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Preface

Mathematics is the science of measurement, of establishing quantitative relationships
between the properties of entities. The entities being measured occupy the whole
spectrum of abstractness, from first-level concepts, which are based on perceptual
data obtained by direct observation, to high-level concepts, which are further up
in the edifice of knowledge. Furthermore, being the science of measurement, math-
ematics provides the logical glue that cements and cross-connects the structural
components of this edifice.

1. The effectiveness and the power of mathematics (and more generally of logic)
in this regard arises from the most basic fact of nature: to be is to be something,
i.e. to be is to be a thing with certain distinct properties, or: to exist means to have
specific properties. Stated negatively: a thing cannot have and lack a property at the
same time, or: in nature contradictions do not exist, a fact already identified by the
father of logic1 some twenty-four centuries ago.

Mathematics is based on this fact, and on the existence of a consciousness (a
physicist, an engineer, a mathematician, a philosopher, etc.) capable of identifying
it. Thus mathematics is neither intrinsic to nature (reality), apart from any relation
to man’s mind, nor is it based on a subjective creation of a man’s consciousness
detached from reality. Instead, mathematics furnishes us with the means by which
our consciousness grasps reality in a quantitative manner. It allows our consciousness
to grasp, in numerical terms, the microcosmic world of subatomic particles, the
macro-cosmic world of the universe and everything in between2. In fact, this is what
mathematicians are supposed to do, to develop general methods for formulating and
solving physical problems of a given type.

1Aristotle, the Greek philosopher, 384-322 B.C.
2The objectivity of mathematics and its relation to physics is explicated in “The Role of Math-

ematics and Philosophy”, Chapter 7, in THE LOGICAL LEAP: Induction in Physics by David
Harriman (New York: Penguin Group, 2010).
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In brief, mathematics highlights the potency of the mind, its cognitive efficacy in
grasping the nature of the world. This potency arises from the mind ability to form
concepts, a process which is made most explicit by the science of mathematics.3

2. Mathematics is an inductive discipline first and a deductive discipline second.
This is because, more generally, induction preceeds deduction4. Without the former,
the latter is impossible. Thus, the validity of the archetypical deductive reasoning
process
“Socrates is a man. All men are mortal. Hence, Socrates is a mortal.”
depends on the major premise “All men are mortal.” It constitutes an identification
of the nature of things. It is arrived at by a process of induction, which, in essence,
consists of observing the facts of reality, of identifying their essential properties,
and of integrating them with what is already known into new knowledge – here,
a relationship between “man” and “mortal”. In mathematics, inductively formed
conclusions, analogous to this one, are based on motivating examples and illustrated
by applications.

Mathematics thrives on examples and applications. In fact, it owes its birth and
growth to them. This is manifestly evidenced by the thinkers of Ancient Greece who
“measured the earth”, as well as by those of the Enlightenment, who “calculated
the motion of bodies”. It has been rightfully observed that both logical rigor and
applications are crucial to mathematics. Without the first, one cannot be certain
that one’s statements are true. Without the second it does not matter one way or
the other5. These lecture notes cultivate both. As a consequence they can also be
viewed as an attempt to make up for an error committed by mathematicians through
most of history – the Platonic error of denigrating applications6.

This Platonic error, which arises from placing mathematical ideas prior to their
physical origin, has metastasized into the invalid notion ‘“pure” mathematics’. It is a
post-Enlightenment (Kantian) fig leaf7 for the failure of theoretical mathematicians

3Being a philosopher, Leonard Peikoff in his Objectivism: The Philosophy of Ayn Rand (New
York: Penguin books, 1993, p. 90) describes the role of mathematics this way:

“The mathematician is the exemplar of conceptual integration. He does professionally
and in numerical terms what the rest of us do implicitly and have done ever since
childhood, to the extent that we exercise our distinctive human capacity”.

4“The Structure of Inductive Reasoning”, Section 1.5, in THE LOGICAL LEAP: Induction in

Physics by David Harriman (New York: Penguin Group, 2010, p. 29-35).
5David Harriman, “Enlightenment Science and Its Fall”, The Objective Standard; 1(1): 83-117,

Spring 2006;
6ibid.
7more precisely, a rationalization, i.e. a cover-up, namely a process of providing one’s emotions
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to justify the rigor and the abstractness of the concepts they have been developing.
The roots of this failure are expressed in the inadvertent confession of the chairman
of a major mathematics department: “We are all Platonists in this department.”
Plato and his descendants declared that reality, the physical world, is an imperfect
reflection of a purer and higher mystical dimension with a gulf separating the two.
That being the case, they aver that “pure” mathematics – and more generally the “
a priori” – deals only with this higher dimension, and not with the physical world,
which they denigrate as gross and imperfect, and dismiss as mere appearances.

With the acceptance – explicit or implicit – of such a belief system, “pure” math-
ematics has served as a license to misrepresent theoretical mathematics as a set
of floating abstractions cognitively disconnected from the real world. The modifier
“pure” has served to intimidate the unwary engineer, physicist or mathematician
into accepting that this disconnect is the price that mathematics must pay if it is to
be rigorous and abstract.

Ridding a culture’s mind from impediments to epistemic progress is a non-trivial
task. However, a good first step is to banish detrimental terminology, such as “pure”
mathematics, from discourses on mathematics and replace it with an appropriate
term such as theoretical mathematics. Such a replacement is not only dictated by its
nature, but it also tends to reinstate the intellectual responsibility among those who
need to live up to their task of justifying rigor (i.e. precision) and abstractness.

3. Mathematics is both complex and beautiful. The complexity of mathematics
is a reflection of the complexity of the relationships that exist in the universe. The
beauty of mathematics is a reflection of the ability of the human mind to identify
them in a unit-economical way8 : the more economical the identification of a con-
stellation of relationships, the more man’s mind admires it. Beauty is not in the
eyes of the beholder. Instead it is giving credit where credit is due – according to an
objective standard. In mathematics that standard is the principle of unit economy.
Its purpose is the condensation of knowledge, from the perceptual level all the way
to the conceptual at the highest level.

4. Linearity is as fundamental to the workings of the human mind and hence
to mathematics in forming concepts. The transition from recognizing that x + y =
x + y to the act of grasping that a + a = 2a is the explicit starting point of a

with spurious justifications. (“Philosophic Detection” in Ayn Rand, Philosophy: Who Needs It,
New American Library, Penguin Group Inc., New York, 1984.)

8The principle of unit-economy (also known informally as the “crow epistemology”) according
to which perceptual and conceptual data get compressed into fewer units, was first identified ex-
plicitly in “The Cognitive role of Concepts”, Chapter 7 in Ayn Rand, Introduction to Objectivist

Epistemology, 2nd Edition, edited by H. Binswanger and L. Peikoff. Penguin Books, Inc., New
York, 1990
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conceptual consciousness grasping nature in mathematical terms with linearity at
the center. Thus it is not an accident that linear mathematics plays its pervasive
role in our comprehending the nature of nature around us. In fact, it would not be an
exaggeration to say that “Linearity is the exemplary method – simple and primitive
– for our grasping of nature in conceptual terms”. The appreciation of this fact is
found in that nowadays virtually every college and university offers a course in linear
algebra, with which we assume the reader is familiar.

5. Twentieth century mathematics is characterized by an inflationary version of
Moore’s Law. Moore’s Law expresses the observation that the number of transistors
that fit onto a microchip doubles every two years. This achievement has been a boon
to everybody. It put a computer into nearly every household.

The mathematical version of Moore’s Law expresses the observation that, up to
the Age of Enlightenment, all of Man’s mathematical achievements fit into a four-
volume book; the achievements up to, say, 1900 fit into a fourteen- volume tome,
while the mathematical works generated during the twentieth century take up a
whole floor of a typical university library.

Such abundance has its delightful aspects, but it is also characterized by repeti-
tions and non-essentials. This cannot go on for too long. Such an increase ultimately
chokes itself off.

One day, confronted with an undifferentiated amorphous juxtaposition of mathe-
matical works, a prospective scientist/engineer/physicist/mathematician might start
wondering: “I know that mathematics is very important, but am I learning the right
kind of mathematics?”

Such a person is looking for orientation as to what is essential, i.e. what is
fundamental, and what is not. It has been said that the value of a book9 , like that
of a definition10, can be gauged by the extent to which it spells out the essential,
but omits the nonessential, which is, however, left implied. With that in mind, this
text develops from a single perspective six mathematical jewels (in the form of six
chapters) which lie at the root twentieth century science.

Another motivation for making the material of this text accessible to a wider
audience is that it solves a rather pervasive problem. Most books which the author
has tried to use as class texts either lacked the mathematics essential for grasping
the nature of waves, signals, and fields, or they misrepresented it as a sequence of

9Question and answer period following “You and Your Research” by Richard Hamming. http:
//www.cs.virginia.edu/~robins/YouAndYourResearch.html

Also see the Appendix, page 491.
10“Definitions”, Chapter 5 in Ayn Rand, Introduction to Objectivist Epistemology, 2nd Edition,

edited by H. Binswanger and L. Peikoff. Penguin Books, Inc., New York, 1990
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disjoint methods. The student runs the danger of being left with the idea that the
mathematics consists of a set of ad hoc recipes with an overall structure akin to the
proverbial village of squat one-room bungalows instead of a few towering skyscrapers
well-connected by solid passage ways.

6. We extend and then apply several well-known ideas from finite dimensional lin-
ear algebra to infinite dimensions. This allows us to grasp readily not only the overall
landscape but it also motivates the key calculations whose purpose is to connect and
cross-link the various levels of abstraction in the constructed edifice. Even though
the structure of these ideas have been developed in linear algebra, the motivation
for doing so and then using them comes from engineering and physics. In particular,
the goal is to have at one’s disposal the constellation of mathematical tools for a
graduate course in electromagnetics and vibrations for engineers or electrodynamics
and quantum mechanics for physicists. The benefits to an applied mathematician is
the acquisition of nontrivial mathematics from a cross-disciplinary perspective.

All key ideas of linear mathematics in infinite dimensions are already present
with waves, signals, and fields whose domains are one-dimensional. The transition
to higher dimensional domains is very smooth once these ideas have been digested.
This transition does, however, have a few pleasant surprises. They come in the
form of special functions, whose existence and properties are a simple consequence
of the symmetry properties of the Euclidean plane (or Euclidean three-dimensional
space). These properties consist of the invariance under translations and rotations
of distance measurements and of the shapes of propagating waves.

7. What is the status of the concept “infinite” appearing in the title of this text?
Quite generally the concept “infinite” is invalid metaphysically but valid mathemat-
ically.

In the sense of metaphysics (i.e. pertaining to reality, to the nature of things,
to existence) infinity falls into the category of invalid concepts, namely attempts
to integrate errors, contradictions, or false propositions into something meaningful.
Infinity as a metaphysical idea is an invalid concept because metaphysically it is
only concretes that exist, and concretes are finite, i.e. have definable properties. An
attempt to impart metaphysical significance to infinity is an attempt to rewrite the
nature of reality.

However, in mathematics infinity is a well defined concept. It has a definite
purpose in mathematical calculations. It is a mathematical method which is made
precise by means of the familiar δ-ε process of going to the limit. This text develops
only concepts which by their nature are valid. Included is the concept “infinity”,
which, properly speaking, refers to a mathematical method.

8. The best way to learn something is to teach it. In order to facilitate this
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motto of John A. Wheeler, the material of this book has been divided into fifty
lecture sessions. This means that there is one or two key ideas between “Lecture
n” and “Lecture n + 1”, where n = 1, · · · 50. Often the distance between n and
n+ 1 extends over more pages than can be digested in a forty-eight minute session.
However, the essentials of the nth Lecture are developed in a small enough time
frame. Thus the first four or five pages following the heading “Lecture n” set the
direction of the development, which is completed before the start of lecture “Lecture
n+ 1”.

Such a division can be of help in planning the schedule necessary to learn every-
thing.

9. It is not necessary to digest the chapters in sequential order. A desirable
alternative is to start with Sturm-Liouville theory (chapter 3) before proceeding sys-
tematically with the other chapters. Moreover, there is obviously nothing wrong with
diving in and exploring each chapter according to one’s background and predilections.
The opening remarks of each one point out how linear algebra relates it to the others.

10. Acknowledgments: The author would like to thank Danai Torrungru-
eng for valuable comments and Wayne King from the Speech and Hearing Science
Department for many fruitful conversations on wavelet theory and multiresolution
analysis.

Ulrich H. Gerlach
Columbus, Ohio, March 24, 2009

Foreword to the Second Edition (tentative)

TBD
Mathematics is the language of Physics. Why?
Mathematics is beautiful. Why? Is its beauty in “the eyes of the beholder”? Is

beauty an attribute intrinsic to mathematics? Or is it an objective attribute?
Does this book address these issues? If so, how?
Columbus, Ohio, January 14, 2016
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Chapter 0

Introduction

Lecture 1

The main focus of the next several chapters is on the mathematical framework that
underlies linear systems arising in physics, engineering and applied mathematics.
Roughly speaking, we are making a generalization from the theory of linear trans-
formation on finite dimensional vector space to the theory of linear operators on
infinite dimensional vector spaces as they occur in the context of homogeneous and
inhomogeneous boundary value and initial value problems.

The key idea is linearity. Its geometrical imagery in terms of vector space, linear
transformation, and so on, is a key ingredient for an efficient comprehension and
appreciation of the ideas of linear analysis to be developed. Thus it is very profitable
to repeatedly ask the question: What does this correspond to in the case of a finite
dimensional vector space?

Here are some examples of what we shall generalize to the infinite dimensional
vector case:

I. Solve each of the following linear algebra problems

1. A~u = 0 “Homogeneous problem”

2. A~u = ~b “Inhomogeneous problem”
3. AG = I “Inverse of A”

These are archetypical problems of linear algebra. (If 1. has a non-trivial solution,

then 2. has infinitely many solutions or none at all, depending on ~b, and 3. has
none.)

More generally we ask: For what values of λ do the following have a solution
(and for what values do they not):

1
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1. (A− λB)~u = 0

2. (A− λB)~u = ~b
3. (A− λB)G = I

Of greatest interest to us is the generalization in which A is (part of) a differential
operator with in general non-constant coefficients.

As we know from linear algebra, these three types of problems are closely related,
and consequently this must also be the case for our generalization to linear differential
equations, ordinary as well as partial. In fact, these three types are called

1. Homogeneous boundary or initial value problems;
2. Inhomogeneous problems;
3. Green’s function problems.

II. There is another idea which we shall extend from the finite to the infinite
dimensional case. Consider the eigenvalue equation

Au = λIu .

Let us suppose that there are enough eigenvectors to span the whole vector space,
but that at least one eigenvalue is degenerate, i.e., it has more than one eigenvector.
In that case, the vector space has an eigenbasis, but it is not unique. Eigenvectors,
including those used for a basis, derive their physical and geometrical significance
from eigenvalues. Indeed, eigenvalues serve as labels for eigenvectors. Consequently,
the lack of enough eigenvalues to distinguish between different eigenvectors in a
particular eigensubspace introduces an intolerable ambiguity in our physical and
geometrical picture of the inhabitants of this subspace.

In order to remedy this deficiency one introduces another matrix, say T , whose
eigenvectors are also eigenvectors of A, but whose eigenvalues are nondegenerate. The
virtue of this introduction is that the matrix T recognizes explicitly and highlights,
by means of its eigenvalues, a fundamental physical and geometrical property of the
linear system characterized by the matrix A.

This explicit recognition is stated mathematically by the fact that T commutes
with A

AT − TA = 0 .

In general, the matrix T is not unique. Suppose there are two of them, say
T1, which highlights property 1 and T2, which highlights a different property of the
system. Thus

AT1 − T1A = 0
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and
AT2 − T2A = 0 ,

but
T1T2 − T2T1 6= 0 .

Consequently, for hermitian matrices, the matrix A is characterized by two alter-
native orthonormal eigenbases, one due to T1, the other due to T2, and there is a
unitary transformation which relates the two bases.

The matrix A does not determine the choice of eigenbasis. Instead, this choice
is determined by which of the two physical properties we are told to (or choose to)
examine, that of T1 or that of T2.

In the extension of these ideas to differential equations, we shall find that

A = Laplace operator

T1 = translation operator

T2 = rotation operator

and that the T1-induced eigenbasis consists of plane wave solutions, the T2-induced
eigenbasis consists of the cylinder wave solutions, and the unitary transformation
between them is a Fourier transform.

III. A further idea which these notes extend to infinite dimensions is that of an
inhomogeneous four-dimensional system,

A~u = ~b ,

which is overdetermined: the matrix A is 4×4, but singular with a one-dimensional
null space.

The extension consists of the statement that (a) this equation is a vectorial wave
equation which is equivalent to Maxwell’s field equation, (b) the four-dimensional

vectors ~u and ~b are 4-d vector fields, and (c) the matrix A has entries which are
second order partial derivatives.

One solves this system using the method of eigenvectors and eigenvalues. The
eigenvectors have entries which are first order derivatives. The nonzero eigenvalues
are scalar (D’Alembertian) wave operators acting on scalar wave functions. For
Maxwell’s equations there are exactly three of them, and they are the scalars from
which one obtains the three respective types of Maxweell fields,

• transverse electric (TE),

• transverse magnetic (TM),
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• transverse electric magnetic (TEM).

The power of this linear algebra method is that it yields success in a variety of
curvilinear coordinate systems, including cartesian, cylindrical, and spherical.



Chapter 1

Sturm-Liouville Theory

Lecture 2

1.1 Three Archetypical Linear Problems

We shall now take our newly gained geometrical familiarity with infinite dimensional
vector spaces and apply it to each of three fundamental problems which, in linear
algebra, have the form

1. (A− λB)~u = 0

2. (A− λB)G = I

3. (A− λB)~u = ~b,

i.e., the eigenvalue problem, the problem of inverting the matrix A − λB, and the
inhomogeneous problem.

The most important of these three is the eigenvalue problem because once it has
been solved, the solutions to the others follow directly.

Indeed, assume that we found for the vector space a basis of eigenvectors, say

{~u1, . . . , ~uN}

as determined by

A~u = λB~u

5
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(We are assuming that the matrices A and B are such that an eigenbasis does indeed
exist.) In that case, the solutions to problems 2 and 3 are given by

G =
N∑

i=1

~ui~u
H
i

λi − λ

and

~u =
N∑

i=1

~ui〈~ui,~b〉
λi − λ

respectively, as one can readily verify. Here ~uHi refers to the Hermitian adjoint of the
vector ~ui.

On the other hand, suppose we somehow solved problem 2 and found its solution
to be

G = Gλ .

Then it turns out that the complex contour integral of that solution, namely

1

2πi

∮

Gλdλ = −
N∑

i=1

~ui~u
H
i ,

yields the sum of the products

−
N∑

i=1

~ui~u
H
i

of the eigenvectors ~ui (i = 1, . . . , N) of the eigenvalue problem 1. Thus solving
problem 2 yields the solution to problem 1. It also, of course, yields the solution to
problem 3, namely

~u = G~b .

Thus, in a sense, problem 1 and problem 2 are equally important.
We shall extend our considerations of problems 1-3 from finite dimensional to

infinite dimensional vector spaces. We shall do this by letting A be a second order
differential operator and B a positive definite function. In this case, problem 1
becomes a homogeneous boundary value problem, most often a so-called Sturm-
Liouville problem, which we shall formulate and solve. Problem 2 becomes the
problem of finding the so-called Green’s function. This will be done in the next
chapter. There we shall also formulate and solve the inhomogeneous boundary value
problem corresponding to problem 3.
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We extend problems 1-3 to infinite dimensions by focussing on second order linear
ordinary differential equations and their solutions. They are the most important and
they illustrate most of the key ideas.

It is difficult to overstate the importance of Sturm-Liouville theory. Not only
does it provide a practical means for dealing with those phenomena (namely wave
propagation and vibrations) that underly twentieth century science and technology,
but it also provides a very powerful way of reasoning which deals with the qualitative
essentials, and not only with the quantitative details.

A Sturm-Liouville eigenvalue problem gives rise to eigenfunctions. It is extremely
beneficial to view them as basis vectors which span an inner product space. Doing
so places the theory of linear d.e.’s into the framework of Linear Algebra, thus yield-
ing an easy panoramic view of the field. In particular, it allows us to apply our
geometrical mode of reasoning to the Sturm-Liouville problem.

1.2 The Homogeneous Problem

The most basic linear problem consists of finding the null space of

A~u = 0 .

The simplest nontrivial extension to differential equations consists of the homoge-
neous boundary value problem based on the second order differential equation

[
d2

dx2
+Q(x, λ)

d

dx
+R(x, λ)

]

u(x) = 0

where a < x < b and λ is a parameter, with one of the following end point conditions:

1. u(a) = 0 Dirichlet conditions
u(b) = 0

2. u′(a) = 0 Neumann conditions
u′(b) = 0

3.
αu(a) + α′u′(a) = 0
βu(b) + β′u′(b) = 0

}

Mixed D. and N. conditions

4.
u(a)− u(b) = 0
u′(a)− u′(b) = 0

}

Periodic boundary conditions
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More generally one has

B1(u) ≡ α1u(a) + α′1u
′(a) + β1u(b) + β′1u

′(b) = 0

B2(u) ≡ α2u(a) + α′2u
′(a) + β2u(b) + β′2u

′(b) = 0 ,

which are the most general end point conditions as determined by the given α’s, α′’s,
β’s, and β′’s, which are constants. These two boundary conditions B1 and B2 are
supposed to be independent, i.e., there do not exist any non-zero numbers c1 and c2
such that

c1B1(u) + c2B2(u) = 0 ∀u(x) .
By contrast, if there does exist a non-zero solution c1 and c2 to this equation, then
B1 and B2 are dependent.
Question: Can one give a clear vector space formulation of

B1(u) = 0

B2(u) = 0

in terms of subspaces?
Question: What geometrical circumstance is expressed by “independence”?
Answer: The vector 4-tuples {α1, α

′
1, β1, β

′
1} and {α2, α

′
2, β2, β

′
2} point into different

directions.
Question: What, if any, is the (or a) solution to the homogeneous boundary value
problem?
Answer: The general solution to the d.e. is

u(x) = eu1(x, λ) + fu2(x, λ)

where e and f are integration constants. Let us consider the circumstance where
u(x) satisfies the mixed D.-N. boundary conditions (3.) at each end point. These
conditions imply

0 = e[αu1(a, λ) + α′u′1(a, λ)] + f [αu2(a, λ) + α′u′2(a, λ)]

and
0 = e[βu1(b, λ) + β′u′1(b, λ)] + f [βu2(b, λ) + β′u′2(b, λ)] .

The content of the square brackets is known because ui(x, λ), α, α
′, and β, β′ are

known or given. The unknowns are e and f , or rather their ratio. Note that the
trivial solution

e = f = 0⇔ u(x) = 0 ∀ x
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is always a solution to the homogeneous system. Our interest lies in a non-trivial
solution. For certain values of λ this is possible. This happens when

0 = D(λ) =

∣
∣
∣
∣

[αu1(a, λ) + α′u′1(a, λ)] [αu2(a, λ) + α′u′2(a, λ)]
[βu1(b, λ) + β′u′1(b, λ)] [βu2(b, λ) + β′u′2(b, λ)]

∣
∣
∣
∣
.

Values of λ, if any, satisfying D(λ) = 0 are called eigenvalues.
KEY PRINCIPLE: A differential equation is never solved until boundary condi-
tions have been imposed.
We note that the allowed value(s) of λ, and hence the nature of the solution is
determined by these boundary conditions.
Example (Simple vibrating string): Solve

u′′ + λu = 0

subject to the boundary conditions

u(a, λ) = 0

u(b, λ) = 0 .

Solution: Two independent solutions to the d.e. are

u1(x) = sin
√
λx

u2(x) = cos
√
λx .

Consequently, the solution in its most general form is

u(x) = e sin
√
λx+ f cos

√
λx .

The boundary conditions yield two equations in two unknowns:

e sin a
√
λ+ f cos a

√
λ = 0

e sin b
√
λ+ f cos b

√
λ = 0 .

In order to obtain a nontrivial solution, it is necessary that

0 =

∣
∣
∣
∣

sin a
√
λ cos a

√
λ

sin b
√
λ cos b

√
λ

∣
∣
∣
∣

or
sin(a− b)

√
λ = 0
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a b

x

u
u2

1

Figure 1.1: First two eigenfunctions of an eigenvalue problem based on Dirichlet
boundary conditions.

which implies

λn =

(
πn

a− b

)2

n = 1, 2, . . . .

Note that n = 0 yields a trivial solution only. Why? Negative integers yield nothing
different, as seen below.
What are the solutions corresponding to each λn? The boundary conditions demand
that e be related to f , namely,

e sin a
√

λn + f cos a
√

λn = 0 ,

or

f = −e sin a
√
λn

cos a
√
λn

.

Thus
u(x) =

e

cos a
√
λn

(cos a
√

λn sin
√

λnx− sin a
√

λn cos
√

λnx)

or
un(x) = cn sin

√

λn(x− a) .

Here we have introduced subscript n to distinguish the solutions associated with the
different allowed values

λn =

(
nπ

a− b

)2

n = 1, 2, . . . .

The negative integers give nothing new. (Why?)
Comment: For n = 0, i.e. λ = 0, there does not exist a non-trivial solution. Why?
Because the application of the boundary conditions to the n = 0 solution,

u(x) = ex+ f
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yields only e = f = 0.

Lecture 3

1.3 Sturm-Liouville Systems

One of the most important and best understood eigenvalue problems in linear algebra
is

(A− λB)u = 0 ,

where A is a symmetric matrix and B is a symmetric positive definite matrix. For
this problem we know that

1. its eigenvalues form a finite sequence of real numbers

2. the eigenvectors form a B-orthogonal basis for the vector space; in other words,

UT
i BUj = δij .

A Sturm-Liouville system extends this eigenvalue problem to the framework of
2nd order linear ordinary differential equations (o.d.e.’s) where the vector space is
infinite dimensional, as we shall see.

1.3.1 Sturm-Liouville Differential Equation

One of the original purposes of the Sturm-Liouville differential equation is the math-
ematical formulation of the vibration frequency and the amplitude profile of a vi-
brating string. Such a string has generally a space dependent tension and mass
density:

T (x) = tension [force]

ρ(x) = density

[
mass

length

]

A cable of variable mass density, say ρ(x), suspended vertically from a fixed support
is a good example. Because of its weight, this cable is under variable tension, say
T (x), along its length. Let v(x, t) be the instantaneous transverse displacement of
the string.
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x

v(x,t)

Figure 1.2: Instantaneous amplitude profile of a suspended cable with variable ten-
sion and variable mass density.

Application of Newton’s law of motion, mass×acceleration=force, to the mass
ρ(x)∆x of each segment ∆x leads to the wave equation for the transverse amplitude
v(x, t),

∆xρ(x)
∂2v(x, t)

∂t2
= ∆x

∂

∂x
T (x)

∂v(x, t)

∂x
.

The right hand side refers to the net force on an element ∆x of string centered around
x. It refers to the sum of (i) ∂

∂x
T ∂v
∂x

∣
∣
x+∆x

2

due to the tension from the right and (ii)

− ∂
∂x
T ∂v
∂x

∣
∣
x−∆x

2

due to the tension from the left. For the cable observably bent at

x = 0 this net force always points back towards the x-axis because T > 0. It is due
to the string curvature, and it is called the bending force on the element ∆x.

Suppose the cable is imbedded in an elastic medium. The presence of such a
medium is taken into account by augmenting the force density on the right-hand
side. Being linear in the amplitude v(x, t), the additional restoring force density
[force/length] is

−κ(x)v(x, t) .

Here κ(x)∆x is the position dependent Hooke’s constant experienced by the cable
segment ∆x. Consequently, the augmented wave equation is

ρ(x)
∂2v(x, t)

∂t2
=

∂

∂x
T (x)

∂v(x, t)

∂x
− κ(x)v(x, t) . (1.1)

This is the equation of motion for a string imbedded in an elastic medium. Being
linear and time-independent, the system has normal modes. They have vibrational
frequencies ω and amplitudes

v(x, t) = u(x) cosω(t− t0) .
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Thus the spatial amplitude profile u(x) of such a mode satisfies

[
d

dx
T (x)

d

dx
+ λρ(x)− κ(x)

]

u(x) = 0 , λ = ω2 . (1.2)

For the purpose of mathematical analysis one writes this 2nd order linear o.d.e. in
terms of the standard mathematical notation

p(x) = T (x)

ρ(x) = ρ(x)

q(x) = κ(x) ,

and thereby obtains what is known as the Sturm-Liouville (S-L) equation1,

d

dx

(

p(x)
du

dx

)

+ [λρ(x)− q(x)]u = 0 .

However, it is appropriate to point out that actually any 2nd order linear o.d.e. can
be brought into this “Sturm-Liouville” form. Indeed, consider the typical 2nd order
homogeneous differential equation

P (x)u′′ +Q(x)u′ + (R(x) + λ)u = 0 .

We wish to make the first two terms into a total derivative of something. In that
case, the d.e. will have its S-L form. To achieve this, divide by P (x) and then
multiply by

e
∫ x Q

P
dt = p(x) .

The result is

e
∫ x Q

P
dtu′′ +

Q

P
e
∫ x Q

P
dtu′ +

(
R

P
e
∫ x Q

P
dt +

λ

P
e
∫ x Q

P
dt

)

u = 0

1The minus sign in front of q(x) is a reflection of the fact that the S-L equation had its origin
in the mathematization of vibrating systems. There

[
1

2
p(u′)2 +

1

2
qu2
]

dx

is the total potential energy stored in a string element of width dx: 1
2pu

2 is the bending en-
ergy/length and 1

2qu
2 is the energy/length stored in the string due to having pushed by an amount

u against the elastic medium in which it is imbedded.
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or
p(x)u′′ + p′(x)u′ + (λρ(x)− q(x))u = 0

in terms of newly defined coefficients. Combining the first two terms one has

d

dx

(

p(x)
du

dx

)

+ [λρ(x)− q(x)]u = 0 . (1.3)

This is known as the Sturm-Liouville equation. In considering this equation, we shall
make two assumptions about its coefficients.

The first one is

ρ(x) > 0

p(x) > 0

in the domain of definition, a < x < b. We make this assumption because nature
demands it in the problems that arise in engineering and physics.

The second assumption we shall make is that the coefficients q(x), ρ(x), p(x)
and p′(x) are continuous on a < x < b. We make this assumption because it
entails less work. It does happen, though, that p′(x), q(x), or ρ(x) are discontinuous.
This usually expresses an abrupt change in the propagation medium of a wave,
for example, the tension or the mass density of string, or the refractive index in a
wave propagation medium. This discontinuity can be handled by applying “junction
conditions” for u(x) across the discontinuity.

1.3.2 Homogeneous Boundary Conditions

We can now state the S-L problem. If the endpoint conditions are of the mixed
Dirichlet-Neumann type,

αu(a) + α′u′(a) = 0 (1.4)

βu(b) + β′u′(b) = 0 ,

with the α’s and β’s independent of λ, then the boxed Eq. (1.3) together with
Eq.(1.4) constitute a regular Sturm-Liouville system.
If, by contrast,

u(a)− u(b) = 0 and p(a) = p(b) (1.5)

u′(a)− u′(b) = 0
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then Eqs.(1.3) and (1.5) constitute a periodic Sturm-Liouville system.
If p(a) = 0 and the 1st b.c. in Eq.(1.4) is dropped, then we have a singular S-
L system. We shall consider the properties of these S-L systems in a subsequent
section.

It is difficult to overstate the pervasiveness of these S-L systems in nature. Indeed,
natural phenomena subsumed under the regular S-L problem, for example, are quite
diverse. Heat conduction and the vibration of bodies illustrate the point.
A. Heat conduction in one dimension.
Consider the temperature profile u(x) of a conducting bar of unit length which is

1. insulated at x = 0 (no temperature gradient), and satisfies

2. radiative boundary condition at x = 1

Separation of variables applied to the heat equation yields the following S-L system:

u′′ + λu = 0 (1.6)

with

u′(0) = 0 (1.7)

−u′(1) = hu(1). (1.8)

Here h is a non-negative constant. Note that at x = 1

h = 0 ⇒ no radiation

h > 0 ⇒ finite heat loss due to radiation (Newton’s law of cooling).

B. Vibrations in one dimension.
Alternatively, consider a vibrating string whose transverse amplitude u(x) satisfies
the following homogeneous endpoint conditions:

1. At x = 0 there is no transverse force to influence the string’s motion. The
tension produces only a longitudinal force component. In this circumstance
the string is said to be free at x = 0. This free boundary condition is expressed
by the statement

u′(0) = 0 .

2. At x = 1 the string is tied to a spring so that the vertical spring displacement
coincides with the displacement of the string away from equilibrium. Even
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though the tail end of the string gets accelerated up and down, the total trans-
verse force on it vanishes because it has no mass. Consequently,

−u′(1)T − ku(1) = 0 ,

or

−u′(1) = hu(1) ,

where

h =
k

T
=

spring constant

string tension

The transverse amplitude profile of the string is governed by Eq.(1.2). For constant
tension and uniform mass density this equation becomes

u′′ + λu = 0

We see that the S-L system for the heat conduction problem, Eqs.(1.6)- (1.8), coin-
cides with that for the vibration problem.

The task of solving this regular S-L system consists of finding all possible values
of λ for which the solution u(x, λ) is non-trivial. Consequently, there are four distinct
cases to consider:

1. λ = 0,

2. λ > 0,

3. λ < 0, and

4. λ = complex.

We shall have to consider cases 1.-3. only. This is because the next subsection (1.3.3)
will furnish us with some very powerful theorems about the nature of the allowed
values of λ and the corresponding non-trivial solutions u(x, λ).

1. λ = 0 leads to u = c1 + c2x

h > 0 ⇒ c1 = c2 = 0 i.e., u(x) = 0 for all 0 < x < 1

h = 0 ⇒ u(x) = c1

constant solution. (What physical circumstance is expressed by u(x) = c1?)
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2. λ = α2 > 0, α > 0
The general solution to the differential equation is

u(x) = c1 cosαx+ c2 sinαx .

Now consider the boundary conditions.

(a) Eq.(1.7) ⇒ c2 = 0. Consequently, u(x) = c1 cosαx .

(b) Eq.(1.8) ⇒ −αc1 sinα + hc1 cosα = 0. Consequently,

tanα =
h

α
. (1.9)

This transcendental equation determines the allowed values of α and hence of
λ. How do we find them? A very illuminating way is based on graphs. Draw
the two graphs (Figure 1.3)

y = tanα

and

y =
h

α
.

Where they intersect gives the allowed values of α, and hence λ = α2, the
eigenvalues of the S-L problem. We see that there are an infinite number of
intersection points

α1, α2, α3, . . . , αn, . . . .

For large n we have αn ≃ (n− 1)π. The corresponding eigenvalues are

λn = α2
n n = 1, 2, 3, · · · .

Comment: One important question is this: how do the allowed eigenvalues
and eigenfunctions depend on boundary conditions? More on that later.

3. λ = −β2 < 0 . This leads to the general solution

u(x) = c1 cosh βx+ c2 sinh βx .

The boundary conditions yield

tanh β = −h
β

.

The graph of the hyperbolic tangent does not intersect the graph of the two
equilateral hyberbolas. Consequently, the set of solutions for β is the empty
set. Thus the S-L system has no solution, except the trivial one u(x) = 0.
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απ 3π 5π 7π−π
2 2 2 2 2

α
h tan α

Figure 1.3: There are two graphs in this figure: that of tan α and that of the two
hyperbolas h/α. The intersection of these two graphs is the solution set to the
transcendental eigenvalue Eq.(1.9). The α-values of the heavy dots are the desired
solutions. Note that if α is a solution, then −α is another solution, but it yields the
same eigenvalue λ = α2.

4. What about complex λ?
We shall see in the next section that the eigenvalues of a S-L problem are
necessarily real.

Lecture 4

1.3.3 Basic Properties of a Sturm-Liouville Eigenvalue Prob-
lem

It is surprising how much useful information one can infer about the eigenvalues and
eigenfunctions of a S-L problem without actually solving the differential equation
explicitly. Thus from very general and simple considerations we shall discover that
the eigenvalues are real, are discrete if the domain is finite, have a lowest member,
increase without limit, and that the corresponding eigenfunctions are orthogonal to
each other, oscillate, oscillate more rapidly the larger the eigenvalue, to mention just
a few pieces of useful information.
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In practice this kind of information is quite often the primary thing of interest.
In other words, the philosophy quite often is that one verifies that a certain system
is of the S-L types, thus having at one’s immediate disposal a concomitant list of
properties of the system, properties whose qualitative nature is quite sufficient to
answer the questions one had about the system in the first place.

As promised, we shall develop these and other properties by means of a collection
of theorems. But before doing so, we remind ourselves about what is meant by a
“Sturm-Liouville system”, by a “solution”, and by “orthogonality”. The Sturm-
Liouville system we shall consider consists of (i) the S-L differential equation

[
d

dx
p(x)

d

dx
+ λρ(x)− q(x)

]

u(x) = 0 , (1.10)

where q, ρ, p, and p′ are continuous and ρ and p are positive definite functions on
the open interval (a, b) together with (ii) the boundary conditions

1. αu(a) + α′u′(a) = 0 (1.11)

2. βu(b) + β′u′(b) = 0

where the given constants α, α′, β and β′ are independent of the parameter λ.
Corresponding to an eigenvalue of this S-L system, an eigenfunction un(x) is

understood to be that solution which is “regular”, i.e.,

un(x) and
dun(x)

dx
are continuous

and hence finite, on the closed interval [a, b]. In particular, an eigenfunction must
not have any finite jump discontinuities anywhere in [a, b].

Orthogonality, Reality, and Uniqueness

Two eigenfunctions um(x) and un(x) are said to be orthogonal relative to the weight
function ρ(x) if

∫ b

a

um(x)un(x)ρ(x)dx = 0 whenever m 6= n .

They are said to be orthonormal with respect to ρ(x) if

∫ b

a

um(x)un(x)ρ(x)dx = δmn . (1.12)
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With these reminders at hand, one can now identify the two most important
properties of a S-L system, the orthonormality of its eigenfunctions and the reality
of its eigenvalues. The statement and the proof of these properties parallel those of
the familiar eigenvalue problem from linear algebra,

A~u = λB~u

where A is a Hermitian and B is a positive definite matrix.

Theorem 1 (Orthogonality) Let λm and λn be any two distinct eigenvalues of the
S-L problem 1.10 and 1.11 with corresponding eigenfunctions um and un. Then um
and un are orthogonal with respect to the weight ρ(x).

Orthogonality also holds in the following cases

1. when p(a) = 0 and the first (1) of the boundary conditions 1.11 is dropped.
This is equivalent to setting α = α′ = 0

2. when p(b) = 0 and the second (2) of the conditions 1.11 is dropped. This is
equivalent to setting β = β′ = 0

3. when p(a) = p(b) and 1.11 are replaced by

u(a) = u(b) (1.13)

u′(a) = u′(b) .

Remarks:

1. In case (1.) or (2.), the S-L problem is said to be singular.

2. The S-L problem with mixed Dirichlet-Neumann conditions at both ends is
said to be regular.

3. The same terminology, (“singular”) is also used when

ρ(x) vanishes at an endpoint,

q(x) is singular at an endpoint,

(a, b) is unbounded .

In other words, we are not interested in the actual value of u(x), just that it
stays finite. This is sufficient to select (a multiple of the correct) one of two
independent solutions to the differential equation.
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4. The boundary conditions 1.13 are those of a periodic S-L problem, for example,
the one where x is the angle ϕ in cylindrical coordinates. (More on that later.)

5. This theorem is analogous to the orthogonality 〈um, Bun〉 = 0, of the eigenvec-
tors um and un of the familiar eigenvalue problem A~u = λB~u.

6. The metaphysical 2 driving force behind the orthonormality and other prperties
of the S-L eigenvalue problem is the energy principle applied to time invariant
systems.

The Energy Principle for a Vibrating String+Spring System

A vibrating string, which is mathematized by Newton’s 2nd Law, obeys the
wave equation

ρ(x)
∂2v(x, t)

∂t2
=

∂

∂x
T (x)

∂v(x, t)

∂x
− κ(x)v(x, t) . (1.14)

It holds in an infinitesimal interval surrounding each given point in space and
each given instant of time. Focus on a vibratory system whose wave equation

(a) is time invariant: the coefficients that determine the system’s nature do
not depend on time, and

(b) whose wave amplitude satisfies Dirichelet

v(a) = 0 (1.15)

or Neumann boundary conditions

v′(a) = 0 (1.16)

at x = a, and satisfies the mixed boundary condition

− T ∂v
∂x

∣
∣
∣
∣

b

− kv(b) = 0 (1.17)

at x = b.

2pertaining to the nature of things
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x = a x = b

k

(i) Dirichelet boundary condition at x =
a

x = a x = b

k

(ii) Neumann boundary condition at x =
a

Figure 1.4: Vibrating strings each with a spring at one side and fixed (i) or free (ii)
boundary condition at the other

Whatever the vibrations of the string, it has two kinds of energy. Each element
∆x of the vibrating string has at any instant a well-defined amount of kinetic
energy

∆(K.E.) =
1

2
∆x ρ(x)

(
∂v

∂t

)2

(1.18)

and a well-defined amount of potential energy

∆(P.E.) =
1

2
∆x

[

− ∂

∂x
T (x)

∂v

∂x
+ κ(x)v

]

v . (1.19)

The latter is the amount of work that needs to be done on the string element
∆x to bring it from its equilibrium v = 0 to its displaced value of v(x, t). The
first product in Eq.(1.19) is the work in pushing with force

−∆x ∂
∂x
T (x)

∂v

∂x

upwardly against the slightly curved string element ∆x. The second, in pushing
upwardly with force

∆xκ(x)v

against the elastic imbedding medium whose Hook’s stiffness coefficient con-
stant for the string element ∆x is ∆xκ(x).

The total energy of the string element ∆x is the sum of Eqs.(1.18)-(1.19),

∆(T.E.) = ∆(P.E.) + ∆(P.E.) .
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The total energy of the whole string is therefore

T.E. = K.E.+ P.E.

=
1

2

∫ b

a

dx ρ

(
∂v

∂t

)2

︸ ︷︷ ︸

K.E.

+
1

2

∫ b

a

dx

[

− ∂

∂x
T (x)

∂v

∂x
+ κ(x)v

]

v

︸ ︷︷ ︸

P.E.

(1.20)

The P.E. is positive definite. Indeed, by means of an integration by parts one
finds

P.E. =
1

2
(−)T (x)∂v

∂x
v

∣
∣
∣
∣

b

a

+
1

2

∫ b

a

dx

[

T

(
∂v

∂x

)2

+ κ(x)v2

]

,

which in light of Eqs.(1.15)-(1.17) becomes

=
1

2
k v2

∣
∣
∣
∣

b

︸ ︷︷ ︸

potential
energy stored
in the spring

+
1

2

∫ b

a

dx

[

T

(
∂v

∂x

)2

+ κ(x)v2

]

︸ ︷︷ ︸

potential
energy stored
in the string

This concretization is a green light to mathematize the relation between the
constituents of the string’s total energy

T.E. =
1

2

∫ b

a

dx ρ

(
∂v

∂t

)2

︸ ︷︷ ︸

K.E.

+
1

2
k v2

∣
∣
∣
∣

b

︸ ︷︷ ︸

potential
energy stored
in the spring

+
1

2

∫ b

a

dx

[

T

(
∂v

∂x

)2

+ κ v2

]

︸ ︷︷ ︸

potential
energy stored
in the string

(1.21)
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In particular, how does the total change with time? The time derivative of
that total, Eq.(1.20), is

d T.E.

dt
=

∫ b

a

dx ρ

(
∂v

∂t

)(
∂2v

∂t2

)

︸ ︷︷ ︸

1©
+

1

2

∫ b

a

dx

[

− ∂

∂x
T (x)

∂v

∂x
+ κ v

]
∂v

∂t
︸ ︷︷ ︸

2©
+

1

2

∫ b

a

dx

[

− ∂

∂x

(

T (x)
∂

∂x

(
∂v

∂t

))

+ κ
∂v

∂t

]

v

︸ ︷︷ ︸

3©
Integrate term 3© by parts two times

3© = − 1

2
T
∂

∂t

(
∂v

∂x

)

v

∣
∣
∣
∣

b

a

+
1

2

∫ b

a

dx

[

T (x)
∂

∂x

(
∂v

∂t

)
∂v

∂x
+ κ v

∂v

∂t

]

= −
✘✘✘✘✘✘✘✘✘✘✘1

2
T
∂

∂t

(
∂v

∂x

)

v

∣
∣
∣
∣

b

a

+
✟
✟
✟

✟
✟
✟
✟✟

1

2

∂v

∂t
T
∂v

∂x

∣
∣
∣
∣

b

a

+
1

2

∫ b

a

dx

[

− ∂

∂x
T (x)

∂v

∂x
+ κ v

]
∂v

∂t

The end point terms cancel because of the boundary conditions,
Eqs.(1.15)-(1.17) and the time derivative of Eq.(1.17). It follows
that

3© = 2©
Apply the wave Eq.(1.1)to the integrands of 2© and 3©. The result
is

d(T.E.)

dt
≡ 1©+ 2©+ 3© = 0

Conclusion: The total energy, Eq.(1.21), of a string+spring sys-
tem imbedded in an elasic medium is independent of time. It is a
“ constant of motion” of the dynamical system.



1.3. STURM-LIOUVILLE SYSTEMS 25

The physical significance of the orthogonality of the eigenfunctions
is exemplified by the energy of a vibrating system governed by,
say the wave equation, Eq.(1.1). Its total energy,

T.E. =
1

2

∫ b

a

[

ρ(x)

(
∂v

∂t

)2

+ T (x)

(
∂v

∂x

)2

+ κ(x)v2

]

dx , (1.22)

is the sum of its kinetic energy and its combined potential energies
due to the tension in the string and due to the elasticity of the am-
bient medium in which the string makes its transverse excursions.
Performing an integration by parts on the second term, dropping
the endpoint terms due to the imposed homogeneous boundary
conditions, and using the governing wave equation, Eq.(1.1), one
finds that the total energy is

T.E. =
1

2

∫ b

a

[

ρ(x)

(
∂v

∂t

)2

+

(

− ∂

∂x
T (x)

∂v

∂x
+ κ(x)v

)

v

]

dx

=
1

2

∫ b

a

[(
∂v

∂t

)2

− ∂2v

∂t2
v

]

ρ(x) dx

Suppose the total vibrational amplitude is a superposition of the
amplitudes associated with with each eigenfrequency ωn,

v(x, t) =
∑

n

cnun(x) cos(ωnt+ δn) .

Then the total energy becomes

T.E. =
1

2

∑

m

∑

n

[ωmωn sin(ωmt+ δm) sin(ωnt+ δn)

+ ω2
m cos(ωmt+ δm) cos(ωnt+ δn)

]
c̄mcn

∫ b

a

ūm(x)un(x)ρ(x) dx
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The orthonormality, Eq.(1.12), implies that

T.E. =
1

2

∑

n

ω2
n|cn|2 .

Thus we see that the orthonormality of the S-L eigenfunctions
expresses the fundamental fact that the total energy, a constant
independent of time, is composed of the mutually exclusive and
constant energies residing in each normal mode (“vibratory degree
of freedom”).

Proof in 3 Steps: In analogy to Aum = λmBum and Aun = λnBun one first
considers
Step (1) −(pu′m)′ + qum

︸ ︷︷ ︸

‖
Lum

= λmρum; −(pu′n)′ + qun
︸ ︷︷ ︸

‖
Lun

= λnρun.

Then multiply the equations respectively by un and um and subtract them. The
left hand side becomes

l.h.s. = unLum − umLun ≡
d

dx
p(umu

′
n − unu′m) (1.23)

We now interrupt the three-step proof to remark that this is an important identity
known as Lagrange’s Identity . We shall meet it and refer to it in several subsequent
sections. This identity generalizes to higher dimensions by means of the vector
identity un∇2um − um∇2un = ∇ · (un~∇um − um~∇un).
The integral version of Lagrange’s Identity is known as Green’s identity

∫ b

a

(unLum − umLun)dx = p(x)(umu
′
n − unu′m)

∣
∣
∣
∣
∣

b

a

(1.24)

in 1 dimension. Observe the parallel of this with Green’s Identity in three dimensions:

∫ ∫ ∫

volume

(un∇2um − um∇2un)d
3x =

∫ ∫

boundary

(un~∇um − um~∇un) · ~dS .

We now continue the three-step proof by considering the right hand side of the above
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subtraction result,
r.h.s. = (λm − λn)ρumun .

Step (2) Both sides are equal. Upon integrating them, one obtains

(λm − λn)
∫ b

a

umunρ(x)dx = p(x)W [um, un](x)

∣
∣
∣
∣
∣

b

a

where

W [um, un] =

∣
∣
∣
∣

um u′m
un u′n

∣
∣
∣
∣
.

This would be called the Wronskian of um and un if λm and λn were equal. The right
hand side of this one-dimensional Green’s identity depends only on the boundary
(end) points. The idea is to point out that this right hand side vanishes for any one
of the boundary conditions under consideration.
Step (3a) If one has D-N conditions

αu(a) + α′u′(a) = 0

βu(b) + β′u′(b) = 0 ,

then these D-N conditions imply

W (a) = 0

W (b) = 0

because 1st = 2nd columns are proportional. Thus for a regular S-L problem

(λm − λn)
∫ b

a

um(x)un(x)ρ(x)dx = 0 ,

i.e., one has orthogonality whenever λm 6= λn.
Step (3b) If one has a periodic S-L problem

p(b) = p(a)

u(a) = u(b)
u′(a) = u′(b)

}

⇒ W (a) = W (b) .

i.e., one again has orthogonality whenever λm 6= λn.
Setp (3c) If one has a singular S-L problem

p(b) = 0
W (b) = finite

}

⇒ p(b)W (b) = 0 .
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Similar considerations at the other end point also yield zero. Once again one has
orthogonality whenever λm 6= λn. To summarize, the eigenfunctions of different
eigenvalues of regular, periodic, and singular Sturm-Liouville systems are orthogonal.

Lecture 5

Theorem 2 (Reality of Eigenvalues) For a regular, periodic, and singular S-L system
the eigenvalues are real.
Proof: Step (1) Let u be an eigenfunction corresponding to the complex eigenvalue
λ = µ+ iν. The eigenfunctions are allowed to be complex. Thus

Lu = λρ(x)u and Lu = λρu

αu(a) + α′u′(a) = 0 αu(a) + α′u′(a) = 0

βu(b) + β′u′(b) = 0 βu(b) + β′u′(b) = 0

because
L = L, ρ(x) = ρ(x)
α, α′ = α, α′

β, β′ = β, β′






are real .

Step (2) We have, therefore,

∫ b

a

(uLu− uLu)dx
︸ ︷︷ ︸

0 = p(x)W [u, u]

∣
∣
∣
∣
∣

b

a

= (λ− λ)
∫ b

a

uuρ(x)dx

0 = (λ− λ)
∫ b

a

|u|2ρ(x)dx .

This implies that λ = λ, i.e., that λ is real.
We now inquire as to the number of independent eigenfunctions corresponding

to each eigenvalue. This is a question of uniqueness. The examples on page 15 have
only one such eigenfunction for each eigenvalue. Consider, however, the following
Example (Periodic S-L system)

u′′ + λu = 0 − 1 < x < 1

u(−1) = u(1)

u′(−1) = u′(1) .



1.3. STURM-LIOUVILLE SYSTEMS 29

We note that p(−1) = p(1). Consequently, this is a periodic S-L system.
The form of the solution can be written down by inspection. Letting λ = α2, one

obtains

u(x) = c1 cosαx+ c2 sinαx

without loss of generality we assume α > 0. The two boundary conditions imply

2c2 sinα = 0

and

−2αc1 sinα = 0 .

Both conditions yield non-zero solutions whenever α = 0, π, 2π, . . . . Consequently,
the eigenvalues are

λn = n2π2 n = 0, 1, 2, · · · .

Note that for every eigenvalue (except λ0) there are two eigenfunctions

λ0 :
1

2
λ1 : cos πx , sin πx
...

λn : cosnπx , sinnπx .

Such nonuniqueness is expressed by saying that each of the eigenvalues λ1, λ2, . . .
is degenerate, in this example doubly degenerate because there are two independent
eigenfunctions for each eigenvalue.

The next theorem states that this cannot happen for a regular S-L system. Its
eigenvalues are simple, which is to say they are nondegenerate.
Note that the theorem below uses Abel’s Theorem, namely Theorem 4.
Theorem 3 (Uniqueness of solutions to the regular S-L system.) An eigenfunction
of a regular Sturm-Liouville system is unique except for a constant factor, i.e., the
eigenvalues of a regular S-L problem are simple.
Proof : For the same eigenvalue λ, let u1 and u2 be two eigenfunctions of the regular
S-L system. For a regular S-L system the b.c. are

αu1(a) + α′u′1(a) = 0

αu2(a) + α′u′2(a) = 0 .
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In other words, both solutions satisfy the D-N mixed boundary conditions at the left
hand endpoint. The value of the Wronskian at x = a is

W [u1, u2](a) =

∣
∣
∣
∣

u1 u′1
u2 u′2

∣
∣
∣
∣
x=a

= 0 ,

(
columns are

proportional

)

.

In light of Abel’s Theorem one has p(x)W [u1, u2](x) = constant. Apply this result
to the case when x = a and thus find that constant = 0. It follows that

u′1(x)

u1(x)
− u′2(x)

u2(x)
= 0 which implies that u1(x) = ku2(x) .

This conclusion says that the solution u1(x) is unique (up to a constant multiplicative
factor).
NOTE: If the endpoint condition had been the periodic boundary condition, then
one cannot conclude that the eigenvalues are simple. This is because

u(a) = u(b)
u′(a) = u′(b)

does not imply [u1(x)u
′
2(x)− u′1(x)u2(x)]x=a = 0 .

The previous uniqueness theorem used Abel’s theorem, which applies to a second
order linear differential equation regardless of any boundary conditions imposed on
its solutions.
Theorem 4 (Abel) If u1 and u2 are two solutions to the same differential equation

[

− d

dx
p
d

dx
+ q

]

u = λρu

(i.e., Lu = λρu), then

p(x)[u1(x)u
′
2(x)− u2(x)u′1(x)] = constant . (1.25)

Remark. The expression in square brackets,

W = u1u
′
2 − u2u′1

is called the “Wronskian” or the “Wronskian determinant”.
Proof: Start with Lagrange’s identity

u2Lu1 − u1Lu2 =
d

dx
p(u1u

′
2 − u2u′1) ≡

d

dx
p(x)W [u1, u2] .
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Use the given differential equation to conclude that the left hand side vanishes, i.e.

0 =
d

dx
p(x)W [u1, u2] .

Thus p(x)W [u1, u2](x) is indeed a constant, independent of x.
A nice application of this theorem is that it gives us a way of obtaining a second

solution to the given differential equation, if the first one is already known.
Using Abel’s theorem, the Wronskian determinant can be rewritten in the form

u21

(
u′2
u1
− u2

u′1
u21

)

=
const.

p

or

u21
d

dx

(
u2
u1

)

=
const.

p
.

Integration yields the following
Corollary (Second solution)

u2 = u1(x)

∫ x dx′

p(x′)u21(x
′)
+ c1u1 .

Thus one is always guaranteed a second solution if a first solution is known.

Exercise 1.3.1 (SCHRÖDINGER FORM: NO FIRST DERIVATIVES)
(a) SHOW that any equation of the form

u′′ + b(x)u′ + c(x)u = 0

can always be brought into the Schrödinger form (”no first derivatives”)

v′′ +Q(x)v = 0

Apply this result to obtain the Schrödinger form for

(b)
u′′ − 2xu′ + λu = 0 (HERMITE EQUATION)

(c)
x2u′′ + xu′ + (x2 − ν2)u = 0 (BESSEL’S EQUATION)

(d)
xu′′ + (1− x)u′ + λu = 0 (LAGUERRE’S EQUATION)
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(e)
(1− x2)u′′ − xu′ + α2u = 0 (TSHEBYCHEFF’S EQUATION)

(f)
(pu′)′ + (q + λr)u = 0 (STURM-LIOUVILLE EQUATION)

(g)
[

1

sin θ

d

dθ
sin θ

d

dθ
+ ℓ(ℓ+ 1)− m2

sin2 θ

]

u = 0 (LEGENDRE EQUATION)

Exercise 1.3.2 (NONDEGENERATE EIGENVALUES)
Consider the S-L eigenvalue problem

[Lun](x) ≡
(

− d2

dx2
+ x2

)

un(x) = λnun(x) ; lim
x→±∞

u(x) = 0 ; (1.26)

on the infinite interval (−∞,∞).
Show that the eigenvalues λn are nondegenerate, i.e. show that, except for a constant
multiplicative factor, the corresponding eigenfunctions are unique.

Nota bene:

(i) The eigenfunctions are known as the Hermite-Gaussian polynomials. They are known
to professionals in Fourier optics who work with laser beams passing through optical
systems. A laser beam which is launched with cross-sectional amplitude profile un(x)
one focal length away from a lens, passes through the lens, and is then observed (on,
say, a screen) one focal length after that lens, has an amplitude profile identical to
the initial profile un(x).

(ii) These eigenfunctions are also known to physicists who work with simple harmonic os-
cillators (e.g. vibrating molecules), in which case the eigenfunctions are the quantum
states of an oscillator and the eigenvalues are its allowed energies.

Exercise 1.3.3 (EVEN AND ODD EIGENFUNCTIONS)
Consider the “parity” operator P : L2(−∞,∞)→ L2(−∞,∞) defined by

Pψ(x) ≡ ψ(−x)
(i) For a given function ψ(x), what are the eigenvalues and eigen functions of P?

