LECTURE 22+1

Invariant Subspaces

Direct Sum: A Reminder

Coordinate Representation Relative to Invariant Subspaces
I, INVARIANT SUBSPACES

Let
\[L : \mathbb{V} \rightarrow \mathbb{V} \]
be a linear transformation. Consider the set of all non-zero vectors \(\vec{u} \) such that
\[L \vec{u} = \lambda \vec{u} \]

A non-zero vector which has the property that its transform is a mere scalar multiple of itself, i.e. whose direction does not get altered, is called an eigen vector of \(L \). The shrinkage (or stretch) factor \(\lambda \) is called an eigenvalue of \(L \).

The 1-dimensional subspace spanned by \(\vec{u} \) is invariant under \(L \). By this...
one means that
\[\mathbf{u} \in \text{Sp}(E \mathbb{A}^3) \Rightarrow \mathbf{L}\mathbf{u} \in \text{Sp}(E \mathbb{A}^3) \]

We now extend this concept from 1-D invariant subspaces to multi-dimensional subspaces.

Definition 22.1 (Invariant Subspace)

Let
\[\mathbf{L} : \mathbf{u} \rightarrow \mathbf{u} \]
be a linear transformation. A subspace \(\mathcal{M} \subseteq \mathbf{U} \) is said to be invariant under \(\mathbf{L} \) if
\[\mathbf{m} \in \mathcal{M} \Rightarrow \mathbf{Lm} \in \mathcal{M} \]

i.e. the image of \(\mathcal{M} \) under \(\mathbf{L} \) is contained in \(\mathcal{M} \).
Example 22.1 (Rotation)

\[L = \text{rotation} \]

Here \(M_1 = \text{Sp}(\{e_1\}) \) is invariant under \(L \) and \(M_2 = \text{Sp}(\{e_1, e_2, e_3\}) \) is invariant under \(L \).

There are at least four obvious subspaces which are invariant under any linear transformation. They are highlighted by the following:

Theorem 22.1

Given \(L : U \to U \), then

- \(U, \{0\} \), \(N(L) \), and \(R(T) \) are invariant under \(L \), i.e.,
 - \(L(U) = U \)
 - \(L(\{0\}) = \{0\} \)
 - \(L(N(L)) = N(L) \)
 - \(L(R(T)) = R(T) \)
II. Direct Sum: A Reminder

Suppose that \(\dim U = n \). Let \(\mathcal{U} \) be a \(k \)-dimensional subspace of \(U \), and let

\[
\mathcal{B} = \{ \mathbf{w}_1, \ldots, \mathbf{w}_k \}
\]

be a basis for \(\mathcal{U} \). Being a set linearly independent in \(U \), this set can be extended to a basis in \(U \):

\[
\mathcal{C} = \{ \mathbf{m}_1, \ldots, \mathbf{m}_k, \mathbf{w}_1, \ldots, \mathbf{w}_{n-k} \}
\]

Let

\[
\mathcal{W} = \text{sp} \{ \mathbf{w}_1, \ldots, \mathbf{w}_{n-k} \}
\]

Note: (i) For any \(\mathbf{u} \in U \) one has

\[
\mathbf{u} = \overline{\mathbf{m}} + \overline{\mathbf{w}} = \sum_{i=1}^{k} c_i \mathbf{m}_i + \sum_{j=1}^{n-k} d_j \mathbf{w}_j
\]

where \(\overline{\mathbf{m}} \in \mathcal{U} \) is unique and \(\overline{\mathbf{w}} \in \mathcal{W} \) is unique.

(Note: If \(\overline{\mathbf{m}} = \overline{\mathbf{w}} \) then \(\mathbf{m} \in \mathcal{U} \Rightarrow d_j = 0 \); and \(\mathbf{w} \in \mathcal{W} \Rightarrow c_i = 0 \), \(\mathbf{m} = \mathbf{w} = \mathbf{0} \)

(ii) \(\mathcal{U} = \text{sp} \{ \mathbf{m}_1, \ldots, \mathbf{m}_k \} \), \(\mathcal{W} = \text{sp} \{ \mathbf{w}_1, \ldots, \mathbf{w}_{n-k} \} \)

empty

\[
\mathcal{M} \cap \mathcal{W} = \{ \mathbf{0} \}
\]

because \(\mathbf{u} = c_i \mathbf{m}_i + d_j \mathbf{w}_j \)

\[
c_i \mathbf{m}_i - d_j \mathbf{w}_j = \mathbf{0}
\]

(iii') \(U = \mathcal{M} \oplus \mathcal{W} \)

whenever (i), (ii) are satisfied.
Suppose that U is finite-dimensional, say, \[\dim U = n \]
and that U is the direct sum of two subspaces:
\[U = M + W \]

In other words, \[M \cap W = \{0\} \], and for any \(\vec{u} \in U \) there exist \(\vec{m} \in M \) and \(\vec{w} \in W \) such that
\[\vec{u} = \vec{m} + \vec{w} \]

Furthermore, suppose that M invariant under L,
\[L(M) = M \]
(but W is not necessarily invariant under L).

