you need to think about them and examine
them from many sides. By connecting them in many ways with what you
already know· · · · · · you can later retrieve them in unusual situations. It took
me a long time to realize that each time I learned something I should put
“hooks” on it. This is another face of the extra effort, the studying more
deeply, the going the extra mile, that seems to be characteristic of great
scientists.

The evidence is overwhelming that steps that transform a field often come
from outsiders. In archeology, carbon dating came from physics. The first
airplane was built by the Wright brothers who were bicycle experts.

Thus, as an expert in your field you face a difficult problem. There is
apparently, an ocean of kooks with their crazy ideas. However, if there is a
great step forward it probably will be made by one of them! If you listen too
much to them you will not get any of your own work done, but if you ignore
them then you may miss your great chance. I have no simple answer except
do not dismiss the outsider too abruptly as is generally done by the insiders.

“Brains” are nice to have, but often the top graduate students do not
contribute as much as some lower rated ones. Brains come in all kinds of
flavors. Experimental physicists do not think in the same way that theoreti-
cians do. Some experimentalists think with their hands, i.e. playing with
equipment lets them think more clearly. It took me few years to realize that
people who did not know a lot of mathematics still could contribute. Just
because they could not solve a quadratic equation immediately in their head
does not mean that I should ignore them. When someone’s flavor of brains
does not match your may be more reason for paying attention to them.

Vision

You need a vision of who you are and where your field is going. A suitable
parable is that of the drunken sailor. He staggers one way and then the
other with independent random steps. In n steps he will be, on the average,
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about
√
n steps away from where he started. But if there is a pretty girl

in one direction he will get a distance proportional to n. The difference,
over a life time of choices, between

√
n and n is very large and represents

the difference between having no vision and having a vision. The particular
vision you have is less important than just having one –there are many paths
to success. Therefore it is wise to have a vision of what you may become,
of where you want to go, as well as how to get there. No vision, not much
chance of doing great work; with a vision you have good chance.

Another topic I must discuss is that of age. Historically, the greatest
contributions of mathematicians, theoretical physicists, and astrophysicists
are done when they are young. On the other hand, apparently in music
composition, politics, and literature, the later works are most valued by
society. Other area seem to fall in between these two extremes, and you need
to realize that in some areas you had better get going promptly.

People often complain about the working conditions they have to put
up with, but it is easily observed that some of the greatest work was done
under unfavorable conditions. What most people believe is the best working
conditions for them, is seldom, if ever, true. In my opinion the Institute
for Advanced Study in Princeton has ruined more good people than it has
helped. You only have to judge their work before they were appointed and
afterwards to come to this conclusion. There are exceptions, to be sure, but
on the average the ideal working conditions seem to sterilize people.

Another obvious trait of great people is that they do their work in such
a fashion that others can build on top of it. Newton said, “If I have seen
farther than others it is because I stood on the shoulders of giants.” Too
many people seem not to want others to build on top of their work but they
rather want to hoard it to themselves. Don’t do things in such a fashion that
next time it must be repeated by you, or by others, but rather in a way that
represents a significant step forward.

Selling

I must now take up the unpleasant topic of selling your ideas. Too many
scientists think that this is beneath them, that the world is waiting for their
results. In truth, the other researchers are busy with their own work. You
must present your results so that they will stop their own work and listen to
you. Presentation comes in three forms: published papers, prepared talks,
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and impromptu situations. You must master all three forms.
Lots of good work has been lost because of poor presentation only to

be rediscovered later by others. There is a real danger that you will not
get credit for what you have done. I know of all too many times when the
discoverer could not be bothered to present things clearly, and hence his or
her work was of no importance to society.

Finally, I must address the question of whether greatness is worth the
large effort it requires. Those who have done really great things generally
report, privately, that it is better than wine, the opposite sex, and song put
together. The realization that you have done it is overwhelming.

Of course, I have consulted only those who did great things, and have not
dared to ask those who did not. Perhaps they would reply differently. But as
is often said, it is the in struggle and not the success that real gain appears.
In striving to do great things, you change yourself into a better person, so
they claim. The actual success is of less importance, so they say. And I tend
to believe this theory.

No one ever told me the kind of things I have just related to you; I had
to find them out for myself. Since I now have told you how to succeed, you
have no excuse for not trying and doing great work in your chosen field.
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