(ii) Show that the eigenfunctions of the operator L defined by Eq.(1.26) are eigenfunc-
tions of P . Do this by first computing

P−1LPψ(x)

for ψ ∈ L2(−∞,∞) and then pointing out how P−1LP is related to L.

Next point out how this relationship applied to an eigenfunction un of the previous
problem leads to the result Pun = µun.
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Exercise 1.3.4 (EIGENBASIS OF THE FOURIER TRANSFORM F)
Consider the S-L eigenvalue problem

[Lun](x) ≡
(

− d2

dx2
+ x2

)

un(x) = λnun(x) ; lim
x→±∞

u(x) = 0 ;

on the infinite interval (−∞,∞). We know that the eigenvalues are nondegenerate and are

λn = 2n+ 1 , n = 0, 1, . . . .

Consider now the Fourier transform on L2(−∞,∞):

F [u](k) ≡
∫ ∞

−∞

e−ikx√
2π

u(x)dx .

(a) By computing
FLF−1ψ̂(k)

for arbitrary ψ̂ ∈ L2(−∞,∞), determine the Fourier representation

FLF−1 ≡ L̂ .

of the operator

L = − d2

dx2
+ x2

(b) By viewing F as a map L2(−∞,∞)→ L2(−∞,∞), compare the operators L̂ and L.

State your result in a single English sentence and also as a mathematical equation.

(c) Use the result obtained in (b) to show that each eigenfunction un of the S-L operator
L is also an eigenfunction of F :

Fun = µ un .

By applying the result (e) of the Fourier eigenvector Exercise on page 154 to the
previous Exercise determine the only allowed values for µ. What is the Fourier
transform of a Hermite-Gauss polynomial un(x)?

CONGRATULATIONS, you have just found an orthonormal eigenbasis of the Fourier
transform operator F (in terms of the eigenbasis of the S-L operator L)!

Exercise 1.3.5 (HOW TO NORMALIZE AN EIGENFUNCTION)
Consider the S-L system

[
d

dx
p
d

dx
− q + λρ

]

u = 0 a < x < b
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αu(a) + α′u′(a) = 0 ; βu(b) + β′u′(b) = 0 .

Let w(x, λ) be that unique solution to d
dxp

dw
dx + (λρ − q)w = 0 which satisfies αw(a, λ) +

α′w′(a, λ) = 0. i.e. it satisfies the left hand boundary condition. Then wn(x) ≡ w(x, λn) is
an eigenfunction of the above S-L system corresponding to the eigenvalue λn.

Calculate the normalization integral
b∫

a
w2
n ρ dx as follows:

(a) Obtain the preliminary formula

(λ− λn)
∫ b

a
wn(x)w(x, λ)ρ(x)dx = p(b)W (w,wn)|x=b .

(b) By taking the limit λ→ λn show that

∫ b

a
w2
n ρ dx = p(b)

[

w′n(b)
dw(b, λ)

dλ

∣
∣
∣
∣
∣
λ=λn

− wn(b)
d

dλ
w′(b, λ)

∣
∣
∣
∣
∣
λ=λn

]

,

where prime denotes differentiation w.r.t. x.

Exercise 1.3.6 (ORTHONORMALIZED BESSEL FUNCTIONS)
Consider the Sturm-Liouville (S-L) problem

[

− d

dx
x
d

dx
+
ν2

x

]

u = λxu .

Here u,
du

dx
bounded as x→ 0, u(1) = 0 where ν is a real number.

(a) Using the substitution t =
√
λ x, show that the above differential equation reduces

to Bessel’s equation of order ν. One solution which is bounded as t → 0 is Jν(t); a
second linearly independent solution, denoted by Yν(t), is unbounded as t→ 0.

(b) Show that the eigenvalues λ1, λ2, . . . of the given problem are the squares of the
positive zeroes of Jν(

√
λ ), and that the corresponding eigenfunctions are

un(x) = Jν(
√

λn x) .

(c) Show that the eigenfunctions un(x) satisfy the orthogonality relation

1∫

0

x um(x) un(x) dx = 0 m 6= n .
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(d) For the case ν = 0, apply the method of the previous problem to exhibit the set of
orthonormalized eigenfunctions {u0(x), u1(x), u2(x), · · · }.

(e) Determine the coefficients in the Fourier-Bessel series expansion

f(x)
.
=
∞∑

n=1

cn un(x) .

Exercise 1.3.7 (ORTHOGONALITY OF LEGENDRE POLYNOMIALS)
Consider the S-L problem

[

− d

dx
(1− x2) d

dx
+

m2

1− x2
]

u = λu

Here u,
du

dx
bounded as x→ ±1. Here m = integer. The solutions to this S-L problem are

un = Pmn (x), the “associated Legendre polynomials”, corresponding to λn = n(n+1), n =
integer. Show that

1∫

−1

Pmn (x)Pmn′ (x) dx = 0 λn 6= λn′ .

Lecture 6

Sturm’s Comparison Theorem

When confronted with the regular boundary value problem

[
d

dx
p(x)

d

dx
− q(x) + λρ(x)

]

u(x) = 0 (1.27)

αu(a) + α′u′(a) = 0 (1.28)

βu(b) + β′u′(b) = 0

we must ask

1. How does the oscillatory nature of u(x;λ), a solution to Eq. 1.27, depend on
λ?
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2. Why do the values of λ permitted by (1.27) and (1.28) form a discrete and
semi-infinite sequence

λ0 < λ1 < · · · < λn < · · ·
with a smallest eigenvalue λ0 and with λn →∞ as n→∞?

The “oscillatory nature” of a solution u(x, λ) is expressed qualitatively by the
location of the zeroes of its graph. One could also inquire about its behaviour
between successive zeroes. However, we shall see that such an inquiry always leads
to the same answer: Provided q(x) + λρ(x) is positive between a pair of successive
zeroes, the graph of u(x;λ) has only a single maximum (or minimum). This means
that u(x, λ) can not oscillate between two of its successive zeroes.

Thus the most important issue is the existence and location of the zeroes, which
are controlled entirely by the phase of a given solution u(x, λ). This phase is a scalar
function from which one directly constructs the solution. It is preferrable to discuss
the behavior of the solution u(x;λ) in terms of its phase because the key qualitative
properties of the latter are very easy to come by. As we shall see in Section 1.4,
one only needs to solve a first order differential equation, not the second order S-L
equation.

However, before establishing and solving this differential equation, let us use the
second order S-L differential equation directly to determine how the zeroes of u(xλ)
are affected if the parameter λ is changed. We express this behaviour in terms of the
Sturm Comparison Theorem:
Whenever λ1 < λ2, then between two zeroes of the nontrivial solution u(x, λ1), there
lies a zero of u(x, λ2).

This theorem demands that one compare the two different solutions

u(x, λ1) ≡ u1(x) and u(x, λ2) ≡ u2(x)

of Eq. 1.27 corresponding two different constants λ1 and λ2. The conclusion is
obtained in three steps:
Step 1: Multiply these two equations respectively by u2 and u1, and then form their
difference. The result, after cancelling out the q(x)u1u2 term, is

d

dx

[

p(x)

(

u2
du1
dx
− u1

du2
dx

)]

= (λ2 − λ1)u1u2ρ(x) ,

which is the familiar Lagrange identity, Eq.(1.23), in disguise. Upon integration one
obtains

p(x)(u2u
′
1 − u1u′2)

∣
∣
∣
∣

x

a

= (λ2 − λ1)
∫ x

a

u1u2ρ dx .
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u(x,λ1)

u(x,λ1)

ζ

u (x)

1st zero of
x= a

1

x

Figure 1.5: Graph of a solution u(x, λ1) which satisfies the mixed D-N boundary
condition at x = a.

If both u1 and u2 satisfy the mixed Dirichlet-Neumann boundary conditions αu(a)+
α′u′(a) = 0 at x = a, then

(u2u
′
1 − u1u′2)x=a = −

α

α′
[u2(a)u1(a)− u1(a)u2(a)] = 0 .

If x = a is a singular point of the differential Eq.(1.27), p(a) is zero. Thus, if u and
u′ are finite at x = a, then the left hand side vanishes again at the lower limit x = a.
Thus both for a regular and for this singular Sturm-Liouville problem we have

p(x)

(

u2(x)
du1(x)

dx
− u1(x)

du2(x)

dx

)

= (λ2 − λ1)
∫ x

a

u1u2ρ dx .

Step 2: Now assume that, for some range of values λ, each of the corresponding
solutions u(x, λ) satisfying the boundary condition at x = a, oscillates. In other
words, as x increases beyond x = a, u(x, λ) reaches a maximum, then decreases,
passes through zero, reaches a minimum, increases and so on. That such a range of
λ-values exists, we shall see later.

Let λ1 lie in this range, and let x = ζ be the first zero of u1(x) as in Figure 1.5.
Consequently,

(

p(x)u2
du1
dx

)

ζ

= (λ2 − λ1)
∫ ζ

a

u1u2ρ dx .

Step 3. One must now conclude that if λ2 > λ1, then the zeroes of u2(x) are more
closely spaced than those of u1(x). Why must this statement, the Sturm Comparison
Theorem, be true?
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u (x)1 u (ξ)1 >0

u (1 ζ)< 0

ζ
x

ξ

u (x)1 < 0

Figure 1.6: Graph of a solution u(x, λ1) which is zero at ζ and ξ.

a) Assume the contrary, i.e., assume that u2(x) has no zero in a < x < ζ. See Figure
1.5. In that case u2(x) > 0 for all a < x < ζ. This implies

(

p(x)u2
du1
dx

)

ζ

= (λ2 − λ1)
∫ ζ

a

u1u2ρ dx > 0 .

But p(ζ) > 0, u2(ζ) > 0 and du1(ζ)
dx

< 0, so that
(
p(x)u2

du1
dx

)

ζ
< 0. This is a

contradiction. Hence our assumption was wrong; the function u2 does have a zero in
a < x < ζ.
b) Now consider the circumstance where u1(x) has two successive zeroes at ζ and ξ:
u1(ζ) = u1(ξ) = 0. In that case one obtains

p(ξ)u2(ξ)u
′
1(ξ)− p(ζ)u2(ζ)u′1(ζ) = (λ2 − λ1)

∫ ξ

ζ

u2u1ρ dx .

If u2(x) does not change sign in ζ < x < ξ, as in Figure 1.7, then we again have a
contradiction because if u1(x) < 0, then u′1(ζ) < 0, u′1(ξ) > 0⇒ (r.h.s.)×(l.h.s.) < 0.
In other words, the picture in Figure 1.7 is impossible. We conclude, therefore, that
u2(x) must have a zero inside the open interval (ζ, ξ).

1.4 Phase Analysis of a Linear Second Order O.D.E.

The fundamental property of solutions to the λ-parametrized S-L equation is their
oscillatory nature, i.e. the existence and the spacing of their zeros. This undulatory
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u (x)1

ζ
x

ξ

u (x)2

impossible
if

λ  >λ2 1

Figure 1.7: If λ2 > λ1 it is impossible that u(x, λ2)u(x, λ1) > 0 for all x in the
interval [ζ, ξ].

behavior of a solution is conceptualized by means of its phase, a concept formed
from the observation of waves. Its mathematization in the context of a S-L d.e.,
more generally, a non-linear 2nd order o.d.e., is the result of a transformation to
polar coordinates.

One starts with the two-dimensional domain of states, the Poincaré phase plane.
In compliance with the given 2nd order o.d.e., one introduces rectilinear coordinates.
Their values are proportional to the two state variables (u′ and u) of the system
governed by that 2nd order o.d. equation. As depicted in Figure 1.8, this d.e.
determines the trajectory of a moving point. Its polar angle is the evolving phase of
the system. It is particularly desirable to employ phase method to linear ordinary
differential equations (o.d.e.’s) of second order not only for the breadth and the depth
of the obtained results, but also for the ease with which these results are obtained. A
major contributing factor to the latter is that the method is capable of characterizing
the solutions to any such differential equation, and it can do so geometrically.

1.4.1 The Prüfer System

For linear second order ordinary differential equations, the phase plane method is
achieved by the so-called Prüfer substitution. It yields the phase and the amplitude
of the sought after solution to the Sturm-Liouville equation.

The method to be developed applies to any differential equation having the form

d

dx

(

P (x)
du

dx

)

+Q(x)u = 0 a < x < b (1.29)
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Here 0 < P (x), P ′(x), and Q(x) are continuous.
We are interested in asking and answering the following questions:

1. How often does a solution oscillate in the interval a < x < b; i.e., how many
zeroes does it have?

2. How many maxima and minima does it have between a pair of consecutive
zeroes?

3. What happens to these zeroes when one changes P (x) and Q(x)?

The questions can be answered by considering for this equation its phase portrait in
the Poincaré phase plane. We do this by introducing the “phase” and the “radius”
of a solution u(x). This is done in three steps.

A) First apply the Prüfer substitution

P (x)u′(x) = r(x) cos θ(x); u(x) = r(x) sin θ(x)

to the quantities in Eq.(1.29). Do this by introducing the new dependent variable r
and θ as defined by the formulae

r2 = u2 + P 2(u′)2 ; θ = arctan
u

Pu′
.

(Without loss of generality one may always assume that u(x) is real. Indeed, if u(x)
were a complex solution, then it would differ from a real one by a mere complex
constant.) A solution u(x) can thus be pictured in this Poincaré plane as a curve
parametrized by the independent variable x.

However, there is more. Two solutions to Eq.(1.29), say u1 and u2, give rise to
two vectors,

~R1(x) = (Pu′1, u1) = (r1 cos θ1, r1 sin θ1)

and

~R2(x) = (Pu′2, u2) = (r2 cos θ2, r2 sin θ2) ,

moving in the Poincaré plane as shown in Figure 1.9. The area of the triangle formed
by these vectors is 1/2 that of the parallelogram,

~R2 × ~R1 = Pu′2u1 − Pu′1u2 (1.30)

= r1(x)r2(x) sin[θ1(x) sin θ2(x)]. (1.31)
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Figure 1.8: The Poincaré phase plane of the second order linear differential equation
is spanned by the amplitude u and its derivative u′ (multiplied by the positive coeffi-
cient P ). A solution to the differential equation is represented by an x-parametrized
curve. The (Prüfer) phase is the polar angle θ.

R2 1−
2 R1

x
x

θθ

u

P u

Figure 1.9: The area spanned by the vectors ~R1 and ~R2, whose position is
parametrized by x, remains constant throughout its x-parametrized motion.
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This is constant because of Abel’s Theorem, Eq.(1.25). This constancy as function
of x is a universal property. It holds for all S-L systems, regardless of the particular
boundary conditions u1 and u2 may be subjected to.

The transformation
(Pu′, u)↔ (r, θ)

is a transition from rectilinear to polar coordinates in the Poincaré plane. This
transformation is non-singular for all r 6= 0. Furthermore, we always have r > 0 for
any non-trivial solutions. Why? Because if r(x) = 0, i.e., u(x) = 0 and u′(x) = 0
for some particular x, then by the uniqueness theorem for second order linear o.d.e.
u(x) = 0 ∀ x, i.e., we have the trivial solution.

B) Second, obtain a system of first order o.d.e. which is equivalent to the given
differential Eq.(1.29).
(i) Differentiate the relation

cot θ =
Pu′

u
.

(Side Comment: If u = 0, then we differentiate tan θ = u/Pu′ instead. This yields
the same result.)
One obtains

− csc2 θ
dθ

dx
=

(Pu′)′

u
− Pu′

u2
u′

= −Q− 1

P

cos2 θ

sin2 θ
,

or

dθ

dx
= Q(x) sin2 θ +

1

P (x)
cos2 θ ≡ F (x, θ) . (1.32)

This is Prüfer’s differential equation for the phase, the Prüfer phase.
(ii) Differentiate the relation

r2 = u2 + (Pu′)2

and obtain

r
dr

dx
= uu′ + (Pu′)(Pu′)′

=
u

P
Pu′ − Pu′Qu

=
r sin θ

P
r cos θ − r cos θQr sin θ
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or

dr

dx
=

1

2

[
1

P (x)
−Q(x)

]

r sin 2θ . (1.33)

This is Prüfer’s differential equation for the amplitude.
C) Third, solve the system of Prüfer equations (1.32) and (1.33). Doing so is

equivalent to solving the originally given equation 1.29. Any solution to the Prüfer
system determines a unique solution to the equation (1.29), and conversely.

Of the two Prüfer equations, the one for the phase θ(x) is obviously much more
important: it determines the qualitative, e.g. oscillatory, behavior of u(x). The
feature which makes the phase equation so singularly attractive is that it is a first
order equation which also is independent of the amplitude r(x). The amplitude r(x)
has no influence whatsoever on the phase function θ(x). Consequently, the phase
function is governed by the simplest of all possible non-trivial differential equations:
an ordinary first order equation. This simplicity implies that rather straight forward
existence and uniqueness theorems can be brought to bear on this equation. They
reveal the qualitative nature of θ(x) (and hence of u(x)) without having to exhibit
detailed analytic or computer generated solutions.

(1) One such theorem says that for any initial value

(a, γ)

∃ a unique solution θ(x) which satisfies

dθ

dx
= F (x, θ)

and

θ(a) = γ ,

provided P and Q are continuous at a. See Figure 1.10. Existence and uniqueness
of θ(x) prevails even if P (x) and Q(x) have finite jump discontinuities at x 6= a.

(2) Once θ(x) is known, the Prüfer amplitude function r(x) is determined by
integrating Eq.(1.33). One obtains

r(x) = K exp

∫ x

a

1

2

[
1

P (x)
−Q(x)

]

sin 2θ(x) dx

where K = r(a) is the initial amplitude.
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Figure 1.10: The phase function θ(x) is that unique solution to the Prüfer equation
dθ/dx = F (θ, x) whose graph passes through the given point (a, γ).

(3) Each solution to the Prüfer system, Eqs.(1.32) and (1.33), depends on two
constants:

the initial amplitude K = r(a)

the initial phase γ = θ(a)

Note the following important fact: Changing the constant K just multiplies the
solution u(x) by a constant factor. Thus the zeroes of u(x) can be located by studying
only the phase d.e.

dθ

dx
= F (x, θ) .

This is a major reason why we shall now proceed to study this equation very inten-
sively.

Vibrations, oscillations, wiggles, rotations and undulations are all characterized
by a changing phase. If the independent variable is the time, then this time, the
measure of that aspect of change which permits an enumeration of states, manifests
itself physically by the advance of the phase of an oscillating system.

Lecture 7

Summary. The phase of a system is the most direct way of characterizing its
oscillatory nature. For a linear 2nd order o.d.e., this means the Prüfer phase θ(x),
which obeys the first order d.e.

dθ

dx
= Q(x) sin2 θ +

1

P (x)
cos2 θ ≡ F (x, θ) . (1.34)
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x
. . . . .

u

sin θ = 0
Figure 1.11: The function u(x) has its zeroes whenever the phase θ(x) is an integral
multiple of π.

It is obtained from the second order equation

[
d

dx
P (x)

d

dx
+Q(x)

]

u(x) = 0 (1.35)

by the Prüfer substitution

u(x) = r(x) sin θ(x) Pu′(x) = r(x) cos θ(x) .

These equations make it clear that the zeroes and the oscillatory behavior of u(x)
are controlled by the phase function θ(x).

1.5 Qualitative Results

The phase is a very direct way of deducing a number of important properties of any
solution to a general second order linear o.d.e. We shall do this by making a number
of simple observations.

(i) The zeroes of a solution u(x) to Eq. 1.27 occur where the Prüfer phase θ has
the values

0,±π,±2π, . . .
(ii) At these points, where sin θ(x) = 0, θ(x) is an increasing function of x.

Indeed, sin θ = 0 implies cos2 θ = 1. Consequently, the Prüfer equation yields

dθ

dx
=

1

P
> 0 , (whenever θ = 0,±π, . . . ) (1.36)
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impossible if
    P >0

Figure 1.12: The phase can only advance, never retreat across the horizontal axis.

because P (x) > 0 by assumption. The positiveness of this rate of change im-
plies that in the Poincaré phase plane, which is spanned by Pu′ and u, the curve
(P (x)u′(x), u(x)) crosses the horizontal Pu′-axis (θ = nπ) only in the counter clock-
wise sense as illustrated in Figure 1.8. In other words, the phase of the curve always
goes forward, never backward (Figure 1.12) when it crosses the horizontal.

(iii) The third observation about u(x) is that its zeros are isolated, i.e. they are
separated by a finite non-zero amount from each other. Why is this statement true?
The reason can be traced back to the fact that the slope of the phase function,

∣
∣ dθ
dx

∣
∣

is always finite throughout (a, b). Indeed, consider two successive zeros of u(x), say
xm and xm+1 ≡ xn. The claim is that there is a minimum distance between them,
namely

|xm+1 − xm| <
π

M
,

where M is a constant that bounds the slope dθ(x)
dx

for all x ∈ (a, b):

dθ(x)

dx
< M <∞ ∀ x ∈ (a, b)

This minimum distance claim is validated by applying the mean value theorem to the
solution θ(x) of the Prüfer phase equation (1.32) on page 42. The line of reasoning
is a three-step process.

First of all, observe that the rate at which any system vibrates is finite. Conse-
quently, the r.h.s. of this equation is bounded,

∣
∣
∣
∣

dθ(x)

dx

∣
∣
∣
∣
=

1

P
cos2 θ +Q sin2 θ < M,
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for all x in the interval (a, b). This circumstance is depicted in Figure 1.13(i). There,
in the interval [xm, xn] between the two zeros of u(x), the slope is always less than
its upper bound M ,

dθ(x)

dx
< M. (1.37)

Secondly, between these two zeros the phase is monotonically increasing function,

x

θ

xm

θ(xm)

xn

θ(xn)

(i) Phase angle θ as a function of x.

θ

x

xm

θ(xm) = mπ

xn

θ(xn) = nπ

(ii) The inverse of θ(x), x as a function
of the phase angle θ.

Figure 1.13: The phase function θ(x) and its inverse x(θ) on their respective domains:
(i) the subinterval [xm, xn] ⊂ (a, b) bordered by two consecutive zeros of u(x), and
(ii) the interval mπ ≤ x ≤ nπ = (m+ 1)π, which is of length ∆θ = π.

0 <
dθ(x)

dx
=

1

P
cos2 θ +Q sin2 θ,

as in Figure 1.13(i). It follows that the inverse x(θ) as depicted in Figure 1.13(ii) is
well-defined, satisfies

x(θm) = mπ

x(θn) = nπ = (m+ 1)π,

and, in light of inequality (1.37), has slope larger than 1
M
:

dx

dθ
=

(
dθ

dx

)−1
>

1

M
.
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Third, as depicted in Figure 1.14, the mean value theorem applied to x(θ) implies
that there exists a value θ in the interval

mπ < θ < (m+ 1)π

such that the slope of the secant equals the slope of x(θ) evaluated at θ. However,
dx
dθ
> 1

M
∀ θ including θ = θ. Consequenly,

xm+1 − xm
π

>
1

M
, (1.38)

i.e. two successive zeros of u(x) have a minimum separation between them.
In general these zeros are not equally spaced. However, in light of Prüfer’s u(x) =

r(x) sin θ(x) they are equally spaced relative to the Prüfer phase θ. In fact, that
common spacing is is

θ(xn)− θ(xm) = π

between any two successive zeros of u(x). The corresponding difference xm − xn is
mathematized from one’s knowledge of θ(x), the inverse of the phase function θ(x),
Figure 1.13(ii).

θ

x

xn

θ(xn) = nπ

xm

θ(xm) = mπ θ

Figure 1.14: The Mean Value Theorem: For a given arc (here the blue curve x(θ))
between two endpoints (here θ = mπ and θ = nπ) there is at least one point (here θ)
at which the tangent (the red dashed line) to the arc is parallel to the secant through
its endpoints (here the two zeros of u(x)).

(iv) If Q > 0, then u(x) has exactly one maximum (or minimum) between two
successive zeroes of a given solution. Thus a sequence of maxima and minima above
(or below) the x-axis is impossible if Q(x) > 0.
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(n+1)π
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n+-12( )π
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. .

.
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.

Figure 1.15: The minimum of u(x) in this figure is forbidden because the correspond-
ing slope dθ/dx at that point would have to be negative, in violation of inequality
1.39.

The reason for this impossibility is this:

1. At a maximum (or a minimum) of u one has

0 = Pu′ = r cos θ ⇔ cos θ = 0 , sin2 θ = 1 .

A maximum (or minimum) of u is located at θ = (n+ 1
2
)π.

2. Prüfer’s equation (1.32) implies, therefore,

dθ

dx
= Q sin2 θ + 0 = Q > 0 (at a MAX or a MIN) (1.39)

at these points. Consequently, θ(x) can cross the line θ = (n+ 1
2
)π only once,

which means u has a maximum (or minimum) only once. If it crossed it a
second time, as in Figure 1.15, the slope would have to be negative at the
second crossing point, thus violating the inequality 1.39.

If Q < 0, then, of course, all bets are off!

1.6 Phase Analysis of a Sturm-Liouville System

Every Sturm-Liouville system has a personality, which is encoded in its phase. In
other words, the phase is the brains of the regular Sturm-Liouville system.
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It is the phase which determines where a given solution has a maximum.
It is the phase which determines where a given solution is zero.
It is the phase which determines where a given solution oscillates.
It is the phase which determines how many zeroes a given solution has in its domain
of definition.

Thus, when one thinks of the questions, “How do the boundary and the associated
eigenvalue parameter λ control the nature of the solution to the regular Sturm-
Liouville problem?” one should actually ask a more penetrating question:

“How do the boundary conditions and the associated eigenvalue parameter λ
control the phase of the solution to the S-L problem?”

The existence of allowed (eigen)values of λ and the concomitant eigenfunction is
determined entirely by the phase. Let us, therefore, recast the mixed D-N boundary
conditions in terms of this phase.

1.6.1 The Boundary Conditions

The two D-N boundary conditions are

αu(a) + α′u′(a) = 0 and βu(b) + β′u′(b) = 0

at the two endpoints x = a and x = b. We know that the phase θ(x, λ) satisfies the
family of λ-parametrized 1st order o.d.e.’s

dθ

dx
= (λρ(x)− q(x)) sin2 θ +

1

p(x)
cos2 θ ,

where ρ, q, and p are given by the S-L equation
[
d

dx
p(x)

d

dx
+ λρ(x)− q(x)

]

u = 0 .

We must now determine what conditions the two homogeneous D-N boundary con-
ditions impose on the phase θ(x). The transformation of the D-N conditions into
equivalent conditions on the phase is done with the help of the Prüfer relation

tan θ =
u

pu′
.

This determines two phase angles. At the left endpoint x = a, let the initial
phase be θ(a, λ) = γ. This phase γ is uniquely determined by the two requirements

tan γ ≡ u(a)

u′(a)p(a)
= − α′

αp(a)
and 0 ≤ γ < π ,
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if α 6= 0, and by

γ =
π

2
if α = 0 .

(It is clear that γ = π
2
expresses the case of pure Neumann condition at x = a.)

Thus the D-N boundary condition at x = a has been expressed in terms of a single
quantity, the initial phase. This initial phase is required to be the same for all λ.

At x = b we introduce the final phase angle δ. It is determined by the two
requirements

tan δ = − β′

βp(b)
and 0 < δ ≤ π

if β 6= 0, and by

δ =
π

2
if β = 0 .

Lecture 8

Having reformulated the two D-N conditions in terms of the two angles γ and
δ, we are ready to restate the S-L problem in terms of the phase function θ. This
restatement is very simple.

1.6.2 The Boundary Value Problem

A solution u(x, λ) of the S-L d.e. for a ≤ x ≤ b will be an eigenfunction of the
regular S-L boundary value problem if and only if the corresponding phase, obtained
from the Prüfer d.e.

dθ

dx
= (λρ− q) sin2 θ +

1

p
cos2 θ ,

satisfies the corresponding end point conditions

θ(a, λ) = γ and θ(b, λ) = δ + nπ n = 0, 1, . . .

with 0 ≤ γ < π and 0 < δ ≤ π.
Note that any λ for which these endpoint conditions hold is an eigenvalue of

the regular S-L problem, and conversely, that an eigenvalue of this S-L problem will
yield a phase function whenever it satisfies the required end point conditions for some
n = 0, 1, 2, . . . .

The question now is: Does there exist a λ which guarantees that the two end
conditions are satisfied for every n = 0, 1, 2, . . . ?
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1.6.3 The Behavior of the Phase: The Oscillation Theorem

The answer is yes. Indeed, let θ(x, λ) be that solution to the Prüfer d.e. which
satisfies the initial condition θ(a, λ) = γ. We have one such solution for each λ. We
can draw the graphs of these solutions for various values of λ. See Figure 1.16
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Solution to Pruefer Phase Equation for Values of λ
← λ =8
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← λ =4.1

← λ =2.8
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(ii) Common initial phase γ ≡ θ(x = a, λ) = π/2

Figure 1.16: Two families of λ-parametrized phase functions θ(x, λ). The starting
point in each family is the same for all λ. In the first family the common starting
phase is γ ≡ θ(x = a, λ) = 0. In the second it is γ ≡ θ(x = a, λ) = π/2. The S-L
equations are the same, namely u′′ + λu = 0.
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See Figures 1.16(i) and 1.16(ii)

Note that if the function p(x) of the S-L equation is the constant function, then
the slope

dθ

dx
=

1

p
(when θ = 0, π, 2π, . . . )

at every “zero” of u(x, λ) = r sin θ(x, λ) will be a fixed constant, independent of λ.
However, between a pair of successive “zeroes” the slope dθ

dx
will be the larger, the

larger λ is. Consequently, for large λ, the phase θ(x, λ) has an undulatory (i.e.,
“wavelike”) behavior as θ(x, λ) passes through the successive zeroes of u(x, λ).

We now ask: How does

θ(x, λ)

behave as a function of λ? The answer to this question is important because it
determines whether the other end point condition (θ(b, λ) = δ + nπ, n = 0, 1, . . . )
can be satisfied.

The behavior of θ(x, λ) as a function of λ is summarized by the following three
statements, which together comprise the

Oscillation Theorem:

The solution θ(x, λ) of the Prüfer d.e. satisfying the initial condition

θ(a, λ) = γ , 0 ≤ γ < π ∀ λ

1. is a continuous and strictly increasing function of λ,

2. lim
λ→∞

θ(x, λ) =∞, i.e., θ(x, λ) is unbounded, and

3. lim
λ→−∞

θ(x, λ) = 0

for fixed x in the interval a < x ≤ b.

The above oscillation theorem is a statement about the global phase topograhy
of the (x, λ)-domain as expressed by the scalar function θ(x, λ). Its domain is the
vertical strip

D = {(x, λ) : a ≤ x ≤ b; −∞ < λ < +∞} (1.40)

and its topographical features (height, gradient, critical points if any, contours, · · · )
are all contained in the behaviour of θ on D.
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(i) Prüfer scalar phase function contours of θ(x, λ) when the initial phase value
(at x = 0) is fixed at θ(x = 0, λ) = 0 for all λ-values
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Isograms of constant Pruefer phase θ : θ(x,λ)= const.

resulting from a typical initial phase condition $θ(x=0,λ)=π/2
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(ii) Prüfer scalar phase function contours of θ(x, λ) when the initial phase value
(at x = 0) is fixed at θ(x = 0, λ) = π/2 for all λ-values

Figure 1.17: The (x, λ)-domain D, Eq.(1.40), with two different contour topographies of the Prüfer phase θ(x, λ). The
isograms in Figure (i) above result from the special initial phase value condition γ ≡ θ(x = 0, λ) = 0, while those in Figure
(ii) result from the more typical initial phase value γ ≡ θ(x = 0, λ) = π/2. Of all the Prüfer phase isograms, the ones
having the values θ = δ + nπ, n = 0, 1, 2, · · · yield the eigenvalues λn, which can be read off at the terminal point x = 10.
The other isograms, θ = δ + (2n+ 1)π2 , and only those, yield (by inspection) the location and the number of zeros of the
eigenfunction un(x).
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Instead of giving Birkhoff’s and Rota’s rigorous proof of this theorem, we shall
increase our motivation for its validation by highlighting the geometrical meaning
of the theorem’s conclusions. We do this by identifying the shapes of the system of
isograms of θ(x, λ) on D . One thereby sees how

• they give rise to the semi-infinite eigenvalue spectrum and

• how and why they determine the location and number of zeros of the corre-
sponding eigenfunction.

The two topographical maps (a) and (b) in Figure 1.17 tell the story. Note that
the isolines of constant θ are curves λ(x) which are homeomorphic to the horizontal
lines of constant θ in Figure 1.16. There, in both (a) and (b), each line of constant
θ intersects monotonically the λ-parametrized θ(x) curves.

Figures 1.17 and 1.16 contain the same information about the allowed eigenvalues
λ and the number and location of zeros of the corresponding eigenfunctions. However,
(a) and (b) in Figure 1.17 do so in a much more direct way.

1.6.4 Discrete Unbounded Sequence of Eigenvalues

With x = b this “Oscillation theorem” tells us that θ(b, λ) is a function which in-
creases without limit as λ → ∞. Consequently, as λ increases from λ = −∞, there
will be a first value, say λ0, for which the second boundary condition (the one at
x = b), i.e.,

θ(b, λ0) = δ

is satisfied. Moreover, as λ increases beyond λ0, θ(b, λ) increases monotonically
beyond δ until it reaches the value δ + π. This happens at a specific value of λ, say
λ1, which is larger than λ0,

λ0 < λ1 .

Continuing in this fashion, one finds that, regardless of how big an integer n one
picks, the equation

θ(b, λ) = δ + nπ

always has a solution for λ, which we shall call λn. This yields an infinite discrete
sequence of λ’s which is monotonically increasing

λ0 < λ1 < · · · < λn < · · · .

This sequence has no upper bound. Why? For any large Λ > 0 consider θ(b,Λ). This
number lies between some pair of points, say,

δ +Nπ ≤ θ(b,Λ) < δ + (N + 1)π
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The Oscillation Theorem says that θ(b, λ) has the property of being a monotonic
function of λ whose range is the whole positive real line. The latter property guar-
antees that each of the two equations,

θ(b, λ) = δ +Nπ

and
θ(b, λ) = δ + (N + 1)π ,

has a solution. The former property guarantees that each of these two solutions is
unique. Call them λN and λN+1. The former property also guarantees that

λN ≤ Λ < λN+1 .

Since Λ > 0 can be as large as we please, the sequence of eigenvalues,

λ0 < λ1 < · · · < λN < λN+1 < · · · ,

has no upper bound.
Corresponding to this sequence, there is the set of eigenfunctions

un(x) = rn(x) sin θ(x;λn) n = 0, 1, 2, . . . .

Each of these functions oscillates as a function of x. How many times does each
un(x) pass through zero in the open interval (a, b)? Reference to Figure 1.16 shows
that un(x) has precisely n zeroes inside (a, b); zeroes at the endpoints, if any, do not
count. Indeed, it must have at least n zeroes because the graph of θ(x, λ) with λ
held fixed as in Figure 1.16, must cross at least n multiples of π (dotted horizontal
lines in Figure 1.16 On the other hand, the function un(x) cannot have more than n
zeroes because the graph of phase θ(x, λ) can cross each multiple of π no more than
once. This fact is guaranteed by Eq.(1.36) on page 46.

To summarize, we have the following
Theorem: Any regular S-L problem has an infinite number of solutions un(x) which
belong to the real eigenvalues

λ0 < λ1 < λ2 < · · · with lim
n→∞

λn =∞ .

Furthermore, each eigenfunction un(x)

1. has exactly n zeroes in the interval a < x < b,

2. is unique up to a constant multiplicative factor.

Lecture 9
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1.7 Completeness of the Set of Eigenfunctions via

Rayleigh’s Quotient

The fact that eigenvalues of the regular Sturm-Liouville problem form a semi-unbounded
sequence, i.e., that

lim
n→∞

λn =∞ ,

is very important. It implies that the set of eigenfunctions of the Sturm-Liouville
problem

Lu = λu

αu(a) + α′u′(a) = 0
βu(b) + β′u′(b) = 0 ,

(1.41)

with

L =
1

ρ(x)

[

− d

dx
p(x)

d

dx
+ q(x)

]

,

is a generalized Fourier basis. In other words, they form a complete basis set for
the subspace of L2(a, b) of those square-integrable functions which satisfy the given
boundary conditions, Eq.(1.41). This subspace is

H =

{

u :

∫ b

a

|u(x)|2ρ(x) dx <∞; αu(a) + α′u′(a) = 0; βu(b) + β′u′(b) = 0

}

.

Recall that a set {un(x) : n = 0, 1, . . . , N, . . . } is said to be complete, if for any vector
u ∈ H, the error vector

h∗N = u−
N∑

n=0

cnun

can be made to have arbitrarily small squared norm by letting N →∞, i.e.,

lim
N→∞

‖h∗N‖2 ≡ lim
N→∞

〈

u−
N∑

n=0

cnun , u−
N∑

m=0

cmum

〉

= 0 .

Here
cn = 〈un, u〉

is the nth (generalized) Fourier coefficient with the consequence that h∗N is perpen-
dicular to the subspace

WN = span{u0, u1, . . . , uN} .
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h*Nw* + = u
N h*N

Hilbert space=WN WN

W  = span{u   , ... , u  }N

u u
1

w*N
0

0

N .

Figure 1.18: The N + 1-dimensional subspace spanned by the eigenfunctions
u0, u1, · · · , uN causes the Hilbert space L2(a, b) to be decomposed into the direct
sum consisting of W ∗

N and the space W⊥
N , which is spanned by the remaining basis

vectors uN+1, uN+2, · · · .

The subspace WN induces H to be decomposed into the direct sum

WN ⊕W⊥
N = H .

Here W⊥
N (“WN perp”) is the subspace of all vectors perpendicular to WN

W⊥
N = {u : 〈u, un〉 = 0 n = 0, 1, . . . , N} .

In other words, W⊥
N is the space of all vectors satisfying the set of constraint condi-

tions

〈u, u0〉 = 0

〈u, u1〉 = 0
...

〈u, uN〉 = 0 .

Our starting point for demonstrating the completeness is the Rayleigh principle. It
says that the Rayleigh quotient

〈u,Lu〉
〈u, u〉 ≡ R[u]
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satisfies various minimum principles when u is restricted to lie on various subspaces
W⊥
N , N = 0, 1, . . . . Indeed, one has

λ0 = min
u∈H

〈u,Lu〉
〈u, u〉 , i.e.,

〈u,Lu〉
〈u, u〉 ≥ λ0 , for all u ∈ H

λ1 = min
u∈W⊥

0

〈u,Lu〉
〈u, u〉 , i.e.,

〈u,Lu〉
〈u, u〉 ≥ λ1 , for all u ∈ W⊥

0

i.e., for any u ∈ H subject to the constraint 〈u, u0〉 = 0.

More generally, the N + 1st eigenvalue λN+1 is characterized by

λN+1 = min
u∈W⊥

N

〈u,Lu〉
〈u, u〉 , i.e.,

〈u,Lu〉
〈u, u〉 ≥ λN+1 , for all u ∈ W⊥

N

i.e., for any u ∈ H subject to the constraints

〈u, u0〉 = 0
...

〈u, uN〉 = 0 .

The Nth error vector

h∗N = u−
N∑

n=0

cnun

satisfies the constraint conditions

〈un, h∗N〉 = 0 n = 0, 1, . . . , N .

Consequently, it satisfies the corresponding Rayleigh inequality

〈h∗N ,Lh∗N〉
〈h∗N , h∗N〉

≥ λN+1

or
〈h∗N ,Lh∗N〉
λN+1

≥ ‖h∗N‖2 ≥ 0 .
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We insert the expression for h∗N into the left hand side, and obtain

ℓ.h.s =
1

λN+1

{〈u−
N∑

0

cnun,Lu−
N∑

m=0

cmLum〉}

=
1

λN+1

{〈u,Lu〉 −
N∑

0

cn〈un,Lu〉 −
N∑

m=0

cmλm〈u, um〉

+
N∑

n=0

N∑

m=0

cncmλm〈un, um〉 .

The orthonormality of eigenfunctions and the definition of the generalized Fourier
coefficients guarantee that the last two sums cancel. Furthermore, by doing an
integration by parts twice, and by observing that the resulting end point terms
vanish because of the Dirichlet-Neumann boundary conditions, Eq. 1.41, we obtain

〈un,Lu〉 =

∫ b

a

un
1

ρ

[

− d

dx
p
d

dx
+ q

]

uρ(x)dx

= −punu |ba +
∫ b

a

(

p
dun
dx

du

dx
+ qunu

)

dx

= 〈Lun, u〉 = λncn .

As a consequence the Rayleigh inequality becomes

1

λN+1

{〈u,Lu〉 −
N∑

n=0

|cn|2λn} ≥ ‖h∗N‖2 .

Without loss of generality one may assume that the lowest eigenvalue λ0 ≥ 0. This
can always be made to come about by readjusting the λ and the function q(x) in
the Sturm-Liouville equation. As a result, the finite sum may be dropped without
decreasing the ℓ.h.s. Consequently,

〈u,Lu〉
λN+1

≥ ‖u−
N∑

n=0

cnun‖2 .

The numerator is independent of N . Thus

lim
N→∞

‖u−
N∑

n=0

cnun‖2 ≤ lim
N→∞

〈u,Lu〉
λN+1

= 0
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because {λN : N = 0, 1, . . . } is an unbounded sequence. Thus we have

u
.
=
∞∑

n=0

cnun ,

The function u is an arbitrary square integrable function satisfying the the given
mixed Dirichlet-Neuman end point conditions. Consequently, the Sturm-Liouville
eigenfunctions form a (complete) generalized Fourier basis indeed.
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Chapter 2

Infinite Dimensional Vector Spaces

Lecture 10

The process of extending the algebraic and geometrical methods of linear algebra
from matrices to differential or integral operators consists of going from a finite
dimensional vector space, typically Rn, to an infinite dimensional vector space, typ-
ically a function space.

However, a vector space of functions has certain idiosyncrasies precisely because
its dimension is infinite. These peculiarities are so important that we must develop
the framework in which they arise.

One of the most useful, if not the most useful, framework is the theory of Hilbert
spaces, the closest thing to the familiar finite-dimensional Euclidean spaces. In pass-
ing we shall also mention metric spaces and Banach spaces.

We shall see that infinite dimensional vector spaces are a powerful way of orga-
nizing the statement and solution of boundary value problems. In fact, these spaces
are the tool of choice whenever the linear superposition principle is in control. This
happens in signal processing, in quantum mechanics, electromagnetic wave theory,
and elsewhere.

The most notable peculiarity associated with infinite dimensional vector spaces
is the issue of completeness.

From the viewpoint of physics and engineering, completeness is an issue of preci-
sion in measurements. We would like to have at our disposal mathematical concepts
which are such that they are capable of mathematizing natural phenomenona no
matter how advanced the technolgy of measuring their properties.

One of the most useful infinite dimensional vector spaces is Hilbert space. To
define it, we must have at our disposal the constellation of concepts on which it is

65
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based. Let us identify the components of the constellation.

2.1 Inner Product Spaces

An inner product space is a vector space, say H, together with a complex bilinear
function 〈 , 〉 having the following properties:

(i) 〈f, g〉 = 〈g, f〉 where f, g ∈ H
(ii) 〈f, α1g1 + α2g2〉 = α1〈f, g1〉+ α2〈f, g2〉

where α1 and α2 are complex numbers

(iii) 〈f, f〉 > 0 if f 6= ~0

and 〈f, f〉 = 0⇔ f = ~0 .

Comments:
(a) The condition 〈f, g〉 = 〈g, f〉 is quite necessary, otherwise there would be

conflict with (iii). Indeed, if i =
√
−1, then

〈if, if〉 = i〈if, f〉 = i〈f, if〉 = i(−i)〈f, f〉
= 〈f, f〉 > 0 .

In other words, condition (i) guarantees that the positive definiteness condition (iii)
is preserved.

(b) With the help of (i), condition (ii) is equivalent to

〈α1f1 + α2f2, g〉 = α1〈f1, g〉+ α2〈f2, g〉 . (2.1)

Thus we see that a complex scalar (say, α1 or α2) in the first factor of the inner
product gets complex conjugated when it gets separated from the inner product as
a multiplicative factor. One says that 〈 , 〉 is linear in the second argument and
antilinear in the first argument.

(c) The square root of 〈f, f〉,
√

〈f, f〉 ≡ ‖f‖, is called the norm of the vector f .
It is always understood that the norm is finite. In particular 〈f, f〉 <∞

(d) The inner product satisfies the Cauchy-Schwarz inequality

|〈f, g〉| ≤ ‖f‖ ‖g‖ .

This inequality has a nice geometrical interpretation for real inner product spaces.
In that case 〈f, g〉 = 〈g, f〉 is the familiar inner product and

−1 ≤ 〈f, g〉
‖f‖‖g‖ ≡ cos(angle between f and g) ≤ 1 .
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The Cauchy-Schwarz inequality follows from the fact that for any complex λ

0 ≤ 〈λf + g, λf + g〉 = |λ|2‖f‖2 + ‖g‖2
+ λ〈f, g〉+ λ〈g, f〉 .

Letting λ = x 〈f,g〉|〈f,g〉| we obtain for all real x

0 ≤ x2‖f‖2 + 2x|〈f, g〉|+ ‖g‖2 .

Consequently, the discriminant,

|〈f, g〉|2 − ‖f‖2‖g‖2 ,

of this quadratic expression must be negative or zero, otherwise this expression would
be negative for some values of x. It follows that

|〈f, g〉| ≤ ‖f‖ ‖g‖ .

(e) The inner product implies the triangle inequality

‖f ± g‖ ≤ ‖f‖+ ‖g‖ . (2.2)

This inequality readily follows from the properties of the inner product (Why?)

2.2 Normed Linear Spaces

There exist other structures which a vector space may have. A norm on the vector
space V is a linear functional, say p(f), with the following three properties:

1. Positive definiteness: p(f) > 0 for all nonzero vectors f in V , and p(f) = 0⇔
f = ~0.

2. Linearity: p(αf) = |α|p(f) for all vectors f and for all complex numbers α.

3. Triangle inequality: p(f + g) ≤ p(f) + p(g) for all vectors f and g in V .

Such a function is usually designated by p(f) = ‖f‖, a norm of the vector f . The
existence of such a norm gives rise to the following definition:

A linear space V equipped with a norm p(f) = ‖f‖ is called a normed linear
space.
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Example 1: Every inner product of an inner product space determines the norm
given by

‖f‖ = (〈f, f〉) 1
2 ,

which, as we have seen, satisfies the triangle inequality,

‖f + g‖ ≤ ‖f‖+ ‖g‖ .

Thus an inner product space is always a normed linear space with the inner product
norm. However, a normed linear space is not necessarily an inner product space.

Lecture 11

Example 2: Consider the vector space of n× n matrices A = [aij ]. Then

‖A‖ = max
i,j
|aij|

is a norm on this vector space.
Example 3: Consider the vector space of all infinite sequences

x = (x1, x2, . . . , xk, . . . )

of real numbers satisfying the convergence condition

∞∑

k=1

|xk|p <∞

where p ≥ 1 is a real number. Let the norm be defined by

‖x‖ =
( ∞∑

k=1

|xk|p
) 1

p

.

One can show that (Minkowski’s inequality)

( ∞∑

k=1

|xk + yk|p
) 1

p

≤
( ∞∑

k=1

|xk|p
) 1

p

+

( ∞∑

k=1

|yk|p
) 1

p

,

i.e., that the triangle inequality,

‖x+ y‖ ≤ ‖x‖+ ‖y‖ ,
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holds. Hence ‖ · ‖ is a norm for this vector space. The space of p-summable
(∞∑

1

|xk|p <∞
)

real sequences equipped with the above norm is called ℓp and the

norm is called the ℓp-norm.
This ℓp-norm gives rise to geometrical objects with unusual properties. consider

the following
Example 4: The surface of a unit sphere centered around the origin of a linear
space with the ℓp-norm is the locus of points {(x1, x2, · · · } for which

( ∞∑

k=1

|xk|p
) 1

p

= 1 .

Consider the intersection of this sphere with the finite dimensional subspace Rn,
which is spanned by {(x1, x2, · · · , xn}.
a) When p = 2, this intersection is the locus of points for which

|x1|2 + |x2|2 + · · ·+ |xn|2 = 1 (unit sphere in Rn with ℓ2-norm)

This is the familiar (n−1)-dimensional unit sphere in n-dimensional Euclidean space
whose distance function is the Pythagorean distance

d(x, y) =
{
|x1 − y1|2 + |x2 − y2|2 + · · ·+ |xn − yn|2

} 1
2 .

x

y
|x| +|y| =12 2

Figure 2.1: Circle in R2 endowed with the Pythagorean distance function of ℓ2.

b) When p = 1, this intersection is the locus of points for which

|x1|+ |x2|+ · · ·+ |xn| = 1 (unit sphere in Rn with ℓ1-norm)
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This is the (n − 1)-dimensional unit sphere in n-dimensional vector space endowed
with a different distance function, namely one which is the sum of the differences

d(x, y) = |x1 − y1|+ |x2 − y2|+ · · ·+ |xn − yn| ,

between the two locations in Rn, instead of the sum of squares. This distance function
is called the Hamming distance, and one must use it, for example, when travelling
in a city with a rectangular grid of streets. With such a distance function a circle in
R2 is a square standing on one of its vertices. See Figure 2.2. A 2-sphere in R3 is a
cube standing on one of its vertices, etc.

x

y

|x|+|y|=1

Figure 2.2: Circle in R2 endowed with the Hamming distance function of ℓ1.

c) When p→∞, this intersection is the locus of points for which

lim
p→∞

(
n∑

k=1

|xk|p
) 1

p

= 1 =⇒

Max{|x1|, |x2|, · · · , |xn|} = 1 (unit sphere in Rn with ℓ∞-norm) .

Such a unit sphere Rn is based on the distance function

d(x, y) = lim
p→∞

(
n∑

k=1

|xk − yk|p
) 1

p

= Max{|x1 − y1|, |x2 − y2|, · · · , |xn − yn|} .

This is called the Chebyshev distance. It is simply the maximum coordinate difference
regardless of any other differences. With such a distance function a circle in R2 is a
square. See Figure 2.3. A 2-sphere in R3 is a cube, etc.
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x

y
Max{|x|,|y|}=1

Figure 2.3: Circle in R2 endowed with the Chebyshev distance function of ℓ∞.

2.3 Metric Spaces

Inner product spaces as well as normed spaces have a distance function, namely the
norm of the difference,

‖f − g‖ ≡ d(f, g) ,

between two vectors f and g. This norm of the difference is called the distance
between f and g. Applying this formula to the three pairs of points of a generic
triangle, one obtains the triangle inequality

‖f − h‖ ≤ ‖f − g‖+ ‖g − h‖

i.e., d(f, h) ≤ d(f, g) + d(g, h).
The importance of a distance function and the triangle inequality is that it can

also be applied to certain nonlinear spaces, which have no zero element (“origin”).
Such spaces are called metric spaces. More precisely we have the following definition.

By a metric space is meant a pair (X, d) consisting of set X and a distance
function d, i.e., a single-valued, nonnegative, real function d(f, g) defined for f, g ∈ X
which has the following three properties.

1. Positive definiteness: d(f, g) ≥ 0 for all f and g in X, and d(f, g) = 0 if and
only if f = g.

2. Symmetry: d(f, g) = d(g, f).

3. Triangle inequality: d(f, h) ≤ d(f, g) + d(g, h).

The distance function d( , ) is called the metric of the metric space. All inner
product spaces are metric spaces with

d(f, g) = ‖f − g‖ .
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All normed linear spaces are metric spaces with

d(f, g) = ‖f − g‖ .
However not all metric spaces are normed linear spaces.

INNER
PRODUCT
SPACES

NORMED LINEAR SPACES

METRIC SPACES

Figure 2.4: Hierarchy of linear and nonlinear spaces

Example 1: The two dimensional surface of a sphere

X = {(x, y, z) : x2 + y2 + z2 − 1} (≡ S2)

is not a vector space. It is, however, a metric space whose distance function is the
(shortest) length of the great circle passing between a pair of points.

Exercise 2.3.1 (DISTANCE FUNCTIONS AS METRICS)
Show that (a) the Hamming distance, (b) the Pythagorean distance, and (c) the Chebyshev
distance each satisfy the triangle inequality.

2.4 Complete Metric Spaces

Lecture 12

2.4.1 Limit of a Sequence

A sequence of elements f1, f2, . . . in a vector space, or more generally in a metric
space, is said to converge to the element f if

lim
n→∞

fn = f.
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The element f is called the limit of the sequence {fn}. The meaning of this is that
the distance

d(fn, f) = ‖fn − f‖
between f and fn can be made arbitrarily small by making n sufficiently large. To
summarize, a convergent sequence is one which converges to a limit.
Side Comment: It is easy to show that this limit is unique, a property which
applies to all metric spaces.

2.4.2 Cauchy Sequence

It is clear that the elements f1, f2, . . . , fm, . . . , fn, . . . become closer and closer in
some sense. In fact, from the triangle inequality for a vector space

‖f + g‖ ≤ ‖f‖+ ‖g‖

one finds that

‖fn − fm‖ = ‖(fn − f) + (f − fm)‖ (2.3)

≤ ‖fn − f‖+ ‖f − fm‖ → 0 as m,n→∞ (2.4)

or more generally

d(fn, fm) ≤ d(fn, f) + d(f, fm)→ 0 as m,n→∞

in a metric space.
Consequently

lim
n,m→∞

‖fn − fm‖ = 0 in a vector space

or more generally,

lim
n,m→∞

d(fn, fm) = 0 in a metric space . (2.5)

A sequence {fn} whose elements satisfy this limit condition, i.e., whose elements get
arbitrarily close together for sufficiently large n and m, is said to satify the Cauchy
criterion.
This property leads to the following
Definition:
A subsequence of {fn} in a metric space is said to be a Cauchy (or fundamental)
sequence if it satisfies the Cauchy criterion.
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Consequently, because of the triangle inequality, we have the following
Theorem:

{fn} has a limit ⇒ {fn} is a Cauchy sequence .

Thus every convergent sequence is a Cauchy sequence, i.e., “every convergent se-
quence also converges in the Cauchy sense”.

2.4.3 Cauchy Completeness: Complete Metric Space, Ba-
nach Space, and Hilbert Space

A Cauchy sequence is the means to an end. It is the bridge between the concrete and
the abstract, between observations and sequential measurements having the Cauchy
property on one hand, and the implied limit in the same metric space on the other.

Can one turn the last sentence around? In other words, is every Cauchy sequence
a convergent sequence? Put differently, if {fn} is a Cauchy sequence, is it true that
{fn} has a limit? What is, in fact, meant by this question is whether {fn} has a
limit in the same space to which the elements fn belong.

The answer is this: in a finite dimensional complex vector space, a Cauchy sequence
always has a limit in that vector space; in other words, a finite dimensional vector
space is complete. However, such a conclusion is no longer true for many familiar
infinite dimensional vector spaces.

Example 1: Consider the inner product space

C[a, b] = {f(x) : f is continuous on a ≤ x ≤ b}

with inner product 〈f, f〉 =
∫ b

a
ff dx = ‖f‖2.

Claim: C[a, b] is “incomplete”.

Discussion: Consider the sequence of continuous functions

uk(x) =
1

2
+

1

π
arctan kx − 1 ≤ x ≤ 1.

From Fig. 2.5 we see that:

1. lim
k,p→∞

‖uk − up‖2 = lim
k,p→∞

∫ 1

−1(up − uk)2 dx = 0; in other words, the sequence

{uk} is a Cauchy sequence.
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1

-
1
2

0

uk

continuous

discontinuous

x
Figure 2.5: Discontinuous function as a limit of continuous functions.

2. For fixed x

lim
k→∞

uk(x) = v(x) =







1 0 < x ≤ 1
1
2

x = 0

0 −1 ≤ x < 0

which is a discontinuous function, i.e., v 6∈ C[−1, 1]. Furthermore, we say
that the sequence of functions {uk : k = 1, 2, · · · } converges pointwise to the
function v.

3. lim
k→∞
‖v − uk‖2 = lim

k→∞

∫ 1

−1(v(x)− uk)2 dx = 0.

4. One can show that 6 ∃ any continuous function w such that

‖w − uk‖ → 0 as k →∞ .

We say that C[a, b], the space of continuous square integrable functions (
∫ b

a
|f |2 dx <

∞), is Cauchy incomplete, or C[a, b] is Cauchy incomplete relative to the given norm
‖f‖ =

√

〈f, f〉. This is so because we have found a Cauchy sequence of functions
{un} in the inner product space C[a, b] with the property that

lim
n→∞

un = v 6∈ C[a, b] .

In other words, the limit of the Cauchy sequence does not lie in this inner product
space. This is just like the set of rationals which is not extensive enough to accomo-
date the norm |x − y|: there are holes (but no gaps) in the space. These holes are
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the irrational numbers, which are not detected by the norm | · · · | when it is used to
determine whether or not an infinite sequence is convergent.
Example 2: The 1-dimensional vector space of rationals over the field of rationals
is Cauchy incomplete.

In spite of this, the space of rationals, call it Q, is everywhere dense in R1, the
space of reals. The concept of denseness applies to all metric spaces and is identified
by means of the following
Definition:
Let X be a subset of the metric space X∗. Such a set X is said to be everywhere
dense in X∗ (such as R1) whenever

[X] ≡ X ∪ {all accumulation points of X} = X∗

This denseness attribute of X says that X∗ contains not only all elements of X, but
also its accumulation (a.k.a. limit) points, some of which might not even be in X
(such as the square root of 2, which is in R1).