Under such a circumstance, bases can be chosen for M and W respectively.
yield a remarkable simple $n \times n$ coordinate representative for L. This simplicity is summarized by the following

Theorem 22.2

Given

Suppose $\dim U = n$

If $M \subseteq U$ is a subspace invariant under L, $L(M) \subseteq M$, and $\dim(M) = k$.

Conclusion

Then L can be represented by a matrix

$$Q_c = [L]_c$$

whose form is

$$Q_c = \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$$

where A is $k \times k$, B is $k \times (n-k)$, D is $(n-k) \times (n-k)$.
What can one say if both M and W are invariant under L? In that case one has

Corollary 22.1

If M and W are both invariant under L,

\[
L(M) = M, \quad L(W) = W,
\]

and if U is the direct sum of M and W

\[
U = M \oplus W,
\]

then the coordinate representative of L has the form

\[
Q_c = [L]_c = \begin{bmatrix}
A & 0 \\
0 & D
\end{bmatrix}_{3k \times (2n-k)}
\]
Comment: For the case described in the corollary, one can decompose $[L]_c$ into the sum of two parts:

$$[L_1]_c = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad [L_2]_c = \begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix}$$

with the property that

$$[L_1]_c + [L_2]_c = [L]_c$$

and

$$[L_1]_c [L_2]_c = [L_2]_c [L_1]_c = [0 \ 0] = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
proof of Theorem 22.2 on p 22.6.

Step I Let \(C = \{ m_1, \ldots, m_k, w_1, \ldots, w_{n-k} \} \) be a basis such that
\[
U = \text{sp} \left(\{ m_1, \ldots, m_k \} \right) \oplus \text{sp} \left(\{ w_1, \ldots, w_{n-k} \} \right)
\]
as depicted on p 22.4.

Step II Let \(\vec{u} \in U \). Its coordinate representative relative to \(C \) is
\[
[u]_C = \begin{bmatrix} [m] \end{bmatrix} \text{ }_{k \text{- tuple}} \begin{bmatrix} [w] \end{bmatrix} \text{ }_{(n-k) \text{- tuple}}
\]

Step III Apply the Representation Theorem on p.16.6 to \(U \):
\[
[L(\vec{u})]_C = [L]_C [U]_C = \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} [m] \end{bmatrix} = \begin{bmatrix} A[m] + B[w] \end{bmatrix} \text{ }_{k \text{- tuple}} \begin{bmatrix} [w] \end{bmatrix} = \begin{bmatrix} E[m] + D[w] \end{bmatrix} \text{ }_{(n-k) \text{- tuple}}
\]

Step IV Let \(\vec{u} \in M \Rightarrow [U]_C = \begin{bmatrix} [m] \end{bmatrix} \text{ i.e. } [w] = [0] \)
\[
[L(\vec{u})]_C = \begin{bmatrix} A[m] \end{bmatrix} \begin{bmatrix} E[m] \end{bmatrix}
\]
Step IV. \(L(\bar{u}) \in M \Rightarrow [L(\bar{u})]_c = \begin{bmatrix} [L(\bar{u})]_c \end{bmatrix}_{n-k} \)

Using Step IV by letting \(\bar{u} = \bar{m}_1, \bar{m}_2, \ldots, \bar{m}_k \) one obtains

\[
\begin{bmatrix}
E_{11} & E_{12} & \cdots & E_{1k} \\
E_{21} & E_{22} & \cdots & E_{2k} \\
\vdots & \vdots & \ddots & \vdots \\
E_{n-k1} & E_{n-k2} & \cdots & E_{n-kk}
\end{bmatrix}
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}
\begin{bmatrix}
\bar{m}_1 \\
\bar{m}_2 \\
\vdots \\
\bar{m}_k
\end{bmatrix}
\]

Thus \(E = \text{zero matrix} \).

Conclusion:

\[
[L(\bar{u})]_c = \begin{bmatrix} A & B \\ C & D \end{bmatrix}
\]

Proof of Corollary: \(L(\bar{w}) \subset W \)

Let \(\bar{u} \in W \) so that \([\bar{u}]_c = \begin{bmatrix} [B] \\ [w] \end{bmatrix} \).
Thus \([L(\bar{u})]_c = \begin{bmatrix} [B[w]] \\ [D[w]] \end{bmatrix} \) \(\Rightarrow [B[w]] = [0] \) \(\Rightarrow B[w] = [0] \) \(\Rightarrow B = \text{zero matrix} \).