The observations about the above two examples (and others like it) are condensed
into the following
Definition (Complete Metric Space)
A metric space (X, d) is said to be complete if every Cauchy sequence in X converges
to an element in X. Otherwise (X, d) is said to be incomplete.
Example 3:
Let X = R1 be the real line {x : −∞ < x < ∞} but with an imposed measure-
ment structure where the nearness and farness between points, say x1, x2 ∈ R1, is
mathematized by the distance function

dR1(x1, x2) = | arctan x1 − arctan x2| . (2.6)

The space (X, d) = (R1, dR1) with this particular metric structure is a metric space.
But it is incomplete. This is because {0, 1, 2, · · · } is a Cauchy sequence, but it has
no limit on the real line.

However, this space can be completed by observing that its points on R1 get
mapped homeomorphically by

φ : R1 → S1 − {N} (2.7)

x φ(x) = arctan(x) ≡ α (2.7′)

onto the arc {α : −π < α < π} of the punctured unit diameter circle, S1 − {N}, i.e.
S1 without its northpole N , the single point as depicted in Figure 2.6.
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The feature relevant for completing (R1, dR1) is that this homeomorphism is an
“isometry”. It preserves distances between points in (R1, dR1) when they get mapped
into S1−{N} = {α : −π < α < π}. This observation is condensed into the following
Definition: (Isometry)
Two metric spaces (R1, dR1) and (S1 − {N}, dS1) are said to be isometric whenever
any two points x1, x2 ∈ R1, which are separated by their distance, Eq.(2.6), get
mapped into two corresponding image points

φ(x1) = arctan(x1) ≡ α1

φ(x2) = arctan(x2) ≡ α2

so as to preserve their separation distance

dS1(φ(x1), φ(x2))
︸ ︷︷ ︸

|α1−α2|

= dR1(x1, x2).

Thus, with respect to their distance-metric properties, the two metric spaces (S1 −
{N}, dS1) and (R1, dR1) are indistinguishable. Figure 2.7 concretizes this feature.
The distance between x1 and x2 on the real line equals the distance between α1 and
α2 on the arc of S1, the unit diameter circle.

The conceptual economy introduced by this indistinguishability is non-trivial.
This is because the metric space (S1 − {N}, dS1) is much closer to the perceptual
level of awareness than (R1, dR1). In fact, one readily infers from (S1 − {N}, dS1)
that it is everywhere dense in (S1, dS1):

[S1 − {N}] = S1.

The north pole N is the only accumulation point missing to make (S1 − {N}, dS1)
into the complete metric space (S1, dS1), the unique completion of (S1 − {N}, dS1).
More generally one has the following

Theorem 2.4.1 (Completion of a Metric Space) Every metric space (X, d) has
a completion. This completion, call it X∗, is unique to within an isometric mapping
which carries every element x ∈ X∗ into itself.

The validity of this claim rests on proving the existence and uniqueness of such a
completion. There are two ways of doing this, one intrinsic, the other extrinsic to
the metric space. They are:

(i) Form equivalence classes of Cauchy sequences in (X, d), or
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Figure 2.6: Real line with a non-standard metric Eq.(2.6.) gets mapped by (2.7)
isometrically onto the arc of the punctured circle of unit diameter.

(ii) show that any metric space can be isometrically imbedded in a Banach space,
which is already complete 1

1George F. Simmons in “Introduction To TOPOLOGY AND MODERN ANALYSIS” gives a
multi-step line of reasoning leading to the completion X∗ of an arbitrary metric space X, as an
imbedding into a Banach space, are as follows:

Denote by d the metric on X. Let x0 be a fixed point in X, and to each point x in X
consider the real function fx defined on X by fx(y) = d(y, x)− d(Y, x0).
(a) Show that fx is bounded. (Hint: |fx(y)| ≤ d(x, x0).)
(b) Show that fx is continuos. (Hint: |fx(y1)− fx0

(y2) ≤ 2d(x, x0).)
By (a) and (b), the mapping F defined by F (x) = fx is a mapping of X into
C(X,R), the Banach space of all bounded continuos real-valued functions on X.

(c) Show that F is an isometry. (Hint: |fx1
(y)− fx2

(y) ≤ d(x1, x2).)
F is thus a an isometry of X into the complete metric space C(X,R). We define
the completion X∗ of X to be the closure of F (X) in C(X,R).

(d) Show that X∗ is a complete metric space which contains an isometric image of X.

(e) Show that there is a natural isometry X∗ into any complete metric space Y which
contains an isometric image ofX (to say that an isometry ofX∗ into Y is “natural”
means that the image of a point in X∗ which corresponds to a point in X is the
point in Y which corresponds to this same point in X).

(f) Show that (d) and (e) characterize X∗ in the following sense: If Z is a complete



2.4. COMPLETE METRIC SPACES 79

Figure 2.7: Real line with a non-standard metric Eq.(2.6.)

The metric completion (a.k.a. “Cauchy completion”) of an inner product space is a
Hilbert space. The metric completion of a normed linear space is a Banach space.

metric space which contains an isometric image of X, and if there is a natural
isometry of Z into any complete metric space Y which contains an isometric image
of X, then there is a natural isometry of Z onto X∗.

(g) Show that if X occurs as a subspace of a complete metric space, then there is a
natural isometry of the closure of X onto X∗.

(h) Show that there is a natural isometry of any complete metric space which contains
X as a dense subspace onto X∗.
Comment: Simmons notes that (a) to (c) clearly depends on the initial choice of
the fixed point x0. If another fixed point x0 is chosen, then another isometry F of
X into C(X,R) is determined. It would seem, therefore, that there is little justifi-
cation for calling the particular X∗ defined in this line of reasoning the completion
of X.
In practice, however, as he points out, we usually pursue the reasonable course of
regarding isometric spaces as essentially identical. From this point of view, The X∗

defined here is a complete metric space which contains X as a dense subspace; and
since by (h) it is the only complete mertic space with this property, it is natural
to call it the completion of X.
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2.5 Hilbert Spaces

Lecture 13

An infinite dimensional inner product space which is Cauchy-complete is called a
Hilbert space.

In the realm of infinite dimensional vector spaces, a Hilbert space is the next
best thing to an Euclidean space, i.e., a finite dimensional inner product space. The
single most useful property of these spaces is that they permit the introduction of
an orthonormal basis.

The first and most important way of specifying such a basis is to introduce
a Hermitian matrix or operator. Its eigenvectors form an orthonormal basis. In
fact, this is why a Hilbert space was invented in the first place: to accomodate the
eigenvalue problem of a Hermitian operator,

Au = λu

The Sturm-Liouville eigenvalue problem, Section 1.3.3, page 18, is a premiere ex-
ample of this. It arises in the mathematization of boundary value problems, for
example.

The second way of specifying such a basis is by means of the Gram-Schmidt
orthogonalization process. From a given linearly independent set of vectors, one
constructs by an iterative process a corresponding set of orthonormal vectors.

Let us, therefore, assume that we have acquired by one of these, or by some other
method, the system of orthonormal elements

{u1, u2, . . . , un, . . . : 〈ui, uj〉 = δij}

of the Hilbert space H.
If such a system of o.n. basis vectors has been obtained, it is natural to ask: Does

the set of such orthonormal elements constitute a basis for the whole space H? In
other words, for any f ∈ H, can one, in some sense, claim that

f = c1u1 + c2u2 + · · · (Generalized Fourier series)

for an appropriate choice of ci? This is an existence question. Furthermore, given
that such constants have been constructed, are they unique?

For a finite dimensional vector space these questions have an implicit affirmative
answer because of the finiteness of the dimension. However, for an infinite dimen-
sional vector space there is cause to worry about existence. The vector f might point
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into a direction which is so peculiar that not even the given infinite number of basis
vectors is sufficient to give a 100% accurate representation of f in terms of these vec-
tors. There is a sense in which this worry is justified if the vector is a discontinuous
function. This fact is highlighted by the Fourier Theorem in chapter 3 on page 129.
However, there is another sense in which the representation is always 100% accurate,
with the result that the answer to the above questions is in the affirmative.

2.5.1 Two Prototypical Examples

The two most important Hilbert spaces in physics (e.g quantum mechanics), en-
gineering (e.g. signal processing, vibrations), and mathematics (e.g. solutions to
differential equations) are:

1. The vector space of square summable sequences

ℓ2 = {U = (c1, c2, . . . ) : ci ∈ { complex numbers }, i = 1, 2, . . . }

with squared norm given by the inner product

‖U‖2 = 〈U,U〉 =
∞∑

i=1

|ci|2 .

2. The vector space of square integrable functions

L2(a, b) = {f :
∫ b

a

ffρ(x)dx <∞ ; ρ(x) > 0}.

The positive function ρ(x) is given. It is called a weight function.

This vector space has the following three properties.

(a) L2(a, b) is an inner product space

〈f, g〉 ≡
∫ b

a
fgρ(x) dx Physics convention

≡
∫ b

a
fgρ(x) dx Mathematics convention

m
〈f, f〉 ≡

∫ b

a
|f |2ρ(x) dx which is the squared

norm of f
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Comment: ρ(x) > 0 ⇒ √ρ can be absorbed into the functions, so that

instead of {f(x)} one has {h(x)} = {f(x)
√

ρ(x)} with the squared norm

〈h, h〉 =
∫ b

a

|h|2 dx.

Conclusion: We still have the same inner product space.

(b) L2(a, b) is closed under addition:

i. Expanding the inner product of a sum with itself, we have

‖f + g‖2 = 〈f + g, f + g〉 = ‖f‖2 + ‖g‖2 + 〈f, g〉+ 〈g, f〉
= ‖f‖2 + ‖g‖2 + 2Re 〈f, g〉
≤ ‖f‖2 + ‖g‖2 + 2‖f‖ ‖g‖, (2.8)

where we used the Cauchy-Schwarz inequality.

ii. Recall that

0 ≤ (‖f‖ − ‖g‖)2 = ‖f‖2 + ‖g‖2 − 2‖f‖ ‖g‖. (2.9)

iii. Adding this non-negative quantity to the r.h.s. of (2.8) increases it.
Consequently, Eqs.(2.8) and (2.9) ⇒ ‖f + g‖2 ≤ 2‖f‖2 + 2‖g‖2.
Thus we have

f, g square integrable⇒ f + g is square integrable ,

i.e. L2 is indeed closed under addition.

(c) L2(a, b) is Cauchy complete.

2.5.2 Hilbert Spaces: Their Coordinatizations

Lecture 14

The importance of L2 derives from the fact that its elements refer, among others,
to the finite energy states of an archetypical system, a vibrating system or the finite
energy signals of an ensemble of messages. These states/signals are mathematized
in terms of functions. On the other hand, for the purpose of measurement they
need to be, or have been, represented by sequences of numbers, i.e. by elements of
ℓ2. Without measurement data expressed in terms of these elements, these states
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would be mere floating abstraction disconnected from the physical world. It is the
elements of ℓ2 which ground such finite energy states in observations and measure-
ments. Granted their epistemic foundation in the physical world, what is the role of
L2 and ℓ2 in the structure of linear mathematics?

To this end recall that, given an n-dimensional vector space V , then a choice of
basis determines an isomorphism F which relates V to Rn, the space of n-tuples, a
coordinate realization of V :

V
F−−−−−−→ Rn

u ∼∼∼∼❀ F (u) =






c1
...
cn






Here

(i) F is induced by a given system of orthonormal spanning vectors uk. This means
that once {uk} is given, F is determined: for any u in V F yields a unique
F (u), the array expansion coefficients ck.

(ii) F is linear. This means that F is mathematized by means of a matrix.

(iii) F is one-to-one.

(iv) F is onto,

where “onto” means that, given any v ∈ Rn, one can solve

F (u) = v (2.10)

for u ∈ V , while “one-to-one” means that such a solution is unique. In brief, F is an
isomorphic relation between V and Rn, and it is induced by {uk}nk=1.

The extension of the idea of such an isomorphism to infinite-dimensional Hilbert
spaces results in the claim that a Hilbert space H has ℓ2 as its coordinate realization.
Relating these two spaces is the isomorphism F ,

H F−−−−−−→ ℓ2

f ∼∼∼∼❀ F [f ] = {c1, c2, · · · }

Here, as in the finite dimensional case,

(i) F is induced by a given system of orthonormal vectors uk.
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(ii) F is linear.

(iii) F is one-to-one.

(iv) F is onto.

An isomorphism is a two-way map H −→ ℓ2 and H ←− ℓ2. In finite dimensions
its validation is achieved by algebraic manipulations on a basis-induced system of
equations.

In infinite dimensions, however, the method for validation is necessarily different.
It is a three-step process:

I. Identify an infinite system of o.n. vectors. This sytem induces a linear map F
from H to ℓ2.

II. Apply Bessel’s least squares theorem to the system of o.n. vectors. This
application starts by constructing the linear map,

F : H −→ ℓ2 . (2.11)

The map F is the unifying kingpin in the whole subsequent development, as
summarized by the three theorems 1.5.1, 1.5.2, and 1.5.3 below.

According to Bessel’s least squares theorem (1.5.1 below), even if more than one
f ∈ H yields the same {ck} ∈ ℓ2, each one of them has the same optimal (least
squared error) representative in the subspace spanned by those o.n. vectors.
This representative is the result of Bessel’s least squares error analysis. If the
least squared error is zero, i.e. Parseval’ identity is satisfied, Bessel’s theorem
guarantees that there is only a single function f having the particular least
squares representation induced by the system of o.n. vectors. In other words,
the map F is one-to-one (Theorem 1.5.2).

III. Use the Riesz-Fischer Theorem (1.5.3). Its gist is the fundamental feature that,
for a system with an infinite number of o.n. vectors, this map is always onto.
In other words, for every element {ck} ∈ ℓ2 there is at least one element f ∈ H.

In summary, Fischer and Riesz guarantee that F is onto, while Bessel and Parse-
val guarantee that it is one-to-one. In brief, F is an isomorphism. Put differently, as
exemplified by the contributions of these four workers, human knowledge of mathe-
matical methods is not a mere collection, but a structure. Their works, even though
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developed separately, does not amount to a juxtaposition. By applying the concept
of an isomorphism to their works one forms a unified structure, the coordinatization
of a Hilbert space.

Bessel and Parceval

Bessel’s fundamental optimization process, in particular the construction of of the
linear map Eq.(2.11), is summarized by the following

Theorem 2.5.1 (Bessel) (Least squares approximation via subspaces) Given an
o.n. system

u1, u2, . . . , uk, . . .

in the Hilbert space H ⊆ L2, let f be an arbitrary element of H. Then
(i) the expression

∥
∥
∥
∥
∥
f −

N∑

k=1

akuk

∥
∥
∥
∥
∥

2

≡ E2
N(a1, . . . , aN)

has a minimum, for

ak = 〈uk, f〉 ≡ ck k = 1, · · · , N .

(ii) This minimum equals

‖f‖2 −
N∑

k=1

|ck|2 = E2
N(c1, . . . , cN) N = 1, 2, · · · .

with its associated hierarchy

‖f‖2 ≥ E2
1(c1) ≥ E2

2(c1, c2) ≥ · · · ≥ E2
N(c1, · · · , cN) ≥ · · · ≥ 0 .

(iii) Moreover,
∞∑

k=1

|ck|2 ≤ ‖f‖2 ,

a result known as Bessel’s inequality.

Note: This theorem introduces en passant two new concepts which are key to the
subsequent development:
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• The coefficients
ck = 〈uk, f〉

are called the (generalized) Fourier coefficients. They form the image of the
function f under the linear transformation

F : H → ℓ2 (2.12)

f ∼❀ F [f ] = {ck}∞k=1 (2.12′)

• The sequence of sums

N∑

k=1

ckuk ≡ SN N = 1, 2, · · · ,

is called the sequence of partial Fourier series of f , with SN being the N th

partial Fourier series.

Nota bene: The function E2
N(a1, . . . , aN) is called Gauss’s mean squared error. Min-

imizing it by setting

∂E2
N

∂ak
= 0 k = 1, . . . , N

yields the N Fourier coefficients

ak = 〈uk, f〉 ≡ ck k = 1, . . . , N

as the solution to this equation (try it!). The word “mean” in Gauss’s mean squared
error arises from its defining property,

E2
N =

∫ b

a

|f(x)−
N∑

k=1

akuk(x)|2ρ(x) dx .

The integrand |f(x)−∑N
k=1 akuk(x)|2 is the error at x, while the integral is (b− a)

times the (weighted) “mean” of this quantity, in compliance with the mean value
theorem of integral calculus.
Proof: The Gaussian mean squared error function

〈f −
N∑

k=1

akuk , f −
N∑

ℓ=1

aℓuℓ〉 ≡ E2
N
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is a quadratic expression in the complex unknowns ak. As usual, in such expressions
completing the square will yield the minimum value at a glance. Multiplying out the
inner product yields

E2
n = ‖f‖2 −

N∑

k=1

ak〈uk, f〉 −
N∑

ℓ=1

aℓ〈f, uℓ〉+
N∑

k=1

N∑

ℓ=1

akaℓ〈uk, uℓ〉 .

By (i) introducing the Fourier coefficients

ck = 〈uk, f〉

of f relative to the system {uk}, (ii) using the orthonormality of the uk’s yields, and

(iii) adding and subtracting
N∑

k

|ck|2, one obtains

E2
N = ‖f‖2 − ∑N

k=1 akck −
∑N

ℓ=1 aℓcℓ +
∑N

k=1 akak
− ∑N

k=1 |ck|2 +
∑N

k=1 ckck
= ‖f‖2 − ∑N

k=1 |ck|2 +
∑N

k=1 |ak − ck|2

This expression is the key to validating the three conclusions of the theorem.

(i) E2
N achieves its minimum when

ak = ck .

Thus F [f ] = {ck}∞k=1 is linear.

(ii) The minimum value of E2
N is

E2
N(c1, · · · , cN) = ‖f − SN‖2 (2.13)

= ‖f‖2 −
N∑

k=1

|ck|2 .

(iii) The fact that this holds for all integers N implies

∞∑

k=1

|ck|2 ≤ ‖f‖2 ,

which is also called Bessel’s inequality.
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Bessel’s Inequality: Its Geometrical Meaning

This theorem can also be summarized geometrically as follows:

1. The set of linear combinations

span {u1, . . . , uN} ≡ WN ⊂ H ⊆ L2

is a subspace of L2, and the N th partial Fourier sum

N∑

k=1

ckuk ≡ w∗N (2.14)

is the orthogonal projection of f onto WN . The squared length of w∗N is

‖w∗N‖2 = 〈
N∑

k=1

ckuk,

N∑

k=1

ckuk〉

=
N∑

k=1

|ck|2 ,

which is the Pythagorean theorem in WN .

2. This projection of f onto WN is linear. It is given by

w∗N =
N∑

k=1

uk〈uk, f〉 ≡ PWN
f (∈ WN) . (2.15)

It is depicted in Figure 2.8, and it has the property that

PWN
PWN

f = PWN
f for all f ∈ H .

This expresses the fact that PWN
is the identity operator on WN . On the other

hand, in light of Bessel’s inequality, PWN
shortens f if f 6∈ WN .

3. The triangle formed by f , w∗N ∈ WN , and the error vector

h∗N = f − w∗N ; w∗N =
N∑

k=1

ckuk
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W  = span{u   , ... , u  }1 NN

f h*N

u u
1

2

w*N

Figure 2.8: The N -dimensional subspace WN of the ambient Hilbert space H = L2.
The least squares approximation w∗N is the orthogonal projection of the vector f onto
WN . The difference between the given vector f and its projection onto the subspace
is the error vector h∗N .

is a right triangle: the sides of the triangle obey the Pythagorean theorem in
the ambient Hilbert space:

‖h∗N‖2 = ‖f −
N∑

k=1

ckuk‖2 (2.16)

= 〈f −
N∑

k=1

ckuk, f −
N∑

k=1

ckuk〉

= ‖f‖2 −
N∑

k=1

|ck|2 (2.17)

= ‖f‖2 − ‖w∗N‖2

This evidently yields
‖f‖2 ≥ ‖w∗N‖2

which is the finite-dimensional version of Bessel’s inequality.

Using the optimal (= “least square”) approximation

w∗N =
N∑

i=1

ckuk , ck = 〈uk, f〉
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one obtains

‖f‖2 ≥
N∑

i=1

ckck ; ck determined by the least squares approximation,

which for our square integrable functions is

∫ b

a

|f(x)|2ρ(x)dx ≥
N∑

i=1

|ck|2 .

Geometrically this inequality says

(length of vector)2 ≥
(

length of its projection
onto the subspace WN

)2

.

Consider now a sequence of subspaces

W1 ⊂ W2 ⊂ · · · ⊂ WN ⊂ WN+1 ⊆ · · · ,
the respective optimal approximations to the given function f , and the corre-
sponding sequence of least square errors

‖h∗N‖2 = ‖f −
N∑

i=1

ckuk‖2 , N = 1, 2, . . . .

This sequence not only reveals the quality of each partial sum approximation.
If ‖h∗N‖2 approaches zero as N tends to infinity, then this very fact also reveals
something about {uk}. Indeed, whenever ‖h∗N‖2 → 0, the o.n. system is one
which constitutes a basis for H, meaning that Eq.(2.18) or (2.20) is satisfied.

4. With ‖h∗N‖2 as the shortest squared distance between f and WN , the error
vector h∗N is perpendicular to WN :

〈uk, h∗N〉 = 0, k = 1, 2, · · · , N.

The Orthonormal System

Highlighting the fact that any o.n. system induces a linear transformation into ℓ2 is
only the first step in using a Hilbert space to conceptualize the measured properties
of things in science. Is the chosen o.n. system appropriate for this task? There
are many kinds of o.n. systems and their concomitant linear transformations. The
necessity of grounding a Hilbert space in the measurements and observations of the
physical world requires answers to two key questions about any o.n. system and its
linear transformations:
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1. Is it onto (“surjective”)?

2. Is it one-to-one (“injective”)?

Their answers require the following
Definition.
A system of o.n. vectors {uk : k = 1, 2, · · · } is said to be closed whenever

∞∑

k=1

|ck|2 = ‖f‖2 (2.18)

for every f in H.
Under such a circumstance one refers to this relation as Parseval’s identity.2

By taking the limit as N →∞ of the right hand sides of Eqs.(2.16) and (2.17), one
obtains the result that

∞∑

k=1

|ck|2 = ‖f‖2 ⇐⇒ lim
N→∞

‖f −
N∑

k=1

ckuk‖2 = 0 (2.19)

whenever ck = 〈uk, f〉. This equivalence is the mathematization of the portal between
any Hilbert space and its coordinate realization by an “appropriate” system of o.n.
vectors. That the two equalities imply each other is the result of a mere algebraic
evaluation of the involved inner products.

Exercise 2.5.1 (PARSEVAL’S IDENTITY AND FOURIER SERIES)
Let

ck ≡ 〈uk, f〉 k = 1, 2, · · ·

be the Fourier coefficients of f ∈ L2 relative to the orthonormal system {uk}∞k=1 ⊂ L2.

Prove:
∞∑

k=1

|ck|2 = ‖f‖2 ⇐⇒ ‖f −
∞∑

k=1

ckuk‖2 = 0 .

The concept “appropriate” is too broad and not particular enough to identify the
kind of system worthy of thorough study. This deficiency is remedied by the concept
having the following
Definition

2It is called an identity, and not an equation, because it holds for all f ’s.
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A system of o.n. vectors {uk}∞k=1 is said to be complete whenever

lim
N→∞

‖f −
N∑

k=1

ckuk‖2 = 0 (2.20)

i.e.

f=̇
∞∑

k=1

ckuk

Comment
This is to be compared with pointwise equality, which is expressed by the statement
that

f(x) =
∞∑

k=1

ckuk(x) . (2.21)

The difference between “
.
=” and “=” manifests itself only when the square-summable

sequence {ck} yields a function which has one or more discontinuities, then one
does not have pointwise equality, Eq.(2.21). Instead, one has the weaker condition,
Eq.(2.20). This condition does not specify the value of f at the point(s) of discon-
tinuity. Instead, it specifies an equivalence class of functions, all having the same
graph everywhere except at the point(s) of discontinuity.
Completeness Relation For H ⊆ L2(a, b)

An “appropriate” system is one for which either equation in Eq.(2.19), i.e.

∞∑

k=1

〈f, uk〉〈uk, f〉 = 〈f, f〉 ⇐⇒ f=̇
∞∑

k=1

uk〈uk, f〉 (2.22)

holds for all f ∈ H. Moreover, the statement

〈f, f〉 =
∞∑

k=1

〈f, uk〉〈uk, f〉 ∀f ∈ H

implies and is implied by

〈f, g〉 =
∞∑

k=1

〈f, uk〉〈uk, g〉 ∀f and g ∈ H.
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Explicitly, one has

∫ b

a

f(x)g(x)ρ(x)dx =
∞∑

k=1

∫ b

a

f(x)uk(x)ρ(x)dx

∫ b

a

uk(x
′)g(x′)ρ(x′)dx′ .

This can be rewritten in terms of the Dirac delta function (which is developed
in Section 3.2 starting on page 140) as

∫ b

a

∫ b

a

f(x)δ(x− x′)g(x′)ρ(x)dxdx′

=

∫ b

a

∫ b

a

f(x)
∞∑

k=1

uk(x)uk(x
′)ρ(x)ρ(x′)g(x′)dxdx′ .

This holds for all f, g ∈ H = L2(a, b). Consequently, we have the following
alternate form for the completeness of the set of orthonormal functions

δ(x− x′)
ρ(x′)

=
∞∑

k=1

uk(x)uk(x
′)

or

δ(x− x′)
ρ(x′)

=
∞∑

k=1

|uk(x)〉〈uk(x′)|

in quantum mechanical notation.

Usually the orthonormal functions uk are the eigenfunctions of some operator
(for example, the Sturm-Liouville operator + boundary conditions, which we
have met in chapter 1 on page 19). The Dirac delta function

δ(x− x′)
ρ(x′)

=
δ(x− x′)
ρ(x)

is the identity operator on the Hilbert space H. Consequently, the alternate
form of the completeness relation

δ(x− x′)
ρ(x)

=
∞∑

k=1

uk(x)uk(x
′) (2.23)

can be viewed as a spectral representation of the identity operator in H.
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Thus the completeness of a set {uk}∞k=1 refers to the fact that it contains suffi-
ciently many uk’s of the right kind so that the identity transformation (2.23) can be
represented in terms of them. Equivalently, the uk’s form a spanning set for H ⊆ L2.

On the other hand, in the quest for alternative mathematical precision, some
mathematicians asked and answered the following important question:
Is an o.n. system {uk}∞k=1 unique whenever it gives rise to Parseval’s identity? In
other words, can such a {uk} be a proper subset of any other orthonormal set in H?
The reason that the answer is “no” is that they call {uk} a maximal o.n. sequence.

Band-Limited L2 Message Spaces

Example (Complete vs. incomplete system of o.n. band-limited L2 signal functions.)
Consider the following three Hilbert spaces:

H[0,ε] =

{

f ∈ L2(−∞,∞) :

∫ ∞

−∞

e−iωx√
2π

f(x)dx = 0; ω 6∈ [0, ε]

}

, (2.24)

H[ε,2ε] =

{

g ∈ L2(−∞,∞) :

∫ ∞

−∞

e−iωx√
2π

g(x)dx = 0; ω 6∈ [ε, 2ε]

}

, (2.25)

H[0,2ε] =

{

h ∈ L2(−∞,∞) :

∫ ∞

−∞

e−iωx√
2π

h(x)dx = 0; ω 6∈ [0, 2ε]

}

(2.26)

In mathematical engineering each one refers to a set of band-limited signals: The
Fourier amplitudes of the f ’s, g’s, and h’s are non-zero only in the frequency windows
[0, ε], [ε, 2ε], and [0, 2ε] respectively.

Each of these spaces is a type of function space. Indeed, each of the f ’s, g’s, and
h’s is a particular signal function. The difference between the three is the difference
in how a particular signal function is put into mathematical form (“mathematized”).
Although there are many ways of doing this, here we shall do it by means of Fourier
series: Consider the following three systems of o.n. vectors:

{uk(x)} = {P ε
0k(x) : k = 0,±1, · · · } (2.27)

{uk′(x)} = {P ε
1k′(x) : k

′ = 0,±1, · · · } (2.28)

{uk′′(x)} = {P 2ε
0k′′(x) : k

′′ = 0,±1, · · · }. (2.29)

Borrowing from Section 3.4.2 the o.n. wave packets

P ε
jℓ(x) =

∫ (j+1)ε

jε

e−2πiℓω/ε√
ε

eiωx√
2π

dω , (2.30)
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and affixing superscripts ε and 2ε to them to indicate their banwidth, we note that
each of the P 2ε

0k′′ ’s has twice the frequency bandwidth of the P ε
0k’s and of the P ε

0k′ ’s.

Messages are represented by Fourier series in their respective message spaces:

f(x) =
∑

k

ckuk(x) ∈ H[0,ε]

g(x) =
∑

k′

c′k′u
′
k′(x) ∈ H[ε,2ε]

h(x) =
∑

k′′

c′k′′u
′′
k′′(x) ∈ H[0,2ε]

Thus the three systems induce the following three respective Fourier maps

F[0,ε] :







L2 → ℓ2

H[0,ε] ↔ ℓ2

f ❀ F[0,ε][f ] = {〈uk, f〉 ≡ ck}

F[ε,2ε] :







L2 → ℓ2

H[ε,2ε] ↔ ℓ2

g ❀ F[ε,2ε][f ] = {〈u′k′ , g〉 ≡ c′k′}

F[0,2ε] :







L2 → ℓ2

H[0,2ε] ↔ ℓ2

h ❀ F[0,2ε][f ] = {〈u′′k′′ , h〉 ≡ c′′k′′}

Each of the three systems, Eqs.(2.27)-(2.29) is complete in their respective sub-
spaces H[0,ε], H[ε,2ε], and H[0,2ε]. This is because the respective Parseval identities:

‖f‖2 =
∑

k

|ck|2

‖g‖2 =
∑

k′

|c′k′|2

‖h‖2 =
∑

k′′

|c′′k′′|2

are satisfied.
However, the system (2.27) is incomplete in H[ε,2ε]. This is because the Fourier
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coefficients of any g ∈ H[ε,2ε] w.r.t. (2.27) vanish identically,

〈uk, g〉 = 〈uk,
∑

k′

c′k′u
′
k′〉

=
∑

k′

c′k′〈P ε
0k, P

ε
1k′〉

=
∑

k′

c′k′ 〈P̂ ε
0k, P̂

ε
1k′〉

︸ ︷︷ ︸

=zero; see Eq.(3.84).

= 0 .

As a consequence, Parseval’s identity is strongly violated:

‖g‖2 >
∑

k

|〈uk, g〉|2 (= 0).

This violation is due to the following: even though g is a non-trivial message (i.e. a
Fourier series) in H[ε,2ε], an attempt to represent g as a Fourier series in H[o,ε] results
in failure: relative to H[0,ε] the system of o.n. vectors, g gets represented by a Fourier
series with coefficients all zero. In other words, F[o,ε] maps g and the zero vector into
the origin of ℓ2. Thus F[o,ε] is not one-to-one if its domain includes H[ε,2ε]. But this
can happen only if Parseval’s identity is violated.

The relation between the completeness of a system of o.n. vectors and its con-
comitant Fourier map F can therefore be summerized by the following

Theorem 2.5.2 (F Is One-To-One) Given:
Let {uk} be an orthonormal system on a Hilbert space H. Let {ck = 〈uk, f〉} be the
set of corresponding Fourier coefficients of some f ∈ H.
Conclusion:
The Fourier representation map

F : H → ℓ2

f ❀ F [f ] = {ck}

is one-to-one if and only if {uk} is complete in H.
Proof: (in three steps)

1: Let f and g have the same image in ℓ2:

F [f ] = F [g].
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2: Let h = f − g. Then

F [h] ≡ {〈uk, h〉} = {0, 0, · · · , 0, · · · }

3: {uk} is complete if and only if

∑

k

|〈uk, h〉|2 = ‖h−
∑

k

uk〈uk, h〉‖2 = ‖h‖2 = ‖f − g‖2

Thus

f=̇g

i.e. F is one-to-one indeed.

Whichever way one singles out such a system of o.n. vectors, in linear mathe-
matics one refers to such a system as being a spanning set for the vector space H.
Such a set is an H basis because the orthogonality of its elements makes it also a
linearly independent set.

In summary, when Bessel’s inequality becomes an equality, in which case one has
Parseval’s identity on L2, then Eq.(2.19) tells us that

f=̇
∞∑

k=1

ckuk .

Here

ck = 〈uk, f〉
are simply the generalized Fourier coefficients.
Thus Bessel-based Parseval’s identity, which is a statement about these coefficients,
achieves two goals at once:

• It yields the linear map F from L2 into ℓ2: for each f there is a unique {ck} ∈ ℓ2,
and

• it yields an o.n. system {uk}∞k=1 which is complete in H.

This achievement completes the first two steps in coordinatizing a Hilbert space.

Lecture 15
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Riesz and Fischer

If the elements of ℓ2 comprise measured laboratory data, then the introduction of an
o.n. system is the means of relating this data to a theory as expressed by the elements
of a particular Hilbert space. If this relation is expressed by the linear map F , and if
the physical context demands that this F accomodate a range of measurements, then
it is necessary to ascertain whether the range space of the chosen F is sufficiently
“large” (high dimensional) to cover the whole space of measurements, ℓ2. In other
words, is F an onto map? Riesz and Fischer took the decisive step in answering
this question in the affirmative. Their line of reasoning is summarized by means of
Riesz-Fischer Theorem 1.5.3 on page 99

That third step was a non-trivial task, and they achieved it in two entirely dif-
ferent ways. But interestingly enough, they published it in the same year (1907) in
the same issue of the same mathematics journal.

Ernst Fischer’s approach, which we also shall adopt in the R-F Theorem, consisted
of showing that the inner product space L2 is Cauchy complete. By contrast Frigyes
Riesz’s approach was to solve a system of integral equations. He showed that one
can solve

F [f ] = {ck}∞k=1

for the function f . That is to say, the system of integral equations

∫

u1 f ρ dx = c1
∫

u2 f ρ dx = c2

...
∫

uk f ρ dx = ck

...

can always be solved for an f ∈ L2 such that

‖fN − f‖2 → 0 as N →∞ .

Thus both Riesz and Fischer show that to every element {c1, c2, · · · , ck, · · · } ∈ ℓ2

there corresponds an element f ∈ L2(a, b) with the numbers c1, c2, · · · , ck, · · · as its
generalized Fourier coefficients. In brief, they show that F , Eq.(2.32), is an onto
map.
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With this historical background, these achievements of Riesz and Fischer’s, re-
stated in terms of the modern geometrical inner product framework, are summarized
by what is nowadays known as the

Theorem 2.5.3 (Riesz-Fischer: F is Onto)

Given: (i) An orthonormal system {uk} in the (Cauchy complete) L2

(ii) A sequence of numbers c1, c2, . . . , ck, · · · with the property that

∞∑

k=1

|ck|2 <∞ .

Conclusion: (a) There exists an element f ∈ L2(a, b) with c1, c2, . . . , ck, · · · as its Fourier
coefficients, i.e. such that

(b) ‖f‖2 =
∞∑

k=1

|ck|2

(c) with

ck = 〈uk, f〉, k = 1, 2, · · · (2.31)

Comment 1: Items (a) and (c) imply that

F
L2(a, b) −→ ℓ2

f ∼❀ F [f ] = {ck}∞k=1

(2.32)

with the property that it is onto3 and linear.

Comment 2: Item (b) implies that this F is an isometry. This fact is defined explic-
itly on page 106

3This claim is also stated by saying that the preimage F−1 [{ck}] of {ck}, namely, the set of
elements

F−1 [{ck}] = {f : F [f ] = {ck}} ,

is non-empty.
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Comment 3: In light of the fact that (b) implies4 that

lim
N→∞

‖f −
N∑

k=1

ckuk‖2 = 0

one concludes that system {uk} of orthonormal elements is a complete, i.e. a spanning
set for L2:

f =̇
∞∑

k=1

ckuk

Proof: Starting with {ck} we must first show that there exists a function f ∈ L2

having the two properties (a) and (c). Then we must show that this function satifies
(b).

The existence follows from the following three step construction:

1. Concider the following sequence of sums in L2:

fN =
N∑

k=1

ckuk, N = 1, 2, · · · (2.33)

This sequence is a Cauchy sequence, i.e. it satisfies the Cauchy criterion.
Indeed,

‖fN+P − fN‖2 = ‖cN+1uN+1 + · · · cN+PuN+P‖2

=
N+P∑

k=N+1

|ck|2 → 0 as N →∞

because
∞∑

k=1

|ck|2

4In fact, one has

∞∑

k=1

|ck|2 = ‖f‖2 ⇔ lim
N→∞

‖f −
N∑

k=1

ckuk‖2 = 0 .

For the validity of this equivalence see Exercise 1.5.1 on page 91
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converges5. So {fN}∞1 is a Cauchy sequence indeed.

2. The fact that L2 is Cauchy complete w.r.t. ‖ · · · ‖2 implies that there exists a
function f ∈ L2 such that

lim
N→∞

‖f − fN‖2 = 0 . (2.34)

This validates part (a) of the theorem.

3. Is there a relation between the given ck’s and the inner products of the uk’s
and that function f? Consider any one of the inner products, say,

〈uℓ, f〉 = 〈uℓ, fN〉+ 〈uℓ, f − fN〉

For the first term one has
〈uℓ, fN〉 = cℓ

whever N > ℓ. The second term goes to zero as N →∞. Indeed, applying the
Cauchy-Schwarz inequality, one has

|〈uℓ, f − fN〉|2 ≤ ‖uℓ‖2 · ‖f − fN‖2 .

In compliance with the Cauchy completeness, Eq.(2.34), the r.h.s. of this
inequality goes to zero in the limit as N →∞. One therefore has

〈uℓ, f〉 = lim
N→∞

{〈uℓ, fN〉+ 〈uℓ, f − fN〉}
= ck .

In other words, cℓ is the ℓ
th Fourier coefficient of f relative to the o.n. system

{uk}. This validates part (c) of the theorem.

5Let us say it converges to S. In that case one has

N+P∑

k=N+1

|ck|2 =

N+P∑

k=1

|ck|2 − S + S −
N∑

k=1

|ck|2

≤
∣
∣
∣
∣
∣

N+P∑

k=1

|ck|2 − S
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
S −

N∑

k=1

|ck|2
∣
∣
∣
∣
∣

≤ ǫ

2
+
ǫ

2
= ǫ for sufficiently large N and N + P .
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Comment: This line of reasoning, which starts with 〈uℓ, f〉 and ends with 〈uℓ, f〉 = cℓ,
applies to every component of the given {ck}∞k=1 = {c1, c2, · · · , ck, · · · }, a
vector in ℓ2. A linear algebraist would say that Riesz and Fischer, by
following definite (mental) procedures applied to established knowledge
(including taking note of the fact that the limit f is unique 6), have
formed a new concept: the linear mapping

ℓ2 → L2 (2.35)

{ck}❀ f = lim
N→∞

N∑

k=1

ckuk . (2.35′)

This mapping is the inverse of the mapping (2.32) and is symbolized by
F−1.

4. The limiting behaviour of fN , ‖f − fN‖ → 0 as N →∞ implies

lim
N→∞

〈

f −
N∑

k=1

ckuk, f −
N∑

ℓ=1

cℓuℓ

〉

= 0 , (2.36)

which in turn is equivalent to

‖f‖2 =
∞∑

k=1

|ck|2 . (2.37)

This is because (i) the ck’s are the Fourier coefficients of f relative to the {uk},
and (ii) the uk’s are mutually orthonormal. This validates part (b) of the
theorem.

Corollary 1
The map F−1 : ℓ2 → L2 is one-to-one.
It is a consequence of Parseval’s identity, Eq.(2.37), that (2.35) is a one-to-one map.
This is because f=0 yields {ck= 0}∞k=1 as the only preimage under (2.35).
Corollary 2 The map F : L2 → ℓ2 is an isomorphism.
Theorems 1.5.3 combined with 1.5.2, i.e. the map F induced by a complete infinite
system of o.n. vectors is onto and one-to-one, leads to the definition that F is an
isomorphism.

6See the “Side Comment” on page 73.
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Corollary 3 The map F : L2 → ℓ2 is an isometry.
Equation (2.37) holds for all {ck}’s and f ’s. Consequently,

∞∑

k=1

ck dk = 〈f, g〉 .

This validates that F is an isometry, i.e. an isometric isomorphism, between ℓ2 and
L2.

Proposition (Coordinatization of Hilbert Space H)
Let H be an “infinite” dimensional Cauchy-complete inner product space, i.e. given
any positive integer N , H contains N o.n. vectors. Then H has l2 as its coordinate
realization. In brief, H is coordinatized by the isometric mapping, Eq.(2.32), which
is induced by this system of o.n. vectors.

2.5.3 Isomorphic Hilbert Spaces

Lecture 16

Parseval’s identity, Eq.(2.18), is a remarkable for its diverse and non-trivial impli-
cations! One of its consequences is the generalized Fourier expansion

f(x)
.
=
∞∑

k=1

ckuk

with ck = 〈uk, f〉. Indeed, starting with Parseval’s mathematically simple identity,

0 = 〈f, f〉 − lim
N→∞

N∑

k=1

ckck ,

subtract and add the limit of the sum

N∑

ℓ=1

cℓ〈f, uℓ〉 =
N∑

ℓ=1

N∑

k=1

cℓck〈uk, uℓ〉.
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One obtains

0 = 〈f, f〉 − lim
N→∞

{ N∑

k=1

ck〈uk, f〉 −
N∑

ℓ=1

cℓ〈f, uℓ〉

+
N∑

ℓ=1

N∑

k=1

cℓck〈uk, uℓ〉
}

0 = 〈f − lim
N→∞

N∑

k=1

ckuk, f − lim
N→∞

N∑

ℓ=1

cℓuℓ〉

0 = lim
N→∞

‖f −
N∑

k=1

ckuk‖2 ,

which is what is meant by

f
.
=
∞∑

k=1

ckuk ; ck = 〈uk, f〉 ∀ f ∈ H .

But there is more. The generalized Fourier series has a perspicuous property: it
is a length and angle preserving (isometric) isomorphism. It is a one-to-one linear
correspondence – let us call it F , as we have done all along – between f ∈ H ⊆
L2(a, b) and {c1, c2, . . . , ck, . . . } ∈ ℓ2 = the Hilbert space of square summable series
(“functions on the integers”). The correspondence

f
F→ F [f ] = {ck} ≡ {c1, c2, . . . , ck, . . . }

g
F→ F [g] = {dk} ≡ {d1, d2, . . . , dk, . . . }

αf + βg
F→ F [αf + βg] = α{ck}+ β{dk}

(i) is one-to-one and onto, which means it has an inverse:

F−1[{ck}] = f ≡
∞∑

k=1

ckuk
F−1

← {ck} ;

(ii) is linear, which means it takes closed triangles in L2 into closed triangles in ℓ2:

{ck + dk} = {ck}+ {dk} ;
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H

f

g
{c }

{c }+
{d } {d }

{c  +d  }

k

kk
k

k
kf+g

l 2

Figure 2.9: Linear map between H ⊆ L2, and l2, the space of square summable
sequences. This map is an isometry which is induced by the generalized Fourier
series.

(iii) preserves lengths. Indeed,

f =
∞∑

k=1

ckuk

g =
∞∑

ℓ=1

dℓuℓ

implies

〈f − g, f − g〉 =
∞∑

k=1

(ck − dk)(ck − dk)

‖f − g‖2 =
∞∑

k=1

|ck − dk|2 ∀ f, g ∈ H .

It follows that

〈f, g〉 =
∞∑

k=1

ckdk

‖f‖2 =
∞∑

k=1

|ck|2 .
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H right triangle in l2right triangle in Fourier
Euler

formula

same
lenghths

Fourier
series

Figure 2.10: The isometry between H ⊆ L2, the space of square integrable functions,
and l2, the space of square summable sequences, preserves lengths and angles.

Consequently, F preserves lengths, inner products, and angles (if the Hilbert space
is real).
Definition: A linear transformation which is one-to-one and onto is called an iso-
morphism.
Definition: A distance preserving transformation between two metric spaces is
called an isometric transformation, or simply an isometry.

In that case, the two spaces are said to be isometric spaces. This means they
look the same from the viewpoint of geometry.

To summarize, the striking feature of the completeness, i.e., Parseval’s relation
is that it establishes an isometric isomorphism, or more briefly an isometry between
the two spaces.

Thus
H (⊆ L2(a, b)) and ℓ2 are isometric Hilbert spaces .

They are geometrically the same (right triangles in one space correspond to right
triangles in the other space).

Because one can establish a linear isometry between any Hilbert space and one
and the same ℓ2, the space of square summable series, one obtains the
Theorem: (Isomorphism theorem) Any two complex Hilbert spaces are isomorphic.
In fact, so are any two real Hilbert spaces.

Lecture 17
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Comment: The isometric isomorphism is a unitary transformation whose elements
are {u1(x), u2(x), . . . }. Indeed, consider the equation

∞∑

k=1

uk(x)ck = f(x) .

The coefficients ck are the components of an infinite dimensional column vector in
ℓ2. The function f is an infinite dimensional column vector whose components f(x)
are labelled by the continuous index x. It follows that {uk(x)} are the entries of
a matrix whose columns are labelled by k and whose rows are labelled by x. The
orthogonality conditions

〈ui, uj〉 = δij

expresses the orthonormality of the colums of this matrix. The completeness relation

∞∑

k=1

uk(x)uk(x) =
δ(x− x′)
ρ(x)

expresses the orthonormality of the rows. It follows that {uk(x)} represents a unitary
transformation which maps H ⊆ L2(a, b) onto ℓ2.

Exercise 2.5.2 (SQUARED LENGTHS AND INNER PRODUCTS)
An isometry between the Hilbert space H of square integrable functions f , and the Hilbert
space ℓ2 of square summable sequences {ck}∞k=1 is a linear one-to-one and onto transfor-
mation f → {ck} with the property that it preserves squared lengths:

〈f, f〉 =
∞∑

k=1

|ck|2 , ∀f ∈ H .

SHOW that

〈f, g〉 =
∞∑

k=1

ckdk , dk = 〈uk, g〉 ∀f, g ∈ H .

where
f → {ck} and g → {dk} .

Exercise 2.5.3
Let g be a fixed and given square integrable function, i.e.

0 <

∫ ∞

−∞
g(x)g(x) dx ≡ ‖g‖2 <∞
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One can think of g as a function whose non-zero values are concentrated in a small set
around the origin x = 0.

Consider the concomitant “windowed” Fourier transform on L2(−∞,∞), the space of
square integrable functions,

T : L2(−∞,∞) → R(T )

f → Tf(ω, t) ≡
∫ ∞

−∞
g(x− t)e−iωxf(x) dx

Let h(ω, t) be an element of the range space R(T ). It is evident that

〈h1, h2〉 =
∫ ∞

−∞

∫ ∞

−∞
h1(ω, t)h2(ω, t) dωdt

is an inner product on R(T ).
FIND a formula for 〈Tf1, T f2〉 in terms of the inner product

(f1, f2) ≡
∫ ∞

−∞
f1(x)f2(x) dx

on L2(−∞,∞).

Exercise 2.5.4 (SHANNON’S SAMPLING FUNCTIONS)
By

(a) starting with the orthonormality relation

π∫

−π

δN

(

t− 2π

2N + 1
k

)

δN

(

t− 2π

2N + 1
l

)

dt =
2N + 1

2π
δkl ;

k, l = −N, . . . , N

where

δN (u) =
1

2π

sin(N + 1
2)u

sin u
2

(

=
1

2π

N∑

n=−N
einu

)

,

(b) then rescaling the integration domain by introducing the variable

z =
N + 1

2

2πw
t ,

where w > 0 is a fixed constant (the ”band width”),
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(c) and finally going to the limits N →∞.

(i) Show that the set of functions

{
sinπ(2wz − k)
π(2wz − k) ≡ sin c(2wz − k) : k = 0,±1,±2, . . .

}

is an orthogonal set satisfying

∞∫

−∞

sin c(2wz − k) sin c(2wz − l)dz = Aδkl .

What is A?

(ii) This set of functions

{

uk =
1√
A

sinc(2wz − k) : k = 0,±1, · · ·
}

is not complete on L2(−∞,∞), but it is complete on a certain subset B ⊂
L2(−∞,∞).

What is this subset? i.e. What property must a function f(t) have in order
that f ∈ B?

This question can be answered with the help of Parseval’s (“completeness”)
relation as follows: Recall that completeness on B here means that f ∈ B
implies that one can write f as

f(z) =
∞∑

k=−∞
ckuk(z), uk =

1√
A

sinc(2wz − k)

with ck = 〈uk, f〉, which we know is equivalent to

〈f, f〉 =
∞∑

k=−∞
|ck|2 . (2.38)

Thus, to answer the question, we must ask and answer: What property must
f have in order to guarantee that Eq.(2.38) be satisfied? Therefore, to give
a correct answer, one must (i) identify the property and (ii) then show that
Parseval’s relation is satisfied by every such function.
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Chapter 3

Fourier Theory

Lecture 18

A system is identified by its properties, and linearity, more often than not, plays
a fundamental role in organizing them quantitatively. Thus, if ψ1 and ψ2 are two
spatial amplitude profiles of a vibrating string, or two temporal histories of a simple
harmonic oscillator, then so is the linear combination

ψ = c1ψ1 + c2ψ2 .

One says that the system obeys the linear superposition principle. Mathematically
one says that the set of such ψ’s forms a vector space.

By specifying functions such as ψ(x), ψ1(x), and ψ2(x) one directs attention to
the fact that (i) the system has a specific domain and that (ii) the state (or the
history) of the system consists of assigning to this domain numbers that characterize
the state (or the history) in numerical terms.

There are linear systems whose intrinsic properties are independent of arbitrary
translations in that domain. An infinite string having constant density and tension,
or a simple harmonic oscillator with its time independent spring constant and mass,
or a system of differential equations with constant coefficients is a case in point.

On the other hand, there are systems whose properties are independent only under
discrete translations, such as a wave disturbance propagating through a discrete
lattice or a simple harmonic oscillator whose spring constant varies periodically with
time.

All such systems have the property that if ψ(x) describes its state (or its history,
in which case x is the time variable), so does ψ(x + a). In other words, a linear

113
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system which is invariant under space (or time) translation has the property that
ψ(x) and Taψ(x) ≡ ψ(x+ a) belong to the same vector space.

This immediately raises the algebraic question: What are the eigenvalues and
eigenvectors of the translation operator Ta,

Taψ(x) = λaψ(x) ?

i.e. which states (or histories) have the property that

ψ(x+ a) = λaψ(x) ? (3.1)

First consider the case of arbitrary translation invariance. By differentiation
w.r.t. a one finds that the solution is

ψ(x) = ecx,

where c is a constant. The requirement that this solution stay bounded in the whole
domain −∞ < x <∞ demands that the constant be purely imaginary:

ψ(x) = eikx . (3.2)

These are the tranlation eigenfunctions whose eigenvalues are eika.
Fourier theory is based on introducing these functions to represent any state (or

history) of the a linear translation invariant system. In brief, Fourier theory is an
expression of the translation invariance of a linear sustem.

Next consider the case of discrete translation invariance. By rewriting the eigen-
value in Eq.(3.1) as

λa = eρa

one finds that Eq.(3.1) becomes

e−ρ(x+a)ψ(x+ a) = e−ρxψ(x) ≡ uρ(x) .

Thus e−ρxψ(x) is a function, say uρ(x), with periodicity a. Consequently, an eigen-
function of discrete translation symmetry x → x + a has the form of an a-periodic
function modulated by a (real or complex) exponential1

ψρ(x) = eρxuρ(x) ,

1This fact is known to engineers and to physicists as Bloch’s theorem, and to mathematicians as
Floquet’s theorem.
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while the eigenvalue has the form

λa = eρa .

The periodic part of these eigenfunctions forms a portal from Fourier theory on the
real line to Fourier series theory on the closed circle.

First of all, noticing the periodicity of each uρ, one isolates a specific and blind-
ingly obvious characteristic of the points x, x±a, x±2a, · · · : the measurable value of
the function uρ at these points. This value serves to unite these points into a higher
order concept, namely, the equivalence class

{x, x± a, x± 2a, · · · } ≡ {x} .

In other words, the function uρ renders these points as indistinguishable with respect
to its measured value uρ(x) = uρ(x± a) = uρ(x± 2a) = · · · .

Secondly, the continuity of the periodic functions uρ guarantees that the family
of equivalent classes

{{x} : 0 ≤ x ≤ a}
forms a closed circle with circumference a.

Finally one asks, which of these periodic functions are eigenfunctions of the trans-
lation operation x→ x+ b:

φ(x+ b) = µbφ(x) ?

The line of reasoning that led to Eq.(3.2) followed by the imposition of the periodicity
condition on these functions leads to the answer that

φ(x) = eikx

µρ = eikb

}

k =
2π

a
n (n = any integer) (3.3)

A linear combination of such eigenfunctions makes up a Fourier series. The
conclusion is that the theory of Fourier series is an expression of a linear system in
a discrete translation invariant environment or of a system in a periodic state. An
electromagnetic wave propagating through a periodic lattice or the sound emitted
by a ticking clock are examples of such systems.

3.1 The Dirichlet Kernel

Consider a screen with equally spaced slits illuminated by a laser beam. Assuming
the width of the slits is small compared to their separation, each one of them acts
as a source of radiation as depicted in Figures 3.1 and 3.2.
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NUMBER OF
SLIT SOURCES:

2N+1=1

OBSERVED
AMPLITUDE

OBSERVED
INTENSITY

NUMBER OF
SLIT SOURCES:

2N+1=3

OBSERVED
AMPLITUDE

OBSERVED
INTENSITY

Figure 3.1: Dirichelet kernels of order N = 0 and N = 1.

NUMBER OF
SLIT SOURCES:

2N+1=5

OBSERVED
AMPLITUDE

OBSERVED
INTENSITY

NUMBER OF
SLIT SOURCES:

2N+1=7

OBSERVED
AMPLITUDE

OBSERVED
INTENSITY

Figure 3.2: Dirichelet kernels of order N = 2 and N = 3. Each of these kernels is the
observed far field amplitude profile of the radiation emitted coherently from an odd
(2N + 1) number of sources having equal strength. The observed intensity, which
is perceived by the human eye, is proportional to the square of the amplitude. The
separation between the source screen and the observation screen is much larger than
is implied by the picture.

Observations show that at large distances from these sources – large compared
to the laser wave length, and large compared to the slit separation – the emitted
radiation forms a Fraunhofer diffraction which is characterized by the number of slit
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sources. For an odd number, say 2N+1 = 1, 3, 5, 7 of them, the measured amplitude
profiles and the observed intensity (= squared amplitude) profiles have forms which
are shown in Figures 3.1-3.2

Each of the diffraction amplitude profiles is the interference pattern of radiation
from an odd number of slit sources having equal amplitude and equal phase. Each
pattern can be represented with mathematical precision as a finite Fourier sum with
a number terms equal to the odd number of slit sources causing the pattern.

If the number of sources is 2N + 1, then the corresponding pattern is called a
Dirichelet kernel of integral order N . Its mathematical form is

δN(u) =
1

2π

sin(N + 1
2
)u

sin u
2

, (3.4)

where u is the displacement along the screen where the pattern is observed. This
kernel is a fundamental concept. Among others, it is the mathematical root of
the Fourier Series theorem and the sampling theorem, applications which we shall
develop as soon as we have defined this kernel mathematically.

Remark 1. Q: What can one say about diffraction patterns caused by an even
number of slit sources?
A: The essential difference from an odd number lies in the observed amplitude.
Whereas for an odd-numbered source the peak amplitude has always the same sign
every period, for an even-numbered slit source the peak amplitude alternates between
positive and negative from one period to the next. See Figure 3.3. However, such
an amplitude is still given by Eq.(3.4), provided N assumes odd integer values,
1
2
, 3
2
, 5
2
, · · · . Such an amplitude pattern is called a Dirichelet kernel of odd half-

integral order.
Remark 2. Q: What happens to the diffraction pattern if each slit has a finite

width, say w?
A: In that case the diffraction pattern gets modulated (i.e. multiplied) by the sinc
function

sin(u/w)

u/w
.

This conclusion is validated by means of the Fourier Integral Representation Theo-
rem, which is developed in the next Section 3.3.1 on page 146.

The Dirichlet kernel of integral order arises in the context of Fourier series whose
orthonormal basis functions on [0, 2π] are

{uk(x)} =
{

1√
2π
,

1√
π
cosnx,

1√
π
sinnx

}

.
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Figure 3.3: Dirichelet kernels of odd half-integral order N = 1
2
, 3
2
, 5
2
. These kernels

differ from those in Figures 3.1-3.2 in that here the number of sources is even (2N+1).
Furthermore, the observed amplitude has peaks that alternate in sign every period.

Consider the N th partial sum SN of f , a function integrable on the interval [0, 2π]

SN =
a0
2

+
N∑

n=1

an cosnx+
N∑

n=1

bn sinnx

SN(x) =
1

π

∫ 2π

0

[

1

2
+

N∑

n=1

cosnx cosnt+
N∑

n=1

sinnx sinnt

]

f(t)dt

=

∫ 2π

0

1

π

[

1

2
+

N∑

n=1

cosn(x− t)
]

f(t)dt

≡
∫ 2π

0

δN(x− t)f(t)dt .

This is the (optimal) least squares approximation of f .
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Definition: (Dirichlet kernel = “periodic finite impulse function”) The function

δN(u) =
1

π

[

1

2
+

N∑

n=1

cosnu

]

=
1

2π

N∑

n=−N
einu with u = x− t (3.5)

is called the Dirichlet kernel and it is also given by

1

2π

e−iNu − ei(N+1)u

1− eiu =
1

2π

sin
(
N + 1

2

)
u

sin u
2

= δN(u) . (3.6)

Lecture 19

3.1.1 Basic Properties

Property 1. δN(x− t) projects periodic functions onto their least squares approxi-
mation in the subspace spanned by {uk(x)}.
Property 2. (The graph, Figure 3.4)
From Figure 3.4, Eq.(3.5), and Eq.(3.6) one sees that

• δN(u) is an even periodic function with period 2π:

δN(u+ 2πn) = δN(u).

• δN(u) has 2N equally spaced zeros which are determined by

(N +
1

2
)u = π, 2π, 3π, . . . , 2Nπ ,

and thus are given by

u = 1
π

N + 1
2

, 2
π

N + 1
2

, . . . , 2N
π

N + 1
2

.

Note that the next term in this sequence is

(2N + 1)
π

N + 1
2

= 2π ,

but δN(u) is not zero there. In fact, at all integral multiples of 2π, namely
u = 0, 2π, . . . , δN(u) has the value

δN(2πn) =
1

π

(

N +
1

2

)

,

which is the maximum value of the function.

• δN(u) has N maxima and N minima per period.
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Figure 3.4: Dirichlet kernels for N=5 and N=10. There are N maxima and N minima
per period. The number of zeroes is 2N and their spacing inside each periodic
subinterval is 1/(2N + 1).

3.1.2 Three Applications

Solution to Wave Equation via Dirichlet Kernel

In a subsequent chapter we shall study the inhomogeneous Helmholtz wave equation

(∇2 + k2)ψ = f(x, y, z) .

It is amusing that the solution to this equation exhibits a property which is readily
expressed in terms of a Dirichlet kernel and more generally in terms of a Fourier
series. This property is so useful, physically fundamental, and deducible with so
little effort that it is worthwhile to give a quick derivation. The property pertains
to the field amplitude ψ(x, y, z) when the inhomogeneity (“source”) of the wave
equation is concentrated at, say, 2N + 1 sources

(xn, yn, zn) n = 0,±1, . . . ,±N .

In that case, the governing Helmholtz equation is

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

]

ψ(x, y, z) = −
N∑

n=−N
An δ(x− xn)δ(y − yn)δ(z − zn) (3.7)
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One can readily show that the solution to this inhomogeneous wave equation is

ψ(x, y, z) =
1

4π

N∑

n=−N
An

eikRn

Rn

.

Each term in this solution is proportional to the strength of each corresponding
localized source of the wave equation. The quantity

Rn =
√

(x− xn)2 + (y − yn)2 + (z − zn)2

is the distance between (x, y, z), the point where the field is observed, and (xn, yn, zn),
the location of the nth source point.

We now consider the circumstance where this distance is large. More precisely,
we assume that if the sources are distributed along, say, the x-axis,

(xn, yn, zn) = (xn, 0, 0) n = 0,±1, · · · ,±N

and the amplitude is observed at, say,

(x, y, z) = (x, 0, z)

so that the distance is

Rn =
√

r2 − 2xxn + x2n where r2 = x2 + z2 ,

then “large distance” means that r is so large that

xn
r
≪ 1 n = 0,±1, · · · ,±N .

For such distances the solution has the form

ψ(x, y, z) =
1

4π

N∑

n=−N

An
Rn

exp{ikr − ikxxn
r

+ ikxn
xn
2r

+ (negl. terms)} (3.8)

The long distance assumption can be strengthened by demanding that both

xn
r
≪ 1 and kxn

xn
2r
≪ 1 (3.9)

be satisfied. This strengthened assumption is called the “Fraunhofer approximation”.
Under this approximation the third contribution to the phase in the exponential of
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the solution, Eq.(3.8), is so small that this contribution can also be neglected. As a
consequence the solution assumes the perspicuous form

ψ(x, 0, z) =
eikr

4πr

N∑

n=−N
An exp {−ikxn

x

r
} . (3.10)

Suppose the 2N + 1 sources are equally spaced and hence are located at

xn = △x n n = 0,±1, · · · ,±N .

In that case the solution is a (2N + 1)-term Fourier series whose coefficients are the
source strengths An in Eq.(3.7):

ψ(x, 0, z) =
eikr

4πr

N∑

n=−N
Ane

−inθ; θ ≡ x

r
(k△x) . (3.11)

We thus have proved the following fundamental

Theorem 3.1.1 (Fraunhofer-Kirchhoff) At sufficiently large distances expressed by
Eq.(3.9), the solution to the inhomogeneous Helmholtz wave equation, Eq.(3.7), has
the Fourier form Eq.(3.10) whose spectral coefficients are the strengths of the inho-
mogeneities in that wave equation. If these inhomogeneities are equally spaced, then
the solution is a Fourier series, Eq.(3.11).

When all the sources have equal strength, say A, then the solution is proportional
to the Dirichlet kernel,

ψ(x, 0, z) = A
eikr

2r
δN(θ); θ ≡ x

r
(k△x) , (3.12)

which varies with θ in a way given in Fig. 3.4.
For the sake of completeness it is necessary to point out that the Fraunhofer

approximation can always be satisfied by having the separation between the “obser-
vation” point and the finite source region be large enough. If it is not satisfied, i.e.,
if

xn
r
≪ 1 but kxn

xn
2r
≈ 1 or kxn

xn
2r

> 1 , (3.13)

then the third contribution to the phase of the solution, Eq.(3.8), cannot be neglected.
This less stringent assumption is called the “Fresnel approximation”.
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Exercise 3.1.1 (SHIFTED INTEGRATION LIMITS)
Suppose that f(x+ 2π) = f(x) is an integrable function of period 2π. Show that

2π+a∫

a

f(x)dx =

2π∫

0

f(x)dx

where a is any real number.

Dirichlet Kernel: Fountainhead of All Subspace Vectors

Consider the space of functions which lie in the subspace

W2N+1 = span

{
1√
2π
,

1√
π
cosnt,

1√
π
sinnt : n = 1, . . . , N

}

= span

{
1√
2π
eint : n = 0,±1, . . . ,±N

}

.

One can say that each of these functions owes its existence to the Dirichlet kernel

δN(t− x) =
1

2π

N∑

n=−N
ein(t−x). (3.14)

First, note that δN(t − x) is a vector in W2N+1 for every x. Second, note that this
vector generates a set of orthonormal basis vectors for W2N+1. They are generated
by repeated shifts of the function δN(t) along the t-axis. Indeed the resulting vectors
are

gk(t) =
2π

2N + 1
δN(t− xk)

where

xk =
π

N + 1
2

k , k = 0, 1, . . . , 2N

is the amount by which the function δN(t) has been shifted to the right. The incre-
ment between successive shifts is evidently

△t = π

N + 1
2

,
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the separation between the successive zeroes of δN(t) in the interval (0, 2π). This
means that, to obtain the function gk(t), the maximum of δN(t) has been shifted to
the location of its kth zero. As a consequence, note that

gk(t = xℓ) =
2π

2N + 1
δN(xℓ − xk) ℓ, k = 0, 1, . . . , 2N

=

{
0 ℓ 6= k
1 ℓ = k

.

or more briefly,

gk(xl) = δkℓ . (3.15)

This is called the sifting property of the function gk. What is the significance of this
important property? To find out compare it with the fact that the functions are
orthogonal relative to the given inner product; in particular

2N + 1

2π

∫ 2π

0

gk(t)gk′(t) dt = δkk′ .

That is, except for a normalization factor, the set of elaments {gk : k = 0, 1, · · · , 2N}
forms an orthonormal basis for the subspace W2N+1. Note that the property

gk(xℓ) = δkℓ

does not depend on the inner product structure of the subspaceW2N+1 at all. Instead,
recall that this property is a manifestation of a universal property which all vector
spaces have, regardless of what kind of inner product each one may or may not be
endowed with. This universal property is, of course, the Duality Principle: Every
vector space, in our case W2N+1, has a dual vector space, which is designated by
W ∗

2N+1 and which is the space of linear functionals on W2N+1. In particular, this
property expresses the duality between the given basis

{gk : k = 0, 1, . . . , 2N}

for W2N+1 and the dual basis

{ωℓ : ℓ = 0, 1, . . . , 2N}

for W ∗
2N+1, the space of linear functionals on W2N+1. A typical basis functional

(“dual basis element”)

ωℓ : W2N+1 → scalars
f ❀ ωℓ(f) ≡ f(t = xℓ)
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is the linear map (“evaluation” map) which assigns to the vector f the value of f(t)
(viewed as a function) at t = xℓ.

By applying this linear functional to each of the basis vectors gk in W2N+1 one
finds that

ωℓ(gk) ≡ gk(xℓ) = δkl .

This duality relationship between the two bases, we recall, verifies the duality be-
tween W2N+1 and W ∗

2N+1.
The usefulness of this “evaluation” duality is that one can use it to solve the

following reconstruction problem:
Given:

• a set of samples of the function f ∈ W2N+1

{ (x0, f(x0)), (x1, f(x1)), · · · , (xk, f(xk)), · · · , (x2N , f(x2N)) } ;

• a basis {gk} for W2N+1 consisting of functions with the sifting property

gk(xℓ) = δkℓ .

Find: a set of coefficients {αk} such that

2N∑

k=0

αkgk(t) = f(t)

whenever t = x0, x1, · · · , x2N .
This problem has an easy solution. Letting t = x0, x1, · · · , x2N , and using the

duality relation, one finds
αk = f(xk).

Consequently,

f(t) =
2N∑

k=0

f(xk)gk(t) . (3.16)

The amazing thing about this equation is that it not only holds for the sampled
values but also for any t in the interval [0, 2π].

How is it, that one is able to reconstruct f(t) with 100% precision on the whole
interval [0, 2π] by only knowing f(t) at the points {xk}?
Answer: we are given the fact that the function f(t) is a vector in W2N+1. We also
are given that the functions gk(t), k = 0, 1, · · · , 2N , form a basis forW2N+1, and that
these functions have the same domain as f(t). Equation (3.16) is a vector equation.
Consequently, its reinterpretation as a function equation is also 100% accurate.
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Exercise 3.1.2 (DIRICHELET BASIS)
Consider the (2N +1)-dimensional space W2N+1 ⊂ L2(0, 2π) which is spanned by the O.N.

basis { 1√
2π
eikt, k = 0,±, · · · ,±N}:

W2N+1 = span{ 1√
2π
eikt}k=Nk=−N

Next consider the set of shifted Dirichelet kernel functions,

gk(t) =
2π

2N + 1
δN (t− xk) ≡

1

2N + 1

N∑

n=−N
ein(t−kπ/(N+ 1

2
)) .

Show that
{gk(t) : k = 0,±1, · · · ,±N} ≡ B

is a basis (“Dirichelet” basis) for W2N+1. This, we recall, means that one must show that

(a) the set B is one which is linearly independent, and

(b) the set B spans W2N+1, i.e. if f is an element of W2N+1, then one must exhibit
constants bk such that

f(t) =
N∑

n=−N
bkgk(t) .

Whittaker-Shannon Sampling Theorem: The Finite Interval Version

To summarize: the reconstruction formula

f(t) =
2N∑

k=0

f(xk)
2π

2N + 1
δN(t− xk) (3.17)

highlights the key role of the Dirichlet kernel in representing an arbitrary element of
W2N+1 in terms of a finite set of sampled data. Start with the normalized Dirichlet
kernel 2π

2N+1
δN(t), a vector in W2N+1. By applying discrete shift operations generate

a basis. Finally form the linear combination whose coordinates are the sampled val-
ues of the function. The resulting formula, Eq.(3.17) is also known as (a special case
of) the Whittaker-Shannon sampling theorem and it constitutes the connecting link
between the analogue world and the world of digital computers.

Lecture 20
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Fourier Series of a Function

Consider a periodic function, f(x) = f(x+ 2π) and its Nth partial Fourier sum

SN(x) =
a0
2

+
N∑

n=1

an cosnx+
N∑

n=1

bn sinnx (3.18)

=

∫ π

−π
δN(t− x)f(t)dt . (3.19)

Here δN(t − x) is the familiar Dirichlet kernel and the integration limits have
been shifted downward without affecting the integral. This can always be done when
integrating a periodic function. In fact, the shift can be any real amount:

∫ 2π

0

(
periodic function

with period 2π

)

dt =

∫ 2π+a

a

(
periodic function

with period 2π

)

dt .

(Verify that this identity holds for any real a.)
Question: What is lim

N→∞
SN(x)?

Answer: SN(x)→ 1
2
[f(x+) + f(x−)] as N →∞.

One arrives at this answer by means of a four step argument.

1. Shift the integration limit by the amount a = x and obtain

SN(x) =

∫ x+π

x−π
δN(t− x)f(t) dt .

[ ]|
x x+ πx− π
t ✲

This places x at the center of the integration interval. Now break up the
integral into two parts

SN(x) =

∫ x

x−π
δN(t− x)f(t)dt

︸ ︷︷ ︸

JN(x)

+

∫ x+π

x

δN(t− x)f(t)dt
︸ ︷︷ ︸

IN(x)

(3.20)

and show that

JN(x)→
1

2
f(x−) and IN(x)→

1

2
f(x+) as N →∞ .
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Figure 3.5: The graph of δN(u) and the function f(x + u) around u = 0, where it
has the indicated jump discontinuity.

2. Look at each integral in turn. Let u = t− x and obtain

IN(x) =

∫ π

0

f(x+ u)δN(u)du .

Figure 3.5 depicts the graphs of the two factors making up the integrand. Using

δN(u) =
1

2π

sin(N + 1
2
)u

sin u
2

we obtain

lim
N→∞

IN(x) =
1

2
f(x+) .

The details are as follows:

IN(x) =
1

2π

∫ π

0

f(x+ u)− f(x+)
sin u

2
︸ ︷︷ ︸

G(u)

sin

[(

N +
1

2

)

u

]

du+f(x+)

∫ π

0

δN(u)du

︸ ︷︷ ︸

‖
1

2
(indep.’t of N)

.

Note that G(u) is piecewise continuous. Why? Because, assuming that f has
one-sided derivatives f ′L(x) and f

′
R(x) at x, we have

G(0+) ≡ lim
u→0+

f(x+ u)− f(x+)
sin u

2

= 2f ′R(x) .
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Thus we see that the integrand is piecewise continuous throughout [0, π], even
at u = 0, where the denominator sin u

2
vanishes. The total integral in question,

IN(x) =
1

2π

∫ π

0

G(u) sin

[(

N +
1

2

)

u

]

du+
1

2
f(x+) ,

is, therefore, well-defined.

As N → ∞ the integrand is a function G(u), piecewise continuous and finite
on [0, π], multiplied by a rapidly oscillating function.

Such an integral averages to zero as N →∞. The vanishing of such an integral
is also known as the Riemann-Lebesgue lemma. See the ensuing exercise on
page 130

Conclusion: lim
N→∞

IN(x) = 0 + 1
2
f(x+).

3. Similarly, with u = x− t and δN(−u) = δN(u) one has

JN(x) =
1

2π

∫ π

0

f(x− u)δN(u) du

and

lim
N→∞

JN(x) = 0 +
1

2
f(x−) .

4. Consequently, the limit of the partial sum, Eq.(3.20), is

lim
N→∞

SN(x) =
1

2
[f(x−) + f(x+)] . (3.21)

To summarize, one has the following2

Theorem 3.1.2 (The Fourier Series Representation Theorem) .

1. Let f(x) be a function which is piecewise continuous on [−π, π].
Its Fourier series is given by

1

2π

∫ π

−π
f(t) dt+

1

π

∞∑

n=1

∫ π

−π
f(t) cosn(t− x) dt = 1

2
[f(x−) + f(x+)]

2Fourier’s 1807 claim that the Fourier Representation Theorem holds also for discontinuous func-
tions was a breakthrough. Lagrange, a contemporary of Fourier, took exception to it and reportedly
denounced Fourier’s claim and formulation for its lack of rigour and generality. Nevertheless, he
voted to award Fourier with the 1811 mathematics prize for Fourier’s treatise on heat conduction
and cooling of solids. It was published in 1822 in spite of the fact that it was rife with controversies.
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at each point −π < x < π where the one sided derivatives f ′R(x) and f
′
L(x) both

exist.

2. If f is continuous the result is

1

2π

∞∑

n=−∞

∫ π

−π
ein(x−t)f(t) dt =

1

2
[f(x−) + f(x+)] = f(x) ∀ f ∈ C[−π, π] .

or equivalently

f(x) =
∞∑

n=−∞

einx√
2π

cn

with

cn =

∫ π

−π

e−int√
2π
f(t) dt

Exercise 3.1.3 (RIEMANN-LEBESGUE LEMMA)
The Riemann-Lebesgue lemma is a well-known fact among radio amateurs and electrical
engineers. There it is the time average of an amplitude modulated signal,

G(u) sin(N +
1

2
)u ,

whose carrier is sin(N + 1
2)u, a rapidly oscillating function whose modulation amplitude is

G(u). The higher the carrier frequency (N + 1
2), the more closely that average approaches

zero.

Given that G(u) is piecewise continuous on [0, π] and has left and right hand derivatives
at each point in [0, π], show that

lim
N→∞

∫ π

0
G(u) sin(N +

1

2
)u du = 0 .

Lecture 21
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3.1.3 Poisson’s summation formula

The periodicity of the Dirichlet kernel guarantees that Fourier’s theorem holds also
when x lies outside the interval [−π, π], even if the function f is not periodic. Let us
therefore apply the Fourier theorem to the new (continuous) function f(t+ 2πm):

1

2π

∞∑

n=−∞

∫ π

−π
ein(x−t)f(t+ 2πm) dt = f(x+ 2πm) .

Now

(i) shift the integration variable t by 2πm,

f(x+ 2πm) =
1

2π

∞∑

n=−∞

∫ π+2πm

−π+2πm

ein(x−t
′+2πm)f(t′) dt′ ,

(ii) make use of the periodicity of the exponential,

f(x+ 2πm) =
1

2π

∞∑

n=−∞

∫ π+2πm

−π+2πm

ein(x−t
′)f(t′) dt′ ,

(iii) sum over all the integral values of m = 0,±1,±2, · · · ,
∞∑

m=−∞
f(x+ 2πm) =

1

2π

∞∑

n=−∞

+∞∑

m=−∞

∫ π+2πm

−π+2πm

ein(x−t
′)f(t′) dt′ ,

(iv) and use the fact that
∑∞
−∞
∫ π+2πm

−π+2πm
· · · =

∫∞
−∞ · · · .

The result is ∞∑

m=−∞
f(x+ 2πm) =

1

2π

∞∑

n=−∞

∫ ∞

−∞
ein(x−t)f(t) dt, (3.22)

or

∞∑

m=−∞
f(x+ 2πm) =

1

2π

∞∑

n=−∞
F (n)einx “general Poisson sum formula” (3.23)

Here

F (n) =

∫ ∞

−∞
e−intf(t) dt (3.24)
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is the Fourier transform of the function f .
Setting x = 0, one obtains

∞∑

n=−∞
F (n) = 2π

∞∑

m=−∞
f(2πm), “Poisson sum formula” (3.25)

An alternative equally useful form (see Eq.(3.32) on page 134) of Poisson’s formula
is

∞∑

m=−∞
f(m) =

∞∑

n=−∞
F (2πn) . (3.26)

Example (Closed form via Poisson summation)

Employ the Poisson summation formula to find the value of the sum

∞∑

m=−∞
f(m) =

∞∑

m=−∞

1

m2 + a2

in terms of elementary functions.
The first step in finding this value is to determine the Fourier amplitude

F (k) ≡
∫ ∞

−∞
e−ikx

1

x2 + a2
dx

of the given function f . Using Cauchy’s integral formula one finds that

F (k) =
π

a
e−|k|a ,

where without loss of generality a > 0.
The second step consists of evaluating the right hand side of Eq.(3.26).

∞∑

n=0

F (−2πn) +
∞∑

n=1

F (2πn) =
π

a

[

2
∞∑

n=1

e−2πan − 1

]

=
π

a

[
2

1− e−2πa − 1

]

=
π

a

1 + e−2πa

1− e−2πa
=
π

a
coth πa . (3.27)
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One has therefore the following result.

∞∑

m=−∞

1

m2 + a2
=
π

a
coth πa .

Exercise 3.1.4 (CLOSED FORM VIA GENERALIZED POISSON SUMMATION)
Prove or disprove:

∞∑

m=−∞

1

(m+ b)2 + a2
=
π

a

coshπa

(sinh2 πa cos2 πb+ cosh2 πa sin2 πb)
(3.28)

∞∑

m=−∞

1

(m+ b)2
=

π2

sin2 πb
(3.29)

∞∑

m=−∞

1

(b+ 2πm)2
=

1

4 sin2 b
2

(3.30)

(Hint:
∫ ∞

−∞
e−ikx

1

(x+ b)2 + a2
dx =

π

a
e−|k|aeikb can be of help.)

The simplicity of the Poisson summation formula is enhanced if one does not
refer to the function f explicitly. Reexpressing the right hand side of Eq.(3.22) in
terms of equally spaced Dirac delta functions,

∞∑

m=−∞
f(x+ 2πm) =

∞∑

m=−∞

∫ ∞

−∞
δ(t− x− 2πm)f(t) dt,

and observing the fact that Eq.(3.22) holds for all continuous functions f whose infi-
nite sum of sampled values converges, we leave these individual functions unspecified
and simply write Eq.(3.22) in the form

1

2π

∞∑

n=−∞
einu ≡ lim

N→∞
δN(u) =

∞∑

m=−∞
δ(u− 2πm) (3.31)

= “comb2πu” ; u = t− x ,

or equivalently,
∞∑

n=−∞
ei

2π
a
nu = |a|

∞∑

m=−∞
δ(u−ma),
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whenever a is positive. (Question: what happens when a < 0?) This is obviously
an alternate form of the Poisson sum formula. It says that as the number of terms
becomes very large, the Dirichlet kernel approaches a periodic train of delta function
impulses. However, it needs to be emphasized that this relation is based on the tacit
understanding that one first multiply by some appropriate function f(t) and do the
t-integration before one compares the sums on the two sides of this relation.

What happens if one first rescales the domain of the function f(x) by a non-zero
real factor before shifting it by the amount 2πm? In that case one applies the Fourier
theorem to the function

f

(
x+ 2πm

a

)

and the Poisson sum formula, Eq.(3.25), becomes

∞∑

n=−∞
F (na) =

2π

a

∞∑

m=−∞
f

(
2πm

a

)

. (3.32)

Exercise 3.1.5 (POISSON FORMULA AND ORTHONORMALITY)
Stephane G. Mallat in his article “A Theory of Multiresolution Signal Decomposition: The
Wavelet Theory” (IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
11, p. 674-692, 1989) makes the following claim in Appendix B of his article:

Let φ̂(ω) be the Fourier transform of φ(x)

φ̂(ω) =
1√
2π

∫ ∞

−∞
φ(x)e−iωxdx.

With the Poisson formula one can show that the family of functions

{φ(x− k) : k = 0,±1,±2, · · · }

is orthonormal if and only if

∞∑

k=−∞
|φ̂(ω + 2πk)|2 = const.

Prove or disprove this claim. If the claim is true, what would be the value of “const.”

Exercise 3.1.6 (PHASE SHIFTED POISSON FORMULAS)
Using the Fourier transform notation

F (n) =

∫ ∞

−∞
e−intf(t) dt ,
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prove or disprove that

∞∑

m=−∞
f ([2m+ 1]π) =

1

2π

∞∑

n=−∞
(−1)nF (n)

∞∑

n=−∞
F (n+

1

2
) = 2π

∞∑

m=−∞
(−1)mf(2mπ)

1

2π

∞∑

n=−∞
(−1)neinu =

∞∑

m=−∞
δ (u− [2m+ 1]π) ,

and more generally that

∞∑

m=−∞
f

(
[2m+ 1]π

a

)

=
a

2π

∞∑

n=−∞
(−1)nF (na)

1

2π

∞∑

n=−∞
(−1)neinua =

∞∑

m=−∞

1

|a|δ
(

u− [2m+ 1]π

a

)

.

3.1.4 Gibbs’ Phenomenon

The Fourier series representation is a least squares fit of a linear combination of
orthonormal functions to a given function, even if it has a finite number of discon-
tinuities. However, something peculiar happens, if, using least squares partial sums,
one attempts to compute the value of the function near one of its discontinuities.
This peculiarity, now known as the Gibbs phenomenon, was highlighted in 1848 by
an obscure mathematician, Henry Wilbraham. Fifty years later, unfamiliar with that
work, the experimental physicist Albert A. Michelson, complained3 about the fact

3A.A. Michelson, letter to the editor, Nature 58, 1898, p544-545. The driving force behind this
letter came from observation. J.F. James explains: “Michelson and Stratton designed a mechanical
Fourier synthesizer, in which a pen position was controlled by 80 springs pulling together against
a master-spring, each controlled by 80 gear-wheels which turned at relative rates of 1/80, 2/80,
3/80, · · · 79/80 and 80/80 turns per turn of a crank handle. The synthesizer could have the springs
tensions set to represent 80 amplitudes of the Fourier coefficients and the pen position gave the sum
of the series. As the operator turned the crank-handle a strip of paper moved uniformly beneath
the pen and the pen drew the graph on it, reproducing to Michelson’s mystification and dismay,
not a square-wave as planned, but showing the Gibbs’ phenomenon. Michelson assumed, wrongly,
that mechanical short comings were the cause.

The machine itself [see the photograph in Figure 3.6, which can also be found in A Student’s

Guide to Fourier Transforms with Applications in Physics and Engineering by J.F. James (Cam-
bridge University Press, 2002)], a marvel of its period, was constructed by Gaertner & Co. of
Chicago in 1898. It now languishes in the archives of the South Kensington Science Museum”.
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Figure 3.6: The original (1898) “Harmonic Integrator” designed by Michelson and
Stratton. Its behaviour exhibited the Gibb’s phenomenon in Figure 3.7 .

that the value of the function represented by the bracketed sum in Eq.(3.37), when
evaluated at x = kπ

N
equals kπ. The source of his dismay was that the graph of the

partial sum is therefore

SN(x) =
1

2
+

2

π
Nx,

which easily overshoots the values of f(t) as given by Eq.(3.36) near t = 0.
Motivated by Michelson’s observations, the physicist Willard Gibbs rediscovered

Wilbraham’s peculiarity and drew attention to the distinction between the limit of
the graphs of the partial sums of the Fourier series (see Eq.(3.37) and Figure 3.7
below) as compared to the graph of the function that is the limit of the partial sum
of the Fourier series (see Eq.(3.36) below).

Figure 3.7 shows the graph of an attempt to approximate the unit step function
by means of a partial sum with 2N+1 = 41 terms. It is evident that that the partial
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Figure 3.7: Graph of the N th partial Fourier sum SN(x) for the unit step function.

sum, SN(x), in its attempt to approximate the function’s discontinuity, overshoots
its values by well defined amounts on both sides of the discontinuity4. This over-
shoot does not go away as N increases. However, its width decreases and makes no
difference in the infinite limit of the least squares approximation.

Let us make these statements quantitative by calculating the magnitude of this
overshoot.

We start with the shifted representation of the partial sum Eq.(3.19),

SN(x) =

∫ π

−π
f(t)δN(t− x)dt .

The overshoot, we suspect, happens where the function is discontinuous. Without
loss of generality we assume that this happens at t = 0. Thus one must investi-
gate how SN(x) behaves in the neighborhoods of this point: −π < x < π. By an
appropriate change of integration variables one obtains

SN(x) =

∫ 0

−π−x
f(u+ x)δN(u)du+

∫ π−x

0

f(u+ x)δN(u)du

=

∫ π+x

0

f(x− u)δN(u)du+
∫ π−x

0

f(u+ x)δN(u)du ,

where one uses δN(−u) = δN(u) to obtain the second equality. The fact that f(t) is
discontinuous at t = 0 implies that its explicit form is

f(t) =

{
fL(t) −π < t < 0
fR(t) 0 < t < π

4Such an overshoot resembles the diffracted amplitude profile in the shadow region of a sharp-
edged screen illuminated by monochromatic radiation.
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This induces a corresponding decomposition of the integral representation for SN :

SN(x) =

∫ x

0

fR(x− u)δN(u)du
︸ ︷︷ ︸

©1

+

∫ π+x

x

fL(x− u)δN(u)du
︸ ︷︷ ︸

©2

+

∫ π−x

0

fR(x+ u)δN(u)du

︸ ︷︷ ︸

©3

Instead of keeping x fixed as N →∞, one now inquires about the value of SN(x) as
N →∞, but lets x→ 0 simultaneously by setting

x =
π

2N + 1

while going to the limit.

The second integral is is

©2 =
∫ π+x

x

fL(x− u)δN(u)du

=

∫ π+x

x

fL(x− u)− fL(x−)
2π sin u

2
︸ ︷︷ ︸

GL(u)

sin

(

(N +
1

2
)u

)

du

+ fL(x
−)

∫ π+x

x

δN(u)du .

The function GL(u) vanishes at u = 0 where GL(0) = f ′L(x
−), because f is assumed

to have a left-sided derivative there. Consequently, upon setting x = π
2n+1

, using the

fact that
∫ π

0
δ(u)du = 1

2
, one finds with the help of the Riemann-Legesgue lemma

that

lim
N→∞

©2 = 0 +
fL(0

−)

2
. (3.33)

The same typen of reasoning yields

lim
N→∞

©3 = 0 +
fR(0

+)

2
. (3.34)
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The limit of the first integral ©1 is evaluated by introducing the integration variable

v =

(

N +
1

2

)

u

Consequently,

©1 =
∫ x(N+ 1

2)

0

fR

(

x− v

N + 1/2

)
sin v

2π sin v
2(N+1/2)

dv

N + 1/2
.

Setting

x =
π

2(N + 1/2)

one finds

lim
N→∞

©1 =
∫ π

2

0

fR(0
+)

v

πv
dv

=
fR(0

+)

2
× 1.179 (3.35)

Combining Eqs.(3.33), (3.34), and (3.35), one obtains

lim
N→∞

SN

(
π

2N + 1

)

= lim
N→∞

{©2 +©3 +©1}

=
fL(0

−) + fR(0
+)

2
+
fR(0

+)

2
× 1.179

Thus, added onto the function value halfway along the discontinuity, the Fourier
series representation adds an additional amount which is 118% of the remaining part
of that discontinuity. Figure 3.7 illustrates the overshoot for the unit step function

f(t) =

{
fL(t) = 0 −π < t < 0
fR(t) = 1 0 < t < π

(3.36)

The graph of its N = 41 partial Fourier series (a pure sine series),

SN(x) =
1

2
+

2

π

(

sin x+
sin 3x

3
+

sin 5x

5
+ · · · sinNx

N

)

(3.37)

is exhibited in this figure. There one can see the calculate value of Gibbs’ 18 %
overshoot numerically.
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3.2 The Dirac Delta Function

Having already used the concept of a Dirac’s “delta function” several times, we shall
now introduce it in a way which lets us see how this concept fits into the familiar
realm of functions and integrals.
Definition: Let δα(x) be a set of α-parameterized functions with the following
properties: for any “well-behaved” (in a sense which depends upon the context)
function

1. lim
α→0

∫∞
−∞ f(x)δα(x) dx = f(0)

2. (a) lim
α→0

∫ −ε
−∞ f(x)δα(x) dx = 0

(b) lim
α→0

∫∞
ε
f(x)δα(x) dx = 0

for all ε > 0.

Then Dirac’s “delta function” is a linear functional from the vector space of contin-
uous functions into the reals,

δ(x) : C0 −→ R ,

defined by

δ(x) : f ❀

∫ ∞

−∞
f(x)δ(x) dx ≡ lim

α→0

∫ ∞

−∞
f(x)δα(x) dx (= f(0)) (3.38)

or
“δ(x) = lim

α→0
δα(x)” .

Remark 1. We have put the last equation in quotes because, strictly speaking, δ(x)
is only defined when integrated against a “well-behaved” function. In other words, the
frequently quoted definition “this function equals zero everywhere, except at x = 0
where it is infinite so that its integral is one” is in conflict with the classical definition
of a function and integral. Indeed, δ(x) = 0 ∀ x 6= 0 and lim

ε→0

∫ ε

−ε δ(x) dx 6= 0 violates

the classical definition of a function.
Remark 2. Equations (2) in the definition do not imply that

lim
α→0

δα(x
′ − x) = 0 for x′ 6= x .

Example 4 (below) is an instance.
It is easy to come up with examples of parametrized functions that give rise to

δ(x).
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1. The Impulse Function

δα(x) ≡







1

α
|x| ≤ α

2

0 |x| > α

2

2. The Gaussian function

δα(x) ≡
1

α
√
π
e−x

2/α2

3. The “Lorentz line” function

δα(x) =
1

π

α

x2 + α2

4. The sinc function

δα(x) =
sin π

α
x

πx
≡ 1

α
sinc

π

α
x (3.39)

All of them satisfy

(a)
∫∞
−∞ δα(x) dx = 1 ∀α > 0.

(b) lim
α→0

∫∞
−∞ f(x)δα(x) dx = f(0).

(c) Examples 1-3 are characterized by lim
α→0

δα(x) = 0 whenever x 6= 0.

However, for example 4 one has lim
α→0

δα(x) 6= 0 whenever x 6= 0.

From these examples one infers that a Dirac delta function can be condensed into
the following more compact
Definition (DIRAC DELTA)
A Dirac delta function is the limit of a Dirac sequence of α-parametrized functions
which

(i) have unit measure on their supports and

(ii) have the sampling property as α approaches zero.
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Exercise 3.2.1 (DIRAC DELTA AS A LIMITING WAVE PACKET)
Show that

lim
w→∞

sin 2πwx

πx
, w > 0

is a representation of the Dirac δ-function.
Discussion:

Let

δw(x) =
sin 2πwx

πx

and let f(x) be a function which is piecewise continuous on [−a, a], in particular,

lim
x→0+

f(x) = f(0+)

lim
x→0−

f(x) = f(0−)

To show that
lim
w→∞

δw(x) = δ(x) (Dirac delta function)

one must show that

lim
w→∞

∫ a

−a
δw(x)f(x) dx =

1

2
f(0+) +

1

2
f(0−)

One way of doing this is to follow the approach used to obtain an analogous result
in the process of establishing the validity of the Fourier series theorem, and then use
the result that ∫ ∞

0

sin y

y
dy =

π

2

Exercise 3.2.2 (DERIVATIVE OF THE DIRAC DELTA)
Consider the integral

I =

∫ ∞

−∞
δ(x+ a)f(x) dx .

Assuming that f(x) is nearly linear so that

f(−a) = f(0)− af ′(0) + (neglegible terms), (3.40)

show that I can be evaluated by means of the formal equation

δ(x+ a) = δ(x) + a δ′(x) , (3.41)

where δ(x) and δ(x+ a) are defined by Eq.(3.38) and δ′(x) is defined by

δ′(x) :
∫ ∞

−∞
δ′(x)f(x) dx ≡ lim

α→0

∫ ∞

−∞
δ′α(x)f(x) dx . (3.42)
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Comment: For obvious reasons it is invalid to claim

δα(x+ a) = δα(x) + a δ′α(x)

without referring to test functions that can be approximated by Eq.(3.40).

3.3 The Fourier Integral

Question: What aspect of nature is responsible for the pervasive importance of
Fourier analysis?

Answer: Translation invariance. Suppose a linear system is invariant under time or
space translations. Then that system’s behaviour becomes particularly perspicuous,
physically and mathematically, when it is described in terms of translation eigenfunc-
tions, i.e., in terms of exponentials which oscillate under time or space translations.
(Nota bene: real exponentials are also translation eigenfunctions, but they won’t do
because they blow up at −∞ or +∞.) In other words, it is the translation invariance
in nature which makes Fourier analysis possible and profitable.

3.3.1 Transition from Fourier Series to Fourier Integral

We now extend the domain of definition of a linear system from a finite interval,
say (−c, c), to an interval of unlimited size, (−∞,∞). We shall first do this by
means of a line of arguments which is heuristic (“serving to discover or stimulate
investigation”). Even though it pretty much ignores issues of convergence, it has
the advantage of being physically precise. It highlights the relation between the
discrete Fourier spectrum of a finite system with finitely separated walls and its
limiting form as the system becomes arbitrarily large where the walls have arbitrarily
large separation. The process of arriving at this limit will be revisited in the more
general context of the spectral representation of the unit impulse response (“Green’s
function” in Section 4.12.3 on page 297) for an infinite string as the limit of a finite
one (Section 4.13 on page 304).

By contrast, the advantage of formulating Fourier analysis in mathematically
more precise terms lies in that it highlights the nature of the functions that lend
themselves to being analyzed in their Fourier representation.
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We start with the complete set of basis functions orthonormal on the interval
[−c, c],

{

einπx/c√
2c

: n = 0,±1, . . .
}

.

The Fourier series for f ∈ L2(−c, c) is

1

2
[f(x+) + f(x−)] = lim

N→∞

N∑

n=−N

[
∫ c

−c
f(t)

e−inπt/c√
2c

dt

]

︸ ︷︷ ︸
cn

einπx/c√
2c

.

If f is continuous at x, then

1

2
[f(x+) + f(x−)] = f(x) .

Second, we let

∆k =
π

c
and, after rearranging some factors, obtain

f(x) =
∞∑

n=−∞
∆k

ein△kx√
2π

∫ c

−c

e−in△kt√
2π

f(t)dt . (3.43)

Third, by introducing the points

kn = n△k, n = 0,±1,±2, · · · ,

we partition the real k-axis into equally spaced subintervals of size △k = π/c. We
introduce these points into the Fourier sum, Eq.(3.43),

f(x) = lim
N→∞

N∑

n=−N
∆k

eiknx√
2π

∫ c

−c

e−iknt√
2π

f(t)dt (3.44)

≡
∞∑

n=−∞
∆kgc(kn, x) (3.45)

Note that this Fourier sum is, in fact, a Riemann sum, a precursor (i.e. approxima-
tion) to the definite integral

f(x) ≈ lim
R→∞

∫ R

−R
dk
eikx√
2π

∫ c

−c

e−ikt√
2π

f(t)dt (3.46)
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over the limit of the interval [−R,R] as

R ≡ kN ≡ N△k →∞ .

The fourth and final step is to let c→∞ in order to obtain the result

f(x) =

∫ ∞

−∞
dk

eikx√
2π

∫ ∞

−∞

e−ikt√
2π
f(t) dt . (3.47)

This result is Fourier’s Integral Representation Theorem.

3.3.2 The Fourier Integral Representation Theorem

Fourier theory applied to funtions with a finite domain yields the Fourier Series Rep-
resentation theorem, applied to functions with a domain of unlimited size leads to
the Fourier Integral Representation theorem. Table 3.1 below summsrizes the big
picture relation between the two.

Fourier Series Theorem Fourier Integral Theorem

Method:







e
in
π

c
x

√
2c







N

n=−N

{

eikx√
2π

: −K ≤ k ≤ K

}

N∑

n=−N

e
in
π

c
(x− t)

2c
=

1

2c

sin(N + 1
2
)π
c
(x− t)

sin π
2c
(x− t)

K∫

−K

eik(x− t)
2π

dk =
1

π

sinK(x− t)
(x− t)

Result: f(x) =
∞∑

k=−∞
ck
e
ik
π

c
x

√
2c

f(x) =
∞∫

−∞
f̂(k)

eikx√
2π

dk

where ck =
c∫

−c

e
ik
π

c
t

√
2c

f(t) dt where f̂(k) =
∞∫

−∞

e−ikt√
2π

f(t) dt

Application:
c∫

−c
|f(x)|2dx =

∞∑

k=−∞
|ck|2

∞∫

−∞
|f(x)|2dx =

∞∫

−∞
|f̂(k)|2dk

Table 3.1: Fourier series and Fourier integral representations compared and con-
trasted in regard theory and application.
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The mathematically more precise statement of this theorem is as follows:

Theorem 3.3.1 (Fourier’s Integral Representation Theorem) Given:

(i) f is function piecewise continuous on every bounded closed interval of the x-
axis.

(ii) At each point x the function f has both a left derivative f ′L(x) and a right
derivative f ′R(x),

(iii) f ∈ L1(−∞,∞), i.e. f is absolutely integrable along the x-axis:
∫ ∞

−∞
|f(x)|dx <∞

Conclusion:

lim
K→∞

∫ K

−K
dk

eikx√
2π

︸ ︷︷ ︸
∫ ∞

−∞
dk

eikx√
2π

∫ ∞

−∞

e−ikt√
2π
f(t)dt

︸ ︷︷ ︸

f̂(k)

=
1

2

[
f(x−) + f(x+)

]
(3.48)

Comments:

1. This result can be restated as a Fourier transform pair,

f̂(k) =

∫ ∞

−∞

e−ikt√
2π
f(t)dt (3.49)

f(x) =

∫ ∞

−∞

eikx√
2π
f̂(k)dk (3.50)

whenever f is continuous.

2. The exponentials in Eqs.(3.49) and (3.50) give rise to a generalized complete-
ness relation. By interchanging integration order in Eq.(3.48) and letting
K = 1/α, one has

f(x) = lim
α→0

∫ ∞

−∞







∫ 1/α

−1/α
dk
eik(x−t)

2π
︸ ︷︷ ︸

δα(x− t)







f(t) dt . (3.51)
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This equation holds for all continuous functions f ∈ L1(−∞,∞). Thus δα(x−t)
is another delta convergent sequence:

δ(x− t) = lim
α→0

δα(x− t) =
∫ ∞

−∞

eik(x−t)

2π
dk . (3.52)

It is of course understood that one first do the integration over t before taking
to the indicated limit.
Either one of the two equations, Eq.(3.51) or (3.52), is a generalized complete-
ness relation for the set of “wave train” functions,

{
eikx√
2π

: −∞ < k <∞
}

.

However, these functions are not normalizable, i.e., they 6∈ L2(−∞,∞). In-
stead, as Eq.(3.52) implies, they are said to be “δ-function normalized”.

Proof of the Fourier integral theorem:
The proof of the Fourier integral theorem presupposes that the Fourier amplitude

f̂(k) is well-defined for each k. That this is indeed the case follows from the finiteness
of |f̂(k)|:

|f̂(k)| ≤
∫ ∞

−∞
|e
−ikt
√
2π
f(t)|dt 1√

2π

∫ ∞

−∞
|f(t)|dt <∞ .

The last inequality is an expression of the fact that f ∈ L1(−∞,∞). Thus f̂(k) is
well-defined indeed.

The proof of the Fourier integral theorem runs parallel to the Fourier series the-
orem on page 129. We shall show that

lim
K→∞

SK(x) =
1

2

[
f(x−) + f(x+)

]
,

where

SK(x) =

∫ ∞

−∞
dt f(t)

∫ K

−K

eik(x−t)

2π
dk

=

∫ ∞

−∞
dt f(t)

eik(x−t)

2πi(x− t)

∣
∣
∣
∣

K

−K

=

∫ ∞

−∞
dt f(t)

sinK(x− t)
π(x− t)

=

∫ x

−∞
f(t)

sinK(x− t)
π(x− t) dt

︸ ︷︷ ︸

JK(x)

+

∫ ∞

x

f(t)
sinK(x− t)
π(x− t) dt

︸ ︷︷ ︸

IK(x)
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The evaluation of the integrals is done by shifting the integration variable. For the
second integral one obtains

IK(x) =

∫ ∞

0

f(x+ u)
sinKu

πu
du

=

∫ ∞

0

f(x+ u)− f(x+)
πu

sinKudu+
f(x+)

π

∫ ∞

0

sinKu

u
du .

Using the fact that
∫ ∞

0

sinKu

u
du =

π

2
,

and the fact that
f(x+ u)− f(x+)

πu
≡ G(u)

is piecewise continuous everywhere, including at u = 0, where

G(0) ≡ lim
u→0+

f(x+ u)− f(x+)
πu

= f ′R(x)

is the right hand derivative of f at x, one finds that

lim
K→∞

IK(x) = lim
K→∞

{∫ ∞

0

G(u) sinKudu+
f(x+)

π

π

2

}

= 0 +
1

2
f(x+)

with the help the Riemann-Lebesgue lemma.

A similar analysis yields

lim
K→∞

JK(x) =
1

2
f(x−)

The sum of the last two equations yields

lim
K→∞

S(K) = lim
K→∞

[JK(x) + IK(x)] =
1

2

[
f(x−) + f(x+)

]
,

This validates Fourier’s integral theorem.
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3.3.3 The Fourier Transform as a Unitary Transformation

The Fourier integral theorem establishes a quantitative relation between all L1(−∞,∞)
functions and their spectral properties. Question: Can this also be done for signals
of finite energy, i.e. L2(−∞,∞) functions:

∫ ∞

−∞
|f(t)|2dt <∞ ?

Given that the physical world is perfect, i.e. fully real and hence worthy of the most
painstaking study, the Swiss mathematician Michel Plancherel rose to the challenge
by mathematizing the causal relation between the temporal and the spectral prop-
erties of these finite energy signals. The result was his famous theorem, which is the
L2 version of Fourier’s L1 integral theorem:

Theorem 3.3.2 (Plancherel’s Theorem) Given:
A function f(x) which is square integrable over (−∞,∞): f ∈ L2(−∞,∞).
Conclusion:
There exists a function f̂(k) belonging to L2(∞,∞) such that

1.

lim
σ→∞

∫ ∞

−∞

∣
∣
∣
∣
f̂(k)−

∫ σ

−σ

e−ikx√
2π
f(x) dx

∣
∣
∣
∣

2

dk = 0

2. ∫ ∞

−∞

∣
∣
∣f̂(k)

∣
∣
∣

2

dk =

∫ ∞

−∞
|f(x)|2 dx

3.

lim
σ→∞

∫ ∞

−∞

∣
∣
∣
∣
f(x)−

∫ σ

−σ
f̂(k)

eikx√
2π

dk

∣
∣
∣
∣

2

dx = 0

The function f̂(k) is called the Fourier transform of f(x). It is determined
except over a set of measure zero.

Furthermore, in case

h(k) =

∫ ∞

−∞

e−ikx√
2π
f(x) dx

exists, one has
f̂(k) = h(k)

almost everywhere.
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An important corollary of this theorem is

Theorem 3.3.3 (Parseval’s Theorem) Given:

1. Let f1(x) and f2(x) be square integrable: f1, f2 ∈ L2(−∞,∞).

2. Let f̂1(k) and f̂2(k) be their respective Fourier transforms.

Conclusion:

1.
∫ ∞

−∞
f̂1(k)f̂2(k) dk =

∫ ∞

−∞
f1(x)f2(−x) dx, (3.53)

or equivalently

∫ ∞

−∞
f̂1(k)f̂2(k) dk =

∫ ∞

−∞
f1(x)f2(x) dx (3.54)

2. In particular,

∫ ∞

−∞
f̂1(k)f̂2(k)e

ikxdk =

∫ ∞

−∞
f1(y)f2(x− y) dx.

Thus, if f̂1(k)f̂2(k) belongs to L2(−∞,∞) as well as both of its factors, it is
the Fourier transform of

1√
2π

∫ ∞

−∞
f1(y)f2(x− y) dx. (3.55)

This will also be true whenever f1, f2 and (3.55) all belong to L2(−∞,∞).

Fourier’s integral theorem expresses a linear transformation, say F , when applied to
the space of square integrable functions. From this perspective one has

L2(−∞,∞)
F−→ L2(−∞,∞)

f(t) ∼❀ F [f ](k) =
∫ ∞

−∞

e−ikt√
2π
f(t)dt ≡ f̂(k) . (3.56)
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Furthermore, this transformation is one-to-one because Fourier’s theorem says that
its inverse is given by

L2(−∞,∞)
F−1

−→ L2(−∞,∞)

f̂(k) ∼❀ F−1[f̂ ](x) =
∫ ∞

−∞

eikx√
2π
f̂(k)dk ≡ f(x) . (3.57)

That F maps square integrable functions into square integrable functions is ver-
ified by the following computation, which gives rise to Parseval’s identity: For
f ∈ L2(−∞,∞) we have

∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
f(x)f(x)dx

=

∫ ∞

−∞
f(x)

[∫ ∞

−∞
f̂(k′)

eik
′x

√
2π
dk′
]

dx

=

∫ ∞

−∞
f̂(k′)

[∫ ∞

−∞

e−ik′x√
2π

f(x)dx

]

dk′

=

∫ ∞

−∞
f̂(k′)f̂(k′)dk′

=

∫ ∞

−∞
|f̂(k)|2dk .

Thus we obtain Parseval’s identity (= “completeness relation”, see Eq.(2.20) on
page 92). The only proviso is (a) that the function f be square-inegrable and (b)
that its Fourier transform f̂ be given by the Fourier transform integral.
Remark 1: The fact that the Fourier transform is a one-to-one linear transformation
from the linear space L2(−∞,∞) to the linear space L2(−∞,∞) is summarized by
saying that the Fourier transform is an “isomorphism”.
Remark 2: The line of reasoning leading to Parseval’s identity also leads to

〈f, g〉 ≡
∫ ∞

−∞
f(x)g(x)dx =

∫ ∞

−∞
f̂(k)ĝ(k)dk ≡ 〈f̂ , ĝ〉

whenever f, g ∈ L2(−∞,∞).
Remark 3: The above two remarks imply that the Fourier transform is a unitary
transformation in L2(−∞,∞). Unitary transformations are “isometries” because
they preserve lengths and inner products. One says, therefore, that the space of
functions defined on the spatial domain is “isometric” to the space of functions
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Fourier
domain

Spatial
domain

Fourier
transform

Figure 3.8: The Fourier transform is an isometry between L2(−∞,∞), the Hilbert
space of square integrable functions on the spatial domain, and L2(−∞,∞), the
Hilbert space of square integrable functions on the Fourier domain.

defined on the Fourier domain. Thus the Fourier transform operator is a linear
isometric mapping. This fact is depicted by Figure 3.8

Note, however, that even though the Fourier transform and its inverse,

f(x) =

∫ ∞

−∞
f(x′)δ(x′ − x)dx′ =

∫ ∞

−∞
f̂(k)

eikx√
2π
dk , (3.58)

take square integrable functions into square integrable functions, the “basis elements”
eikx are not square integrable. Instead, they are “Dirac delta function” normalized,
i.e.,

∫ ∞

−∞

eikx√
2π

e−ikx√
2π
dk = δ(x− x) .

Thus they do not belong to L2(−∞,∞). Nevertheless linear combinations such as
Eq.(3.58) are square integrable, and that is what counts.

Exercise 3.3.1 (THE FOURIER TRANSFORM: ITS EIGENVALUES)
The Fourier transform, call it F , is a linear one-to-one operator from the space of square-
integrable functions onto itself. Indeed,



3.3. THE FOURIER INTEGRAL 153

F : L2(−∞,∞) → L2(−∞,∞)

f(x) ∼→ F [f ](k) ≡ 1√
2π

∫ ∞

−∞
e−ikxf(x) dx ≡ f̂(k)

Note that here x and k are viewed as points on the common domain (−∞,∞) of f and f̂ .

(a) Consider the linear operator F2 and its eigenvalue equation

F2f = λf.

What are the eigenvalues and the eigenfunctions of F2?

(b) Identify the operator F4? What are its eigenvalues?

(c) What are the eigenvalues of F?

Exercise 3.3.2 (THE FOURIER TRANSFORM: ITS EIGENVECTORS)
Recall that the Fourier transform F is a linear one-to-one transformation from L2(−∞,∞)
onto itself.
Let φ be an element of L2(−∞,∞).
Let φ̂ = Fφ, the Fourier transform of φ, be defined by

φ̂(p) =

∫ ∞

−∞

e−ipx√
2π

φ(x)dx p ∈ (−∞,∞).

It is clear that

φ, Fφ, F2φ ≡ F(Fφ), F3φ ≡ F(F2φ), F4φ ≡ F(F3φ), · · ·

are square-integable functions, i.e. elements of L2(−∞,∞).
Consider the SUBSPACE W ⊂ L2(−∞,∞) spanned by these vectors, namely

W = span{φ,Fφ,F2φ,F3φ,F4φ, · · · } ⊂ L2(−∞,∞).

(a) Show that W is finite dimensional.
What is dimW?
(Hint: Compute F2φ(x),F3φ(x), etc. in terms of φ(x), φ̂(x))

(b) Exhibit a basis for W .

(c) It is evident that F is a (unitary) transformation on W .
Find the representation matrix of F , [F ]B, relative to the basis B found in part b).
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(d) Find the secular determinant, the eigenvalues and the corresponding eigenvectors of
[F ]B.

(e) For W , exhibit an alternative basis which consists entirely of eigenvectors of F , each
one labelled by its respective eigenvalue.

(f) What can you say about the eigenvalues of F viewed as a transformation on L2(−∞,∞)
as compared to [F ]B which acts on a finite-dimensional vector space?

Exercise 3.3.3 (EQUIVALENT WIDTHS)
Suppose we define for a square-integrable function f(t) and its Fourier transform

f̂(ω) =

∫ ∞

−∞

e−iωt√
2π

f(t) dt

the equivalent width as

∆t =

∣
∣
∣
∣
∣

∫∞
−∞ f(t) dt

f(0)

∣
∣
∣
∣
∣
,

and the equivalent Fourier width as

∆ω =

∣
∣
∣
∣
∣

∫∞
−∞ f̂(ω) dω

f̂(0)

∣
∣
∣
∣
∣
.

(a) Show that
∆t∆ω = const.

is independent of the function f , and determine the value of this const.

(b) Determine the equivalent width and the equivalent Fourier width for the unnormal-
ized Gaussian

f(t) = e−x
2/2b2

and compare them with its full width as defined by its inflection points.

Exercise 3.3.4 (AUTO CORRELATION SPECTRUM)
Consider the auto-correlation h 5

h(y) =

∫ ∞

−∞
f(x)f(x− y)dx (3.59)

of the function f whose Fourier transform is

f̂(k) =

∫ ∞

−∞

e−ikx√
2π

f(x)dx.

5Not to be confused with the convolution integral Eq.(3.68) on page 160
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Compute the Fourier transform of the auto correlation function and thereby show that it
equals the “spectral intensity” (a.k.a. power spectrum) of f whenever f is a real-valued
function. This equality is known as the Wiener-Khintchine formula.

Exercise 3.3.5 (MATCHED FILTER)
Consider a linear time-invariant system. Assume its response to a specific driving force,
say f0(t), can be written as

∫ ∞

−∞
g(T − t)f0(t)dt ≡ h(T ).

Here g(T − t), the “unit impulse response’ (a.k.a. “Green’s function”, as developed in
CHAPTER 4 and used in Section 4.4.1), is a function which characterizes the system
completely. The system is said to be matched to the particular forcing function f0 if

g(T ) = f0(−T ).
(Here the bar means complex conjugate.) In that case the system response to a generic
forcing function f(t) is

∫ ∞

−∞
f0(t− T )f(t)dt ≡ h(T ).

A system characterized by such a unit impulse response is called a matched filter because
its design is matched to the particular signal f0(t). The response h(T ) is called the cross

correlation between f and f0.

(a) Compute the total energy
∫ ∞

−∞
|h(T )|2dT

of the cross correlation h(T ) in terms of the Fourier amplitudes

f̂0(ω) =

∫ ∞

−∞

e−iωt√
2π

f0(t)dt

and

f̂(ω) =

∫ ∞

−∞

e−iωt√
2π

f(t)dt.

(b) Consider the family of forcing functions

{f0(t), f1(t), · · · , fN (t)}
and the corresponding family of normalized cross correlations (i.e. the corresponding
responses of the system)

hk(T ) =

∫∞
−∞ f0(t− T )fk(t)dt
[∫∞
−∞ |fk(t)|2dt

]1/2
k = 0, 1, · · · , N
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Show that

(i) h0(T ) is the peak intensity, i.e., that

|hk(T )|2 ≤ |h0(T )|2 k = 0, 1, · · ·
(Nota bene: The function h0(T ) corresponding to f0(t) is called the auto cor-
relation function of f0(t)). Also show that

(ii) equality holds if the forcing function fk(t) has the form

fk(t) = κf0(T ) κ = constant

Lecture 22

3.3.4 Fourier Transform via Parseval’s Relation

The Fourier transform is so robust that it can also be applied to functions which
are not square-integrable. In fact, it can even be applied to generalized functions
(“distributions”), i.e. to entities which are defined by the fact that they are linear
functionals on the linear space of the familiar locally integrable functions. If f(x) is
such a function, then a generalized function, say g(x), is defined by the fact that

∫ ∞

−∞
f(x)g(x)dx ≡ 〈f, g〉 <∞

is finite. The Dirac delta function is an example of a generalized function because
∫ ∞

−∞
f(x)δ(x− x′)dx ≡ f(x′) <∞ .

Recall that whenever one has square-integrable functions f and g (whose Fourier
transforms are f̂ and ĝ) then the reasoning which lead to Parseval’s identity leads to

〈f, g〉 = 〈f̂ , ĝ〉

One now turns this relation around and uses it to define the Fourier transform ĝ of a
given generalized function g. In other words, start with the set of locally integrable
functions f̂(k) and their inverse Fourier transforms

f(x) =

∫ ∞

−∞

eikx√
2π
f̂(k)dk .
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Next define the Fourier transform of g as follows: Let it be that generalized function
ĝ which is determined by the compatibility (between functions and their transforms)
requirement that

〈f̂ , ĝ〉 = 〈f, g〉 (3.60)

hold for all locally integrable functions f̂ . This equality is now our fundamental
requirement. It determines ĝ uniquely. Indeed, for every f̂ one readily determines f
and hence 〈f, g〉. This implies that Eq.(3.60) is the equation which defines the linear
functional ĝ, the sought-after Fourier transform of g. This linear functional is unique
and is denoted by

ĝ(k) =

∫ ∞

−∞

e−ikx√
2π
g(x)dx ,

even though g(x) may not be integrable in the standard sense.
Example 1(Fourier transform of a “ticking clock” signal)

Consider the generalized function

g(x) =
∞∑

n=−∞
δ(x− n) ,

the train of evenly spaced delta function impulses. What is its Fourier transform?
We know that for any continuous function f̂ ∈ L2(−∞,∞) one can determine its

inverse Fourier transform f and hence

〈f, g〉 ≡
∫ ∞

−∞
f(x)

∞∑

n=−∞
δ(x− n) dx =

∞∑

n=−∞
f(n) <∞ . (3.61)

The Fourier transform of g is determined by the requirement that for all appropriate
f̂

∫ ∞

−∞
f̂(k)ĝ(k)dk

1
= 〈f, g〉

2
=

∞∑

n=−∞
f(n)

3
=
√
2π

∞∑

m=−∞
f̂(2πm)

4
=

∫ ∞

−∞
f̂(k)

∞∑

m=−∞

√
2π δ(k − 2πm) dk .
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Equality 1 is the fundamental consistency relation, Eq.(3.60); 2 holds because of
Eq.(3.61); 3 holds because of Poisson’s sum formula, Eq.(3.25) on page 132,

∞∑

n=−∞
f(n) =

∞∑

m=−∞

√
2πf̂(2πm)

with f̂ =
√
2πF :

f̂(k) =

∫ ∞

−∞

e−ikx√
2π
f(x)dx ; (3.62)

4 takes advantage of the sampling property of the Dirac delta function δ(k − 2πm).
Thus one finds that

∫ ∞

−∞
f̂(k)ĝ(k)dk =

∫ ∞

−∞
f̂(k)

∞∑

m=−∞

√
2π δ(k − 2πm) dk

holds for all integrable functions f̂(k). This fact is reexpressed by the statement

ĝ(k) =
∞∑

m=−∞

√
2π δ(k − 2πm) .

This is the desired result. It says that the Fourier transform of a periodic train of
infinitely sharp pulses (with period ∆x = 1) is another periodic train of pulses (with
period ∆k = 2π) in the Fourier domain.
Example 2 (Fourier transform of a periodic function) Consider a periodic function

g(x) = g(x+ a)

whose Fourier series representation is

g(x) =
∞∑

−∞
cn
ei2πnx/a√

a
, with cn =

∫ a

0

e−i2πnx/a√
a

g(x) dx .

What is its Fourier transform?
Note that for any integrable function f and its Fourier transform, Eq.(3.62), one has

〈f, g〉 =
∞∑

−∞
cn

∫ ∞

−∞
f(x)

ei2πnx/a√
a

dx

=
∞∑

−∞
cn

√

2π

a
f̂

(
2πn

a

)

=

∫ ∞

−∞
f̂(k)

∞∑

−∞
cn

√

2π

a
δ(k − 2πn

a
) dk
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Using the stipulated Parseval requirement,

〈f, g〉 = 〈f̂ , ĝ〉 ≡
∫ ∞

−∞
f̂(k)ĝ(k) dk ,

which holds for all functions f̂ , one sees that

ĝ(k) ≡ F [g] (k) =
∞∑

n=−∞
cn

√

2π

a
δ(k − n2π

a
)

Thus we have the following result: The Fourier transform of a function periodic on
the given domain is a periodic train of Dirac delta functions on the Fourier domain,
each one weighted by the respective Fourier coefficient.

Conversely, the Fourier transform of a periodic train of weighted Dirac delta func-
tions is a periodic function.

What happens if all the weight are equal? In that case the periodic function g(x)
turn out to be a generalized function, namely

g(x) =
∞∑

n=−∞

ei2πnx/a√
a

(3.63)

=
√
a

∞∑

m=−∞
δ(x−ma) . (3.64)

The above Parseval-relation-based method for calculating the Fourier transforms
applies to periodic and generalized functions as well. Consequently, one has

ĝ(k) ≡ F [g] (k) =
∞∑

n=−∞

√

2π

a
δ(k − n2π

a
) . (3.65)

What happens if one takes the Fourier transform again? Without much ado one
finds that the Fourier transform of the function ĝ is

F
[ ∞∑

n=−∞

√

2π

a
δ(x− n2π

a
)

]

(k) =
∞∑

m=−∞

e−i2πmk/a√
a

(3.66)

=
∞∑

n=−∞

√
a δ(k − na) . (3.67)

In other words, one recovers the original function g.
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Exercise 3.3.6 (EIGENFUNCTIONS OF F2)
It is evident from Eqs.(3.67) and (3.64) that the function g is an eigenfunction of the
Fourier transform taken twice, i.e. of the operator F2, with eigenvalue λ = +1. Are there
any other such functions, and if so, characterize them by a simple criterion.

Exercise 3.3.7 (FOURIER TRANSFORM: BASIC PROPERTIES)
Let ĝ(k) = F [g(x)] (k) and H(k) = F [h(x)] (k) be the Fourier transforms of g(x) and h(x).
Find

(i) F [αg(x) + βh(x)] (k), where α and β are constants.

(ii) F [g(x− ξ)] (k)

(iii) F
[
eik0xg(x)

]
(k)

(iv) F [g(ax)] (k)

(v) F
[
dg(x)

dx

]

(k)

(vi) F [xg(x)] (k)

in terms of ĝ(k) and f̂(k).

3.3.5 Efficient Calculation: Fourier Transform via Convolu-
tion

Given the importance of the Fourier transforms of periodic functions, is there not a
computationally more efficient way of finding these transforms? The answer is “yes”,
and it hinges on the remarkable properties of the convolution integral6

f ∗ g(x) =

∫ ∞

−∞
f(x− ξ)g(ξ) dξ (3.68)

=

∫ ∞

−∞
g(x− ξ)f(ξ) dξ

of the two functions f and g. Before identifying these properties we first describe
the mental process which leads to the graph of this integral:

(i) Take the graph of the function f(ξ) and flip it around the vertical axis ξ = 0.
This yields the graph of the new function f(−ξ).

6Not to be confused with the auto-correlation integral, Eq.(3.59) on page 154.
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(ii) Slide that flipped graph to the right by an amount x by letting ξ → ξ− x, and
thus obtain the graph of f(x− ξ).

(iii) Multiply this graph by the graph of g(ξ) to obtain the graph of the product
function f(x− ξ)g(ξ).

(iv) Find the area under this product function.

As one slides the flipped graph to the right, this area generates the graph of f ∗g(x).
Example 3 (Periodic train of Gaussians via convolution)

Consider the graph of the Gaussian

f(ξ) = e−(ξ−c)
2/2b2 (3.69)

having full width 2b centered around ξ = c, and let

g(ξ) =
∞∑

n=−∞
δ(ξ − n) (3.70)

be a periodic train of Dirac delta functions. To form the convolution f ∗ g(x), flip
the function f to obtain

f(−ξ) = e−(−ξ−c)
2/2b2 ,

which is centered around ξ = −c, shift it to the right by an amount x to obtain

f(x− ξ) = e−(x−ξ−c)
2/2b2 ,

and finally do the integral

∫ ∞

−∞
f(x− ξ)

∞∑

n=−∞
δ(ξ − n) dξ =

∞∑

n=−∞
f(x− n)

=
∞∑

n=−∞
e−(x−n−c)

2/2b2 .

This is a periodic train of Gaussians, and the period is ∆x = 1. This result also
illustrates how a periodic function, in our case

h(x) =
∞∑

n=−∞
f(ξ − n) ≡

∞∑

n=−∞
e−(x−n−c)

2/2b2 ,
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Figure 3.9: Periodic train of Gaussian pulses obtained by convolving a single Gaus-
sian, on the very left, with a periodic train of Dirac delta functions, whose infinite
amplitudes are represented in this figure by the heavy dots.The Fourier transform of
the train of Gaussians is shown in Figure 3.10

can be represented as the convolution

∞∑

n=−∞
f(x− n) = f ∗ g(x)

where f and g are given by Eqs.(3.69) and (3.70). The graph of this convolution
is the Gaussian train in Figure 3.9. Its Fourier transform, Figure 3.10 is calculated
below using a fundamental property of the convolution integral.

Exercise 3.3.8 (PERIODIC FUNCTION AS A CONVOLUTION)
Show that any periodic function f(ξ) = f(ξ+a) is the convolution of a nonperiodic function
with a train of Dirac delta functions.
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The convolution of two functions has several fundamental properties (commuta-
tivity, associativity, distributivity), but its most appealing property is that its Fourier
transform is simply the product of the Fourier transforms of the respective functions,

∫ ∞

−∞
f ∗ g(x)e

−ikx
√
2π

dx =

∫ ∞

−∞

∫ ∞

−∞
f(x− ξ)g(ξ) dξ e

−ikx
√
2π

dx

=
√
2πf̂(k)ĝ(k) (3.71)

This result can be an enormous time saver. Let us apply it to the problem of finding
the Fourier transform of h(x), the periodic train of Gaussians considered in Example
3, but with c = 0, i.e. centered around the origin. The calculation yields

f̂(k) =

∫ ∞

−∞
e−ξ

2/2b2 e
−ikξ
√
2π
dξ

= be−b
2k2/2 (3.72)

and

ĝ(k) =

∫ ∞

−∞

∞∑

n=−∞
δ(ξ − n)e

−ikξ
√
2π
dξ

=
∞∑

m=−∞

√
2πδ(k − 2πm) . (3.73)

It follows that the Fourier transform of that train yields

∫ ∞

−∞

∞∑

n=−∞
e−(x−n)

2/2b2 e
−ikx

2π
dx = be−b

2k2/2

∞∑

m=−∞

√
2πδ(k − 2πm) .

Figure 3.10 shows the real part of this transform. Study the relationship between
this figure and Figure 3.9 carefully. They highlight the archetypical properties of the
Fourier transform. To name a few:

• Local properties in the given domain get transformed into global properties in
the Fourier domain.

• Jaggedness in the given domain gets transformed into broad spectral behaviour
in the Fourier domain.

• Narrow pulses get transformed into wide envelopes, and vice versa.
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• Periodicity in the given domain gets transformed into equally spaced (but in
general nonperiodic) spectral lines in the Fourier domain.

And there are others.
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Figure 3.10: Set of equally spaced (here with ∆k = 2π) spectral lines resulting from
the Fourier transform of the periodic train of Gaussians in Fig. 3.9. The spectral
envelope, here again a Gaussian, is the Fourier transform of one of the identical
pulses which make up the train.

The pulses that make up the periodic train of Gaussians, Fig. 3.9, have no
internal structure. Thus the natural question is: What is the Fourier transform of
a periodic train of pulses, each one made up of a finite number of oscillations as in
Fig. 3.11? The next example addresses this question.
Example 4 (Fourier transform of light from a mode-locked laser)

A mode-locked laser generates light in the form of a periodic train of pulses of
light. This periodicity is expressed in terms of the separation between successive
pulses, and each pulse is characterized by three properties:
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Figure 3.11: Periodic train of optical pulses emitted by a “mode-locked” laser. In
this figure the pulse separation is highly understated. In an actual train the pulse
separation is typically more than a million times the full width of each pulse. In
spite of this, the optical phase (relative to the Gaussian envelope) shifts by a fixed
and controllable amount from one pulse to the next. In this figure that phase shift
is zero: the optical oscillation amplitude profile in each pulse is congruent to that in
all the others.

1. pulse envelope,

2. optical (“carrier”) frequency and the

3. phase of the optical carrier vibrations relative to the pulse envelope.

The temporal amplitude profile of the the nth pulse is

fn(t) = e−(t−nT )
2/2b2eiω0(t−nT )eiδn

The constant T is the separation between successive pulses. The first factor is the
pulse envelope, which we take to be a Gaussian of full width 2b centered around
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time t = nT . The second factor expresses the oscillations of the optical carrier
whose frequency is ω0. The last factor expresses the phase shift of the optical carrier
relative to the pulse envelope. The optical pulse train is the sum

f(t) =
∞∑

n=−∞
e−(t−nT )

2/2b2eiω0(t−nT )eiδn .

The width of the pulse envelope in lasers nowadays (2002) is less than 10 femtoseconds
(=10−14 sec.). This corresponds to light travelling a distance of less than three
microns. Such a pulse width is achieved by the constructive interference of more
than a million longitudinal laser modes phase-locked to oscillate coherently.

The pulse repetition rate for a phase-locked laser is determined by the round trip
travelling time inside the laser cavity with a partially silvered mirror at one end. For
a laser 1.5 meters long the pulses emerge therefore at one end at a rate of 1/T=100
megaHertz, corresponding to a pulse separation of 3 meters of light travelling time
between two pulses. In between two such pulses there is no light, no electromagnetic
energy whatsoever. The destructive interference of the above-mentioned million laser
modes guarantees it.

The pulses can therefore be pictured as micron-sized “light bullets” shot out by
the laser. Because of their small size these bullets have an enormous amount of
energy per unit volume, even for modestly powered lasers.

Ordinarily the phase δn varies randomly from one pulse to the next. In that case
f is merely a train of pulses with incoherent phases. The Fourier transform of such a
train would be a correspondingly irregular superposition of Fourier transforms. This
superposition is exhibited in Figure 3.12

However, a recent discovery shows that light generated by a laser operating in
a “locked-mode” way can be made to produce pulses which are phase coherent,
even though they are separated by as much as three meters. Indeed, experiments
show that the phase δn increases by a constant amount from one pulse to the next.
Evidently the amplifying medium in the laser must somehow “remember” the phase
of the carrier oscillations from one emitted pulse to the next. Thus

δn = n∆φ .

where ∆φ is a constant as in Figure 3.13. In that case f is a periodic function,

f(t) =
∞∑

n=−∞
e−(t−nT )

2/2b2eiω0(t−nT )ein∆φ (3.74)

=
∞∑

n=−∞
e−(t−nT )

2/2b2eiω0tein(∆φ−ω0T ) .
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FOURIER TRANSFORM OF A RANDOMLY PHASED TRAIN OF OPTICAL PULSES

Full Envelope Width:   2 / (2π b )  = 40 / 2π
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Figure 3.12: Average of the Fourier spectra of 81 pulses of a train like that in
Fig. 3.11, but each pulser having random phase δn from one to the next. Compare
the Fourier spectrum in this figure with the one in Fig. 3.14 whose pulse train is
coherently phased (i.e. δn = 0) and of infinite length.

Here

ω0T = (# of optical carrier cycles between adjacent pulses)× 2π

What is the Fourier spectrum of such a periodic train? The result is depicted in
Figure 3.14.

The line of reasoning leading to this result is as follows: Observe that the periodic
train can be written as the convolution integral

f(t) =

∞∫

−∞

e−(t−ξ)
2/2b2eiω0(t−ξ)

∞∑

n=−∞
ein∆φδ(ξ − nT ) dξ

≡ pulse ∗ combT (t; ∆φ)
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OPTICAL OSCILLATIONS OF TWO SUCCESSIVE PULSES
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Figure 3.13: Overlay of two successive pulses with phase difference ∆φ = π/2.

where

pulse(t) ≡ e−t
2/2b2eiω0t

is a carrier amplitude modulated by a Gaussian, and

combT (t; ∆φ) ≡
∞∑

n=−∞
ein∆φδ(t− nT )

is a periodic train of linearly phased Dirac delta functions with fixed phase difference
∆φ from one delta function to the next. The respective Fourier transforms are

F [pulse](ω) =

∫ ∞

−∞
e−t

2/2b2eiω0t
e−iωt√
2π
dt

= be−(ω−ω0)2b2/2 , (3.75)

a Gaussian in frequency space centered around ω0, and, with the help of Poisson’s
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Line Spacing:    ∆ ω / 2π  = 1 / T

Frequency Envelope Width:  2 / ( 2π b ) = 40 / 2π
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Figure 3.14: Set of equally spaced spectral lines resulting from the Fourier transform
of the optical train of pulses in Fig. 3.11. The line spacings in the figure have the
common value ∆ω/2π = 1/T Hertz. For an actual laser generated train the typical
value is ∆ω/2π ∼108 Hertz, which is precisely the rate at which energy pulses back
and forth in a laser cavity of length ∼1.5 meters. For a laser which generates 10
femtosecond pulses, the Gaussian spectral envelope encompasses ∼106 spectral lines
instead of only the 20 depicted in this figure.

sum formula, Eq.(3.31),

F [comb](ω) =

∫ ∞

−∞
combT (t; ∆φ)

e−iωt√
2π
dt

=
∞∑

n=−∞

ei(∆φ−ωT )n√
2π

=
∞∑

m=−∞

√
2πδ(ωT − 2πm−∆φ) . (3.76)
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This is a periodic set of Dirac delta functions in the frequency domain, but collectively
shifted by the common amount ∆φ. The convolution theorem, Eq.(3.71), implies that
the Fourier transform of the train of laser pulses, Eq.(3.74) is simply the product of
Eqs.(3.75) and (3.76):

F [f ](ω) =

∫ ∞

−∞

e−iωt√
2π
f(t)dt

=
√
2πbe−(ω−ω0)2b2/2

︸ ︷︷ ︸

spectral envelope

∞∑

m=−∞
δ(ωT −∆φ− 2πm)

︸ ︷︷ ︸

spectral lines

(3.77)

=
√
2πbe−(ω−ω0)2b2/2

1

2πT

∞∑

m=−∞
δ

(
ω

2π
−m 1

T
− ∆φ

2π

1

T

)

(3.78)

This is a discrete spectrum of equally spaced sharp spectral lines. The separation
between them is

∆ω

2π
=

1

T
,

which is the pulse repetition rate.
From one pulse to the next there is a change in the optical phase relative to the

envelope. This phase change, ∆φ (exhibited in Figure 3.13) results in all frequencies
of the spectral lines under a pulse envelope being shifted by the common amount

(fraction of a cycle)

(pulse)
︸ ︷︷ ︸

phase shift

pulse
× 1

2π

× (pulses)

(time)
︸ ︷︷ ︸

pulse repetition rate

=
∆φ

2π
× 1

T
︸ ︷︷ ︸

“frequency offset”

=
(cycles)

(time)

This frequency offset does not apply to the spectral envelope, which remains fixed
as one changes ∆φ. Instead, it applies only to the position of the spectral lines, which
get shifted by this frequency offset. This is illustrated in Figure 3.15.

Finally note that, with light oscillating at its carrier frequency ω0, the Gaussian
envelope in Figure 3.14 is centered around the carrier frequency ω = ω0 in the
frequency domain. When ω0 = 0, Figs. 3.11 and 3.14 reduce to Figs. 3.9 and 3.10
of Example 3.
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zero interpulse phase shift
nonzero interpulse phase shift

Figure 3.15: Two sets of equally spaced spectral lines resulting from the Fourier
transform of two optical trains of pulses. The first (dotted) spectrum (which is
identical to that of Fig. 3.14) is due to the train whose pulses have zero (∆φ = 0)
interpulse carrier phase shift of the optical carrier relative to the envelope. The
second (solid) spectrum is due to pulses with nonzero (∆φ 6= 0) interpulse carrier
phase shift.

Exercise 3.3.9 (FINITE TRAIN OF PULSES)
Find the Fourier spectrum of a finite train of identical coherent (δn = 0 for n = 0,±1, · · · ,±N)
pulses of the kind shown in Fig. 3.11. Describe the result in terms of a picture and a math-
ematical formula. Point out how the result differs from Figs. 3.12 and 3.14.

Exercise 3.3.10 (FOURIER SERIES OF A TRAIN OF GAUSSIANS)
Verify that

f(t) =
∞∑

n=−∞
e−(t−nT )

2/2b2eiω0(t−nT )

is a function periodic in t: f(t+ T ) = f(t).
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Find the Fourier series representation

f(t) =
∞∑

m=−∞
cme

iωmt

of f(t) by determining ωm and cm.

Lecture 23

3.4 Orthonormal Wave Packet Representation

The Fourier representation of a square integrable function f (∈ L2(−∞,∞)) consists
of the integral

f(t) =

∫ ∞

−∞
f̂(ω)

eiωt√
2π
dω ,

where

f̂(ω) =

∫ ∞

−∞

e−iωt√
2π
f(t)dt .

The virtue of this representation is that the basis functions

uω(t) =
eiωt√
2π

−∞ < ω <∞

are translation invariant, i.e.,

uω(t+ a) = eiωauω(t) .

It sould be noted that in reality translation invariance is a limiting feature, one
that manifests itself after one has taken the limit of some parametrized family of
integrable functions, for example,

uω(t) ≡ lim
T→∞

uω(t, T ) = lim
T→∞

e−t
2/T 2 eiωt√

2π
.

Thus, although in the limit these basis functions are “Dirac delta function” orthonor-
malized, ∫ ∞

−∞
uω′(t)uω(t)dt = δ(ω′ − ω) ,
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they are not square integrable ( 6∈ L2(−∞,∞)), i.e.,
∫ ∞

−∞
|uω(t)|2dt =∞ .

This disadvantage can be overcome if one does not insist on the basis function
being translation invariant, i.e. on going to the limit. The benefit accrued consists
not only of the basis elements being square integrable, and hence orthonormal in
the standard sense, but of the representation being in the form of an infinite series
instead of an infinite integral. This means that the Hilbert space of square integrable
functions is discrete-dimensional: any element is a linear combination of a countable
number of basis elements. A Hilbert space which has a basis which is countable is said
to be a separable Hilbert space (with the implication that there are Hilbert spaces
which are nonseparable, i.e. do not have a basis which is countable). A separable
Hilbert space has the property that any of its elements can be approximated with
arbitrary accuracy by a partial Fourier-type sum.

However, we shall find that the largest benefit of a discrete basis representation
consists of the fact that it allows one to view the behaviour of a given function,
say f(t), and its Fourier transform f̂(ω) from a single point of view: the basis
elements reveal the structure of the given function simultaneously in the Fourier (ω)
domain and in the time domain, or in the space domain, whichever the case may
be. In practical terms this means that we shall resolve the given function f(t) into a
superposition of orthonormal wavepackets which are localized both in the frequency
domain and in the time domain, i.e., they have a (mean) frequency and a (mean)
location in time. Roughly speaking, each wave packet has the best of both arenas:
one foot in the frequency domain and the other foot in the time domain.

By contrast, the Fourier integral representation consists of the given function
being resolved into a superposition of infinite wave trains, each one having a definite
frequency, but because of their infinite extent, having no definite location. This
representation reveals the structure of the function in the Fourier domain, but not
in the time domain.

3.4.1 Orthonormal Wave Packets: General Construction

There are many different complete sets of orthonormal wave packets. Each set is a
countable basis for the Hilbert space L2(−∞,∞). The construction is basically the
same for all these sets and it is illustrated by the following example.

Subdivide the real line, −∞ < ω < ∞, of the Fourier domain into equal subin-
tervals of length ε and consider a function, Pjℓ(t), whose Fourier transform is zero
everywhere except in one of these subintervals,
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Figure 3.16: The imaginary part of the localized Fourier amplitude of the wave packet
Pjℓ(t). In this graph ℓ = 4 and the mean frequency of the wave packet is (j + 1

2
)ε.

Fjℓ(ω) =







0 ω not in [jε, (j + 1)ε]

e−2πiℓω/ε√
ε

jε ≤ ω ≤ (j + 1)ε
. (3.79)

We demand that ℓ = 0,±1,±2, · · · , is an integer so that Fjℓ(ω) can be pictured
as a finite complex amplitude in the jth frequency window jε ≤ ω ≤ (j + 1)ε. See
Figure 3.16.

Note that
∫ ∞

−∞
F jℓ(ω)Fj′ℓ′(ω)dω = δjj′δℓℓ′ ,

which can be easily verified. Such an orthonormality relation is the key to construct-
ing complete sets of orthonormal wave packets. Simply invent a set of functions
Fjℓ(ω) which satisfy such an orthonormality property. The example in Figure 3.16
illustrates this idea. Then use these functions to construct your own set of wave
packets

Pjℓ(t) =

∫ ∞

−∞
Fjℓ(ω)

eiωt√
2π
dω . (3.80)
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We see that the transformation

F−1 : L2(−∞,∞) −→ L2(−∞,∞)

Fjℓ(ω) ∼→ F−1[Fjℓ] ≡
∫ ∞

−∞
Fjℓ(ω)

eiωt√
2π
dω

≡ Pjℓ(t) ,

which is represented by the “matrix”,

eiωt√
2π

,

is a unitary transformation because it preserves inner products between elements
in L2(−∞,∞), or equivalently, because it preserves the inner products between the
square integrable basis elements

δjj′δℓℓ′ = 〈Fjℓ, Fj′ℓ′〉 = 〈F−1[Fjℓ],F−1[Fj′ℓ′ ]〉 = 〈Pjℓ, Pj′ℓ′〉 .

3.4.2 Orthonormal Wave Packets: Definition and Properties

We shall now use the above construction idea to obtain a complete set of o.n. wave
packets with Fourier domain windows of constant width. In the next subsection we
shall do it for wave packets of variable width (“wavelets”).

Definition

Applying Eq.(3.79) to Eq.(3.80) one finds that the typical wave packet is

P ε
jℓ(t) =

∫ (j+1)ε

jε

dω
eiωt√
2π

︸ ︷︷ ︸

× e−2πiℓω/ε√
ε

︸ ︷︷ ︸

=
1√
2πε

ei(t−
2πℓ
ε

)(j+1)ε − ei(t− 2πℓ
ε

)jε

i(t− 2πℓ
ε
)

unitary
xformation

×
amplitude
in the

frequency
domain

=
wave
packet

=
2√
2πε

sin

[

(t− 2πℓ

ε
)
ε

2

]

t− 2πℓ

ε

· exp{i(t− 2πℓ

ε
)(j +

1

2
)ε} . (3.81)
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Notation: For the purpose of notational efficiency we shall suppress the superscript
ε in the wavepacket name P ε

jℓ(t) throughout the remainder of Section 3.4.2. Thus we
use simply Pjℓ(t) instead. However, in the upcoming Sections 3.5 and 3.6 we shall
always highlight ε by explicitly writing P ε

jℓ(t).

Four Properties

First of all, observe that this wave packet consists of a real amplitude, a ’sinc’ func-
tion, multiplied by an exponential phase factor, which is rapidly oscillating when
the integer |j| is large. From the viewpoint of engineering and ham radio one says
that the wave train exp{i(t − 2πℓ/ε)(j + 1

2
)ε} is getting modulated by the ‘sinc’

function. The resultant wave train amplitude has its maximum at t = 2πℓ
ε
. From

the viewpoint of physics one says that the wave trains { eiωt√
2π
: jε < ω < (j + 1)ε}

comprising the wave packet exhibit a beating phenomenon with the result that they
interfere constructively at t = 2πℓ

ε
. From the viewpoint of mathematics one observes

that the integral has a maximum value when the integrand does not oscillate, i.e.
when t = 2πℓ

ε
.

Second, observe that the spacing between successive zeroes is ∆t = 2π
ε
. They are

located at

t =
2π

ε
k k = 0,±1, · · · but k 6= ℓ .

At t = 2π
ε
ℓ the wave packet Pjℓ(t) has maximum modulus

√
ε
2π
. These two properties

are summarized by the sifting property of Pjℓ(t):

Pjℓ

(

t =
2π

ε
k

)

=

√
ε

2π
δkℓ . (3.82)

Consequently, the real and imaginary parts of the wave packets have profiles as
depicted in Figure 3.17.

Third, it has mean frequency (j + 1
2
)ε. Its mean position along the time axis is

2π
ε
ℓ. Its frequency spread is the width of its frequency window in the Fourier domain

∆ω = ε .

Its temporal spread,

∆t =
2π

ε
,

is its half width centered around its maximum, which is located at t = 2πℓ
ε
. Conse-

quently, the frequency spread times the temporal spread of each wave packet is

∆ω∆t = 2π ,
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Figure 3.17: Real parts of the three wave packets
√
πPjℓ(2πt), ℓ = 0, 1, 2 as given by

Eq.(3.81). The t-axis is in units of 2π, i.e. it is expressed in periods of some standard
clock. The width of the Fourier window is taken to be ε = 2. The mean frequency
of all three wave packets is (j + 1

2
)ε = (2 + 1

2
)2 = 5 oscillations per period.
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which is never zero. Thus, the only way one can increase the temporal resolution
(∆t→ 0) is at the expense of the frequency resolution, i.e., by increasing (∆ω →∞)
the frequency bandwidth of each wave packet. Conversely, the only way to increase
the frequency resolution is to increase the width of the wave packet.

The fourth property is stated by the following
Proposition
The set of wave packets






Pjl(t) =

∞∫

−∞

Fij(ω)
eiωt√
2π
dω =

(j+1)ε∫

jε

e−2πilω/ε√
ε

eiωt√
2π
dω ; j, ℓ = 0,±1,±2, · · ·







(3.83)

form a basis for L2(−∞,∞).
The linear independence of this set follows from their orthogonality

〈Pjℓ(·), Pj′ℓ′(·)〉 = δjj′δℓℓ′

The task of verifying this fact is consigned to the exercise below.

Exercise 3.4.1 (ORTHONORMALITY AND COMLETENESS)
Consider the set of functions (”wave packets”)

{

Pjl(t) =

(j+1)ε∫

jε

e−2πilω/ε√
ε

eiωt√
2π
dω ;

j = 0,±1,±2, · · ·
l = 0,±1,±2, · · ·

}

where ε is a fixed positive constant.

(a) SHOW that these wave packets are orthonormal:

i.e.

∞∫

−∞

Pjl(t)P̄j′l′(t) dt = δjj′δll′ (3.84)

(b) SHOW that these wave packets form a complete set:

i.e.
∞∑

j=−∞

∞∑

l=−∞
Pjl(t)P̄jl(t

′) =
1

2π

∫ ∞

−∞
eiω(t−t

′) dω ≡ δ(t− t′) (3.85)
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The spanning property of this set follows from the Fourier Integral Theorem
combined with the Fourier Series Theorem. With their help one shows that for any

f ∈ L2(−∞,∞)

there exist coefficients αjℓ such that

f(t) =
∞∑

j=−∞

∞∑

ℓ=−∞
αjℓPjℓ(t) , −∞ < t <∞

Furthermore, these expansion coefficients are given by

αjℓ =

∫ ∞

−∞
P jℓ(t

′)f(t′) dt′ .

The construction of this expansion together with the formula for the expansion co-
efficients is a 2-step process.
Step I
Start with the Fourier representation

f(t) =

∞∫

−∞

eiωt√
2π

f̂(ω) dω

and break up this representation into its Fourier window subintervals:

f(t) = · · ·+
jε∫

(j−1)ε

dω
eiωt√
2π

f̂(ω) +

(j+1)ε∫

jε

dω
eiωt√
2π

f̂(ω) + · · ·

=
∞∑

−∞

(j+1)ε∫

jε

dω
eiωt√
2π

f̂(ω) (3.86)

Step II
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Focusing on f̂(ω), apply the Fourier Series Theorem to f̂(ω) on each of the
subintervals [jε, (j + 1)ε]:

f̂(ω)
︸︷︷︸

restricted
to

[jε, (j + 1)ε]

=
∞∑

ℓ−−∞

e−2πiℓω/ε√
ε

(j+1)ε∫

jε

e2πiℓω
′/ε

√
2π

f̂(ω′) dω′

︸ ︷︷ ︸




ℓthcoefficient of
Fourier series on
[jε, (j + 1)ε]



≡ αjℓ

(3.87)

Introduce this expression into Eq.(3.86). The result is

f(t) =
∞∑

j=−∞

(j+1)ε∫

jε

dω
eiωt√
2π

︸ ︷︷ ︸

−→ Pjℓ(t)

f̂(ω)
︷ ︸︸ ︷

∞∑

ℓ=−∞

e−2πiℓω/ε√
ε

︸ ︷︷ ︸

ւ

(j+1)ε∫

jε

e2πiℓω
′/ε

√
2π

f̂(ω′) dω′

︸ ︷︷ ︸
αjℓ

(3.88)

Thus

f(t) =
∞∑

j=−∞

∞∑

ℓ=−∞
Pjℓ(t)αjℓ . (3.89)

where

αjℓ
©1
=

(j+1)ε∫

jε

e2πiℓω
′/ε

√
2π

f̂(ω′) dω′

©2
=

∞∫

−∞

F jℓf̂(ω
′) dω′

©3
= 〈Fjℓ(·), f̂(·)〉
©4
= 〈P̂jℓ(·), f̂(·)〉

©5
= 〈Pjℓ(·), f(·)〉 ≡

∞∫

−∞

P jℓ(t)f(t)dt
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Here ©1 is the last integral in Eq.(3.89);
©2 , and hence ©3 , follow from the definition of Fjℓ(ω);

©4 follows from P̂jℓ = F [Pjℓ] and from the definition of Pjℓ,

Pjℓ = F−1[Fjℓ];

©5 follows from Parceval’s identity in the form of Remark 2 on page 151.
The meaning of the Wave Packet Proposition on page 178 can therefore be sum-

marized by the statement
For any f ∈ L2(infty,∞) one has

f(t) =
∑

j

∑

ℓ

Pjℓ(t)αjℓ

where

αjℓ =

∞∫

−∞

P jℓ(t
′)f(t′) dt′ ≡ 〈Pjℓ(·), f(·)〉.

Remark I
Restating the poposition in the form

f(t) =
∑

j

∑

ℓ

Pjℓ(t) 〈Pjℓ(·), f(·)〉

is a reminder that geometrically the coefficient

αjℓ = 〈Pjℓ, f〉

is simply projection of the vector f onto the (jℓ)th unit vector Pjℓ.
Remark II
Restate the Proposition in the form of the integral

f(t) =
∑

j

∑

ℓ

Pjℓ(t)

∞∫

−∞

Pjℓ(t
′)f(t′) dt′. (3.90)

Thereby one is led to introduce the Dirac Delta function,

δ(t− t′) =
∑

j

∑

ℓ

Pjℓ(t)Pjℓ(t′).
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However, this is done with the understanding that one do first the integration
∫∞
−∞ · · · dt′ and then the sum. With this proviso one has

f(t) =

∞∫

−∞

[
∑

j

∑

ℓ

Pjℓ(t)P jℓ(
′)

]

︸ ︷︷ ︸

δ(t− t′)

f(t′) dt′.

The relation
∑

j

∑

ℓ

Pjℓ(t)P jℓ(
′) = δ(t− t′)

is known as the completeness relation for the set {Pjℓ(t)}. This relation is obviously
equivalent to Eq.(3.90) on page 181.

Whittaker-Shannon Sampling Theorem: The Infinite Interval Version

Remark: Note that even though the expansion coefficients can be determined from
these integrals, it is not necessary to do so. Instead, one can obtain the expansion
coefficients αjℓ from f(t) directly. One need not evaluate the integral at all. The key
to success lies in the sifting property, Eq.(3.82).

Suppose one knows that f(t) has a Fourier transform which is non-zero only in
the interval jε < ω < (j + 1)ε. This is no severe restriction because f is square
integrable, and one can set j = 0, provided we make ε large enough. This implies
that

αjℓ = 0 if j 6= 0 .

(Why?) Consequently, we have

f(t) =
∞∑

ℓ=−∞
α0ℓP0ℓ(t) −∞ < t <∞ ,

where the wave packets P0ℓ are given by Eq.(3.93). It is easy to determine the
expansion coefficients. Using the sifting property, Eq.(3.82), one obtains

f

(
2π

ε
k

)

= α0k

√
ε

2π
k = 0,±1, . . . .

This means that the expansion coefficients α0k are determined from the values of f
sampled at the equally spaced points t = 2π

ε
k. These sampled values of f determined
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its representation

f(t) =
∞∑

ℓ=−∞
f

(
2π

ε
ℓ

)√

2π

ε
P0ℓ(t)

in terms of the set of orthonormal wave packets. This representation of f in terms
of its sampled values is 100% accurate. It is called the Whittaker-Shannon sampling
theorem. It is a generalization of the special case, Eq.(3.17) mentioned on page 126.

Exercise 3.4.2 (WAVE PACKET TRAINS)
Consider the wave packet

Qjℓ(t) =
1√
2πε

∫ (j+ 1
2
)ε

(j− 1
2
)ε

eiωte−2πiℓω/εdω.

Express the summed wave packets

(a)
∞∑

j=−∞
Qjℓ(t)

(b)
∞∑

ℓ=−∞
Qjℓ(t)

(c)
∞∑

ℓ=−∞

∞∑

j=−∞
Qjℓ(t)

in terms of appropriate Dirac delta functions, if necessary.

Lecture 24

3.4.3 Phase Space Representation

Consider the two-dimensional space spanned by the time domain (−∞ < t < ∞)
and the Fourier domain (−∞ < ω <∞) of the set of square-integrable function f(t).
The introduction of the set of orthonormal wave packets determines a partitioning of
this space into elements of area whose shape, magnitude and location is determined
by these o.n. wave packets. This partitioned two-dimensional space is called the
phase space of the system whose state is described by the set of square-integrable
functions.



184 CHAPTER 3. FOURIER THEORY

The wave packet representation of the function

f(t) =
∞∑

j=−∞

∞∑

ℓ=−∞
αjℓPjℓ(t)

is achieved geometrically by assigning the set of complex amplitudes (αjℓ) to their
respective elements of area each one of size ∆ω∆t = 2π. Together they comprise the
phase space of the system. This phase space is two dimensional and it is spanned
by the time domain (−∞ < t <∞) and the Fourier domain (−∞ < ω <∞) of the
function f(t).

The set of orthonormal wave packets determine a partitioning of this phase space
into elements of equal area,

∆ω∆t = 2π ,

which are called phase space cells. The existence of this partitioning is guarateed by
the following

Theorem 3.4.1 (Wave Packet Representation Theorem) Let f(t) be a square-
integrable function. Let f̂(ω) be its Fourier transform,

f̂(ω) =

∫ ∞

−∞

e−iωt√
2π
f(t)dt

and let

P̂jℓ(ω) =

∫ ∞

−∞

e−iωt√
2π
Pjℓ(t)dt (= Fjℓ(ω), which is given by Eq.(3.79))
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be the Fourier transform7 of the wave packet Pjℓ(t). Then the Fourier transform pair

f(t) =
∞∑

j=−∞

∞∑

ℓ=−∞
αjℓPjℓ(t)

and

f̂(ω) =
∞∑

j=−∞

∞∑

ℓ=−∞
αjℓP̂jℓ(ω)

have the same expansion components αjℓ relative to the Fourier-related bases {Pjℓ}
and {P̂jℓ}, namely

αjℓ =

∫ ∞

−∞
P jℓ(t)f(t)dt =

∫ ∞

−∞
P̂ jℓ(ω)f̂(ω)dω. (3.92)

Both bases are orthonormal

〈Pjℓ, Pj′ℓ′〉 ≡
∫ ∞

−∞
P jℓ(t)Pj′ℓ′(t)dt = δjj′δℓℓ′

〈P̂jℓ, P̂j′ℓ′〉 ≡
∫ ∞

−∞
P̂ jℓ(ω)P̂j′ℓ′(ω)dω = δjj′δℓℓ′

and are complete

∞∑

j=−∞

∞∑

ℓ=−∞
Pjℓ(t)P jℓ(t

′) = δ(t− t′)

∞∑

j=−∞

∞∑

ℓ=−∞
P̂jℓ(ω)P̂ jℓ(ω

′) = δ(ω − ω′)

7The form of this Fourier transform is generated by the action of the jth power of the translation
operation Tǫ acting on P̂0ℓ(ω). Indeed, introducing the rectangular function

rect[0,ǫ](ω) =

{
1 0 < ω < ǫ
0 otherwise

one has

P̂jℓ(ω) =
e−2πiℓω/ǫ

√
ǫ

rect[jǫ,(j+1)ǫ](ω)

=
e−2πiℓ(ω−jǫ)/ǫ

√
ǫ

rect[0,ǫ](ω − jǫ)

= (Tǫ)
j
P̂0ℓ(ω) (3.91)
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(time)

t =2π
ε

ω = ε

l

(freq.’y)j

Figure 3.18: The smallest elements of phase space are the phase space cells. Each
one, like the one depicted in this picture, has area 2π.

This theorem implies that

1. the location of a typical phase space cell as determined by Pjℓ(t) and P̂jℓ(ω) is
given by

2π

ε
ℓ = mean temporal position

(

j +
1

2

)

ε = mean frequency .

2. the shape of a typical phase space cell as determined by Pjℓ(t) and P̂jℓ(ω) is
given by

∆t =
2π

ε
∆ω = ε ,

the temporal and the frequency spread of the wave packet.

3. the area of a typical phase space cell as determined by Pjℓ(t) and P̂jℓ(ω) is

∆ω∆t = 2π .
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The wave packet representation

f(t) =
∞∑

j=−∞

∞∑

ℓ=−∞
αjℓPjℓ(t)

of a square integrable function determines the corresponding phase space represen-
tation. It consists of assigning the complex amplitude αjℓ to the (j, ℓ)th phase space
cell. Typically, the squared norm

‖f‖2 =
∫ ∞

−∞
|f(t)|2 dt

is proportional to the total “energy” of the signal represented by f(t). If that is the
case, then Parseval’s identity

∫ ∞

−∞
|f(t)|2 dt =

∞∑

j=−∞

∞∑

ℓ=−∞
|αjℓ|2

implies that

|αjℓ|2 ∝ “energy” contained in the (j, ℓ)th phase space cell .

(time)
l

(freq.’y)j

Figure 3.19: Phase space representation of a function.

In other words,
{|αjℓ|2 : j, ℓ = 0,±1, . . . }
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is a decomposition of the energy of f(t) into its most elementary spectral and temporal
components relative to the chosen wave packet basis {Pjℓ(t)}. The wave packet
representation of a signal f(t) assigns to each phase space cell an intensity |αjℓ|2.
Each cell acquires a level of grayness ∝ |αjℓ|2.

Thus a signal gets represented by assigning a degree of darkness (“squared mod-
ulus”) and a phase factor of each phase space cell. This is shown in Figure 3.19.

An example of this geometrical phase space representation is the musical score of
a piece of music. The notes represent the phase space cells in which there is a non-
zero amount of energy. (Musicians ignore the phase factor which ordinarily would
go with it.) A signal, say, Beethoven’s Fifth Symphony, is therefore represented
by a distribution of dots (of various gray levels) in phase space, with time running
horizontally to the right, and pitch going up vertically.

A phase space representation relative to a chosen set of o.n. wave packets is,
therefore, a highly refined and sophisticated version of a musician’s score. In fact, it
constitutes the ultimate refinement. No better discrete representation is possible.

Final Remarks:

1. It is not necessary that the wave packets, Eq.(3.81) have their Fourier support
centered around (j + 1

2
)ε. Another possibility is that they be centered around

jε. In that case the resulting set of wave packets

Qε
jℓ ≡

∫ (j+ 1
2
)ε

(j− 1
2
)ε

e−2πiℓω/ε√
ε

eiωt√
2π
dω

j = 0,±1,±2, . . .
ℓ = 0,±1,±2, · · ·

would still be orthonormal and complete.

2. Each wave packet of mean frequency zero, Qε
0ℓ(t), ℓ = 0,±1,±2, · · · is an inte-

gral representation of the sinc function, Eq.(3.39) on page 141, centered around
t = 2πℓ

ε
,

∫ ε
2

− ε
2

e−2πiℓω/ε√
ε

eiωt√
2π
dω =

2√
2πε

sin
[
(t− 2πℓ

ε
) ε
2

]

t− 2πℓ
ε

= Qε
0ℓ(t) . (3.93)

In the limit as ε → ∞ this tends towards an expression proportional to the
Dirac delta function.
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Figure 3.20: A function whose large scale and small scale structures are of equal
importance.

3.5 Orthonormal Wavelet Representation

The key property of the o.n. wave packets is that all phase space cell (i.e., wave
packets) have the same shape

∆t =
2π

ε
∆ω = ε .

Suppose, however, we must represent a signal which looks like the one in Figure 3.20.
In other words, upon closer examination, the signal on a small scale is similar to the
signal on the larger scale. In that case the large scale structure is represented “most
economically” by a sequence of wide low frequency wave packets. The qualifier “most
economically” means representing the signal with the fewest number of non-zero wave
packet coefficients. The existence of o.n. wave packets which are wide and narrow
is the important new feature.

Let us apply the general idea of constructing o.n. wave packets in Section (3.4.1)
to obtain o.n. wave packets with Fourier domain windows of variable width. In fact,
we shall construct o.n. wave packets with adjacent, but non-overlapping, windows
in the Fourier domain, with each window extending exactly over one octave. Thus
each positive frequency window is twice as wide as its neighbor on the left.

In the time domain, all o.n. wave packets have the same half width, namely 2π
ε
.

They are different in that they are related to one another by discrete equal shifts
2π
ε
in time and also by equal shifts ε in frequency. If a signal changes “slowly” over

time, i.e., does not change appreciably over a time interval less than the inter-wave
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Figure 3.21: Unequal frequency windows of the set of o.n. wavelets. Each window
is an octave.

packet spacing 2π
ε
, then the signal can be represented quite efficiently by a finite wave

packet sum. If, however, the signal changes “abruptly”, i.e., it changes appreciably
over a time interval small compared to the width, and hence the spacing, of the
wave packets, then the wave packets representation becomes less efficient. The wave
packet sum must contain many high frequency packets that reinforce each other on
one side where the abrupt change occurs and cancel each other on the other side of
that change.

What is needed is an o.n. set of variable width wave packets. In effect, instead of
having a uniform sampling rate, the sampling rate should be variable to accomodate
abrupt changes in the signal. Orthonormal wavelets fullfill this requirement.

Lecture 25

3.5.1 Construction and Properties

There are equally spaced large half width wavelets of low mean frequency. They
enter into the representation of the low resolution, slowly varying features of the
signal. There are also equally spaced small half width wavelets of corresponding
higher spread in frequency. They enter into the representation of the high resolution,
abruptly changing features of the signal.

Instead of the equally spaced frequency windows of the wave packets, the wavelets
are synthesized over frequency windows whose width increases exponentially. Wave
packets have variable frequency window ε = 2−kε0. Inserting this into Eq. (3.79), we
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obtain the Fourier transform of a wavelet as the following windowed phase factor:

F2−kℓ(ω) =







√
1

2−kε0
e−2πiℓω/2

−kε0 ω ∈ [2−kε0, 2
1−kε0]

0 otherwise
.

Here ε = 2−kε0 is the variable frequency window. Such a wavelet is a wave packet
P ε
jℓ(t) (see Section 3.4.1) for which j = 1 and ε = 2−kε0. The integer k = 0,±1,±2, . . .

is the octave number of the wavelet. Let us designate this wavelet by W+
kℓ. Its key

properties are as follows:

1. Its explicit form is

W+
kℓ(t) =

√
1

2−kε0

21−kε0∫

2−kε0

e−2πiℓω/2
−kε0

eiωt√
2π
dω , (3.94)

and its Fourier transform is

Ŵ+
kℓ(ω) = F2−kℓ(ω) (3.95)

2. Its mean frequency is

ω =
1

2
(2−k + 21−k)ε0 .

3. Its mean position along the time axis is

t = 2πℓ/2−kε0 .

4. The wavelet has half width

∆t = 2π/2−kε0 , (3.96)

its frequency spread is

∆ω = 2−kε0 , (3.97)

and its phase space area is

∆ω∆t = 2π , (3.98)

like that of any o.n. wave packet.
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5. The wavelets, as well as their Fourier transforms, are orthonormal :

∫ ∞

−∞
W+

kℓ(t)W
+
k′ℓ′(t)dt = δℓℓ′δkk′ ,

∫ ∞

−∞
Ŵ+

kℓ(ω)Ŵ
+
k′ℓ′(ω)dω = δℓℓ′δkk′ .

6. They form a complete set in the given domain,

∞∑

k=−∞

∞∑

ℓ=−∞
W+
kℓ(t)W

+
kℓ(t

′) +W−
kℓ(t)W

−
kℓ(t

′) = δ(t− t′) ,

as well as in the Fourier domain

∞∑

k=−∞

∞∑

ℓ=−∞
Ŵ+
kℓ(ω)Ŵ

+
kℓ(ω

′) + Ŵ−
kℓ(ω)Ŵ

−
kℓ(ω

′) = δ(ω − ω′) .

Note that the negative frequency wavelets,

W−
kℓ(t) =

√
1

2−kε0

∫ −2kε0

−21−kε0

e−2πiℓω/2
−kε0

eiωt√
2π
dω , (3.99)

must be included in order to form a complete set. These completeness relations imply
that these wavelets as well as their Fourier transforms form bases for the vector space
of square integrable functions L2(−∞,∞).

These six wavelet properties are summarized geometrically in terms of their phase
space representatives. The set of o.n. wavelets induces a partitioning of phase space
into cells of equal area

∆ω∆t = 2π/2−kε0 2−kε0 = 2π ,

but unequal shape, Eq.(3.96)-(3.97). The orthogonality in the time and in the fre-
quency domains implies that the areas of these cells should be pictured as nonover-
lapping. The completeness relations imply that these cells cover the whole phase
space without any gaps between them. In brief, the phase space is partitioned by
the wavelets into mutally exclusive and jointly exhaustive cells of equal area, but
different shapes as in Figure 3.22. This is different from Figure 3.18, which depicts
the partitioning by the o.n. wave packets into cells. They also are mutually exclusive
and jointly exhaustive and have equal area. But they have identical shape.
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Figure 3.22: Partitioning of phase space by o.n. wavelets into cells of equal area
(△t △ω = 2π), but unequal shape (∆t = 2π/2−kε0, ∆ω = 2−kε0). For a given mean
frequency the successive wavelets have equal width.

The variable ε0 is a positive parameter which effects all wavelets at once. It
therefore controls the way they partition phase space. What happens when one
increases ε0? Reference to propert 4. indicates that such an increase produces a
global distortion which dilates all phase space cells along the vertical (frequency)
direction while compressing them along the horizontal (time) direction.

The distortion corresponds to that suffered by an incompressible fluid.

Once the parameter has doubled in value, the new partitioning is congruent to
the old one. However, the integer octave label k gets shifted by one unit in the
process: k → k + 1. More precicely, reference to Eq.(3.94) shows that one has

W±
kℓ(t)

∣
∣
ε0=ε1

= W±
k+1 ℓ(t)

∣
∣
ε0=2ε1

. (3.100)

The set of o.n. wavelets is characterized by a seventh fundamental property:
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7. All wavelets are derivable from a single standard wave packet. By translating
and compressing this standard “mother wavelet”, as it is known informally,
one recovers any one of the o.n. wavelets. This recovery holds separately for
the positive and negative frequency wavelets and follows directly from their
defining equations, Eq.(3.94) and (3.99): By changing the Fourier integration
variable from ω to Ω = ω

2−k , one obtains, for the typical wavelet, the alternate
integral expression

W±
kℓ(t) =

√
1

2−kε0
(±)

∫ ±21−kε0

±2−kε0

e−2πiℓω/2
−kε0

eiωt√
2π
dω

=

√

2−k

ε0
(±)

∫ ±2ε0

±ε0
eiΩ(2−kt−2πℓ/ε0) dΩ√

2π

≡
√
2−kψ±(2−kt− 2π

ε0
ℓ) , k, ℓ = 0,±1,±2, · · · . (3.101)

The simplicity of this expression is striking. To obtain it, all one needs to do is
apply a translation, compression and amplification to a single universal wave
packet. Start with the mother wavelet (standard wave packet function),

W±
00(t) ≡ ψ±(t) =

1√
2πε0

(±)
∫ ±2ε0

±ε0
eiΩtdΩ

=

√
ε0
2π
e±3itε0/2

sin tε0/2

tε0/2
,

and translate it along the t-axis by an amount 2π
ε0
ℓ to obtain

ψ±(t− 2π

ε0
ℓ) .

Next compress it uniformly along the t-axis by the compression factor 2−k to
obtain the compressed wave packet

ψ±(2−kt− 2π

ε0
ℓ) .

To preserve normalization amplify its amplitude by
√
2−k to obtain

√
2−kψ±(2−kt− 2π

ε0
ℓ) .

This three step process is sufficient to yields the generic wavelet, Eq.(3.101).
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Note that the resulting set of orthonormal wavelets decomposes into different
classes. Those wavelets belonging to the same class (k fixed) have the same mean
frequency and the same temporal width, but are time translated relative to each other
(ℓ = 0,±1,±2, · · · ). By contrast, different classes are distinguished by different mean
frequencies and hence different widths.

3.6 Multiresolution Analysis

A choice of basis for a vector space is a choice of the standard by which vectors are
measured. Once chosen, this standard remains fixed. However, a question remains:
Which basis does one pick? And, is the choice arbitrary or is there a principle that
guides this choice?

It turns out that the latter is the case. This is illustrated by the following example
involving two different bases for the space of square integrable functions.

3.6.1 Chirped Signals and the Principle of Unit-Economy

Consider chirped audio signals. Their frequency is a monotonic function of time.
There are signals characterized by a down-chirp, like that of a bat using its sonar
echolocation ability to track its prey. There are also signals characterized by an

= N

N t

εmax

(time)

t =2
ε

ω = ε

l

j

π

(freq.’y)

ω

Figure 3.23: Phase space representation of a chirped signal occupying N phase space
cells. The grey level of each cell expresses the intensity of the corresponding wave
packet.
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up-chirp. The phase space representation of a typical example is depicted by the
shaded phase space cells in Figure 3.23. An up-chirp signal starts at low frequency
and stops at some maximum frequency, say

ωmax = Nε .

Here N is the number of phase space cells which the signal occupies. For illustrative
purposes consider a signal with a linear up-chirp,

f(t) =
N∑

n=1

αnP
ε
nn(t) . (3.102)

This representation is based on the by-now-familiar orthonormal wave packet func-
tions Eq.(3.81),

P ε
jl(t) =

1√
2πε

(j+1)ε∫

jε

e−2πilω/εeiωtdω .

Recall that the constant ε, which characterizes the shape

∆ω = ε

∆t =
2π

ε

of each phase space cell, is a parameter which identifies this family of wave packets,
{P ε

jl(t) : j, ℓ = 0,±1, · · · }.
However, there are also other families characterized by other parameter values.

Consider another set of wave packets whose phase space cells have dimension

∆ω = 2ε

∆t =
2π

2ε

These basis functions are obtained from P ε
jl(t) by making the replacement ε → 2ε.

This amplifies and compresses the wave packets in the time domain. Indeed, the
defining integral expression for P 2ε

jl (t) yields

P 2ε
jl (t) =

√
2P ε

jl(2t) .

What is the representation of the given chirp signal with respect to this new basis?
The answer is based on the transformation formula

P ε
j′l′(t) =

∞∑

j=−∞

∞∑

ℓ=−∞
P 2ε
jl (t) 〈P 2ε

jl , P
ε
j′l′〉 .
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It is worth while to do the calculation explicitly because the answer turns out to
be fairly simple and informative. The simplicity starts to become evident when one
splits the chirped signal into odd and even labelled terms. Assuming without loss of
generality that the number of terms is even, N = 2M , one has

f(t) =
M−1∑

m=0

α2m+1P
ε
(2m+1) (2m+1)(t) +

M∑

m=1

α2mP
ε
(2m) (2m)(t) . (3.103)

The odd and even transformation formulas are

P ε
(2m+1) ℓ(t) =

1√
2
P 2ε
m 2ℓ(t) +

1

π
√
2

∞∑

k=0

2i

2ℓ− 2k − 1
P 2ε
m (2k+1)(t)

and

P ε
2m ℓ(t) =

1√
2
P 2ε
m 2ℓ(t)−

1

π
√
2

∞∑

k=0

2i

2ℓ− 2k − 1
P 2ε
m (2k+1)(t) .

Consequently, the chirped signal is given by

f(t) = (3.104)
M−1∑

m=0

[

α2m+1
1√
2
P 2ε
m (4m+2)(t) +

i

π
√
2

∞∑

k−∞

2α2m+1

2(2m+ 1)− 2k − 1
P 2ε
m (2k+1)(t)

]

+
M∑

m=1

[

α2m
1√
2
P 2ε
m 4m(t) − i

π
√
2

∞∑

k=−∞

2α2m

2(2m)− 2k − 1
P 2ε
m (2k+1)(t)

]

.

Compare the two representations, Eq.(3.103) and Eq.(3.104), of the chirped sig-
nal. In Eq.(3.103) f(t) is represented by a set of N = 2M basis vectors (in physics
and engineering also known as “degrees of freedom”),

{P ε
nn(t) : n = 1, · · · , 2M}. (3.105)

In Eq.(3.104) by contrast, f(t) is represented by the basis

{P 2ε
m (4m+2)(t) : m = 0, · · · ,M − 1} ∪ {P 2ε

m (4m)(t) : m = 1, · · · ,M} ∪
{P 2ε

m (2k+1)(t) : m = 0, · · · ,M ; k = 0,±1,±2, · · · } , (3.106)

which has a substantially larger number of elements.
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Is the choice of basis vectors arbitrary? The principle of unit-economy8 applied
to this example demands that one pick the wave packet basis Eq.(3.105), whose
coefficients in Eq.(3.102) express the essential properties of the degrees of freedom of
the chirped signal. One should not pick the other basis, Eq.(3.106), whose amplitudes
in Eq.(3.104) are nonessential because specifying them might lead to signals which
are not chirped at all.

The mathematical implementation of the principle of unit-economy to signal pro-
cessing consists of the requirement that one pick an optimal basis to represent the
set of signals under consideration. This means that one pick a subspace of minimal
dimension in order to accomodate these signals.

3.6.2 Irregular Signals and Variable Resolution Analysis

Is it possible to extend the optimal choice of a basis to signals which are much more
irregular than those which are accomodated by a wave packet basis?

Consider the signals accomodated by a seismograph. Two of the most prominent
signals are sudden bursts, such as explosions initiated for the purpose of locating

8The principle of unit-economy [1, 12], also known informally as the “crow epistemology”, is the
principle that stipulates the formation of a new concept

1. when the description of a set of elements becomes too complex,

2. when the elements of the set are used repeatedly, and

3. when the elements of the set require further study.

It is obvious that the last is the most important because that is the nature of cognition, pushing
back the frontier of knowledge.
The principle of unit economy is implemented by a process of conceptualization, which is a method

of expanding man’s consciousness by reducing the number of its content’s units – a systematic means
to an unlimited integration of cognitive data.
The principle of unit-economy forbids the formation of a new concept if that formation is based

on some nonessential property.
The principle of unit-economy is a statement not only about the structure of mathematics, but

also more generally about why one forms concepts in the first place, be they first-order concepts
based on perceptual data (“percepts”), or be they higher-level concepts based on already-formed
concepts.
The principle of unit-economy is a guiding principle that leads us from an unlimited number of

specific units (i.e. members of a class, in our example, signals characterized by a chirp) to a single
new concept (in mathematics also known as an “equivalence class”, in our example, the concept
“chirped signal”). By repeatedly applying this principle to percepts, as well as to the product
of such applications, one can reduce a vast amount of information to a minimal number of units.
These one’s consciousness can readily keep in the forefront of one’s mind, digest them, assimilate
them, manipulate them, and use them without any danger of information overload.
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petroleum reserves, or precursors to a vulcanic eruption, or earth quakes. Then
there is the second type of signals, those which characterize the resonant vibrational
or wave motions initiated by such bursts. It is obvious that the second type is most

t
Figure 3.24: Amplitude profile of a structured pulse

efficiently analyzed using Fourier or wave packet basis functions. However, a burst-
like signal is characterized by variations localized in time. The signal has a finite time
duration. It also has a starting edge with a finite temporal thickness which often
contains rapid variations (“high frequency structure”) as exemplified in Figure 3.24.
Thus under low resolution one would simply measure the amplitude profile of the
main body of a pulse of finite duration. But under higher resolution one would also
measure the high frequency structure which in Figure 3.24 announces the beginning
of that pulse.

Given such a signal, how does one represent it in the most efficient way i.e. in
compliance with the priciple of unit-economy?

3.6.3 Multiresolution Analysis as Hierarchical

The answer is provided by multiresolution analysis (MRA). It provides a simple
hiearchical framework for identifying the properties of a signal, i.e. for taking note
of its existence, for measuring it, for representing it, and for even reproducing it. A
key aspect of this framework is its Hierarchical structure.

At different resolutions the details of a signal generally characterize different phys-
ical aspects of an event. At coarse resolution these details correspond to the larger
overall aspects, the context of an event. At fine resolution these details correspond
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to its distinguishing features. Such a course-to-fine strategy is typical in identifying
an event.

The mathematical formulation of this resolution hiearchy is developed in four
steps.

Central Approximation Space

First of all, construct a central approximation space V0, which is a subspace of
the space of square-integrable functions L2(−∞,∞), which (a) is spanned by a
translation-generated (a.k.a. “Riesz”) basis

V0 = span{φ(t− l) : ℓ = 0,±1, · · · }
and (b) is orthonormal:

∫ ∞

−∞
φ(t− k)φ(t− ℓ) dt = δkℓ . (3.107)

The existence of such a basis is equivalent to the statement that V0 is closed under
integral shifts of its elements, i.e.

f(t) ∈ V0 ⇒ f(t− ℓ) ∈ V0 whenever ℓ = integer .

The function φ(t), known as a scaling function (a.k.a. “father wavelet”) can be any
square integrable function as long as it satisfies the integer-shifted orthonormality
condition, Eq.(3.107).

A particular example of such a basis is the set of wave packets {Qε
0ℓ(t)}, Eq.(3.93)

on page 188:

Qε
0ℓ(t) =

√

1

2πε

∫ ε/2

−ε/2
e−2πiℓω/ε eiωtdω (3.108)

≡ φ

(

t− 2πℓ

ε

)

For this basis the scaling function is obtained by setting ε = 2π and letting ℓ = 0:

φ(t) =
sin πt

πt
. (3.109)

This scaling function happens to be one whose Fourier transform has compact sup-
port and is piecewise constant:

φ̂(ω) =







√

1

2π
ω ∈ [−π, π]

0 otherwise
.
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The central approximation space V0 is spanned by the orthonormal basis

φ(t− ℓ) = sin π(t− ℓ)
π(t− ℓ) ℓ = 0,±1, · · · . (3.110)

It is the vector space of “band-limited” functions, i.e. functions whose Fourier trans-
forms have compact support on the frequency interval [−π, π]. The basis for this
space is generated by Eq.(3.109) and it is called the Shannon basis.
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Figure 3.25: Partitioning of phase space by a collection hierarchical sets of band
limited orthonormal basis functions. The heavy-lined rectangles are the phase space
cells of low resolution wave packets; they span the k = 1st resolution vector space
V1. The shaded rectangles are those of the next (i.e. more refined) resolution
wave packets; they span the k = 0th resolution vector space V0. The thin and tall
unshaded rectangles are those of the wave packets of still higher resolution. They
span the k = −1st resolution vector spaceV−1. The unshaded rectangle in the middle
is the phase space cell of the “father wavelet”, the scaling function in Eq.(3.109). It
yields (by compression and translation) all basis functions for all the vector spaces
Vk.

Translation Followed by Compression

Second, rescale the given domain of the integer-shifted basis elements φ(t− ℓ). This
rescaling yields a different basis for a different, but related, vector space. For the
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Shannon basis this is achieved by again using Eq.(3.108), but by first setting

ε = 2−kε0 k = integer

before letting ε0 = 2π. The result is

√
2−k φ(2−kt− ℓ) =

√
2−k

sin π(2−kt− ℓ)
π(2−kt− ℓ) . (3.111)

For each integer k these functions form an orthonormal basis for the space of those
band-limited functions, whose Fourier domain is restricted to the frequency band
[−π2−k, π2−k]. The orthonormality is guaranted by the fact that these functions are
derived from the set of orthonormal wave packets P0ℓ(t). The vector space

span
{√

2−k φ(2−kt− ℓ) : ℓ = 0,±1, · · ·
}

≡ Vk (3.112)

is called the kth resolution space. For fixed k these basis elements form the kth res-
olution Shannon basis, more simply the kth Shannon basis. They have the common
phase space shape

∆t = 2k

∆ω =
2π

2k

∆t∆ω = 2π .

These shapes are illustrated in Figure 3.25 for the vector spaces Vk, k = −1, 0, 1.
Relative to the phase space cells of V0, k > 0 implies that the phase space cells
get dilated in the time domain and compressed in the frequency domain in order to
comply with ∆t∆ω = 2π.

Also note that increasing k designates increasing roughness, i.e, lower resolution.
Thus increasing resolutions are labelled by decreasing integers. This labelling, which
at first sight is backward, highlights the fact that the low resolution features of a
signal are generally more significant than those of high resolution.

Resolution Spaces as Hierarchical

Third, take note of the hierarchical subspace structure of the resolution spaces
Vk, k = · · · ,−1, 0, 1, · · · . The Fourier transform of the basis elements, Eq.(3.111),
for Vk have compact support confined to [−π2−k, π2−k]. As was shown in Part (c)
of Ex. 1.5.3 on page 109, these basis elements form a complete set. This means that
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f ∈ Vk if and only if its Fourier transform has support confined to [−π2−k, π2−k].
Next consider the vector space Vk+1. The Fourier transform of its basis elements
have support confined to

[
−π2−(k+1), π2−(k+1)

]
⊂
[
−π2−k, π2−k

]

In fact, every element of Vk+1 enjoys this property. This implies that such elements
also belong to Vk. Thus one has

f ∈ Vk+1 ⇒ f ∈ Vk .

In other words, Vk+1 is a subspace of Vk:

Vk+1 ⊂ Vk .

More explicitly, this inclusion property says that

{0} ⊂ · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · ⊂ L2(−∞,∞) .

Such a hierarchy of increasing subspaces is called a multiscale analysis of the space of
square-integrable functions. A multiscale analysis is always derived from (i.e. based
on) a scaling function φ. In our illustrative example this scaling function (“father
function”) is Shannon’s sinc function, Eq.(3.109).

Resolution Analysis as a Decomposition into Subspaces

Fourth, decompose each resolution subspace Vk into its subsequent resolution sub-
space Vk+1 and its corresponding orthogonal complement, the subspace of details
Ok+1:

Vk = Vk+1 ⊕Ok+1 (3.113)

Given the fact that Vk is spanned by the kth resolution basis, Eq.(3.112), the mean-
ing of such a decomposition consists of exhibiting an alternative o.n. basis part of
whose elements span Vk+1, while the remainder spans its orthogonal complement.
This decomposition is achieved as follows:
Recall that every square integrable function f(t) can be approximated as an optimal
element inVk. This optimal approximation, which with Bessel’s Theorem on page 85
in Section 2.5.2 was identified as the least squares approximation of f(t) in the
subspace Vk, is uniquely expressed in terms of any orthonormal basis. Following
Eq.(2.15), and using the o.n. basis, Eq.(3.111), one has the projection of f(t) onto
Vk:

PVk
f(t) =

∞∑

ℓ=−∞
2−kφ(2−kt− ℓ) 〈φ(2−ku− ℓ), f(u)〉 (3.114)
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This is the least squares approximation of f(t) based on the subspace Vk, or more
briefly the Vk-least squares approximation. The next (less refined) approximation is
the projection of f(t) onto the subspace Vk+1 ⊂ Vk:

PVk+1
f(t) =

∞∑

ℓ=−∞
2−(k+1)φ(2−(k+1)t− ℓ) 〈φ(2−(k+1)u− ℓ), f(u)〉 . (3.115)

Here PVk
and PVk+1

are the projection operators onto Vk and Vk+1 respectively.
Let us compare the two o.n. bases for the two resolution spaces Vk and Vk+1. We

shall presently see that they are two families of o.n. wave packets identified already
on page 188 by Eq.(3.93):

Qε
0ℓ(t) =







Q2ε′

0ℓ (t) ε = 2ε′

Qε′

0ℓ(t) ε = ε′
.

Here nad throughout the ensuing development we always let

ε′ = 2−k, k = 0,±1,±2, · · · .

Using Eqs.(3.111) and (3.109) one finds that the Vk-family members are

Vk :
√
2−k φ(2−kt− ℓ) =

√
2−k

1

2π

∫ π

−π
eiω(2

−kt−ℓ)dω

=
1√
2π

1√
2ε′

∫ ε′

−ε′
e−2πiℓω/2ε

′

eiωtdω

= Q2ε′

0ℓ (t) , (3.116)

and

∆t =
2π

2ε′
= 2k

∆ω = 2ε′ =
2π

2k
.

By contrast, the Vk+1-family members, which are twice as wide in the temporal
domain and twice as narrow in the frequency domain, are

Vk+1 :
√
2−(k+1) φ(2−(k+1)t− ℓ) =

√
2−(k+1)

1

2π

∫ π

−π
eiω(t2

−(k+1)−ℓ)dω

=
1√
2π

1√
ε′

∫ ε′/2

−ε′/2
e−2πiℓω/ε

′

eiωtdω

= Qε′

0ℓ(t) (3.117)
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and

∆t =
2π

ε′
= 2× 2k

∆ω = ε′ =
1

2
× 2π

2k
.

These two bases are represented by two overlapping arrays of phase space cells, as

Vk
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Figure 3.26: Partitioning of phase space by a nested set of band limited orthonormal
basis functions. The tall thin rectangles and the shaded rectangles are the phasespace
cells of the basis functions which span Vk and Vk+1 respectively. These two sets of
phase space cells are reproduced respectively on the l.h.s. and r.h.s. of Figure 3.27.

in Figure 3.26. The phase space cells referring to the Vk-basis are taller and skinnier
than those referring to Vk+1. Furthermore, the phase space domain of the Vk+1-
basis is a horizontal strip which is contained entirely within that of the Vk-basis.
Consequently, the phase space domain of the Vk-basis gets partitioned into three
mutually exclusive and jointly exhaustive domains:

• the negative “band pass” frequency strip −ε′ < ω < −ε
′

2
,

• the strip −ε
′

2
< ω <

ε′

2
generated by the Vk+1-basis, and

• The positive “band pass” frequency strip
ε′

2
< ω < ε′.
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The mutual exclusivity of these three strips, together with the fact that their
union equals the strip generated by the Vk-basis, implies that Vk is spanned by two
fundamental bases. Besides the one given by Eq.(3.116),

Vk = span{Q2ε′

0ℓ (t) : ℓ = 0,±1, · · · } ,
there also is

Vk = span {Qε′

0ℓ(t) : ℓ = 0,±1, · · · } ∪

{P ε′/2
1ℓ (t) : ℓ = 0,±1, · · · } ∪ {P ε′/2

−2 ℓ (t) : ℓ = 0,±1, · · · } .
As one can see from Figure 3.27, this corresponds to the union of the three strips
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Figure 3.27: Two alternative partitionings of the same phase space domain of Vk.
The three different horizontal strips in the right hand partitioning refer to the three
orthogonal subspaces O+

k+1, Vk+1, and O−k+1.

mentioned above. Here the P ’s are the familiar o.n. wave packets defined by
Eq.(3.81):

P
ε′/2
1ℓ (t) =

1√
2π

1
√

ε′/2

∫ ε′

ε′/2

e−2πiℓω/(ε
′/2)eiωtdω (3.118)

P
ε′/2
−2 ℓ (t) =

1√
2π

1
√

ε′/2

−ε′/2∫

−ε′

e−2πiℓω/(ε
′/2)eiωtdω , (3.119)
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and

∆t =
2π

ε′/2
= 2× 2(k+1)

∆ω = ε′/2 =
1

2
× 2π

2(k+1)

for both the positive and negative frequency wave packets. Due to the mutual or-
thogonality of all the P ’s and Q’s combined, every band limited function f ∈ Vk is a
unique linear combination of these elements. Thus we have identified two alternative
bases of Vk. The first one consists of the elements exhibited by Eq.(3.116). The
second one consists of the elements exhibited by Eqs.(3.117)-(3.119).

This fact is reexpressed by the statement that Vk is the direct sum of the sub-
spaces

O+
k+1 ≡ span{P ε′/2

1ℓ (t) : ℓ = 0,±1, · · · } (3.120)

Vk+1 ≡ span{Qε′

0ℓ(t) : ℓ = 0,±1, · · · } (3.121)

O−k+1 ≡ span{P ε′/2
−2 ℓ (t) : ℓ = 0,±1, · · · } , (3.122)

or, symbolically, that

Vk = Vk+1 ⊕O+
k+1 ⊕O−k+1 ,

which is the same as Eq.(3.113), provided one sets

Ok+1 = O+
k+1 ⊕O−k+1 ,

the direct sum of the positive and negative frequency subspaces othogonal to the
(k + 1)st resolution space Vk+1.

3.6.4 Unit-Economy via the Two Parent Wavelets

It is quite evident that, by itself, the introduction of the translation-generated basis
elements (the P ’s and the Q’s) constitutes a proliferation of concepts: their sheer
number prevents them from being automatically accessible for further study; one’s
mind run’s the danger of being subjected to information overload. Such a state of
affairs motivates an inquiry as to the applicability of the principle of unit-economy9.
Can one, by introducing simplifying concepts, reduce this number by consolidating
these P ’s and the Q’s into one or two concepts?

9As identified in the footnote on Page 198.
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An affirmative answer to this question is based on the introduction of two “mother
wavelet” for all the P ’s and a “father wavelet” for all the Q’s.

Recall that the Q’s have already been consolidated by Eqs.(3.108), (3.109), and
(3.117) into the single scaling function, the “father wavelet”

φ(t) =
sin πt

πt
. (3.123)

Thus by applying to this wavelet a translation, a compression, and an amplification,
one obtains

√
2−(k+1) φ(2−(k+1)t− ℓ) = Qε′

0ℓ(t) with ε′ = 2π 2−(k+1) .

In other words,

Vk+1 = span{
√
2−(k+1) φ(2−(k+1)t− ℓ) : ℓ = 0,±1,±2, · · · } .

The successful application of the principle of unit-economy to the basis of Vk+1 can
be extended to the bases of O±k+1 in an analogous manner. First of all, one observes
that the basis elements of O+

k+1, Eq.(3.118), are precisely the positive frequency
wavelets W+

k+1 ℓ(t), Eq.(3.94) with k → k + 1, provided one sets ε0 = π:

P
ε′/2
1ℓ (t) = W+

k+1 ℓ(t) |ε0=π
1
= W+

k+2 ℓ(t) |ε0=2π

2
=
√
2−(k+2) ψ+(2−(k+2)t− ℓ) . (3.124)

Similarly one finds that the basis elements of O−k+1, Eq.(3.119), are precisely the
negative frequency wavelets W−

k+1 ℓ(t), Eq.(3.99) with k → k + 1,

P
ε′/2
−2 ℓ (t) = W−

k+1 ℓ(t) |ε0=π
1
= W−

k+2 ℓ(t) |ε0=2π

2
=
√
2−(k+2) ψ−(2−(k+2)t− ℓ) . (3.125)

Equality 1 follows from Eq.(3.100), while 2 follows from Eq.(3.101), and the positive
(resp. negative) frequency mother wavelets ψ+ (resp. ψ−) are given by

ψ±(t) = e±3iπt
sin πt

πt
. (3.126)

They are merely complex conjugates of each other. Substitute Eqs.(3.124) and
(3.125) into Eqs.(3.120) and (3.122). The result,

O+
k+1 = span{

√
2−(k+2) ψ+(2−(k+2)t− ℓ) : ℓ = 0,±1,±2, · · · }

O−k+1 = span{
√
2−(k+2) ψ−(2−(k+2)t− ℓ) : ℓ = 0,±1,±2, · · · } ,
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highlights the fact that the two orthogonal subspaces O+
k+1 and O−k+1 are spanned

by basis vectors which are generated by the positive frequency mother wavelet and
its complex conjugate respectively.

Thus one has the result that, for every integer k, each of the wavelets ψ+, ψ− and
φ procreates its respective vector space O+

k+1, O
−
k+1, and Vk+1. The application of

this fact to their direct sum

Vk = Vk+1 ⊕O+
k+1 ⊕O−k+1 , (3.127)

is as follows: Let f be any square-integrable function, and let PVk
f , Eq.(3.114), be

its Vk-least squares approximation. Then Eq.(3.127) expresses the fact that PVk
f

decomposes uniquely into three parts,

PVk
f = PVk+1

f + P
O

+
k+1
f + P

O
−

k+1
f . (3.128)

They are

PVk+1
f(t) =

∑

ℓ

2−(k+1)φ(2−(k+1)t− ℓ)〈φ(2−(k+1)u− ℓ), f(u)〉 (3.129)

P
O

+
k+1
f(t) =

∑

ℓ

2−(k+2)ψ+(2−(k+2)t− ℓ)〈ψ+(2−(k+1)u− ℓ), f(u)〉

P
O

−

k+1
f(t) =

∑

ℓ

2−(k+2)ψ−(2−(k+2)t− ℓ)〈ψ−(2−(k+1)u− ℓ), f(u)〉 .

They crystalize, within the context of resolution 2−k,

• the essential degrees of freedom of the space of square-integrable functions
(a.k.a. signals) and

• the detail degrees of freedom relative to the next (lower) resolution 2−(k+1).

The representations of f at resolutions 2−k and 2−(k+1) are given by

PVk
f(t) =

∑

ℓ

2−kφ(2−kt− ℓ)〈φ(2−ku− ℓ), f(u)〉 (3.130)

and Eq.(3.129) respectively. The basis elements

φ(2−kt− ℓ) ℓ = 0,±1, · · ·

and

φ(2−(k+1)t− ℓ) ℓ = 0,±1, · · ·
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are the essential degrees of freedom of f within the context of resolutions 2−k and
2−(k+1) respectively. The associated coefficients 〈· · · , · · · 〉 are the corresponding
amplitudes. We say that these degrees of freedom are independent – there is no
redundancy – because the basis elements for each resolution space Vk are mutually
orthogonal.

When one compares a function f at resolutions 2−k and 2−(k+1), then the differ-
ence

PVk
f − PVk+1

f = P
O

+
k+1
f + P

O
−

k+1
f ,

is called the detail of f relative to the next resolution 2−(k+1). The basis elements

ψ(2−(k+1)t− ℓ) ℓ = 0,±1, · · ·

are the corresponding detail degrees of freedom. They are independent of the essential
degrees of freedom at resolution 2−(k+1) but not so at resolution 2−k. These detail
degrees of freedom span the vector space

Ok+1 = O+
k+1 ⊕O−k+1 ,

which is the orthogonal complement of Vk+1 in Vk. The relation between these
subspaces is depicted in Figure 3.28 below.

· · · Vk−1 → Vk → Vk+1 · · ·
ց ⊕ ց ⊕

Ok Ok+1

Figure 3.28: Hierarchical relation between the resolution subspaces and their orthog-
onal detail subspaces. The arrows are orthogonal projections onto the subspaces.

It is difficult to overstate the importance of the principle of unit-economy. Its
application is implicit and is taken for granted through out any theoretical devel-
opment, ours in particular. However, there are situations where it is instructive to
highlight particularly significant instances of its application. A case in point is the
introduction of the scaling function, the father wavelet φ(t). By this process an en-
tire aggregate of concepts has been condensed into a single new concept, a multiscale
analysis (MSA), with a scaling function φ(t) residing at its core. The economy in
the number of concepts achieved by this condensation is a tribute to this principle.
It demands that any new concept be defined in terms of essential properties.
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The gist of the last two pages consisted of the task of establishing the two alter-
native bases of the resolution space, Eq.(3.127), in terms of a single scaling function,
Eq.(3.123), and the two “mother wavelets”, Eq.(3.126). Furthermore, the develop-
ment was based on a scaling function having a rather specialized form, the Shannon
wavelet sin πt/πt. One therefore wonders whether the benefits to be gained from such
a highly specialized activity are really worth the effort expended. That the answer
is “yes” is due to the fact that the development identifies a wider principle construc-
tively: For every MSA there is a scaling function φ(t), and for every scaling function
there exists a MSA. The assumed specialized form, Eq.(3.126), is non-essential. The
identification, MSA ↔ φ(t), is captured by means of the following definition:
Definition (Multiscale Resolution Analysis)

An increasing sequence of Hilbert spaces

{Vk : {0} ⊂ · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · ⊂ L2(−∞,∞)} , (3.131)

is said to be a multiscale analysis of the space of square integrable functions L2(−∞,∞)
if

1. (the Cauchy completion of) their union is that space of square integrable func-
tions:

∞⋃

k=−∞
Vk = L2(−∞,∞) , (3.132)

2. their intersection is the zero function:

∞⋂

k=−∞
Vk = {0} , (3.133)

3. every resolution space Vk is related to a central (i.e. reference) space V0 by a
dilation of its elements:

f(t) ∈ Vk ⇐⇒ f(2kt) ∈ V0 , (3.134)

4. there exists a square-integrable function φ such that its integer translates form
an orthonormal basis for the central approximation space V0:

V0 = span{φ(t− ℓ) : ℓ = 0,±1, · · · } (3.135)

with
∞∫

−∞

φ(u− ℓ)φ(u− ℓ′)du = δℓℓ′ . (3.136)
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Thus a multiscale analysis (MSA) is a type of hierarchy having properties 1-4. There
are many other hierarchies that have only properties 1-2. But only MSA’s are char-
acterized by property 3.

This property is the essential (distinguishing) characteristic of a MSA. It says
that, in order for a hierarchy of linear spaces to be a MSA, each one of these spaces
must be a scaled version of a reference space V0, the central approximation space. By
starting with a function in V0, and applying iteratively scaling operations, compres-
sion (×2) or dilation (×2−1), to its argument, one moves up or down this hierarchy
of approximation spaces.

The purpose of Property 4 is not to define what a MSA is. Instead, its role is to
have the scaling function φ(t) serve as a unique identifier of the central approximation
spaceV0, and hence, by Property 3, of a particular MSA. Thus Property 4 establishes
a unique correspondence between the set of MSA’s and the set of scaling functions.

The unique identification of V0 is achieved by having the discrete translates
of φ(t) form an orthonormal basis of V0. That translation process is depicted in
Figure 3.17 on page 177. The ablity of φ(t) to serve as a unique identifier for the
whole MSA becomes evident when one applies Property 3 to this functions. One
finds that the set of translated and scaled functions

{
√
2−k φ(2−kt− ℓ) : l = 0,±1, · · · }

form o.n. bases for the respective approximation spaces Vk, and hence form a basis
for the whole MSA. This means that every MSA is distinguished from every other
MSA by means of its scaling function φ(t).

Consequently, the definition of a MSA by properties 1-4 not only defines what a
MSA is, but also establishes a one-to-one correspondence between the set of MSA’s
and the set of scaling functions.

The translates of the scaling function need not be orthonormal. In that case the
orthonormality condition, Eq.(3.136), gets replaced by the condition that {φ(t− ℓ)}
form a Riesz basis, i.e. that

A
∞∑

ℓ=−∞
|cℓ|2 ≤ ‖

∞∑

ℓ=−∞
cℓφ(t− ℓ)‖2 ≤ B

∞∑

ℓ=−∞
|cℓ|2 .

Here A,B > 0 are positive constants, {cℓ} is a square-summable sequence, and
‖ · · · ‖ is the L2-norm. In that circumstance there exists a theorem due to Mallat
which guarantees that the Riesz basis can be orthonormalized by an appropriate
renormalization procedure in the Fourier domain of φ(t).
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Exercise 3.6.1 (IMPROVED FIDELITY BY AUGMENTATION)
SHOW that

∞⋃

k=−∞
Vk = L2(−∞,∞)⇐⇒ lim

k→−∞
‖PVk

f − f‖ = 0 ,

where PVk
is the orthogonal projection onto Vk and ‖ · · · ‖ is the L2-norm.

Exercise 3.6.2 (LOSS OF FIDELITY BY CURTAILMENT)
SHOW that

∞⋂

k=−∞
Vk = {0} ⇐⇒ lim

k→∞
‖PVk

f‖ = 0 .

Exercise 3.6.3 (TRANSLATION INVARIANT FUNCTION SPACES)
(a) SHOW that V0 is discrete translation invariant, i.e. that

f(t) ∈ V0 ⇐⇒ f(t− ℓ) ∈ V0 where ℓ is an integer.

(b) SHOW that Vk is 2k-shift invariant, in particular that

f(t) ∈ Vk ⇐⇒ f(t− 2kℓ) ∈ Vk .

3.6.5 Multiscale Analysis as a Method of Measurement

Multiscale analysis introduces a breakthrough in the measurement of signals. It
quantifies not only the location of characterisic features within a given signal (see
Figure 3.24 on page 199), but, like a telescope with variable and calibrated zoom, it
also quantifies their amplitudes in an optimally efficient way. Measuring rods capable
of this dual capability are depicted schematically in Figure 3.29 on page 215.

Such an application of a multiscale analysis to any given signal always requires
two steps:

1. specifying the scaling function, the standard of measurement and

2. measuring, and hence representing, the signal relative to the basis elements
generated from that scaling function.

Let us consign the task of specifying the scaling function to the next subsection.
Thus we assume that a choice of a scaling function has been made, and we endeavor
to measure the given signal, say f(t). This means that we find the coefficients which
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represent the kth approximation of f , i.e. the least squares approximation of f in
the subspace Vk, Eq.(3.130). This array of coefficients, the array of inner products

[PVk
f ] = {〈

√
2−kφ(2−ku− ℓ), f(u)〉 : ℓ = 0,±1, · · · } ,

is called the discrete approximation of f at resolution 2−k, and it constitutes the
result of the measuring process. It consists of the inner products

〈φ(2−ku− ℓ), f(u)〉 =
∞∫

−∞

φ
(
−2−k(2kℓ− u)

)
f(u)du

=
[
f(u) ∗ φ(−2−ku)

]
(2kℓ) ,

which is the convolution integral evaluated at the equally spaced points 2kℓ. These
values of the convolution integral are the output resulting from the signal f(t) being
passed through the filter φ(−2−ku). This is because in the Fourier domain the
convolution integral is the product of two Fourier transforms. Thus one finds that
the discrete approximation consists of the set of sampled values of the given signal
after it has passed through a filter which is expressed by the Fourier integral

∞∫

−∞

φ(−2−ku)e
−iωu
√
2π

du .

3.6.6 Multiscale Analysis vs Multiresolution Analysis: MSA
or MRA?

The two names “multiscale analysis” (=MSA) and “multiresolution analysis”(=MRA)
refer to the same concept. Both are characterized by the discrete set of powers of
the number 2,

2k, k = 0,±1,±2, · · · ,
and the corresponding set of orthonormal basis functions

{
√
2−k φ(2−kt− ℓ) : ℓ = 0,±1, · · · }, k = 0,±1,±2, · · · .

The difference is that MRA and MSA highlight different aspects of the same thing.
As k increases, the scale increases but the resolution decreases. This is like stepping
away from a picture.
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Consider the array of functions

φ(2−kt− ℓ) = φ

(
t− 2kℓ

2k

)

, ℓ = · · · ,−2,−1, 0, 1, 2, · · · .

This array is a set of identical localized graphs, each one displaced by the amount 2k

from its nearest neighbor. Thus each of these graphs serves as marker on the real line
and 2k is the distance between successive makers. In brief, the real line equipped with
this set of markers constitutes a new kind of measuring rod for measuring signals. The
integer k specifies the nature – the resolution – of this measuring rod. Every integral
increase in k increases (decreases) the scale for performing these mesurements, and
hence decreases (increases) the resolution of the measuring rod. Figure 3.29 depicts
several such measuring rods.

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

−−−− t −−−>

Figure 3.29: Nine different measuring rods. Each is graduated with its own set of
markers, i.e. shifted scaling functions φ(2−k(t−m)), ranging from a set of very high
resolution (29 : k = −9) markers, through a set of medium resolution (25 : k = −5),
to the set of lowest resolution (21 : k = −1) markers. A high resolution measuring rod
accomodates additional high resolution markers, which are, however, not depicted in
this figure. The markers of each rod are uniformly spaced, as they must. The novelty
of these rods is that each marker has the mathematically precise internal structure of
a wavepacket. This novelty permits one to measure not only the locations of specific
features in a given signal but also their amplitudes.
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3.6.7 The Pyramid Algorithm

The MSA measuring process starts with the acquisition of a signal as an element in
the central (“fiducial”, “reference”) vector space V0. This means that a signal

f(t) =
∞∑

ℓ=−∞
c0ℓφ(t− ℓ) ∈ V0

is acquired in the form of a square summable sequence of numbers

{c0ℓ} = {〈φ(u− ℓ), f(u)〉} , ℓ = 0,±1, · · ·

The problem is to determine the representation of the signal in each of the subsequent
(“lower resolution”) approximation spaces V0 ⊃ V1 ⊃ V2 ⊃ · · · , i.e. find

{c1ℓ}, {c2ℓ}, · · ·

such that ∞∑

ℓ=−∞
ckℓφ(t− ℓ) = PVk

f(t)

is the least squares projection of f(t) onto Vk for k = 1, 2, · · · . This turns out to be
an iterative process which terminates after a finite number of steps.

The key observation which makes this process so powerful and appealing is that
the relationship between two adjacent resolution spaces, say Vk and Vk+1, is inde-
pendent of the order k.

Given the fact that {Vk : k = 0,±1, · · · } is a MSA and that φ(t) is the corre-
sponding scaling function, we know that

• for fixed integer k

{
√
2−k φ(2−kt− ℓ) : l = 0,±1, · · · }

is an o.n. basis for Vk, and that

• each of the basis elements
√
2−(k+1) φ(2−(k+1)t − ℓ′) for Vk+1 also belongs to

Vk.

Consequently, each such basis element can be expanded uniquely in terms of the
Vk-basis

φ(2−(k+1)t− ℓ′) =
∞∑

ℓ=−∞
φ(2−kt− ℓ) 2−k〈φ(2−ku− ℓ), φ(2−(k+1)u− ℓ′)〉 (3.137)
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By changing variables in the inner product integral one finds that

2−k〈φ(2−ku− ℓ), φ(2−(k+1)u− ℓ′)〉 ≡ 2−k
∞∫

−∞

φ(2−ku− ℓ)φ(2−(k+1)u− ℓ′)du

=

∞∫

−∞

φ(u− ℓ)φ(2−1u− ℓ′)du

=

∞∫

−∞

φ (u− (ℓ− 2ℓ′))φ(2−1u)du

≡
√
2 hℓ−2ℓ′

Exercise 3.6.4 (ORTHONORMALITY)
a) Point out why this inner product is the (ℓ, ℓ′)th entry of the

√
2-multiple of a unitary

matrix, which is independent of k.

b) Show that
∑∞

ℓ=−∞ hℓhℓ−2ℓ′ = δ0ℓ′ .

When one computes the (complex) inner product of f with both sides of Eq.(3.137),
one obtains

〈
√
2−(k+1)φ(2−(k+1)u− ℓ′), f(u)〉

︸ ︷︷ ︸

ck+1
ℓ′

=
∞∑

ℓ=−∞
〈
√
2−(k+1)φ(2−(k+1)u− ℓ′),

√
2−kφ(2−ku− ℓ)〉

× 〈
√
2−kφ(2−ku− ℓ′), f(u)〉

=
∞∑

ℓ=−∞
〈
√
2−kφ(2−ku− ℓ), f(u)〉

︸ ︷︷ ︸

ckℓ

hℓ−2ℓ′

Thus, by setting hℓ−2ℓ′ ≡ h̃2ℓ′−ℓ one has

ck+1
ℓ′ =

∞∑

ℓ=−∞
h̃2ℓ′−ℓ c

k
ℓ (3.138)
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The sum on the r.h.s. is the discrete convolution of {h̃ℓ} and {ckℓ}. It shows that the
discrete approximation

{ck+1
ℓ } = {〈

√
2−(k+1)φ(2−(k+1)u− ℓ), f(u)〉 : ℓ = 0,±1, · · · }

of f can be computed from {ckℓ} by convolving it with {h̃ℓ}, and then keeping only
every other sample from the result. Thus, if one starts out with a discrete approx-
imation {ckℓ} which represents f by means of a finite number of samples, then the
next discrete approximation is represented by only half as many samples. After a
sufficient number of such iterative steps the process stops because one has run out
of samples. All successive discrete approximations of f are merely sequences of ze-
ros. This iterative algorithm is known as the pyramid algorithm first introduced by
Stephane Mallat [10]. It is a rather efficient algorithm because it terminates after
only

log2(# of sampled values of f) .

iterations.

3.6.8 The Requirement of Commensurability

The problem of specifying a scaling function is the problem of choosing an appropriate
standard.

A standard has to be commensurable with the things being measured. In fact,
it has to be an element of the set of things being measured. Thus, if one wishes
to measure the shape of functions which are, say, piecewise constant, then the scal-
ing function should have the same property. If the functions to be measured have
compact support, then the scaling function should also have compact support. If
the functions to be measured have continuous derivatives, then the scaling function
better have that property also. Thus the requirement of commensurability dictates
the choice of an appropriate standard – an appropriate scaling function.

The Scaling Function as a MSA Identifier

Once a scaling function has been chosen and constructed, the corresponding MSA is
uniquely determined. However, not all square-integrable functions qualify as scaling
functions. In fact, to qualify, the definition of a MSA on page 211 implies that a
scaling function must satisfy two key properties. They are (i) Eq.(3.136),

∞∫

−∞

φ(u− ℓ′)φ(u− ℓ′′)du = δℓ′ℓ′′ (3.139)
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and (ii) Eq.(3.137) on page 216, or equivalently with k = −1

φ(t) =
√
2
∞∑

−∞
hℓφ(2t− ℓ) . (3.140)

where

hℓ = 〈φ(2t− ℓ), φ(u− ℓ)〉 .
The boxed is known as the scaling equation for the scaling function φ(t). Both
Eqs.(3.139) and (3.140) put strong restrictions on the collection of square-integrable
functions. The first constitutes a discrete infinitude of constraints and is equivalent
to

∞∫

−∞

φ(u)φ(u− ℓ)du = δ0ℓ .

The second is a statement about the dilation operator D,

L2 D−→ L2

f(t) ∼❀ Df(t) =
√
2−1f(2−1t) .

That second constraint, Eq.(3.140), demands that, even though D changes the shape
of the graph of f , the resulting function still lies in the subspace

V0 = span{φ(t− ℓ) : ℓ = 0,±1, · · · }

spanned by the discretely tranlated functions φ(t− ℓ). In other words, the function
φ(t) is such that the subspace V0 generated from this function is invariant under D.

Both boxed equations put severe restrictions on the collection of square-integrable
functions, but these restrictions are not strong enough to single out a unique func-
tion. Instead, they narrow the field of candidates to those L2-functions which qualify
as scaling functions for MSAs. The nature of these restrictions becomes more trans-
parent if one expresses them in the Fourier domain, instead of the given domain.
Thus by introducing the Fourier transform of φ(t),

1√
2π

∞∫

−∞

e−iωtφ(t) dt = φ̂(ω) ,
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one finds for the first equation that

δ0ℓ =

∞∫

−∞

φ(t)φ(t− ℓ)dt

=

∞∫

−∞

φ̂(ω)φ̂(ω)eiωℓdω

=

2π∫

0

∞∑

n=−∞

∣
∣
∣φ̂(ω + 2πn

∣
∣
∣

2

eiωℓdω

This equation says that the sum of the squared magnitude is a function all of whose
Fourier coefficients vanish – except for the one corresponding to ℓ = 0. Such a
function is a constant, namely

∞∑

n=−∞

∣
∣
∣φ̂(ω + 2πn)

∣
∣
∣

2

=
1

2π
. (3.141)

This condition on the Fourier transform of φ is Mallat’s necessary and suffient con-
dition for the discrete translates of φ(t) to form an o.n. basis for V0.

In the Fourier domain the second equation, the scaling equation (3.140), has a
simple form. Taking the Fourier transform of the equivalent equation

φ

(
t

2

)

=
√
2
∞∑

−∞
hℓφ(t− ℓ) ,

one finds

φ̂(2ω) = H(ω)φ̂(ω) , (3.142)

where

H(ω) =

√
2

2

∞∑

ℓ=−∞
hℓe

iωℓ

is a 2π-periodic function of ω:

H(ω + 2π) = H(ω) .

Equation (3.142) is a linear equation. It expresses in the Fourier domain the rela-
tion between the input φ̂(ω) and the output φ̂(2ω) of a time-invariant linear system.
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In the theory of such systems the function H(ω) is therefore known as a filtering
function or filter in brief. Its periodicity is an important but fairly mild restric-
tion on H(ω). That condition can be strengthened considerably by incorporating
the Fourier normalization condition, Eq.(3.141) into Eq.(3.142). One does this by
inserting Eq.(3.142) into Eq.(3.141). The result is that H(ω) satisfy the additional
normalization condition

|H(ω)|2 + |H(ω + π)|2 = 1 . (3.143)

Thus the scaling equation is a linear equation, and to qualify as a scaling function,
its Fourier transform must satisfy a simple linear equation, Eq.(3.142), having a
normalized periodic coefficient. The nature of a particular scaling function, and
hence the nature of the corresponding MSA, is controlled by the nature of that
normalized coefficient function 2π-periodic on the Fourier domain.

Exercise 3.6.5 (FUNCTIONAL CONSTRAINT ON THE FILTER FUNCTION)
Verify the validity of the functional constraint, Eq.(3.143).

Exercise 3.6.6 (THE SCALING EQUATION SOLVED)
Consider a function φ(t) having the property

∣
∣
∣
∣
∣
∣

∞∫

−∞

φ(t)dt

∣
∣
∣
∣
∣
∣

6= 0 .

Find the solution to the scaling equation, Eq.(3.142).

Answer: φ̂(ω) = φ̂(0)
∞∏

k=1

H
( ω

2k

)

Exercise 3.6.7 (TWO SOLUTIONS TO THE SCALING EQUATION)
Let φ+(t) be a solution to the scaling equation

φ(t) =
√
2
∞∑

−∞
hℓφ(2t− ℓ) .

a) Point out why

φ̂−(ω) =

{
φ̂+(ω) ω ≥ 0

−φ̂+(ω) ω < 0

is the Fourier transform of a second independent solution to the above scaling equation.
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b) Show that φ+(t) and φ−(t) are orthogonal,

∞∫

−∞

φ
+
(t)φ−(t)dt = 0 ,

whenever (i) φ(t) is a real function or whenever (ii) its Fourier transform is an even function
of ω.

3.6.9 Wavelet Analysis

The task of identifying the properties of an acquired signal starts with its given
representation as an element in the reference (i.e. fiducial, central) representation
space V0. One singles out the large overall features by projecting it onto the next
subspace V1. This projection process suppresses the finer details of the signal. They
are no longer present when the signal is represented as an element of V1. Using the
pyramid algorithm one repeats this process iteratively. In this process one moves
from the resolution 2−k of Vk to the lower resolution 2−(k+1) of Vk+1 ⊂ Vk.

To keep track of the finer details suppressed by this process, one introduces Ok+1,
the orthogonal complement of Vk+1 in Vk:

Vk+1⊥Ok+1 .

Thus any signal f represented in Vk is the unique sum of the signal represented in
Vk+1 and its suppressed detail which lies in Ok+1:

PVk
f = PVk+1

f + POk+1
f .

In brief,
Vk = Vk+1 ⊕Ok+1 .

The o.n. bases for Vk and Vk+1, and hence the representations of the signal
f in these spaces, are known and expressed in terms of the scaling function φ(t).
These bases determine a unique basis for Ok whose purpose is to keep track of
the suppressed POk+1

f of the signal f . The process of constructing the Ok+1-basis
resembles that for Vk and Vk+1. One starts with a square-integrable function ψ(t),
the “mother wavelet”. By applying translations and dilations to it, one obtains the
desired o.n. basis forOk+1, the space of details at resolution 2−(k+1). The crucial part
of this endeavor is the construction of the mother wavelet from the scaling function
of the MSA. The construction is done by means of the following theorem by Mallat:
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Theorem 3.6.1 (Wavelet generation theorem)

1. Let
· · · ⊃ Vk ⊃ Vk+1 ⊃ · · ·

be the hierarchy of vector spaces which make up the MSA whose scaling function
is φ(t) and whose corresponding pyramid algorithm is based on the filtering
function

H(ω) =

√
2

2

∞∑

ℓ=−∞
hℓe

iωℓ

2. Let ψ(t) be a function whose Fourier transform is given by

ψ̂(ω) = G
(ω

2

)

φ̂
(ω

2

)

where

G(ω) = eiωH(ω + π) ,

then

I.
{
√
2−kψ(2−kt− ℓ) : ℓ = 0,±1, · · · } (3.144)

is an o.n. basis for Ok and

II.
{
√
2−kψ(2−kt− ℓ) : ℓ, k = 0,±1, · · · } (3.145)

is an o.n. basis for L2(−∞,∞).

The validation of this theorem is a three step process.

1. First of all notice that the set of functions, Eq.(3.144), being orthogonal,

δℓℓ′ =

∞∫

−∞

√
2−kψ(2−ku− ℓ)

√
2−kψ(2−ku− ℓ′)du

=

∞∫

−∞

ψ(u− ℓ)ψ(u− ℓ′)du ,
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is equivalent to the statement that

∞∑

n=−∞

∣
∣
∣ψ̂(ω + 2πn)

∣
∣
∣

2

=
1

2π
−∞ < ω <∞ . (3.146)

The reasoning is identical to that leading to Eq.(3.141).

2. Secondly note that Vk+1 ⊂ Vk, and hence

Vk = Vk+1 ⊕Ok+1 where Vk+1 ⊥ Ok+1 ,

with

Vk+1 = span{
√
2−kφ(2−kt− ℓ)}

Ok+1 = span{
√
2−kψ(2−kt− ℓ)} ,

implies that any basis element of Vk+1 or of Ok+1 is a linear combination of
the basis elements of Vk. Applying this fact to the case k = −1, one has

φ

(
t

2

)

=
√
2
∞∑

−∞
hℓφ(t− ℓ)

ψ

(
t

2

)

=
√
2
∞∑

−∞
gℓφ(t− ℓ) .

The corresponding Fourier transformed equations are

φ̂(2ω) = H(ω)φ̂(ω) with H(ω) =

√
2

2

∞∑

−∞
hℓe

iωℓ (3.147)

ψ̂(2ω) = G(ω)ψ̂(ω) with G(ω) =

√
2

2

∞∑

−∞
gℓe

iωℓ (3.148)

3. Thirdly note that the orthogonality condition, Eq.(3.146), when combined with
Eq.(3.148), yields a normalization condition on G(ω) analogous to Eq.(3.143)
on page 221,

|G(ω)|2 + |G(ω + π)|2 = 1 .

This is not the only constraint that G must satisfy. One must also take into
account that Ok+1 is the orthogonal complement of Vk+1 in Vk This fact,
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which is expressed by

∞∫

−∞

φ(u− ℓ)ψ(u− ℓ′)du = 0 for all integers ℓ and ℓ′ ,

is equivalent to

∞∑

n=−∞
φ̂(ω + 2πn)ψ̂(ω + 2πn) = 0 −∞ < ω <∞ (3.149)

Inserting Eqs.(3.147) and (3.148) into Eq.(3.149), using the fact that H and G
are 2π-periodic,

H(ω + 2πn) = H(ω)

G(ω + 2πn) = G(ω)

and taking advantage of Eq.(3.141), one finds that the additional constraint on
G is

H
(ω

2

)

G
(ω

2

)

+H
(ω

2
+ π
)

G
(ω

2
+ π
)

= 0 .

Thus the filter functions H and G satisfy

H(ω)G(ω) +H(ω + π)G(ω + π) = 0 (3.150)

and

G(ω)G(ω) +G(ω + π)G(ω + π) = 1 (3.151)

H(ω)H(ω) +H(ω + π)H(ω + π) = 1 . (3.152)

A good way of remembering these constraints is that the matrix

[
H(ω) G(ω)

H(ω + π) G(ω + π)

]

is unitary. These constraints are useful if for no other reasons than that they
(i) place the two sequences of Fourier coefficients {hℓ} and {gℓ} on certain
quadratic surfaces in the Hilbert space ℓ2 and that they (ii) establish a tight
relation between the hℓ’s and the gℓ’s. Indeed, from Eq.(3.150) one finds

G(ω) = H(ω + π)e−iω .
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This relation is not unique. Other possibilities are

G(ω) = H(ω + π)e−(2p+1)iω where p is an arbitrary integer .

Each side of this equation is a Fourier series in powers of eiω. Equating equal
powers one finds

gℓ = (−1)ℓ h2p+1−ℓ .

With both G(ω) and H(ω) at hand, one solves the two Eqs.(3.147) and (3.148).
The solutions are

φ̂(ω) = φ̂(0)
∞∏

k=1

H
( ω

2k

)

ψ̂(ω) = φ̂(0)G(ω)
∞∏

k=1

H
( ω

2k

)

.

The inverse Fourier transform of these solutions yields the sought after scaling
function

φ(t) = φ̂(0)

∞∫

−∞

∞∏

k=1

H
( ω

2k

) eiωt√
2π
dω

and the mother wavelet

ψ(t) = φ̂(0)

∞∫

−∞

G(ω)
∞∏

k=1

H
( ω

2k

) eiωt√
2π
dω .

Shifting and dilating this mother wavelet yields the o.n. basis functions,
Eq.(3.144), for Ok

Exercise 3.6.8 (ORTHOGONALITY OF THE DETAIL SPACES)
Validate conclusion # II. of the theorem on page 223, i.e. point out why, whenever k 6= k′,
the functions in the space of details Ok are orthogonal to the functions in the space of
details Ok′ .
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Chapter 4

Green’s Function Theory

Lecture 27

We shall now direct our efforts towards finding what in linear algebra corresponds
to the inverse of the linear operator A − λB. This means that we are going to find
a linear operator G which satisfies the equation

(A− λB)G = I . (4.1)

Once we have found this inverse operator G, it is easy to solve the inhomogeneous
problem

(A− λB)~x = ~b (4.2)

for ~x. This is so because the solution is simply

~x = G~b . (4.3)

If the vector space arena is an infinite-dimensional Hilbert space, the inverse operator

Gλ = (A− λB)−1

is usually called the Green’s function of A− λB, although in the context of integral
equations the expression

Gλ = (A− λI)−1

is sometimes called the resolvent of A. Its singularities yield the eigenvalues of A,
while integration in the complex λ-plane yields, as we shall see, the corresponding
eigenvectors. It is therefore difficult to overstate the importance of the operator Gλ.

229
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4.1 Cause and Effect Mathematized in Terms of

Linear Operator and Its Adjoint

The matrix/operator Gλ is the fundamental bridge between the nature of the physical
world and linear mathematics – more precisely, a particular instance of the connection
between the law of causality (“The action of an entity follows from its nature.” 1,2)
and its formulation in quantitative terms.

Being perfect, i.e. totally real, the physical world is worthy of the most painful
study. A necessary and sufficient condition for success in this process consists of
(i) seeking awareness of and identifying causal connections in the world and (ii)
doing so in terms of the language of mathematics. Equations (4.1)-(4.2) and their
consequence Eq.(4.3) comprise the prototypical mathematization3 of both of these

within the framework of linear mathematics. The vector~b refers to a cause (e.g. force,
source, signal, etc.) while ~x refers to the effect (e.g. movement, field, response, etc.).
On the other hand, I refers to a type of standardized cause, while G refers to the
corresponding effect. Once one has identified and mathematized this standard cause
and effect connection, Eq. (4.3) yields with mathematical certainty the outcome of
any linear cause and effect connection.

In other words, even though the study of the physical world might require con-
siderable effort and perseverance, with linear systems such a study is comparatively
straight forward. This is because, once one has found the solution to Eq.(4.1), solu-
tions to Eq.(4.2) are easy to obtain by merely using Eq.(4.3).

The validity of this claim rests on the validity of three concepts, the first two of
which we shall take for granted.

1. An inner product. This is the geometrical structure, a bi-linear scalar function,
on the given inner product space H,

〈f, g〉 = 〈g, f〉 . (4.4)

2. The Hermitian adjoint, TH , of a given linear operator T. It is defined by the
requirement that,

〈f, Tg〉 = 〈THf, g〉 for all f, g ∈ H . (4.5)
1More explicitly: “An entity of a certain kind necessarily acts in a certain way under a given set

of circumstances.”
2David Harriman, THE LOGICAL LEAP: Induction In Physics, pages 9, 21-22, 236-237. New

American Library, Penguin Group, Inc., New York, 2010.
3The concept of “mathematization” refers to the process of expressing things in terms of the

language of mathematics, i.e. in quantitative terms.
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3. the reciprocity relation between (i) the solution to the standard cause and effect
problem and (ii) that of the Hermitian adjoint of this cause and effect problem.

If the4 solution to the inhomogeneous problem, Eq.(4.2) exists, then the method of
solving it is a four step process. The Hermitian adjoint, (A − λB)H , of the given
operator T = A−λB plays a key role. Indeed, the existence of that solution depends
on the existence of F , the solution to the equation

(A− λB)HF = I . (4.6)

Step I. Find the solution to Eq.(4.6), if it exists.
Step II. Note that FH , the Hermitian adjoint of F , satisfies

FH(A− λB) = I . (4.7)

Step III. Multiply the given Eq.(4.2) by FH ,

FH(A− λB)~x = FH~b . (4.8)

Step IV. Apply Eq.(4.7) and obtain the solution

~x = FH~b . (4.9)

At first sight this result is somewhat daunting because we need to find the Hermitian
adjoint of A − λB, solve the corresponding equation for F , and finally find the
Hermitian adjoint of F .
However, the reciprocity theorem allows us to dispense with having to find all these
Hermitian adjoints.
Theorem 1 (Reciprocity) Let G be a solution to Eq.(4.1), and let F be a solution
to Eq.(4.6), then

FH = G . (4.10)

The proof is very simple: Multiply Eq.(4.1) by FH to obtain

FH(A− λB)G = FH . (4.11)

Applying Eq.(4.7) one obtains the reciprocity relation,

G = FH . QED. (4.12)

4We are assuming that λ is such that the homogeneous problem (A−λB)u = 0 has no non-trivial
solution. This means that if a solution to Eq. (4.2) exists, it is the solution.



232 CHAPTER 4. GREEN’S FUNCTION THEORY

In light of this relation, the solution to the inhomogeneous problem, Eq.(4.2), is given
by

~x = G~b . (4.13)

In physics and engineering there is a large class of linear systems which are self-
adjoint, for example vibrating or oscillating linear systems without any friction. They
are mathematized by the self-adjointness condition

(A− λB)H = TH = T = A− λB . (4.14)

More precisely, we have the following
Definition. A linear operator T is said to be self-adjoint or Hermitian if it satisfies

〈f, Tg〉 = 〈Tf, g〉 for all f, g ∈ H .

Thus, if the Hermitian adjoint of an operator equals the operator itself, then the
operator is said to be Hermitian. In light of Eq.(4.6), it should come as no surprise
that the corresponding Green’s (“response”) matrix/operator/function satisfies the
same condition.

GH = G. (4.15)

4.1.1 Adjoint Boundary Conditions

The operators which are of immediate interest to us are differential operators. Al-
though their actions consist of taking derivatives, their definition is more restrictive.
The additional properties they have to satisfy is the consequence of the fact that an
operator is a type of mapping. As such, one must always specify not only its fomula
(or rule) but also its domain. The domain in our case is a subspace of the given
Hilbert space. Thus, to specify uniquely a 2nd order differential operator, one must
specify three things:

(i) The domain H, the Hilbert space, which we shall take to be L2(a, b), the space
of functions square-integrable on [a, b].

(ii) The homogeneous boundary conditions to be satisfied by u ∈ H.

(iii) L = α(x)
d2

dx2
+ β(x)

d

dx
+ γ(x), i.e. the “formula”.
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Items (i)-(iii) are referred to collectively as the “operator L”. One also should note
that (i) and (ii) define a linear subspace S of H as follows: Let L to be the linear map
whose image Lu has a well defined inner product, i.e. 〈v, Lu〉 =finite, for any square-
integrable u and v. For the set of continuously differentiable functions, C2(a, b), this
means that

L : S∩C2(a, b) −→ H = L2(a, b)
u ∼❀ Lu .

Here S is the domain of L, and it is

S = { u ∈ L2(a, b) : 〈v, Lu〉 = finite ∀ v ∈ L2(a, b); u satisfies

the given homogeneous boundary conditions at a and b}

What if u is not a continuously differentiable function? Then its image Lu is not
square-integrable, but the inner product 〈v, Lu〉 is still well-defined because it is finite.
For example, if u is a function which has a kink, then Lu would not be defined at
that point and Lu would not be square-integrable. Nevertheless, the integral of vLu
would be perfectly finite.

The (Hermitian) adjoint L∗ of an operator such as L is defined by the requirement
that

〈v, Lu〉 = 〈L∗v, u〉

for all u ∈ S and all v belonging to S∗, the domain of L∗. This is illustrated in the
examples below. In compliance with standard notation, we are using L∗, and not
LH to refer to the Hermitian adjoint of the differential operator L. In some physics
text books one finds L† instead.

Example 1. Let L =
d

dx
have as its domain the subspace

S = { u ∈ L2(a, b) : u(a) = 2u(b) ; 〈v, Lu〉 = finite whenever v ∈ L2(a, b)} ,
(4.16)

and let the inner product be

〈v, u〉 =
∫ b

a

v(x)u(x) dx .

FIND the adjoint of this operator.

To do this, one integrates by parts in order to move the operator from the second
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factor to the first and thereby obtains

〈v, Lu〉 =

∫ b

a

v
d

dx
u dx

= v(b)u(b)− v(a)u(a)
︸ ︷︷ ︸

P (v,u)|ba

+

∫ b

a

(

− d

dx
v

)

︸ ︷︷ ︸

L∗v

u dx .

The bilinear expression P (v, u) is called the bilinear concomitant or the conjunct of
v and u. Thus we have

〈v, Lu〉 − 〈L∗v, u〉 ≡ P (v, u)|ba (4.17)

This is Green’s identity. It is a generalization of the Fundamental Theorem of Cal-
culus. It relates the behaviour of v(x) and u(x) in the interior of [a, b] to their values
on the boundary, x = a and x = b. The construction of L∗ from L is based on the
requirement that

〈v, Lu〉 − 〈L∗v, u〉 = 0 .

This means that the bilinear concomitant evaluated at the endpoints must vanish,

P (v, u)|ba = 0 . (“adjoint compatibility condition”) (I)

This is the adjoint compatibility condition. It guarantees the equality

〈v, Lu〉 = 〈L∗v, u〉

for all v’s and u’s and thereby determines the adjoint operator L∗ This is a com-
patibility condition between the given boundary condition, which characterizes the
space Eq.(4.16), i.e.

S = {u ∈ L2(a, b) : u(a)− 2u(b) = 0} (“given boundary condition”) (II)

and the to-be-determined adjoint boundary condition of the space

S∗ = {u ∈ L2(a, b) : αu(a) + βu(b) = 0} (“adjoint boundary condition”) (III)

This means that any two of the three sets of conditions implies the third:

1. (II) and (III) imply (I).

2. (III) and (I) imply (II).
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3. (I) and (II) imply (III).

Using the boundary condition, one obtains

〈v, Lu〉 = [v(b)− 2v(a)]u(b) +

∫ b

a

(−) d
dx
v u dx

≡ 〈L∗v, u〉 .
This determines L∗, provided the boundary term vanishes for all u ∈ S. This implies
that v must satisfy the adjoint boundary condition

v(b)− 2v(a) = 0 . (4.18)

The conclusion is this: the adjoint L∗ of L consists of two parts,

(i)

L∗ = − d

dx
(“the formula′′)

(ii) the adjoint boundary condition, Eq.(4.18), which determines the domain

S∗ = { v ∈ L2(a, b) : v(a) =
1

2
v(b) ; 〈L∗v, u〉 <∞ ∀u ∈ L2(a, b)}

(“the domain′′)

on which L∗ operates.

The expression L∗ = − d
dx

without the boundary condition is called the formal adjoint
of L. If v, and hence v, satisfies the adjoint boundary condition, then the “formal”
adjoint becomes the adjoint of L. In this case one has

〈v, Lu〉 = 〈L∗v, u〉
for all u ∈ S and all v ∈ S∗.
It is clear that L and its adjoint L∗ are different operators: they differ not only in
their domain but also in their formula.

Example 2. Consider L = i
d

dx
whose domain is the subspace S = { u : u(a) =

u(b) }.
FIND its adjoint.
Following the familiar procedure, one obtains

〈v, Lu〉 = i[v(b)− v(a)]u(b) +
∫ b

a

i
d

dx
v u dx

= 〈L∗v, u〉 .
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This holds for all u ∈ S, provided v(a) = v(b). It follows that

L∗ = i
d

dx
(“formula′′)

S∗ = { v : v(a)− v(b) = 0 } (“domain′′)

One sees that both the formal adjoint (“the formula”) and its domain are the same
as the given operator. This observation motivates the following
Definition. An operator said to be self-adjoint, if both its formula and its domain
are the same, i.e.

L∗ = L

and
S∗ = S

Reminder : Sometimes we shall mean by L∗ only the “formal” adjoint of L, at other
times we shall mean by L∗ the adjoint of L, which includes the boundary conditions.
The context will make clear which is which.

Lecture 28

4.1.2 Second Order Operator and the Bilinear Concomitant

Let us extend our considerations from linear differential operators of first order to
those of second order. To do this, let us find the adjoint of a second order operator.
The given operator consists of

(i) the differential operator

L = α(x)
d2

dx2
+ β(x)

d

dx
+ γ(x)

(ii) the domain S ⊂ H = L2(a, b) on which it operates,

S = { u : u ∈ L2(a, b); Lu ∈ L2(a, b); B1(u) = 0; B2(u) = 0 }

where B1 and B2 are two homogeneous boundary conditions,

0 = B1(u) ≡ α1u(a) + α′1u
′(a) + β1u(b) + β′1u

′(b)
0 = B2(u) ≡ α2u(a) + α′2u

′(a) + β2u(b) + β′2u
′(b)

(4.19)



4.1. CAUSE AND EFFECTMATHEMATIZED IN TERMS OF LINEAROPERATORAND ITS ADJOINT

The α′is and β
′
is are given constants not to be confused with the functions α(x) and

β(x). The task is to find the adjoint of the given operator, namely FIND

(i) L∗

(ii) S∗ = { v ∈ L2(a, b) : B∗1(v) = 0; B∗2(v) = 0 }
such that

〈v, Lu〉 = 〈L∗v, u〉
for all u ∈ S and all v ∈ S∗. The left-hand side of this equation is given, and it is

〈v, Lu〉 =
∫ b

a

(

αv
d2u

dx2
+ βv

du

dx
+ vγu

)

dx .

In order to have the derivatives act on the function v, one does an integration by
parts twice on the first term, and once on the second term. The result is

〈v, Lu〉 =

∫ b

a

(
d2

dx2
αv − d

dx
βv + γv

)

︸ ︷︷ ︸

L∗v

u dx

+ [vαu′ − (vα)′u+ vβu]
b
a

︸ ︷︷ ︸

P (v, u)|ba
The bilinear expression P (v, u) is called the bilinear concomitant or the conjunct of
v and u. Thus we have

〈v, Lu〉 − 〈L∗v, u〉 ≡ P (v, u)|ba (4.20)

This important integral identity is the one-dimensional version of Green’s identity.
Indeed, it relates the behavior of v(x) and u(x) in the interior of [a, b] to their
values on the boundary, here x = a and x = b. It is an extension of the integrated
Lagrange identity, Eq.(1.24), from formally self-adjoint second order operators to
generic second order operators. Observe that when

β = α′ ,

L becomes formally self-adjoint whenever the coefficient functions α, β, and γ are real.
In this circumstance L is the Sturm-Liouville operator and the bilinear concomitant
reduces to

P (v, u) = α[vu′ − v′u] ,
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which is proportional to the Wronskian determinant of v and u. The construction of
L∗ from L is based on the requirement that

〈v, Lu〉 − 〈L∗v, u〉 = 0 .

This means that the bilinear concomitant evaluated at the endpoints must vanish,

P (v, u)|ba = 0 . (“compatibility condition”) (I)

This is a compatibility condition between the given boundary conditions, Eq.(4.19),

B1(u) = 0
B2(u) = 0

, (“given boundary conditions”) (II)

and the adjoint boundary conditions,

B∗1(v) = 0
B∗2(v) = 0

. (“adjoint boundary conditions”) (III)

This means that any two of the three sets of conditions implies the third:

1. (II) and (III) imply (I).

2. (III) and (I) imply (II).

3. (I) and (II) imply (III).

The problem of obtaining the adjoint boundary conditions in explicit form,

0 = B∗1(v) ≡ α∗1v(a) + α∗1
′v′(a) + β∗1v(b) + β∗1

′v′(b)
0 = B∗2(v) ≡ α∗2v(a) + α∗2

′v′(a) + β∗2v(b) + β∗2
′v′(b)

(4.21)

is a problem in linear algebra. One must combine the given boundary conditions,
Eq.(4.19) with the compatibility condition (I) to obtain the coefficients α∗i , α

∗
i
′, β∗i , β

∗
i
′

in Eq.(4.21).

4.2 Green’s Function and Its Adjoint

Presently our task is to solve what in linear algebra corresponds to

(A− λB)~u = ~b . (4.22)
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We shall find that the execution of this task is a straight forward calculation, pro-
vided there exists a unique answer. The existence and uniqueness questions are read-
ily understood for any finite-dimensional matrix. Such understanding also applies to
a second order operator, even though its domain and target space (=“codomain”) is
infinite-dimensional and thus has its own mathematical subtleties.

An understanding of the existence and uniqueness questions is not only the dif-
ference between success and failure in solving Eq.(4.22) and its extension to a second
order differential equation, but it is also the basis for the spectral applications in
Section 4.10. In light of this we shall interrupt the development to give a rapid
review of the linear algebra behind the Green’s function concept.

4.3 A Linear Algebra Review: Existence and Unique-

ness

In dealing with a linear system A−λB we are dealing with with the following causal
relation

source ~b response ~u

−→ A− λB −→
input output

(4.23)

The properties of this causal connection are captured by means of the following
equation,

(A− λB)~u = ~b . (4.24)

The associated mathematical problem is this:
Given: (a) The linear mapping A− λB : U → V ; (b) any vector ~b ∈ V
Find: ~u ∈ U such that Eq.(4.24) is satisfied
Discussion: This linear algebra problem, it turns out, decomposes into the task of
answering two questions:

1. Can one find a G such that

(A− λB)G = I on V ?

2. Can one find an H such that

(A− λB)∗H = I on U ?

If A− λB has the right properties, the answer is ’yes’ to both questions.
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4.4 The Inhomogeneous Problem

In the framework of calculus this means that we must solve the inhomogeneous
boundary value problem

Lu(x) = −f(x) a < x < b
B1(u) = 0
B2(u) = 0

, (4.25)

or, more generally, solve the problem

Lv(x) = −f(x) a < x < b

B1(v) = d (4.26)

B2(v) = e , (4.27)

Notation: the minus sign on the right hand sides is a convention which complies
with the interpretation of f as the force density on a simple string as discussed in
the next section.
The operator L is a second order linear differential operator, while d and e are
constants. We shall first deal with the first problem where the boundary conditions
are homogeneous (d = e = 0). Once we have solved it, the solution to the second one
is simply equal to the first solution augmented by that solution to the homogeneous
differential equation which satisfies

Lvh(x) = 0 a < x < b
B1(vh) = d
B2(vh) = e

.

Thus,

v(x) = u(x) + vh(x)

= u(x) + c1v1(x) + c2v2(x) .

Here v1 and v2 are any two independent solutions to the homogeneous differential
equation, and the constants c1 and c2 are adjusted so that the two linear endpoint
conditions, Eqs.(4.26) and (4.27), are satisfied. This means that c1 and c2 are deter-
mined by

c1B1(v1) + c2B1(v2) = d

c1B2(v1) + c2B2(v2) = e .
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Lecture 29

The solution to the inhomogeneous problem, Eqs.(4.25), is based on the corre-
sponding Green’s function. In the engineering sciences it is also known as the unit
impulse response. It is given by the following
Definition. (Green’s function and its adjoint)
Let G(x; ξ) be a function with the property

LG(x; ξ) = −δ(x− ξ) a < x, ξ < b
B1(G) = 0
B2(G) = 0

. (4.28)

Such a function is the Green’s function for the boundary value problem. The corre-
sponding adjoint Green’s function H(x; ξ) is the function with the property

L∗H(x; ξ) = −δ(x− ξ) a < x, ξ < b
B∗1(H) = 0
B∗2(H) = 0

, (4.29)

where L∗ is the formal adjoint of the differential operator L and B∗1(H) = 0 and
B∗2(H) = 0 are the boundary conditions adjoint to B1(G) = 0 and B2(G) = 0.
The adjoint Green’s function is very useful because it allows us to solve the inhomo-
geneous boundary value problem, Eqs.(4.25). The solution is obtained with the help
of Green’s identity, Eq.(4.20),

〈H,Lu〉 − 〈L∗H, u〉 =
∫ b

a

(HLu− L∗Hu) dx = P (H, u)|ba .

Indeed, using the fact that the adjoint boundary conditions

B∗1(H) = 0
B∗2(H) = 0

have been constructed so as to guarantee that

P (H, u)|ba = 0 ,

we obtain with the help of the given Eq.(4.25), Lu = −f , and with (4.29), L∗H =
−δ(x− ξ), the result

∫ b

a

f(x) H(x; ξ) dx =

∫ b

a

δ(x− ξ) u(x) dx ,
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which yields the solution

u(ξ) =

∫ b

a

H(x; ξ) f(x) dx

It turns out that the beauty of this result is that we don’t even have to use the
adjoint Green’s function H(x; ξ). Instead, one may use the original Green’s function
G(x; ξ). This is based on the following
Theorem (Green’s function and its adjoint)

H(x; ξ) = G(ξ; x)

The proof of this equation is given below.
Remark 1. This result says that in order to obtain the adjoint Green’s function,

H(x; ξ) = G(ξ; x) ,

simply interchange the arguments x and ξ and then take the complex conjugate of
the Green’s function, the solution to Eq.(4.28). With the help of this result the
solution to the inhomogeneous problem becomes simply

u(ξ) =

∫ b

a

G(ξ; x) f(x) dx (4.30)

The advantage is clear: don’t bother solving Eq.(4.29). It is enough to find only the
Green’s function, i.e. the solution to Eq.(4.28).
Remark 2. The other noteworthy feature is algebraic. The process of interchanging
the arguments x and ξ and then taking the complex conjugate is precisely the infinite-
dimensional version of taking the Hermitian adjoint of a matrix. Moreover, the
integration in Eq.(4.30) corresponds to the summation when a matrix acts on a
vector and thereby yields a new vector.
Remark 3. If the boundary value problem is self-adjoint, i.e. L = L∗, together with
B∗1 = B1 and B∗2 = B2, then H(x; ξ) = G(x; ξ) and we have the result

G(ξ; x) = G(x; ξ) .

This is generally known as the reciprocity relation. It says that G(x; ξ) is what in
linear algebra corresponds to a “Hermitian matrix”.
Proof : (In three steps)
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(i) Again use Green’s identity

∫ b

a

(HLG− L∗HG) dx = P (H,G)|ba

(ii) The boundary conditions of the two boundary value problems (4.28) and (4.29)
guarantee that the linear concomitant vanishes at the endpoints,

P (H,G)|ba = 0 .

(iii) Inserting the two respective differential equations of (4.28) and (4.29) into the
above Green’s identity, one obtains

∫ b

a

H(x; ξ′)δ(x− ξ) dx =

∫ b

a

G(x; ξ)δ(x− ξ′) dx

or
H(ξ; ξ′) = G(ξ′; ξ) ,

which is what had to be shown.

4.4.1 Translation Invariant Systems

It is difficult to overstate the power and versatility of the Green’s function method.
From the viewpoint of mathematics it allows one to generate solutions to any inhomo-
geneous linear differential equation with boundary conditions. From the viewpoint
of radiation physics the Green’s function relates a disturbance to its measurable ef-
fect or response. From the viewpoint of engineering G(x; ξ) expresses those inner
workings of a linear system which relates its input to its output.

Invariant linear systems constitute one of the most ubiquitous of its kind. They
are characterized by invariance under space and/or time translations. Their Green’s
function have the invariance property

G(x+ a; ξ + a) = G(x; ξ)

under arbitrary translations a. Letting a = −ξ, one finds that

G(x; ξ) = G(x− ξ; 0) ≡ G(x− ξ)

Thus Eq.(4.30) becomes

u(ξ) =

∫ ∞

−∞
G(ξ − x) f(x) dx ≡ G ⋆ f (ξ) . (4.31)
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In other words the response of an invariant linear system is simply the convolution
of the input with the system Green’s function.

It is virtually impossible to evade the fact that the essence of any linear translation
invariant aspect of nature is best grasped by means of the Fourier representation.
The input-output relation of a linear invariant system expressed by means of the
convolution integral, Eq.(4.31), is no exception. Take the Fourier transform F of
both sides and find

û(k) =
√
2π Ĝ(k)f̂(k) ,

where

û(k) ≡ F [u](k) ≡
∫ ∞

−∞

e−ikξ√
2π

u(ξ) dξ

is the Fourier amplitude corresponding to u(ξ). Convolution of functions in the given
domain has simplified into multiplication of their Fourier amplitudes in the Fourier
domain. For each point in this domain the factor f̂(k) expresses the input of the
linear system, û(k) expresses its response. In signal processing and in electromagnetic
theory the function Ĝ(k) is called the filter function, while in acoustics and optics it
is called the transfer function5 of the linear system.

4.5 Pictorial Definition of a Green’s Function

One of the most effective ways to use an idea and keep it in the forefront of one’s mind
is in terms of pictures. A Green’s function is no exception. One of the best pictures
which illustrates a one-dimensional Green’s function is that of a string subjected to
a unit point force.

4.5.1 The Simple String and Poisson’s Equation

Consider a simple string with a force applied to it. For such a string let

FTdx = net transverse force acting on the string segment between x and x+ dx due
to tension T only.

= vertical force component

= T
du

dx

∣
∣
∣
∣
x+dx

− T du

dx

∣
∣
∣
∣
x





assuming du
dx
≪ 1, so that

sin =
du
dx

√

1+( du
dx)

2 ≈ du
dx

= tan





5Joseph W. Goodman, Introduction to Fourier Optics pages 19-20, McGraw-Hill Book Company,
New York, 1968.
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so that

d

dx
T
du

dx
=

(Force due to tension)

(length)

{
> 0(upward) if string curvature > 0
< 0(downward) if string curvature < 0

.

Let F (x) = applied force density

(
(Force)

(length)

)

.

If the string is in equilibrium then there is no acceleration. Consequently, the total
force density is zero:

d

dx
T
du

dx
+ F (x) = 0

or
d

dx
T
du

dx
= −F (x)

For constant tension one obtains

d2u

dx2
= −f(x) where f(x) =

F (x)

T
. (4.32)

This is the one-dimensional Poisson equation.
Example
Consider a cable whose linear mass density is ρ and which is suspended between
two horizontal points, x = 0 and x = L, in a uniform gravitational field whose
acceleration is g. The force density on such a cable is ρg. If the tension in the cable

0 L
x

Figure 4.1: A cable of length L suspended between two horizontal points. If its slope
is small then its deviation away from the dotted horizontal is governed by Poisson’s
equation. If the slope is not small then the deviation is described by a catenary.

is T , then the equilibrium profile u(x) is governed by

d2u

dx2
=
ρg

T
.
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The solution is evidently

u(x) = c1 + c2x+
1

2

ρg

T
x2 ,

where the integration constants are determined by u(0) = 0 and u(L) = 0. It follows
that the cable’s profile away from the straight horizontal is

u(x) = x(x− L) ρg
2T

.

Exercise 4.5.1 (ADJOINT OF AN OPERATOR)
Find the adjoint differential operator L∗ and the space on which it acts if

(a) Lu = u′′ + a(x)u′ + b(x)u where

u(0) = u′(1) and u(1) = u′(0).

(b) Lu = − (p (x)u′)′ + q(x)u where

u(0) = u(1) and u′(0) = u′(1).

Assume that the scalar product is

〈u, v〉 =
∫ 1

0
u v dx.

Exercise 4.5.2 (ADJOINT EIGENVALUE PROBLEM)
Let L be a differential operator defined over that domain S of functions which satisfy
the given homogeneous boundary condition B1(u) = 0 and B2(u) = 0. Let L∗ be the
corresponding adjoint operator defined on the domain S∗ of functions which satisfy the
corresponding adjoint boundary conditions, B∗1(v) = 0 and B∗2(v) = 0.
Let u ∈ S be an eigenfunction of L:

Lu = λu

Similarly let v ∈ S∗ be an eigenfunction of L∗:

L∗v = λ′v.

(i) Make a guess as to the relationship between the eigenvalues λ of L and the eigenvalues
λ′ of L∗ and give a reason why.

(ii) Prove: If λ 6= λ̄′ then 〈v, u〉 = 0. i.e. An eigenfunction of L corresponding to the
eigenvalue λ is orthogonal to every eigenfunction of L∗ which does not correspond to
λ̄. Here the overline means complex conjugate, of course.
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Exercise 4.5.3 (BESSEL OPERATORS)
Find the Green’s function for the Bessel operators

(a) Lu(x) =
d

dx
x
du(x)

dx

(b) Lu(x) =
d

dx
x
du(x)

dx
− n2

x
u(x) with y(0) finite and y(1) = 0,

i.e. solve the equations Lu = −δ(x− ξ) with the given boundary conditions.

Exercise 4.5.4 (DIFFERENT ENDPOINT CONDITIONS)
1. Find the Green’s function for the operator with

L =
d2

dx2
+ ω2 with

u(a) = 0
u(b) = 0

a < b

and ω2 a fixed constant. i.e. solve Lu = −δ(x − ξ) with the given boundary condi-
tions.

2. Does this Green’s function exist for all values of ω? If NO, what are the exceptional
values of ω?

3. Having found the Green’s function in part (1), suppose one wishes to find the Green’s
function for the same differential equation, but with different end point conditions,
namely u(a) = 0 and u′(a) = 0. How would one find this new Green’s function with
a minimal amount of work? Go ahead, find it.

Exercise 4.5.5 (ADJOINT FOR GENERIC ENDPOINT CONDITIONS)
Suppose that Lu = u′′ where

a1u(0) + b1u
′(0) + c1u(1) + d1u

′(1) = 0

and

a2u(0) + b2u
′(0) + c2u(1) + d2u

′(1) = 0.

1. Find L∗ and the space on which it acts if one uses the scalar product 〈u, v〉 =
∫ 1
0 u v dx.

2. For what values of the constants a1, b1, . . . , c2, d2 is the operator self adjoint?

Lecture 30
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4.5.2 Point Force Applied to the System

A unit force localized at a point is a unit force distributed over an ε-interval surround-
ing the given point. The density of this distributed force is inversely proportional to
ε. More precisely, one defines

δε(x− ξ) ≡







1

ε
|x− ξ| ≤ ε

2

0 |x− ξ| > ε

2

[
(Force)

(length)

]

,

the finite approximation to the Dirac distribution, whose integral, the total force,

∫ b

a

δε(x− ξ) dx =

∫ ξ+ε/2

ξ−ε/2
δε(x− ξ) dx = 1 ,

is unity. Let us apply such a force density,

F (x) = δε(x− ξ) ,

to a string with constant horizontal tension T . The response of this string is governed
by the Poisson equation (4.32), namely

T
d2G

dx2
= −δε(x− ξ) .

Note that the sum of all the vertical forces is necessarily zero. This equilibrium
condition is expressed by the statement that (see Fig. 4.2)

TG′(ξ+)− TG′(ξ−) + 1 = 0

or by

G′(ξ+)−G′(ξ−) = − 1

T
,

which is known as the jump condition. Here we are using the notation ξ± = ξ± ε/2
with ε neglegibly small. The other condition that the response G must satisfy is that
it be continuous at x = ξ, i.e.

G(ξ+)−G(ξ−) = 0 .

This continuity condition, the jump condition, together with the boundary condi-
tions lead to a unique response, the Green’s function G(x; ξ) of the string.(Why?)
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ξ ξ+ ε/2ξ− ε/2

T T

a b

force

applied
  unit

Figure 4.2: A distributed unit force applied to a string with tension T . The force
is concentrated in an interval of size ε. As ε → 0, the response of the string tends
towards the Green’s function G(x; ξ).

4.6 Properties and Utility of a Green’s Function

More generally, a unit force applied to a general linear system yields a response which
is governed by the equation

LGε = −δε(x− ξ) ,

where L is the repeatedly used linear operator

L =
d

dx
p(x)

d

dx
+ γ(x) .

Integrate both sides and obtain

∫ ξ+ε/2

ξ−ε/2

(
d

dx
p
d

dx
Gε + γGε

)

dx = −1 (4.33)

What happens to Gε as ε → 0? The physical properties of the linear system imply
that the response Gε remain a continuous function of x, and its mathematical for-
mulation should reflect this fact. Indeed, this continuity is guaranteed by the fact
that the equation

d

dx
p(x)

d

dx
G+ γ(x)G = −δ(x− ξ)
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be satisfied. If G ≡ limε→0Gε were not continuous, then the first term of the differ-
ential equation,

p
d2G

dx2
,

would yield the derivative of a Dirac delta function, and there is no such expression
on the right hand side.

The continuity of G(x; ξ) and the evaluation of the integral Eq.(4.33) lead to the
two key conditions which the unit impulse response G must satisfy,

G(ξ+)−G(ξ−) = 0 “continuity for all a < x < b” .

and

dG

dx

∣
∣
∣
∣

ξ+

− dG

dx

∣
∣
∣
∣

ξ−

= − 1

p(ξ)
“jump condition at x = ξ” .

A more careful statement of these properties is provided by the following

Theorem 4.6.1 (Fundamental Theorem for Green’s Functions) Let G(x; ξ)
be a function which

(a) considered as a function of x, satisfies the differential equation
[
d

dx
p(x)

d

dx
+ γ(x)

]

G(x; ξ) ≡ LG(x; ξ) = 0

in (a, b) except at the point x = ξ,

(b) satisfies the given homogeneous boundary conditions,

(c) for fixed ξ is continuous, even at x = ξ,

(d) has continuous 1st and 2nd derivatives everywhere in (a, b), except at x = ξ,
where it has a jump discontinuity given by

d

dx
G(x; ξ)

∣
∣
∣
∣

ξ+

ξ−
=
−1
p(ξ)

.

Conclusion:

u(x) =

∫ b

a

G(x; ξ) f(ξ) dξ ⇐⇒ u(x) satisfies
(i) the given boundary conditions
(ii) Lu = −f(x),

where f is piecewise
continuous in (a, b)

(4.34)
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Comment. A function which satisfies properties (a)-(d) is, of course, the Green’s
function for the boundary value problem stated in the conclusion, equivalently given
by Eq.(4.28). Even though there is more than one way of constructing such a function
(if it exists), the result is always the same. In other words, one has the following

Theorem 4.6.2 (Uniqueness of a Green’s function) The Green’s function of a
given linear system is unique.

It is easy to verify the validity of this theorem. If there were two such functions:

LG1(x; ξ) = −δ(x− ξ)
LG2(x; ξ) = −δ(x− ξ) ,

then their difference satisfies the homogeneous equation

L(G1 −G2) = 0 .

Consider the Green’s function H adjoint to either G1 or G2. It satisfies Eq.(4.29),

L∗H(x; ξ′) = −δ(x− ξ′) .

Consequently,

0 = 〈H,L(G1 −G2)〉
= 〈L∗H, (G1 −G2)〉

=

∫ b

a

(−)δ(x− ξ′) (G1(x; ξ)−G2(x; ξ)) dx

= G2(ξ
′; ξ)−G1(ξ

′; ξ) .

Thus the Greens function is unique:

G1(ξ
′; ξ) = G2(ξ

′; ξ) .

It is informative to restate this calculation algebraically: Starting with the fact that
the difference satisfies G1 − G2 satisfies the homogeneous problem, one recalls that
such a problem furnishes us with only two alternatives:

(i) the trivial solution,which is the zero solution. In this case the difference between
the two Green’s functions vanishes identically. This means the Green’s function
is unique.
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(ii) a nontrivial solution, which implies that the nullspace of the homogeneous
adjoint problem is nonzero. In this case the inner product of this solution
with the inhomogeneity, the Dirac delta function, does not vanish. Hence the
existence of a solution to the inhomogeneous problem is impossible. In other
words, the Green’s function does not exist.

The two possibilities (i) and (ii) are mutually exclusive and jointly exhaustive. They
illustrate the so-called Fredholm alternatives of a linear operator.

Proof of the Fundamental Theorem: The implication “⇐=” has already been
demonstrated with Eq.(4.30). To show “=⇒” compute the various derivatives and
then form the linear combination Lu. The fact that the slope of G makes a jump at
x = ξ demands that the integral for u be split at that point,

u(x) =

∫ x−0

a

G(x; ξ) f(ξ) dξ +

∫ b

x+0

G(x; ξ) f(ξ) dξ

u′(x) =

∫ x−0

a

dG(x; ξ)

dx
f(ξ) dξ +

∫ b

x+0

dG(x; ξ)

dx
f(ξ) dξ

+ G(x; x− 0) f(x− 0) − G(x; x+ 0) f(x+ 0)

By hypothesis (c) the last two terms cancel for all x where f(x) has no jump discon-
tinuity. (If f does have a jump discontinuity at, say, x0 then consider u(x) for the
case x < x0 separately from the case x > x0.) Finally, take the second derivative,

u′′(x) =

∫ x−0

a

d2G(x; ξ)

dx2
f(ξ) dξ +

∫ b

x+0

d2G(x; ξ)

dx2
f(ξ) dξ

+
dG(x; ξ)

dx

∣
∣
∣
∣

ξ=x−0
f(x− 0) − dG(x; ξ)

dx

∣
∣
∣
∣

ξ=x+0

f(x+ 0)

Combine these derivatives to form

Lu(x) =

∫ x−0

a

[

p
d2G

dx2
+ p′

dg

dx
+ γG

]

f(ξ) dξ

+

∫ b

x+0

[

p
d2G

dx2
+ p′

dg

dx
+ γG

]

f(ξ) dξ

+ p(x)f(x)

[
dG(x; x− 0)

dx
− dG(x; x+ 0)

dx

]

The first two integrals are zero because of hypothesis (a). Compare the last term
with the jump discontinuity stipulated by (d),

dG(ξ+; ξ)

dx
− dG(ξ−; ξ)

dx
=
−1
p(ξ)

.
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Next compare the first term in this difference with the first term in the square bracket
on the right hand side of Lu(x). Note that the first argument (“point of observation”)
is to the right of the second argument (“source point”) in both of these first terms.

Comparing the second terms, one finds the same thing, except that the “point of
observation” is to the left of the “source point”. This agreement implies that

dG(x; x− 0)

dx
− dG(x; x+ 0)

dx
=
−1
p(x)

.

Insert this expression into the right hand side of Lu(x) and obtain

Lu(x) = −f(x) .

This verifies that u(x) as given in the conclusion satisfies the inhomogeneous differ-
ential equation indeed.

Lecture 31

4.7 Construction of the Green’s Function

The explicit construction of the Green’s function is a very intuitive and mechanical
process if one has available two independent solutions to the homogeneous (i.e. with
zero on the right hand side) differential equation governing the physical system.
Indeed, on the interval (a, b) consider the two linearly independent solutions u1(x)
and u2(x) which satisfy

Lu1(x) = 0

and
Lu2(x) = 0 .

Let consider first the case where these two functions satisfy boundary conditions at
each end point, a and b separately. We shall let these boundary conditions be the
mixed Dirichlet-Neumann conditions at a and b respectively,

0 = B1(u1) ≡ αu1(a) + α′u′1(a)

0 = B2(u2) ≡ βu2(b) + β′u′2(b) .

It is important to note that these boundary conditions do not determine these two
functions uniquely. In fact, each one may be multiplied by its own multiplicative
factor. Thus, one obtains two families of solutions,

c1u1(x) : B1(c1u1) = 0
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and
c2u2(x) : B2(c2u2) = 0 .

Because of the Fundamental Theorem, we must say (i) that the Green’s function has
the form

G(x; ξ) =

{
c1u1(x) x < ξ
c2u2(x) ξ < x

(4.35)

and that (ii) the constants c1 and c2 must be adjusted so that at x = ξ the Green’s
function is continuous :

c2u2(ξ)− c1u1(ξ) = 0 (4.36)

and has the prescribed jump in its slope:

c2u
′
2(ξ)− c1u′1(ξ) =

−1
p(ξ)

. (4.37)

These are two equations in the two unknowns c2 and c1. Thus two unique members
of each family of solutions have been determined. Figure 4.3 depicts how the graphs
of the two solutions meet so as to fulfill the continuity requirement. Observe that,
by itself, continuity at x = ξ does not determine the amplitude at that point. Fur-
thermore, at that point the graph has a kink, an abrupt change in its slope which
depends entirely on the as-yet-indeterminate amplitude at that point.

u1

u2

x
Boundary
condition
satisfied

for u
here     and        here

for u21

ξ

Figure 4.3: Pictorial construction of the Green’s function G(x; ξ). At x = ξ, where
the graphs of the two solutions meet, G must have exactly that amplitude which
guarantees that the jump in the slope equals precisely the requisite amount.

However, from Figure 4.3 one sees that by adjusting the amplitude G(ξ; ξ) to an
appropriate value, the magnitude of the change in the slope at x = ξ can be made
to equal the required amount, which is −1/p(ξ). This determines G(x; ξ) uniquely.
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Note, however, that there is one circumstance under which G(x; ξ) does not exist,
namely, when u1 and u2 form a linearly dependent set, i.e. when they are related by

u1(x) = ku2(x) a ≤ x ≤ b .

It is clear that in this circumstance the continuity condition at x = ξ prevents the
existence of any kink at x = ξ: regardless how large an amplitude one chooses, the
change in the slope will always be zero,

u1(ξ) = ku2(ξ)
c2u2(ξ)− c1u1(ξ) = 0

}

=⇒ c2u
′
2(ξ)− c1u′1(ξ) = 0

Equation (4.37) will always be violated, and the Green’s function does not exist.
If the Green’s function does exist (i.e. when u1 and u2 form a linearly indepen-

dent set) then it is given by Eq.(4.35), where c1 and c2 are determined uniquely by
Eqs.(4.36) and (4.37). This circumstance is summarized by the following

Theorem 4.7.1 (Construction of G(x; ξ)) Given: The functions u1(x) and u2(x)
which satisfy

Lu1(x) = 0
αu1(a) + α′u′1(a) = 0

and
Lu2(x) = 0

βu2(b) + β′u′2(b) = 0 .

Conclusion: The Green’s function for L is

G(x; ξ) =
−1
c

{
u1(x)u2(ξ) for x < ξ
u1(ξ)u2(x) for ξ < x

≡ −1
c

u1(x<)u2(x>) (4.38)

where
c = p(ξ) [u1(ξ)u

′
2(ξ)− u′1(ξ)u2(ξ)] .

Remark. (i) The normalization constant c is according to Abel’s theorem (Section
1.3.3) always a constant.
(ii) It is evident that the notation introduced in Eq.(4.38),

G(x; ξ) =
−1
c
u1(x<)u2(x>)

is very suggestive. We shall use it repeatedly.
Proof. To verify that the formula given by Eq.(4.38) is the Green’s function, simply
check that properties (a)-(d) of the Fundamental Theorem are satisfied. Thus
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(a) G(x; ξ) obviously satisfies the homogeneous differential equation LG(x; ξ) = 0
whenever x 6= ξ.

(b) G(x; ξ) does satisfy the given boundary conditions at each endpoint a and b.

(c) G(x; ξ) is obviously continuous.

(d) The derivative
dG

dx
satisfies the correct jump discontinuity at x = ξ. Indeed,

dG

dx

∣
∣
∣
∣

ξ+

− dG

dx

∣
∣
∣
∣

ξ−

=
−1
c
[u1(ξ)u

′
2(ξ

+)− u′1(ξ−)u2(ξ)]

=
−1
c

c

p(ξ)

=
−1
p(ξ)

Thus G as given by formula (4.38) has all the identifying properties of the Green’s
function indeed.
Example (Response of a static string)
Consider the following boundary value problem:

d2u

dx2
= −f(x)

u(0) = 0

u(1) = 0

Find its Green’s function and its solution.
Solution: There are three steps that lead up to the Green’s function:

u′′ = 0⇒ a) u1 = x so that u1(0) = 0
b) u2 = 1− x so that u2(1) = 0
c) c = p(x) [u1u

′
2 − u′1u2]

= 1 [x(−1)− 1(1− x)]
= −1

Consequently,

d) G(x; ξ) =

{
x(1− ξ) x < ξ
ξ(1− x) ξ < x

≡ x<(1− x>)
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The solution is

e) u(x) =

∫ 1

0

G(x; ξ)f(ξ) dξ

=

∫ x

0

ξ(1− x)f(ξ) dξ +
∫ 1

x

x(1− ξ)f(ξ) dξ

Lecture 32

4.8 Unit Impulse Response: General Homogeneous

Boundary Conditions

From the viewpoint of technique, the Green’s function most easily constructed is the
one satisfying the separated boundary conditions. This Green’s function is

G(x; ξ) =
−1
c
u1(x<)u2(x>) .

It satisfies

a bξ
x

Figure 4.4: Response to a unit impulse applied at x = ξ.

αG(a; ξ) + α′G′(a; ξ) = 0

βG(b; ξ) + β′G′(b; ξ) = 0

and

LG(x; ξ) = −δ(x− ξ) , where L =
d

dx
p(x)

d

dx
+ γ(x) .
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The graph of such a unit impulse response is depicted in Figure 4.4. Such a Green’s
function is obviously the simplest to construct: find any solution to the homogeneous
problem for the left hand interval, then find any solution for the right hand interval,
and for all intent and purposes one is done. The only remaining question is: What
is the Green’s function if the homogeneous boundary conditions are different?

a bξ

G (x;ξ )
R

x="time"
Figure 4.5: Unit impulse response of a system satisfying Dirichlet and Neumann
conditions at x = a. Boundary conditions imposed at the same point are called
initial conditions. If these two conditions are imposed at the starting point (and x
is “time”), then the response is called causal or retarded. If the two conditions were
imposed at a later point, then the response would be called acausal or advanced.

The answer is illustrated by the following problem:

Given: The above Green’s function G(x; ξ).

Find: (a) The Green’s function GR(x; ξ) which satisfies the “initial conditions”

GR(a; ξ) = 0

and
dGR(x; ξ)

dx

∣
∣
∣
∣

x=a

= 0

(b) The Green’s function, say GA, which is adjoint to GR.

(c) The adjoint boundary conditions.

(d) A qualitative graph of GA.
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Solution: Use L(GR −G) = 0 and the theorem of Section 4.2.
Remark : If x is the time, then GR would be the so-called causal or retarded Green’s
funtion depicted in Figure 4.5, while GA would be the so-called acausal or advanced
Green’s function.
The general philosophy is this: If it is too difficult to find the Green’s function for
a desired set of boundary conditions, consider alternative boundary conditions for
which the Green’s function can readily be found. The desired Green’s function is
obtained by adding that solution to the homogeneous differential equation which
guarantees that the desired boundary conditions are fullfilled.

4.9 The Totally Inhomogeneous Boundary Value

Problem

The utility of the Green’s function extends to the inhomogeneous boundary value
problem where the Dirichlet-Neumann boundary conditions are inhomogeneous.

Lu = −f(x) a < x < b

B1(u) = d

B2(u) = e .

The solution is expressed in terms of the Green’s function in the previous section,
and it is given by

u(x) =

∫ b

a

G(x; ξ) f(ξ) dξ + c1u1(x) + c2u2(x) ,

where, as before, u1 and u2 are two independent solutions to the homogeneous dif-
ferential equation, and c1 and c2 are adjusted so as to satisfy the given boundary
condition,

d = B1(u) = 0 + 0 + c2B1(u2)
e = B2(u) = 0 + c1B2(u1) + 0

Consequently, the solution to the problem is

u(x) =

∫ b

a

G(x; ξ) f(ξ) dξ +
e

B2(u1)
u1(x) +

d

B1(u2)
u2(x) ,

The mathematically most perspicuous aspect of this expression is the fact that it
can be written as

u(x) = up(x) + uh(x) .
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Here up(x) is a particular solution to the inhomogeneous differential equation,

Lup(x) = −f(x) ,

while uh(x) is a complementary function which satisfies the homogeneous differential
equation,

Luh(x) = 0 .

The motivation for adding the appropriate solution of this equation to a particular
solution is precisely the one already stated, namely to satisfy the given boundary
conditions at the endpoints.

Exercise 4.9.1 (NON-SELFADJOINT BOUNDARY CONDITIONS)
Let L = − d2

dx2
with boundary conditions u(0) = 0, u′(0) = u(1), so that the domain of L is

S = {u : Lu is square integrable; u(0) = 0, u′(0) = u(1)}.

(a) For the above differential operator FIND S∗ for the adjoint with respect to

〈v, u〉 =
∫ 1

0
v̄ u dx .

and compare S with S∗.

(b) COMPARE the eigenvalues λn of

Lun = λnun n = 0, 1, 2, . . .

with the eigenvalues λ∗n of

L∗vn = λ∗nvn n = 0, 1, 2, . . .

If the two sequences of eigenvalues are different, point out the distinction; if you find
they are the same, justify that result.

(c) EXHIBIT the corresponding eigenfunctions.

(d) Is λ = 0 an eigenvalue? Why or why not?

(e) VERIFY that
∫ 1
0 v̄num dx = 0 for n 6= m.
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Exercise 4.9.2 (TWO-COMPONENT EIGENVALUE PROBLEM)
Attack the eigenvalue problem

−u′′(x) = λu(x) 0 < x < 1

u′(1) = λu(1)

u(0) = 0

as follows:
Let U =

(
u(x)
u1

)

be a two-component vector whose first component is a twice differentiable

function u(x), and whose second component is a real number u1. Consider the correspond-
ing vector space H with inner product

〈U, V 〉 ≡
∫ 1

0
u(x)v(x)dx+ u1v1

Let S ⊂ H be the subspace

S = {U : U =

(
u(x)

u(1)

)

; u(0) = 0}

and let

LU =

(−u′′(x)
u′(1)

)

.

The above eigenvalue problem can now be rewritten in standard form

LU = λU with U ∈ S .

(a) PROVE or DISPROVE that L is self adjoint, i.e. that 〈V, LU〉 = 〈LV,U〉.

(b) PROVE or DISPROVE that L is positive-definite, i.e. that 〈U,LU〉 > 0 for U 6= ~0.
(Reminder: “positive-definiteness” applies to all vectors, not only to eigenvectors of
L.

(c) FIND the (transcendental) equation for the eigenvalues of L.

(d) Denoting these eigenvalues by λ1, λ2, λ3, · · · , EXHIBIT the orthonormalized eigen-
vectors Un, n = 1, 2, 3, · · · , associated with these eigenvalues.

Exercise 4.9.3 (ASYMPTOTIC EIGENVALUE SPECTRUM)
The eigenvalue equation for the Exercise on the previous page (“Non-selfadjoint Boundary
Value Conditions”) is

sinλ1/2 = λ1/2

Prove or disprove that an asymptotic formula for the roots is

λ1/2 ∼ (2m+
1

2
)π − 2 log(4m+ 1)π

(4m+ 1)π
± i log(4m+ 1)π
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(You might put λ1/2 = α+ iβ so that

sinα coshβ = α (1)

cosα sinhβ = β (2)

For large α, Eq. (1) implies β is large. If β is large then β/ sinhβ approaches zero so that
α = (n+ 1

2)π+ǫn where ǫn → 0. From Eq. (1), since cos ǫn ∼ 1, one has coshβ = (2m+ 1
2)π,

where n = 2m)

Lecture 33

4.10 Spectral Representation

Once the Green’s function for a system has been obtained one knows everything
about the system, in particular its set of orthonormal basis. An example from linear
algebra illustrates the point.

4.10.1 Spectral Resolution of the Resolvent of a Matrix

Consider the problem

(A− λI)~u = ~b

of solving N equations for N unknowns; in other words, given ~b and the matrix A,
find ~u. Here λ is a fixed parameter.

This problem is solved by solving the alternate problem

(A− λI)Gλ = I (4.39)

for

Gλ = (A− λI)−1 .

The matrix Gλ is called the resolvent of the operator A.
The solution ~u is given by

~u = Gλ
~b = (A− λI)−1~b .

This corresponds to expressing the solution in terms of the Green’s function.
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Continuing with the illustrative example from linear algebra, let us assume that A
is Hermitian. Consequently, it has a complete set of eigen vectors {~ξi : i = 1, · · · , N},
and

A =
N∑

i=1

λi~ξi~ξ
H
i

I =
N∑

i=1

~ξi~ξ
H
i (4.40)

Gλ =
N∑

j=1

~ξj~ξ
H
j

λj − λ
(4.41)

are the spectral representations of A, I, and of the resolvent Gλ = (A−λI)−1. The
last one follows from the spectral representation

A− λI =
N∑

i=1

(λi − λ)~ξi~ξHi

and the orthonormality of the eigenvectors:

~ξHi
~ξj = δij .

That Gλ is the resolvent can be readily checked by verifying Eq.(4.39):

(A− λI)Gλ =
N∑

i=1

N∑

j=1

(λi − λ)~ξi~ξHi
~ξj~ξ

H
j

λj − λ

=
N∑

i=1

N∑

j=1

~ξiδij~ξ
H
j

λi − λ
λj − λ

=
N∑

i=1

~ξi~ξ
H
i

= I

It is clear that the resolvent Gλ, Eq.(4.41), viewed as a function of the complex
variable λ has singularities which are located at λ1, · · · , λN , the eigenvalues of A. It
follows that a contour integral in the complex λ plane around these eigenvalues will
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recover the spectral representation of the identity, Eq.(4.40). The complex integra-
tion leading to this conclusion is straight forward. Consider the integral around the
contour C,

1

2πi

∮

C

Gλ dλ =
1

2πi

∮

C

N∑

j=1

~ξj~ξ
H
j

λj − λ
dλ (4.42)

Let the closed integration contour C be large enough to enclose all the singularities of

Re

Im Im

λ

λ λ

Reλ

Figure 4.6: The integration path in the complex λ-plane is large enough so as to
enclose all the poles of the resolvent. That integration path is deformed into a union
of small circles, each one enclosing a single pole.

Gλ. Use the Cauchy-Goursat theorem to deform the closed integration path without
changing the value of the integral. Have the deformed integration path consist of the
union of cirles, each one enclosing its respective singularity of Gλ. This is done in
Figure 4.6. As a consequence, the integral over the large contour C becomes a sum
of integrals, each one over a small circle surrounding a pole of Gλ. Apply Cauchy’s
integral theorem to each integral. Its value equals the 2πi times the residue of Gλ at
that pole, an eigenvalue of A. The residue at the ith eigenvalue is −~ξj~ξHj . Inserting
this result into the right hand side of Eq.(4.42), cancelling out the factor 2πi, one is
left with

1

2πi

∮

C

Gλ dλ = −
N∑

j=1

~ξj~ξ
H
j

This formula is an expression of the following
Proposition: If the contour encloses all singularities of the resolvent Gλ in the
complex λ-plane, then the contour integral yields the complete set of orthonormalized
eigenvectors of A or (in view of the completeness of such a set of vectors)
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the resolvent of A yields, via complex integration, the spectral representation of the
identity,

1

2πi

∮

C

Gλ dλ = −Identity ,

where

Identity =
N∑

j=1

~ξj~ξ
H
j .

The uniqueness of the resolvent of A guarantees this result no matter how one
obtained Gλ in the first place. Thus, if one somehow can determine Gλ, then by an
integration in the complex λ-plane one can readily obtain all normalized eigenvectors
of the operator A.

Furthermore, it is worth while to emphasize that the nonexistence of Gλ for
certain values of λ, far from being a source of trouble or dispair, is, in fact, an
inordinate physical and mathematical boon. As we shall see, from the physical point
of view, the nonexistence furnishes us with the resonances of the system, while from
the mathematical viewpoint it furnishes us with the orthonormalized eigenvectors or
eigenfunctions of the system.

Lecture 34

4.10.2 Spectral Resolution of the Green’s Function

There are two essential properties of a linear system, each one of which suffices to
distinguish it from other systems of the same kind, i.e. each one of which characterizes
the system completely.

1. Its λ-parametrized Green’s function (a.k.a. unit impulse response) Gλ(x; ξ)
which satisfies the inhomogeneous equation

(
d

dx
x
d

dx
− q(x) + λρ(x)

)

Gλ(x; ξ) = −δ(x− ξ) (4.43)

or






1

ρ

[

− d

dx
x
d

dx
+ q(x)

]

︸ ︷︷ ︸

L

−λ






Gλ(x; ξ) =

δ(x− ξ)
ρ(x)

(4.44)
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subject to the two homogeneous boundary conditions

B1(Gλ) = 0

B2(Gλ) = 0

2. Its eigenvalue spectrum {λn} together with its corresponding set of eigen func-
tions {un}. They are the solutions to the system’s Sturm-Liouville equation

(L − λ)u(x) = 0 (4.45)

subject to the same boundary conditions that are satisfied by the Green’s
function:

B1(u) = 0

B2(u) = 0

These two properties imply each other. Indeed, the existence of the system’s spec-
trum of solutions to its S-L eigenvalue problem leads directly to the system’s Green’s
function as a generalized Fourier series. i.e. its spectral representation relative to
the eigenfunction basis.

Conversely, in Section 4.10.3 (page 270), the system’s λ-parametrized Green’s
function leads, upon integration in the complex λ-plane, in one fell swoop not only
to the orthogonal eigenfunctions already in normalized form, but also to them beig
a complete (a.k.a. spanning) set for the space of square-integrable functions.

Instead of representing the Green’s function Gλ(x; ξ) of a system in terms of
two solutions to the homogeneous differential equation, as by Eq.(4.38), let us now
proceed to represent it as a generalized Fourier series. The Green’s function is a
solution to the inhomogeneous boundary value problem

(
1

ρ(x)

[

− d

dx
p(x)

d

dx
+ q(x)

]

− λ
)

u =
f(x)

ρ(x)

or

(L − λ)u =
f

ρ
(4.46)

with

B1(u) = 0

B2(u) = 0
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Here ρ(x) is the weight function of the Sturm-Liouville differential equation.
We are led to the spectral representation of Gλ by the following three-step line

of reasoning:
(1) The non-trivial solutions to the homogeneous boundary value problem are

the eigenfunctions, un(x) n = 1, 2, · · · , each of which satisfies

Lun = λun
B1(un) = 0
B2(un) = 0






n = 1, 2, · · ·

These eigenfunction are used to represent the solution u(x) as a generalized Fourier
series,

u =
∞∑

m=1

cmum ,

whose coefficients cn are to be determined. To obtain them, take the inner product
of Eq.(4.46) with these eigenfunctions un,

〈un,Lu〉 − λ〈un, u〉 = 〈un, f/ρ〉 (4.47)

(2) For illustrative purposes consider the case where L is self-adjoint with respect to
the inner product

〈un, u〉 ≡
∫ b

a

un(x) u(x) ρ(x) dx

Consequently, the first term of Eq.(4.47) is

〈un,Lu〉 = 〈Lun, u〉
= λn〈un, u〉
= λncn .

The equation itself becomes

(λn − λ)cn = 〈un, f/ρ〉

and thus determines the coefficient cn. Thus the Fourier series representation of the
solution is

u(x) =
∞∑

n=1

un
〈un, f/ρ〉
λn − λ
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(3) This representation can be applied to the Green’s function. Letting f(x) =
δ(x− ξ)/ρ(x), one obtains

〈un,
δ(x− ξ)
ρ(x)

〉 = un(ξ)〉 .

Thus the Fourier series becomes

Gλ(x; ξ) =
∞∑

n=1

un(x)un(ξ)

λn − λ
(4.48)

This is the spectral representation of the Green’s function.
For the purpose of comparison consider the spectral representation of the identity.

It is obtained from the Fourier representation of a generic function satisfying the given
boundary conditions,

u(x) =
∞∑

n=1

un(x)cn

=
∞∑

n=1

un(x)

∫ b

a

un(ξ)ρu(ξ) dξ

=

∫ b

a

∞∑

n=1

un(x)ρun(ξ)u(ξ) dξ .

This holds for any function u. Consequently, the expression in front of u(ξ) is the
Dirac delta,

∞∑

n=1

un(x)ρun(ξ) = δ(x− ξ)

or

δ(x− ξ)
ρ(ξ)

=
∞∑

n=1

un(x)un(ξ)

This is the spectral representation of the identity operator in the Hilbert space, the
same as Eq.(2.23) on page 93, which was obtained by essentially the same line of
reasoning. Note the perspicuous similarity with the Green’s function Gλ(x; ξ), the
resolvent of the Sturm-Liouville operator in this Hilbert space.
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Exercise 4.10.1 (REPRESENTATION VIA EIGENFUNCTIONS)
Consider the eigenvalue problem

Lu = λu L = α
d2

dx2
+ β

d

dx
+ γ

B1(u) = 0

B2(u) = 0

and its adjoint
L∗v = λ̄v

B∗1(v) = 0

B∗2(v) = 0

with respect to the inner product 〈v, u〉 =
∫ b
a v̄(x)u(x)dx. One can show, and you may

safely assume, that the eigenvalue spectra of these two problems are complex conjugates
of each other.

(a) Prove that the solution u(x;λ) for the problem

Lu− λu = −f(x)

B1(u) = 0 ; B2(u) = 0

is given by

u(x;λ) =
∑

n

〈vn, f〉
λ− λn

un(x)

Here un and vn are the eigenfunctions of L and L∗ and they have been normalized
by the condition

〈vn, um〉 = δnm .

(b) Show that the Green’s function is

Gλ(x|ξ) =
∑

n

un(x)v̄n(ξ)

λn − λ

Exercise 4.10.2 (NORMAL MODE PROFILES VIA COMPLEX INTEGRATION)
Obtain the o.n. set of eigenfunctions for the Sturm-Liouville problem

Lu ≡ −d
2u

dx2
= ω2u

u(a) = u(b) = 0
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by applying the complex integration technique to the Green’s function Gω(x; ξ)

(L− ω2)G ≡ −d
2Gω
dx2

− ω2Gω = δ(x− ξ) a < x , ξ < b

Gω(a; ξ) = 0
Gω(b; ξ) = 0

a < ξ < b

4.10.3 Green’s Function as the Fountainhead of the Eigen-
values and Eigenvectors of a System

The spectral representation of G is a second way of writing the Green’s function.
The first way was Eq.(4.38) on page 255 in terms of the two independent solutions
(“elements of the null space”) of the homogeneous Eq.(4.46) on page 266 with f = 0.

This raises an important question: Are the null space representation and the
spectral representation really one and the same function? The answer is, of course,
“yes” because of the uniqueness of the Green’s function for a given problem. This
fact was the subject of Green’s function uniqueness theorem on page 251.

We shall now take advantage of this uniqueness in order to obtain from the null
space representation of the Green’s function the complete set of orthonormal eigen-
functions of the linear system. The beauty of this method is that one directly obtains
the eigenvalues and these eigenfunctions without having to evaluate any normaliza-
tion integrals. Thus the Green’s function of a system lives up to its reputation of
being able to give everything one wants to know about the internal workings of a
linear system but never dared to ask.

However, the story does not end there. The Green’s function gives one a quick
method for checking the completeness of a set of eigenfunctions, i.e. whether they
span the whole vector space of functions satisfying the same homogeneous boundary
conditions. This completeness was already validated in Section 1.7 (page 58) using
Rayleigh’s quotient as the starting point. But with the Green’s function at hand,
the completeness property can be easily validated by merely evaluating an integral.

Spectral Representation

Consider the spectral representation of the Green’s function Gλ(x; ξ). Viewed as a
function of the variable λ, this function has poles in the complex λ-plane. These poles
are the eigenvalues of the Sturm-Liouville problem. If the problem is self-adjoint,
these poles lie along the real axis (Theorem 2 on page 28). However, in general they
may lie anywhere in the complex plane.
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...
λ λ λ λ1 20 n

...
λ λ λ λ1 20 n

complex λ− plane complex λ− plane

Figure 4.7: The integration path in the complex λ-plane is to be large enough to
enclose all the eigenvalues of the Sturm-Liouville problem, the poles of the Green’s
function. That integration path is deformed into a union of small circles, each one
enclosing a single eigenvalue.

Suppose we consider the contour integral

1

2πi

∮

Gλ(x; ξ) dλ

around a closed integration path which is large enough to enclose all the poles of
the Green’s function. According to the Cauchy-Goursat theorem, if one deforms the
integration contour of this integral from the large circle in Figure 4.7 into the union
of the little circles around the poles λ0, λ1, λ2, · · · of the integrand, then the value of
the integral will not change; in other words,

1

2πi

∮

C

Gλ(x; ξ) dλ =
1

2πi

∮

⋃
Cn

n

Gλ(x; ξ) dλ

=
∞∑

n=0

1

2πi

∮

Cn

Gλ(x; ξ) dλ (4.49)

Each term on the right hand side equals the residue of Gλ at its respective pole λn.
According to Eq.(4.48) this residue is

Res
λ = λn

Gλ(x; ξ) = lim
λ→λn

(λ− λn)Gλ(x; ξ)

= −un(x)un(ξ)
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Thus

∞∑

n=0

1

2πi

∮

Cn

Gλ(x; ξ) dλ = −
∞∑

n=0

un(x)un(ξ) (4.50)

Consequently, the contour integral, Eq.(4.49), is

1

2πi

∮

C

Gλ(x; ξ) dλ = −
∞∑

n=0

un(x)un(ξ) , (4.51)

This is a remarkable relation. It says that if one somehow can determine the λ-
parametrized Green’s function for the problem

(
d

dx
p(x)

d

dx
− q(x) + λρ(x)

)

Gλ(x; ξ) = −δ(x− ξ)

B1(Gλ) = 0

B2(Gλ) = 0 ,

then this function yields the corresponding complete set of orthonormalized eigen-
functions of the Sturm-Liouville operator. This can be done whenever one can find
a closed expression for Gλ(x; ξ). The example below illustrates this.

Completeness via Green’s function

What can one say about the value of 1
2πi

∮

C
Gλ(x; ξ) dλ on the left hand side? If one

knows that the set of eigenfunctions {un(x)} forms a complete set, then Eq.(2.23)
on page 93 tells us that

δ(x− ξ)
ρ(x)

=
∞∑

k=1

uk(x)uk(ξ) . (4.52)

This is a necessary and sufficient condition for completeness. Combining it with
Eq.(4.51), one finds that

∮

C

Gλ(x; ξ) dλ =
δ(x− ξ)
ρ(x)

. (4.53)

This is the new criterion for completeness:
Equation (4.53) holds if and only if the spectral representation of Gλ is based on a
complete set of eigenfunctions.
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This means that, if upon evaluating the left hand side of Eq.(4.49) along an asymp-
totically infinite circular contour C, one finds that Eq.(4.53) holds, then one in
guaranteed that the set of eigenfunctions obtained from Eq.(4.50) forms a complete
set. The example of a free string in the next section illustrates this computational
criterion.

4.10.4 String with Free Ends: Green’s Function, Spectrum,
and Completeness

Consider the following boundary value problem:

d2u

dx2
+ λu = 0

u′(0) = 0

u′(ℓ) = 0 .

Green’s Function

To construct the Green’s function for this system, find any two solutions, say w(x, λ)
and z(x, λ), which satisfy the two respective boundary conditions:

w(x, λ) = cos
√
λx ,

z(x, λ) = cos
√
λ(x− ℓ) .

The Green’s function is

Gλ(x; ξ) =
−1
c
w(x<, λ)z(x>, λ)

=
−1
c(λ)

{
cos
√
λx cos

√
λ(ξ − ℓ) x ≤ ξ

cos
√
λξ cos

√
λ(x− ℓ) ξ ≤ x .

Here

c(λ) = p(x) (w(x)z′(x) − w′(x)z(x))

= 1
(

cos
√
λx (−)

√
λ sin

√
λ(x− ℓ) −

√
λ sin

√
λx cos

√
λ(x− ℓ)

)

= −
√
λ sin

√
λ(x− ℓ− x) =

√
λ sin

√
λℓ

Thus

Gλ(x; ξ) =







−cos
√
λx cos

√
λ(ξ − ℓ)√

λ sin
√
λℓ

x ≤ ξ

−cos
√
λξ cos

√
λ(x− ℓ)√

λ sin
√
λℓ

ξ ≤ x .
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Spectrum via Green’s Function

In order to evaluate the contour integral of Gλ(x; ξ) one must know its singular points
in the complex λ-plane. It is clear that on this domain the Green’s function has the
form

Gλ(x; ξ) =
g(λ)

c(λ)
,

where both g(λ) and c(λ) are analytic for all λ, even though each one depends
manifestly on the nonanalytic function

√
λ. Thus the singular points of Gλ are

located at the zeroes of c(λ), the eigenvalues of the Sturm-Liouville system:

c(λ) ≡
√
λ sin

√
λℓ = 0 ⇒ λn =

(nπ

ℓ

)2

, n = 0, 1, 2, · · · .

At these points c′(λn) 6= 0. Consequently, λ = λn is a simple pole in whose neigh-
borhood the ratio g/c has the expansion

Gλ =
g(λ)

c(λ)
=

α0

λ− λn
+ α1 + α2(λ− λn) + · · · .

Here α0 is the residue of Gλ, and one must find it. To do this, consider

g(λ)

c(λ)
(λ− λn) = α0 + α1(λ− λn) + α2(λ− λn)2 + · · ·

and take the limit. Thus

α0 = lim
λ→λn

g(λ)(λ− λn)
c(λ)

= lim
λ→λn

g(λ)

c′(λ)

=
g(λn)

c′(λn)

where the second step used L’Hospital’s rule. The residue of Gλ is therefore

Res
λ = λn

Gλ(x; ξ) =
g(λn)

c′(λn)
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Its evaluation is based on the following expressions

g(λ) = − cos
√
λx< cos

√
λ(x> − ℓ)

c(λ) =
√
λ sin

√
λℓ

c(λn) = 0 →
√

λn =
nπ

ℓ
, n = 0, 1, 2, · · ·

c′(λn) =
1

2
√
λ
sin
√
λℓ +

√
λ(cos

√
λℓ)

ℓ

2
√
λ

∣
∣
∣
∣
λ=λn

=
ℓ

2
cosnπ when λn 6= 0

=
ℓ

2
+
ℓ

2
when λn = 0

It follows that Gλ has a closed contour integral given by

1

2πi

∮

C

Gλ(x; ξ) dλ = −1

ℓ
−
∞∑

n=1

cos
√
λx< cos

√
λ(x> − ℓ)

c′(λ)

∣
∣
∣
∣
∣√
λ=nπ

ℓ

= −1

ℓ
−
∞∑

n=1

cos nπ
ℓ
x< cos nπ

ℓ
(x> − ℓ)

ℓ
2
cosnπ

= −1

ℓ
− 2

ℓ

∞∑

n=1

cos nπ
ℓ
x< cos nπ

ℓ
x> cosnπ

cosnπ

= −1

ℓ
− 2

ℓ

∞∑

n=1

cos
nπ

ℓ
x cos

nπ

ℓ
ξ (4.54)

Compare this bilinear expression with the fundamental formula, Eq.(4.51) on page 272,
and read out the complete set of orthonormalized eigenfunctions

{um(x)} =
{√

1

ℓ
,

√

2

ℓ
cos

mπ

ℓ
x : m = 1, 2, · · ·

}

.

Completeness

To validate the completeness of these eigenfunctions one must evaluate

1

2πi

∮

C

Gλ(x; ξ) dλ =
1

2πi

∮

C

− cos
√
λx cos

√
λ(ξ − ℓ)√

λ sin
√
λℓ

dλ (4.55)



276 CHAPTER 4. GREEN’S FUNCTION THEORY

k= φ
R R

complexλ−plane

λ

complex −planek

θ

Figure 4.8: Integration contour C in the λ-plane and its semicircular image the
k-plane

along the very large (in the limit infinite) circular contour

C = {λ = Reiθ : 0 < θ < 2π}
before we deformed it into

⋃∞
n=0Cn. This evaluation is facilitated by introducing

√
λ = k and hence

dλ√
λ
= 2dk .

This transforms the integration contour into a very large semicircle

k =
√
Reiφ

=
√
R cosφ+ i

√
R sinφ, 0 < φ < π (4.56)

The integral to be evaluated is therefore

1

2πi

∮

C

Gλ(x; ξ) dλ =
−1
2πi

∫ √Reiπ

√
R

cos kx cos k(ξ − ℓ)
sin kℓ

︸ ︷︷ ︸
N
D

2dk (4.57)

In light of Eq.(4.56) one finds that

cos kx =
eikx + e−ikx

2
→ e−ikx

2
as
√
R→∞ (4.58)

cos k(ξ − ℓ) = eik(ξ−ℓ) + e−ik(ξ−ℓ)

2
→ eik(ξ−ℓ)

2
as
√
R→∞ (4.59)

sin kℓ =
eikℓ − e−ikℓ

2i
→ −e

−ikℓ

2i
as
√
R→∞ (4.60)

so that

(4.61)

N

D
→ (e−ikx/2)(eik(ξ−ℓ)/2)

−(e−ikℓ)/2 =
−i
2
eik(ξ−x) (4.62)
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Consequently,

1

2πi

∮

C

Gλ(x; ξ) dλ =
−1
2π

∫ √R

−
√
R

eik(ξ−x)dk (4.63)

The integrand is analytic in the semidisk bounded by the semicircle and the the real
interval [−

√
R,
√
R] as in the righthand picture of Figure 4.8. Thus one can use the

Cauchy-Goursat theorem to deform the semicircular contour into a straight line just
barely above the real k-axis. This changes Eq.(4.63) into an integral along the real
axis,

1

2πi

∮

C

Gλ(x; ξ) dλ =
−1
2π

∫ √R

−
√
R

eik(ξ−x)dk → − δ(ξ − x) as R→∞ . (4.64)

This shows that the set of orthonormal eigenfunctions forms a complete set. Indeed,
comparing this expression with Eq.(4.54) one has

δ(x− ξ) = 1

ℓ
+

2

ℓ

∞∑

m=1

cos
mπx

ℓ
cos

mπξ

ℓ
whenever 0 < x, ξ < ℓ .

This is the requisite completeness relation.
From a different perspective this relation is also the spectral representation of the

Dirac delta function, which one may compare with that of the Green’s function,

Gλ(x; ξ) = −
1

ℓ(λ− 0)
− 2

ℓ

∞∑

m=1

cos
mπx

ℓ
cos

mπξ

ℓ

(λ− m2π2

ℓ2
)

.

Lecture 35

4.11 Boundary Value Problem

via Green’s Function: Integral Equation

It is difficult to overstate the importance of Green’s functions. This is true in partic-
ular in regard to their role in boundary value problems, be they scattering problems,
where the domain is infinite (exterior boundary value problems), or cavity problems,
where the domain is finite (interior boundary value or bound state problems).
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4.11.1 One-dimensional Scattering Problem: Exterior Bound-
ary Value Problem

Scattering of radiation by bodies is ubiquitous. The mathematical formulation of
this process can be reduced, more often than not, to an exterior boundary value
problem, namely finding the solution to the following homogeneous b.v. problem:

− d

dx
p(x)

dψ

dx
− v(x)ψ = λρ(x)ψ a < x <∞ (4.65)

ψ(a) = 0 (4.66)

lim
x→∞

ψ(x) = finite (4.67)

The scattering is due to v(x), the potential of the body. The body is finite. Conse-
quently, its potential vanishes for large x:

lim
x→∞

v(x) = 0 .

If the scattering body is absent, there is no scattering potential at all. In that case
the boundary value problem is

− d

dx
p(x)

dψ0

dx
= λρ(x)ψ0 a < x <∞ (4.68)

ψ0(a) = 0 (4.69)

lim
x→∞

ψ0(x) = finite . (4.70)

The solution to this problem, ψ0, is called the unscattered solution or the incident
wave. It is characterized by the physical parameter λ, which usually expresses a
squared frequency, a squared wave number, an energy or something else, depending
on the nature of the wave.

If the scattering body is present, v(x) 6= 0. To find the scattered wave, i.e. the
solution to the homogeneous Eqs.(4.65)-(4.67), one writes this system with the help
of Eqs.(4.68)-(4.70) in the form

d

dx
p(x)

d{ψ(x)− ψ0(x)}
dx

+ λρ(x){ψ(x)− ψ0(x)} = −v(x)ψ a < x <∞ (4.71)

{ψ(a)− ψ0(a)} = 0 (4.72)

lim
x→∞
{ψ(x)− ψ0(x)} = 0 , (4.73)
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and views the r.h.s., v(x)ψ(x), as an inhomogeneity for the corresponding Green’s
function problem

[
d

dx
p(x)

dψ

dx
+ λρ(x)

]

Gλ(x; ξ) = −δ(x− ξ) a < x <∞

Gλ(a; ξ) = 0

lim
x→∞

Gλ(x; ξ) = 0 .

Solutions to problems like this one are discussed in the next Section 4.12.3 starting
on page 297. It follows from Eq.(4.34) on page 250 that

ψ(x) = ψ0(x) +

∫ ∞

a

Gλ(x; x
′)v(x′)ψ(x′) dx′ . (4.74)

However, unlike Eq.(4.34), Eq.(4.74) is not an explicit solution because the unknown
function ψ appears inside the integral. The physical reason is that the source of the
scattered wave on the r.h.s. of Eq.(4.71) is nonzero if and only if an incident wave
ψ0 is present, i.e.

ψ0(x) 6= 0⇐⇒ ψ(x) 6= 0 a < x <∞ .

Equation (4.74) is an integral equation for the to-be-determined solution ψ(x). This
equation not only implies the differential Eq.(4.65), but also the associated bound-
ary conditions. In fact, the integral equation is mathematically equivalent to the
homogeneous boundary value problem, Eqs.(4.65)-(4.67).

The reformulation in terms of an integral equation constitutes a step forward.
By condensing three concepts into one, one has implemented the principle of unit-
economy6, and thereby identified the essence – the most consequential aspect – of
the external boundary value problem. That this is indeed the case is borne out by
the fact that Eq.(4.74) lends itself to being solved by a process of iteration without
having to worry about boundary conditions.

The first iterative term, with ψ(x′) inside the integral replaced by ψ0(x
′), yields

what in scattering theory is called the first Born approximation:

ψ1(x) = ψ0(x) +

∫ ∞

a

Gλ(x; x
′)v(x′)ψ0(x

′) dx′

= ψ0(x) + ∆(1)ψ(x) .

6As identified in the footnote on page 198
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Successive terms in this iteration yield

ψ2(x) = ψ0(x) +

∫ ∞

a

Gλ(x; x
′)v(x′)ψ1(x

′) dx′

=

ψ1(x)
︷ ︸︸ ︷

ψ0(x) +

∫ ∞

a

Gλ(x; x
′)v(x′)ψ0(x

′) dx′

+

∫ ∞

a

∫ ∞

a

Gλ(x; x
′)v(x′)Gλ(x

′; x′′)v(x′′)ψ0(x
′′) dx′′dx′

≡ ψ0(x) + ∆(1)ψ(x) + ∆(2)ψ(x)

...

The nth iteration involves a multiple integral of the form

∆(n)ψ(x) =

∫ ∞

a

∫ ∞

a

· · ·
∫ ∞

a

Gλ(x; x
′)v(x′)Gλ(x

′; x′′)v(x′′)

· · ·Gλ(x
(n−1); x(n))v(x(n))ψ0(x

(n)) dx(n) · · · dx′′dx′

For n = 1 such a term corresponds to a scattering process in which the incident wave
is scattered by the potential at x′ before it arrives at x. The integration over x′

expresses the fact that the total total wave amplitude at x is a linear superposition
of the waves due to the scattering process taking place at x′.

By induction one concludes that for any n such a term refers to a multiple scatter-
ing process : the incident wave is scattered by the potential at x(n), x(n−1), · · · , x′′, x′
before it arrives at x, where it is observed.

Thus the solution to the external boundary value problem, Eq.(4.74), has the
form

ψ(x) = ψ0(x) + ∆(1)ψ(x) + ∆(2)ψ(x) + · · ·+∆(n)ψ(x) + · · · .

The scattered wave is represented by a Born series, a sum of the unscattered wave
ψ0(x), a wave ∆(1)ψ(x) that was scattered once, a wave ∆(2)ψ(x) that was scattered
twice, and so on. The Born series converges if the scattering potential is small
enough. By truncating this series one obtains an approximate solution to the given
exterior boundary value problem.
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4.11.2 One-dimensional Cavity Problem: Interior Boundary
Value Problem

The process of solving the inhomogeneous boundary value problem

d

dx
p
du

dx
+ [q(x) + λρ(x)]u = −f(x) a < x < b

B1(u) = d

B2(u) = e

is somewhat awkward from a numerical and even a conceptual point of view. Solving
the differential equation is a local process: one determines the function and its prop-
erties at x+dx from those at x. One repeats this step-like process until one has found
u(x) for a ≤ x ≤ b. Upon completion one checks whether the boundary conditions
B1 and B2 have been satisfied. If not, one alters the function u at the point where
one started solving the differential equation and then starts all over again. Thus one
might have to solve the differential equation many times before one finally obtains
the solution to the desired degree of accuracy.

It is evident that this undersirable drudgery is due to the fact that the key
property, boundary conditions, which determine the qualitatively important features
of the solution u, are stated separately and are not an intrinsic part of the differential
equation.

This deficiency can be removed by recasting the boundary value problem in the
form of an integral equation. The one-dimensional Sturm-Liouville system with, say,
inhomogeneous Dirichlet boundary conditions,

d

dx
p
du

dx
+ [−q(x) + λρ(x)]u = 0

u(a) = d

u(b) = e ,

illustrates the general principle. To convert this sytem into a single integral equation,
one considers the corresponding Green’s function problem

[
d

dx
p
d

dx
− q(x)

]

G(x; ξ) = −δ(x− ξ)

G(a; ξ) = 0

G(b; ξ) = 0 .
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One transposes the term λρ(x)u(x) to the right hand side of the S-L equation and
considers it as an inhomogeneous equation. Multiply this equation by G(x; ξ), mul-
tiply the Green’s function equation by u(x). One finds

G(x; ξ)

[
d

dx
p
du

dx
− q(x)u

]

= −λG(x; ξ)ρ(x)u

and

u(x)

[
d

dx
p
d

dx
q(x)

]

G(x; ξ) = −δ(x− ξ)u(x) .

Upon subtracting one finds that the q(x)-terms cancel and that the left hand side
becomes a total derivative (Lagrange’s identity!):

l.h.s. = G(x; ξ)
d

dx
p
du

dx
− u(x) d

dx
p
dG(x; ξ)

dx

=
d

dx

{

G(x; ξ)p(x)
du(x)

dx
− u(x)p(x)dG(x; ξ)

dx

}

.

The r.h.s. becomes

r.h.s. = −λG(x; ξ)ρ(x)u(x) + δ(x− ξ)u(x) .
Integration of l.h.s.=r.h.s. yields

p(x)

[

G(x; ξ)
du(x)

dx
− dG(x; ξ)

dx
u(x)

]x=b

x=a

= −λ
∫ b

a

G(x; ξ)ρ(x)u(x)dx+ u(ξ) .

Switching variables x↔ ξ, one finds

u(x) = λ

∫ b

a

G(ξ; x)ρ(ξ)u(ξ)dξ (4.75)

+p(a)u(a)
dG(ξ; x)

dξ

∣
∣
∣
∣
ξ=a

− p(b)u(b) dG(ξ; x)
dξ

∣
∣
∣
∣
ξ=b

.

This is an integral equation for u(x). Note that the boundary conditions for u(x) are
an intrinsic part of the equation: the boundary conditions do not have to be stated
separately. Also note that if u(x) satisfies the homogeneous Dirichlet conditions
u(a) = 0, u(b) = 0, then the integral equation becomes

u(x) = λ

∫ b

a

G(x; ξ)ρ(ξ)u(ξ)dξ , (4.76)

which is an eigenvalue equation for the function u.
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4.11.3 Eigenfunctions via Integral Equations

To illustrate this integral equation, consider the boundary value problem for several
of the familiar orthogonal functions.

1. Trigonometric functions:

d2u

dx2
+ λu = 0 u(0) = u(ℓ) = 0

u(x) = λ

∫ ℓ

0

G(x; ξ)u(ξ)dξ

G(x; ξ) =
1

ℓ

{
x(ℓ− ξ) when x < ξ
ξ(ℓ− x) when ξ < x

Eigenfunction: un(x) = sin nπx
ℓ
; λ =

(
nπ
ℓ

)2
; n = integer.

2. Bessel functions:

1

x

d

dx
x
du

dx
+

(

λ− n2

x2

)

u = 0 u finite at x = 0 , ∞

u(x) = λ

∫ ∞

0

G(x; ξ)u(ξ)ξdξ

G(x; ξ) =
1

2n

{ (
x
ξ

)n

when x < ξ
(
ξ
x

)n
when ξ < x

Eigenfunction: un(x) = Jn(
√
λx); 0 < λ <∞

3. Legendre polynomials:

d

dx
(1− x2)du

dx
+ λu = 0 u is finite at x = ±1

u(x) = λ

∫ 1

−1
G(x; ξ)u(ξ)dξ − 1

2

∫ 1

−1
u(ξ)dξ

G(x; ξ) =
1

2

{

ln
(

1+x
1−ξ

)

when x < ξ

ln
(
1+ξ
1−x
)

when ξ < x

un(x) = Pn(x) ; λ = n(n+ 1) ; n = integer .
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4.11.4 Types of Integral Equations

It is evident that different types of boundary value problems give rise to different
types of integral equations.
A. Fredholm Equations

The inhomogeneous boundary value problem gave rise to Eq.(4.75), whose form
is

u(x) = λ

∫ b

a

K(x; ξ)u(ξ)dξ + ϕ(x) . (4.77)

In this case, K(x; ξ) = G(x; ρ)ρ(ξ) and ϕ are known functions, and u is the unknown
function.

The integration limits a and b are fixed. An integral equation for u(x) of the
form Eq. (4.77) is called inhomogeneous Fredholm equation of the second kind. The
expression K(x; ξ) is called the “kernel” of the integral equation.

A homogeneous Fredholm equation of the second kind is obtained by dropping the
function ϕ(x),

u(x) = λ

∫ b

a

K(x; ξ)u(ξ)dξ .

Equation (4.76) and the subsequent eigenvalue equations are examples of such equa-
tions.

A Fredholm equation of the first kind has the form

ϕ(x) =

∫ b

a

K(x; ξ)u(ξ)dξ

whenever ϕ(x) is a known function and u(ξ) is the unknown function.
B. Volterra Equations

Fredholm equations are based on definite integrals. If the integration limits are
variable, then the corresponding integral equations are Volterra equations. An in-
homogeneous Volterra equation of the second kind, corresponding to Eq. (4.77), has
the form

u(x) =

∫ x

a

K(x; ξ)u(ξ)dξ + ϕ(ξ) . (4.78)

If ϕ = 0, then one has a homogeneous Volterra equation of the second kind. By
contrast, a Volterra equation of the first kind has the form

ϕ(x) =

∫ x

a

K(x, ξ)u(ξ)dξ ,
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where ϕ is known and u is the unknown function. A Volterra integral equation may
be viewed as a Fredholm equation whose kernel vanishes for x < ξ. Thus letting

M(x; ξ) = 0 x < ξ

M(x; ξ) = K(x; ξ) ξ < x ,

one finds that the Volterra Eq. (4.78) becomes

u(x) =

∫ b

a

M(x; ξ)u(ξ)dξ + ϕ(ξ) ,

whose form is that of a Fredholm equation.
One of the prominent examples giving rise to Volterra’s integral equations are

initial value problems. To illustrate this point, consider the motion of a simple
harmonic oscillator governed by the equation

d2u

dτ 2
+ ω2u = 0 (4.79)

and the initial conditions

u(0) = d

u̇(0) = e .

The Green’s function for this problem is depicted in Figure 4.5 on page 258. It
is the response to the impulse δ(t− τ), and it satisfies

d2GR(t; τ)

dt2
= −δ(t− τ) ; GR(0; τ) = 0 ,

dGR(t; τ)

dt

∣
∣
∣
∣
t=0

= 0

or

d2GR(t; τ)

dτ 2
= −δ(t− τ) ; GR(t, τ) = 0 , for all t < τ , (4.80)

in spite of the fact that GR(t; τ) 6= GR(τ ; t) (Why? Hint: what is the second deriva-
tive of a function that depends only on t − τ?). To obtain the integral equation
multiply Eq. (4.79) by GR(t; τ) and Eq. (4.80) by u(τ). One finds

GR(t; τ)

[
d2u

dτ 2
+ ω2

]

u = 0

u(τ)
d2GR(t; τ)

dτ 2
= −δ(t− τ)u(τ)
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Subtraction yields a l.h.s. whose second derivative terms consolidate into a total
derivative (Lagrange’s identity!):

d

dτ

{

GR(t; τ)
du

dτ
− u(τ)dG

R(t; τ)

dτ

}

+ ω2GR(t; τ)u(τ) = −δ(t− τ)u(τ)

Next perform the integration
∫ t+

0
· · · dτ , where t+ signifies taking the limit of the

integral as τ → t from the side for which τ > t. One obtains

∫ t+

0

dτ

{

GR(t; τ)
d2u(τ)

dτ 2
− u(τ)d

2GR(t, τ)

dτ 2

}

+ ω2

∫ t+

0

GR(t, τ)u(τ)dτ = u(t)

or with the help of the property GR(t; τ) = 0 whenever t < τ ,

u(t) = ω2

∫ t+

0

GR(t; τ)u(τ)dτ + u(0)
dGR(t; τ)

dτ

∣
∣
∣
∣
τ=0

− u̇(0)GR(t; 0) .

Here u(0) and u̇(0) are the initial amplitude and velocity of the simple harmonic
oscillator, and they are now intrinsically incorporated in an inhomogeneous Volterra
equation of the second kind. In this integral equation u(τ) is the unknown function
to be determined. However, the utility of this integral equation, which is based on
the Green’s function GR(t; τ), is eclipsed by an integral equation which is based a
another Green’s function, say gR(t; τ), satisfying

d2gR(t; τ)

dτ 2
+ ω2gR(t; τ) = −δ(t− τ) ; gR(t, τ) = 0 , for all t < τ

similar to Eq.(4.79). Following the same derivation steps, one finds that the ω2-term
gets cancelled.

u(t) = u(0)
dgR(t; τ)

dτ

∣
∣
∣
∣
τ=0

− u̇(0)gR(t; 0) .

The integral has diappeared. One is left with the solution to the problem one is
actually trying to solve. The overall conclusion is this: Picking the right Green’s
function for the problem speeds up the process of reaching one’s goal.

Exercise 4.11.1 (TRANSLATION INVARIANT INTEGRATION KERNEL)
Consider the inhomogeneous Fredholm equation of the second kind,

u(x) = λ
1√
2π

∫ ∞

−∞
K(x; ξ) u(ξ) dξ + φ(x).
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Here λ is a parameter and φ is a known and given function. So is the integration kernel
K, which in this problem is given to be translation invariant, i.e. you should assume that
K(x; ξ) = v(x− ξ), where v is a given function whose Fourier transform

v̂(k) =
1√
2π

∫ ∞

−∞
e−ikxv(x) dx

exists. SOLVE the integral equation by finding the function u(x) in terms of what is given.

Exercise 4.11.2
Look up an integral equation of the 2nd kind, either of the Volterra or of the Fredholm
type. Submit it and its solution.

Lecture 36

4.12 Singular Boundary Value Problem:

Infinite Domain

All our observations of nature are specific and hence finite. In order to extend our
grasp from the finite to those aspects nature termed “infinite”, one starts with a one
parameter family of (finite) systems. By letting this parameter become asymptoti-
cally large one can ask: are there any properties of the system that don’t change as we
let that parameter become arbitrarily large? An affirmative answer to this question
yields a new perspective on the system. The constellation of properties subsumed
under the existence of this mathematical limit is a new concept, the “infinite system”
corresponding to the finite sytems giving rise to it.

The purpose of the method of the “infinite system” is to extend our grasp of
nature from the direct perceptual level of awareness to the conceptual level which
has no spatial and temporal bounds.

The archetypical system we shall study is the uniform string of length ℓ. We
shall determine its response to a unit force, and after that let ℓ → ∞. This is done
in Section 4.12.4 on Page 300. We shall find the remarkable (but not necessarily
unexpected) result that as ℓ→∞, the string’s response becomes independent of the
particular mixed Dirichlet-Neumann boundary conditions one may have imposed at
ℓ.

It will turn out that when one lets ℓ become infinitely large, it is necessary to
impose some other homogeneous boundary condition. The mixed D-N conditions
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are simply inappropriate for an (in the limit) infinite string. They get replaced by
the so-called “ingoing” or “outgoing” wave conditions. They mathematize what is
observed.

Consider a linear vibratory system driven harmonically by the spatial and tem-
poral elements e1kyy, eikzz, and e−iωt, but by the force density f(x) distributed along
the x-direction. Such a system is governed by the wave equation

∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
∂2Ψ

∂z2
− ∂2Ψ

∂t2
= −f(x)e1kyyeikzze−iωt . (4.81)

This linear system is invariant under y and z-translations. Its response to the given
driving source is mathematized by

Ψ = Φ(x, t)eikyyeikzz , (4.82)

where the to-be-determined amplitude Φ(x, t) satisfies the reduced wave equation

∂2Φ

∂x2
− ∂2Φ

∂t2
−
(
k2y + k2z

)
Φ = −f(x)e−ωt . (4.83)

The steady state amplitude Φ(x, t) = u(x)e−ωt has an amplitude profile u(x) which
satisfies

d2u

dx2
+ λu = −f(x), (4.84)

where7

λ = ω2 − k2y − k2z ≡ k2 . (4.85)

The domain of this linear syatem is the 1-dimensional semi-infinite x-axis 0 ≤ x <∞.
It has the finite subdomain 0 ≤ x ≤ b where the source f(x) is non-zero:

f(x)

{

= f(x) when 0 ≤ x ≤ b,

= 0 otherwise
(4.86)

The Green’s function for this linear system satisfies

d2Gλ(x; ξ)

dx2
+ λ
︸︷︷︸

9
k2

Gλ(x; ξ) = −δ(x− ξ), ξ < b, (4.87)

7In physics and engineering one refers to the equation ω2 − k2y − k2z ≡ k2 as the “dispersion
relation” for the system. As shown on page 292, it determines the phase velocity of a wave crest.
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Thus the system’s steady state response for the system driven this point source is

Φλ(x, t) = Gλ(x; ξ)e
−iωt

ξX=
X=0 X

x
Figure 4.9: Real part of the oscillatory unit impulse response Φ driven by the point
source at x = ξ.

The following physically important separated homogeneous boundary conditions
applied to the linear system illustrate and concretize the idea.

a) Dirichlet boundary condition at x = 0:

Φλ(x = 0, t) = 0.

b) Purely







outgoing
or

incoming






radiative boundary conditions,

0 =
∂Φλ

∂x
∓ ∂Φλ

∂t

{
′ −′ for outgoing whenever x > b
′ +′ for incoming whenever x > b

(4.88)

The Green’s function of a linear system always obeys its given homogeneous
boundary conditions. For the ones under considerarion they are

1.
Gλ(x = 0; ξ) = 0 ( i.e. for x < ξ )

2. Purely outgoing/incoming boundary condition for x > ξ :

Equation (4.87) on page 288 implies that for this condition to hold, that the
Green’s function has the form

Gλ(x; ξ) ∝ ei[λ]
1/2x



290 CHAPTER 4. GREEN’S FUNCTION THEORY

X= ξ

X= ξ

incoming:
absorption by sink

outgoing:
emission from source

incoming
x

x
outgoing

Figure 4.10: Outgoing and incoming wave crests of constant phase. Outgoing waves
are emitted from the source, the transmitter at X = ξ, while incoming waves are
absorbed by the sink, the receiver at X = ξ.

so that the solution is

Φλ(x, t) ∝ ei[λ]
1/2x−ωt (4.89)

≡ eiφ(x,t) ←− phase(x,t) . (4.90)

Here the phase function phase(x,t), or more brioefly φ(x, t), is the function
which controls the oscillations of an oscillatory amplitude

φ(x, t) = [λ]1/2x− ωt “the phase”

The phase (because of the amplitude, which oscillates) depends on the bound-
ary conditions of the linear system. With the outgoing boundary condition the
phase is

φout(x, t) = |k|x− ωt (4.91)

while for the incoming boundary condition the phase is

φin(x, t) = −|k|x− ωt .

Here

|k| =
√

ω2 − k2y − k2z
≡
√
λ
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is the positive square-root of λ as dictated by the “dispersion relation”, Eq.(4.85),
and which is to be used for the outgoing boundary condition. This is to be
contrasted with

−|k| = −
√
λ

which is to be used for the incoming boundary condition. In either case one
has a steady state amplitude for ξ < x where the phase is

[λ]1/2x− ωt = ±|k|x− ωt ≡
{

φout

φin

The Phase Velocity

The outgoing and incoming boundary conditions imply different phase velocities for
the phase fronts of Φλ(x, t). Keep in mind that

amplitude −→ Φλ ∝ eφλ ←− phase ,

Consequently, the two boundary conditions imply two different phase function.

Case(i) The purely outgoing boundary condition is satiesfied when Φλ ∝ ei(|k|x−ωt).
Thus the phase function for outgoing waves is

|k|x− ωt ≡ φout(x, t) .

Case(ii) Similarly, the phase function for incoming wave crests is

−|k|x− ωt ≡ φin(x, t) .

The Phase Velocity

The phase velocity of a wave crest, or of a traveling point where the real part of its
amplitude is zero, is the where the phase function is constant. For an outgoing wave
this is the locus of points where

|k|x− ωt = const.

while for an incoming wave this is where

−|k|x− ωt = const.
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These conditions define implicitly x(t), the location of the a wave crest. Implicit
differentiation yields

dx

dt
=







ω√
ω2−k2y−k2z

for the outgoing boundary condition

− ω√
ω2−k2y−k2z

for the incoming boundary condition

The wave crests move with the same speed8, but into opposite directions.
In order to become familiar with the key attributes of an infinite string consider

again the differential equation

d2Φ

dx2
+ λΦ = 0 , −∞ < x <∞

but without specifying any boundary conditions as yet. The general solution to this
differential equation has the form

Φλ(x) = A + Bx for λ = 0

Φλ(x) = Ceiλ
1/2x + De−iλ

1/2x for λ 6= 0

The expression for Φλ(x) is a λ-parametrized family of solutions to a λ-parametrized
family of differential equations. The parameter may be, and in general is, complex.
Consequently, Φλ(x) should be viewed as a function of the complex variable λ. For
fixed x this function maps the complex λ-plane into the complex Φ-plane

Complex Φ(x) Complex
λ− plane −→ Φ− plane

λ ∼∼❀ Φλ(x) = Cei
√
λx + De−i

√
λx

The analytic properties of this function depend on the properties of the square root
function λ1/2, which has two analytic branches

λ1/2 = α + iβ =

{ √
λ β > 0

−
√
λ β < 0

and a branch cut which separates them. They all play a key role in determining the
behaviour of the function Φλ(x). Thus a quick review is appropriate.

8This speed bcomes arbitrarily large as (k2y+k
2
z)→ ω2. Question: What is the physical meaning

of this? Does this violate the principle of relativity? Why or why not?



4.12. SINGULAR BOUNDARY VALUE PROBLEM: INFINITE DOMAIN 293

φλ (x)

Im 

Re

complex
-plane

λ

λ

λ
Im 

Re

complex
-plane

φ

φ
φ

with x=fixed

Figure 4.11: The λ-parametrized family of functions Φλ(x) as a map from the com-
plex λ-plane onto the complex Φ-plane

4.12.1 Review: Branches, Branch Cuts, and Riemann Sheets

The square root function and its branches are defined as follows:

(i) The square root function λ1/2.

Let λ = |λ|eiθ. A function is defined by giving its formula and specifying its
domain. The square root function λ1/2 is defined by

λ1/2 = |λ|1/2eiθ/2 (Formula)

where

θ is any real number (Domain)

(ii) The first branch of λ1/2.

This function, denoted by
√
λ, is defined by

√
λ = |λ|1/2eiθ/2 (Formula)

where

0 ≤ θ < 2π (Domain)

More succinctly, we have

1st branch of λ1/2 ≡
√
λ

= |λ|1/2eiθ/2 0 ≤ θ < 2π

See Figure 4.12
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λ

complexλ - plane

θ
complex - planek

Figure 4.12: The first branch of the map λ1/2 maps the complex λ-plane onto the
upper half of the complex k-plane

(iii) The second branch of λ1/2.

This function, denoted by −
√
λ, is obtained by restricting the domain of λ1/2

to 2π ≤ θ < 4π. In other words, −
√
λ is defined by

−
√
λ = |λ|1/2eiθ/2 (Formula)

where
2π ≤ θ < 4π (Domain)

Equivalently, the second branch is defined by

−
√
λ = −|λ|1/2eiθ′/2 (Formula)

where
0 ≤ θ′ < 2π (Domain)

See Figure 4.13

λ

complexλ - plane

θ
complex - plane

’
-

’ k

Figure 4.13: The second branch of the map λ1/2 maps the complex λ′-plane onto the
lower half of the complex k-plane

(iv) The Riemann sheets of λ1/2.

The two branches
√
λ and −

√
λ are the two components of the single function

λ1/2 whose domain consists of two copies of the complex λ-plane. The points
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along the real λ-axis are glued together (i.e. identified) in the manner depicted
in Figure 4.14.

We are forced to accept these two copies if one writes the image of λ as

[λ]1/2 = α + iβ

in the k-plane of Figure 4.14. Then the first Riemann sheet consists of the set
of λ’s for which β > 0, while the second Riemann sheet consists of those λ’s for
which β < 0. These sheets are joined continuously along their positive x-axes
by the requirement that the function

[λ]1/2 = |λ|1/2eiθ/2 (4.92)

be continuous for all values of θ. As a result of this requirement the two sheets
are joined in the manner depicted in Figure 4.14.

It is quite true that, by itself, the complex number λ does not tell whether λ is
on the first or the second Riemann sheet. This information is found neither in
the real nor in the imaginary part of λ. Instead, it is inferred from the square
root function, Eq.(4.92) Indeed, one has

0 < θ < 2π =⇒ λ ∈ 1st Riemann sheet

2π < θ < 4π =⇒ λ ∈ 2nd Riemann sheet (4.93)

The set of points θ = 2π lies on both Riemann sheets; so does the set of points
θ = 0. However, these two sets are distinct: they lie on opposite sides of the
branch cut of the upper or the lower λ-plane.

An alternative way of characterizing the square root function is to collapse its
domain, the two Riemann sheets, into a single λ-plane. Such a simplification comes,
however, at a price: the square root function is now two-valued, it has two formulas,
the two branches

√
λ and −

√
λ. The domain for both of them is the λ-plane with a

branch cut along the positive real axis across which each branch is discontinuous.

4.12.2 Square Integrability

Let us determine how the location of the point λ controls the square-integrability of
the exponential solution eiλ

1/2x on the inteval [0,∞).
With

λ1/2 ≡ α + iβ
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λ =1st branch

λ- =2nd branch

k= λ
1/ 2

k-plane

Riemann sheet

Riemann sheet

1st

2nd

sam
e points

sam
e points

.

.

.

.

Figure 4.14: The map λ1/2 whose domain consists of the upper and the lower Rie-
mann sheets and whose range is the the complex k-plane. The circle in the first
Riemann sheet gets mapped into a semi-circle in the upper k-plane, and the cirle in
the second Riemann sheet gets mapped into a semi-circle in the lower k-plane. A
pair of points one above the other in the two Riemann sheets gets mapped into a
pair of diametrically opposite points in the k-plane. The points common to the two
Riemann sheets get mapped into the real axis in the k-plane.

the λ-parametrized function

φλ(x) = eiλ
1/2x =

{

ei
√
λx = eiαxe−βx 0 < β

e−i
√
λx = eiαxe−βx β ≤ 0

has entirely different integrability properties depending on whether λ lies in the first
Riemann sheet (λ1/2 =

√
λ, i.e. β > 0) or in the second Riemann sheet (λ1/2 =

−
√
λ, i.e.β < 0), that is to say, in the domain of which branch of λ1/2 the point λ

happens to lie. In fact, from

∫ ∞

0

| exp{iλ1/2x}|2 dx =

∫ ∞

0

| exp{i(α + iβ)x}|2 dx

=

∫ ∞

0

e−2βx dx =
1

2β
for all α, but β > 0 (4.94)

we see that exp{iλ1/2x} is square-integrable ( ∈ L2[0,∞) ) only when β > 0, but
the integral diverges whenever β ≤ 0. In other words,
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exp{iλ1/2x} is square-integrable on [0,∞) whenever λ lies on the 1st Riemann sheet,
and not on the real λ-axis, nor on the 2nd Riemann sheet.

An analogous statement holds for exp{iλ1/2x} being square-integrable on (−∞, 0].
In that circumstance the requirement is that λ lies on the 2nd Riemann sheet:

∫ 0

−∞
| exp{iλ1/2x}|2 dx =

∫ ∞

0

| exp{−i(α + iβ)x}|2 dx

=

∫ ∞

0

e2βx dx =
−1
2β

for all α, but β < 0 (4.95)

Thus the requirement of square integrability relates the Riemann sheets of λ1/2 to
the two semi-infinite integration domains of exp(iλ1/2x):

λ ∈ 1st Riemann sheet⇐⇒ exp(iλ1/2x) ∈ L2[0,∞)

and

λ ∈ 2st Riemann sheet⇐⇒ exp(iλ1/2x) ∈ L2(−∞, 0]
whenever λ 6= real. Thus,

exp(iλ1/2x) is square integrable on [0,∞)⇒ exp(iλ1/2x) = exp(i
√
λx)

and

exp(iλ1/2x) is square integrable on (−∞, 0]⇒ exp(iλ1/2x) = exp(−i
√
λx) .

Lecture 37

4.12.3 Infinite String

Even though in nature one never observes an infinite string, such a string is a concept
with properties which are directly observable and which lend themselves to easy
mathematical analysis. This means that the infinite string is a natural way by which
to grasp the properties and behavior of any system which exhibits these attributes.
All the essential properties of a string are contained in the solution to the following
Problem: Construct the Green’s function for the system

d2Gλ

dx2
+ λGλ = −δ(x− ξ) 0 < x <∞

subject to
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1. Gλ(0; ξ) = 0

2. Gλ(x; ξ) expresses an “outgoing” wave for very large x, i.e., Gλ ∼ eiλ
1/2x.

3. Gλ(x; ξ) is square-integrable.

Comment

Such a boundary value problem arises in the solution to a vibrating semi-infinite
string which is imbedded in an elastic medium, and which responds to a harmonically
varying force:

∂2ψ

∂x2
− ∂2ψ

∂t2
− k2ψ = −f(x)e−iωt .

The steady state solution to this system is

ψ(x, t) = u(x)e−iωt

where
d2u

dx2
+ λu(x) = −f(x)

with λ = ω2 − k2. If the harmonic driving force is localized to a point, then the
solution is

ψ(x, t) = Gλ(x; ξ)e
−iωt .

Being square integrable, for large (ξ < x) the solution is

ψ ∼ ei
√
λxe−iωt = ei(α+iβ)xe−iωt, ,

where √
λ = ±|α|+ iβ with 0 < β≪ 1 .

It is evident that the upper sign expresses an outgoing wave and the lower sign an
incoming wave on 0 < x <∞. This is because the locus of the constant amplitude

±|α|x− ωt = const

is a point with phase velocity
dx

dt
= ± ω

|α| .
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The upper sign refers to a wave moving towards larger x. It is an outgoing wave.
The difference between an outgoing and an incoming wave is the difference between
the driving force emitting and absorbing wave energy. In both cases 0 < β9 .

The Green’s function is constructed in the usual way:

Gλ(x; ξ) =
−1
c
u1(x<)u2(x>)

where

u1(x) = sinλ1/2x (u1(0) = 0)

u2(x) = exp iλ1/2x (outgoing b.c. : λ1/2 = |α|+ iǫ)

c = u1u
′
2 − u′1u2

= λ1/2(i sinλ1/2x− cosλ1/2x)eiλ
1/2x

= −λ1/2 .
Thus the Green function is

Gλ(x; ξ) =
sinλ1/2x<
λ1/2

eiλ
1/2x> .

Here

λ1/2 =

{
|λ|1/2 + iǫ for “outgoing” wave at large x
−|λ|1/2 + iǫ for “incoming” wave at large x

From the perspective of physics, a non-zero but neglegible ǫ expresses the presence of
damping. The exponential damping factor e−ǫx gurantees thatGλ is square integrable
on [0,∞), but it has no effect on the shape of the Green’s function because ǫ → 0.
It can thus be written as

Goutgoing
λ (x; ξ) =

sinλ1/2x<
λ1/2

e(i|λ|
1/2−0+)x> ,

while

Gincoming
λ (x; ξ) =

sinλ1/2x<
λ1/2

e(−i|λ|
1/2−0+)x> .

The branch cut of λ1/2 has a significant effect on the exponential. However, the sinc
function remains uneffected because it is an analytic function of λ.

9On the other hand, if the wave propagation domain were −∞ < x < 0, then an outgoing (resp.
incoming) wave

e−i
√
λxe−iωt = ei(α+iβ)xe−iωt

would be characterized by α = −|α| (resp. α = |α|), while square integrability demands that β < 0,
i.e. that λ1/2 be evaluated on its 2nd branch.
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4.12.4 Infinite String as the Limit of a Finite String

It seems that the properties and behavior of an infinite string are irreconcilably
different from those of a finite string. However, it is possible to consider the former
as a limiting form of the latter. This fact, together with the the associated role of
the square root function, is brought out by comparing the solutions of two simple
strings, both of length |ℓ|. One extends into the positive, the other into the negative
x-direction:

Problem: Consider the Green’s functions g+ and g− of the two linear systems with sym-
metrically located domains.

(i) The first one is governed by the differential

d2g+
dx2

+ λg+ = −δ(x− ξ) 0 < x, ξ < ℓ (4.96)

(4.97)

with Dirichelet boundary conditions at x = 0:

g+(x = 0) = 0 ,

and with mixed Dirichelet-Neumann boundary conditions at x = ℓ:

b1g+(ℓ) + b2g
′
+(ℓ) = 0 . (4.98)

(ii) The second one is governed by the same differential equation, but on a
domain which extends symmetrically to the left:

d2g−
dx2

+ λg− = −δ(x− ξ) ℓ < x, ξ < 0 (4.99)

(4.100)

with Dirichelet boundary conditions also at x = 0:

g−(x = 0) = 0 ,

and with the mixed Dirichelet-Neumann boundary conditions, but located
at x = ℓ = −|ℓ|:

b1g−(ℓ) + b2g
′
−(ℓ) = 0 . (4.101)

Thus the domain of g+ is [0, ℓ], while that of g−is [−|ℓ|, 0].
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Compare the respective Green’s functions g+ and g− in the limit as |ℓ| → ∞.

Remark : We shall find three noteworthy results: First of all, each Green’s
function has two asymptotic limits: one is square integrable, the other is not.
Second, these limits are entirely independent of the mixed Dirichlet-Neumann
conditions, Eq.(4.98), (4.101). Finally, each of these limits accomodates two
radiation conditions: outgoing and incoming.

Solution: (i) The first step consists of constructing the Green’s function in the usual way.
This task is based on

u1 = sinλ1/2x ,

which satisfies u1(0) = 0, and on

u2 = A cosλ1/2x+ B sinλ1/2x

whose coefficients A and B are related so as to satisfy the given boundary con-
ditions, Eqs.(4.98) and (4.101) at x = ℓ. These boundary conditions demand
that

A(b1 cosλ
1/2ℓ− b2λ1/2 sinλ1/2ℓ

︸ ︷︷ ︸

D

) + B(b1 sinλ
1/2ℓ+ b2λ

1/2 cosλ1/2ℓ
︸ ︷︷ ︸

N

) = 0

or

A = −BN
D

. (4.102)

To construct the Green’s functions

g±(x; ξ) =

{ −1
c
u1(x) u2(ξ) when |x| < |ξ|

−1
c
u1(ξ) u2(x) when |ξ| < |x|

we need the Wronskian determinant

c =

∣
∣
∣
∣

u1 u2
u′1 u′2

∣
∣
∣
∣

=

∣
∣
∣
∣

sinλ1/2x A cosλ1/2x+ B sinλ1/2x
λ1/2 cosλ1/2x −λ1/2A sinλ1/2x+ λ1/2B cosλ1/2x

∣
∣
∣
∣

= −λ1/2 A
= λ1/2 B

N

D
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Using Eq.(4.102), write down the Green’s functions. For |ξ| < |x| one has

g±(x; ξ) =
−1
c
u1(ξ) u2(x)

=
−1

λ1/2 B N
D

sinλ1/2ξ

[

(−)BN
D

cosλ1/2x+ B sinλ1/2x

]

=
sinλ1/2ξ

λ1/2
cosλ1/2x

︸ ︷︷ ︸

“particular solution”

− sinλ1/2ξ

λ1/2
sinλ1/2x

N
D

︸ ︷︷ ︸

“solution to the homogeneous problem”

(4.103)

(ii) The second step consists of taking the limit of this Green’s function as
the boundary |ℓ| → ∞. Note that there is no ℓ-dependence whatsoever in the
“particular solution” part of g±(x; ξ). In fact, it is totally independent of the
specific boundary condition that has been imposed at x = ℓ.

This is different for the second part, the “solution to the homogeneous equa-
tion”. It depends on the boundary condition by virtue of the ratio

N

D
=
b1 sinλ

1/2ℓ+ b2λ
1/2 cosλ1/2ℓ

b1 cosλ1/2ℓ− b2λ1/2 sinλ1/2ℓ
and hence also on the length ℓ. However, in the limit as ℓ → ∞ something
remarkable happens: the ratio N/D, and hence the Green’s function 4.103,
becomes independent of the mixed Dirichlet-Neumann boundary condition at
x = ℓ. In order to determine the value of the limiting ratio

lim
ℓ→∞

N

D
,

set
λ1/2 = α + iβ ,

so that

sinλ1/2ℓ =
1

2i
(eiαℓe−βℓ − e−iαℓeβℓ)

cosλ1/2ℓ =
1

2
(eiαℓe−βℓ + e−iαℓeβℓ) .

Introduce these expressions into the ratio N/D. It is evident that this ratio
has no limit when β = 0. However, for β 6= 0 one finds that

lim
βℓ→∞

N

D
= lim

βℓ→∞

b1
2i
(−)e−iαℓeβℓ + b2λ1/2

2
e−iαℓeβℓ

b1
2
e−iαℓeβℓ + b2λ1/2

2i
e−iαℓeβℓ

= i
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and

lim
βℓ→−∞

N

D
= −i .

Applying these two limits to the Green’s function, Eq.(4.103), one obtains

lim
βℓ→∞

g±(x; ξ) =
sinλ1/2ξ

λ1/2
eiλ

1/2x

{
upper sign for ℓ→∞
lower sign for ℓ→ −∞ (4.104)

and

lim
βℓ→−∞

g±(x; ξ) =
sinλ1/2ξ

λ1/2
e−iλ

1/2x

{
upper sign for ℓ→∞
lower sign for ℓ→ −∞ (4.105)

The allowed values of λ1/2 = α+ iβ are no longer determined by the Dirichelet-
Neumann conditions. Instead, for an (in the limit) infinite system the two
parts of λ1/2 are determined by the two boundary conditions

1. square integrability of g±, and

2. outgoing (or incoming) signal propagation condition.

These are two boundary conditions which determine the two parts of the com-
plex number λ1/2 = α+iβ, and hence of the eigenvalue λ1/2. The first condition
is met by fulfilling the requirement that

for g+ : β > 0 i.e. λ ∈ 1st Riemann sheet of λ1/2

for g− : β < 0 i.e. λ ∈ 2nd Riemann sheet of λ1/2

The second condition for outgoing (resp. incoming) signal propagation is met
by fulfilling the reqirement that

for g+ : λ1/2 =

{
|a|+ iǫ outgoing (to the “right”) wave
−|a|+ iǫ incoming (from the “right”) wave

for g− : λ1/2 =

{
−|a| − iǫ outgoing (to the “left”) wave
|a| − iǫ incoming (from the “left”) wave

These are the mathematical conditions on λ1/2 = α+ iβ for an asymptotically
infinite string. Inserting them into Eqs.(4.104) and (4.105), one finds that the
Green’s functions satisfying these conditions are

goutgoing± =
sinλ1/2ξ

λ1/2
e±i(|a|+iǫ)x

gincoming± =
sinλ1/2ξ

λ1/2
e±i(−|a|+iǫ)x







× e−iωτ for |ξ| < |x| .

Figure 4.15 depicts the real part of the graph of these functions.
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Figure 4.15: Instantaneous amplitude profiles of waves with outgoing and incoming
phase velocities. In the first case the source emits energy; in the second case the
source absorbs energy.

4.13 Spectral Representation of the Dirac Delta

Function

The physical difference between a finite and an infinite system has a profound impact
on the mathematical structure of the corresponding Green’s functions.

For a finite system, exemplified by a finite string, the Green’s function is singular
only at its poles, the eigenvalues of the system. By contrast, for an infinite system,
for example, an infinite string, the Green’s function is singular along each point of a
line segment, a branch cut in the complex λ-plane.

4.13.1 Coalescence of Poles into a Branch Cut

To appreciate the non-analyticity of the Green’s function, consider how the the iso-
lated poles of a finite string Green’s function merge so that they form the branch cut
when the string becomes infinitely long. To illustrate the point, start with a string
of length ℓ which satisfies the Dirichlet boundary conditions at both ends.

d2gλ
dx2

+ λgλ = −δ(x− ξ) 0 < x, ξ < ℓ

gλ(0; ξ) = 0

gλ(ℓ; ξ) = 0 .
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The Green’s function is

gλ(x; ξ) =
1

λ1/2 sinλ1/2ℓ
sin{λ1/2x<} sin{λ1/2(ℓ− x>)}

l
2

π4 2

l
2

π29
l
2

π2
. . .

isolated poles

l= finite l
limit

branch cut

Figure 4.16: Eigenvalue spectra in the complex λ-plane

Observe that in the complex λ-plane its poles are isolated and located at

λn =
n2π2

ℓ2
n = 1, 2, 3, · · ·

along the real λ-axis. Their separation

△λn = λn+1 − λn
=

π2

ℓ2
(2n+ 1)

tends to zero as ℓ → ∞. Thus, as depicted in Figure 4.16, as ℓ → ∞ the isolated
poles of gλ(x; ξ) coalesce into a continuous barrier, the branch cut, which separates
the “outgoing” from the “incoming” wave numbers λ1/2 on the same Riemann sheet
of λ1/2.
Remark. How would a change in boundary conditions, from Dirichlet to, say, mixed
Dirichlet-Neumann conditions, have altered the coalescence of the poles of the Green’s
function? It is evident that the positions of these poles depend continuously on the
parameters that specify the Dirichlet-Neumann boundary conditions. A change in
these boundary conditions would merely have shifted these poles along the real λ
axis in a continuous way. However, as ℓ → ∞, they still would have coalesced and
formed the branch cut across which the limiting Green’s function is discontinuous in
the λ plane.
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4.13.2 Contour Integration Around the Branch Cut

Lecture 38

If the poles of a Green’s function coalesce into a branch cut, can one expect that
the sum over the discrete eigenfunctions, Eq.(4.49), mutates into a corresponding
integral? The answer is ‘yes’, and this means that instead of representing a function
as a discrete sum of eigenfunctions, one now represents a function as an integral
transform. The Green’s function for a semi-infinite string furnishes us with the
archetypical recipe for obtaining this integral transform. It is a two step process:

1. Evaluate the contour integral of Gλ(x; ξ) over a circle with unlimited large
radius:

∮

Gλ(x; ξ) dλ =

∮
sin
√
λx√
λ

ei
√
λ ξ dλ 0 < x < ξ

When 0 < ξ < x one interchanges x and ξ on the right hand side. The contour
path of integration is

λ(θ) = Reiθ 0 < θ < 2π .

In terms of the complex variable

k =
√
λ

this contour integral extends over a semicircle from k = |k| to k = |k|eiπ

∮

Gλ dλ = lim
|k|→∞

∫ |k|eiπ

|k|

eik(x+ξ) − e−ik(x−ξ)
2i

2 dk .

The integrand is analytic in k. Consequently, the semicircle can be straightened
out into a line segment along the real axis. The integral becomes therefore

∮

Gλ dλ = i

∫ ∞

−∞

[
eik(x+ξ) − e−ik(x−ξ)

]
dk

= 2πi [δ(x+ ξ)− δ(x− ξ)]

For a semi-infinite string the domain variables are only positive, 0 < x < ξ.
Therefore the first Dirac delta function vanishes. We are left with

1

2πi

∮

Gλ dλ = −δ(x− ξ) . (4.106)
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2. The second step also starts with the closed contour integral
∮

Gλ(x; ξ) dλ , (4.107)

but this time the circular contour gets deformed into two linear paths on either
side of the positive real axis [0,∞), the branch cut of

Gλ(x; ξ) =
sin
√
λx<√
λ

ei
√
λx> .

Designate the two values of Gλ(x; ξ) on opposite sides of the branch cut by G+

and G−. The integral is therefore
∮

Gλ(x; ξ) dλ =

∫ 0

∞
G+ dλ+

∫ ∞

0

G− dλ

=

∫ ∞

0

[G− −G+] dλ . (4.108)

To evaluate the difference G− −G+ note that the value of
√
λ is

G−

G+

1st Riemann sheet ofλ1/2λ-plane:

..

Figure 4.17: Evaluation of the Green’s function just above and just below the branch
cut of λ1/2 on its first Riemann sheet.

√
λ =

{
|λ|1/2 just above the branch cut
−|λ|1/2 just below the branch cut

Consequently, the value of the Green’s function at these locations is

G+ =
sin |λ|1/2x<
|λ|1/2 exp{i|λ|1/2x>}

G− =
sin |λ|1/2x<
|λ|1/2 exp{−i|λ|1/2x>}
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The discontinuity across the branch cut is therefore

G+ −G− ≡ [Gλ] =
2i

|λ|1/2 sin |λ|
1/2x< sin |λ|1/2x>

=
2i

|λ|1/2 sin |λ|
1/2x sin |λ|1/2ξ (4.109)

Insert this result into Eq.(4.108), change the integration variable to |λ|1/2 = k
and obtain the result that

1

2πi

∮

Gλ(x; ξ) dλ =
−1
π

∫ ∞

0

sin |λ|1/2x sin |λ|1/2ξ
|λ|1/2 dλ

=
−2
π

∫ ∞

0

sin kx sin kξ dk (4.110)

This two step procedure yields two alternative expressions, Eqs.(4.106) and (4.110)
for the contour integral of the Green’s function. Their equality yields the spectral
representation of the Dirac delta function for a semi-infinite string,

δ(x− ξ) = 2

π

∫ ∞

0

sin kx sin kξ dk (4.111)

4.13.3 Fourier Sine Theorem

Spectral representations like Eq.(4.111) yield pairs of functions which are transforms
of each other. Let f(x) be an integrable function f(x) defined on the real interval
0 ≤ x <∞. Multiply Eq.(4.111) by f(ξ) and integrate over the half line 0 ≤ ξ <∞.
The result is

f(x) =

√

2

π

∫ ∞

0

F (k) sin kx dk ,

where

F (k) =

√

2

π

∫ ∞

0

f(ξ) sin kξ dξ

These two function are the Fourier sine transforms of each other.

Exercise 4.13.1 (VERY LONG STRING: STEADY STATE RESPONSE)
Over the interval −∞ < x <∞ consider

d2G

dx2
+ λG = −δ(x− ξ)

d2u

dx2
+ λu = −f(x) and

d2ϕ

dx2
+ λφ = 0.
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We are looking for solutions in L2(−∞,∞) and assume that f is in L2(−∞,∞).

(a) Show that there are two candidates for G, namely

G = Gout(x|ξ;λ) =
i

2
√
λ
exp(−i

√
λξ) exp(i

√
λx) ξ < x

=
i

2
√
λ
exp(−i

√
λx) exp(i

√
λξ) x < ξ

=
i

2
√
λ
exp(i

√
λ|x− ξ|).

and

G = Gin(x|ξ;λ) =
−i
2
√
λ
exp(−i

√
λ|x− ξ|).

(b) Given the fact that
√
λ = α + iβ with β > 0, point out why only one of them is

square-integrable.

(c) Consider the contour integral
∮
G(x|ξ;λ) dλ over a large circle of radius R. Demon-

strate that

lim
R→∞

1

2πi

∮

G(x|ξ;λ) dλ = −δ(x− ξ) .

(d) Next deform the contour until it fits snugly around the branch cut of
√
λ, and show

that

δ(x− ξ) =
∫ ∞

0
· · · dλ (∗)

and then show that (∗) can be rewritten as

δ(x− ξ) = 1

2π

∫ ∞

−∞
eiω(x−ξ)dω for x < ξ and ξ < x .

(d) Express u(x) as a Fourier integral in terms of f .

(e) Express G(x|ξ;λ) in the same way, i.e. obtain the bilinear expansion for G.

Exercise 4.13.2 (STEADY STATE RESPONSE VIA FOURIER)
Again consider

d2G

dx2
+ λG = −δ(x− ξ)

d2u

dx2
+ λu = −f(x) and

d2ϕ

dx2
+ λφ = 0.

over the interval −∞ < x <∞, but leave the boundary conditions as-yet-unspecfied.
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(a) Express u(x) as a Fourier integral in terms of f .

(b) Express G(x|ξ;λ) in the same way, i.e. obtain the bilinear expansion for G.

(c) How, do you think, should one incorporate boundary conditions into these expres-
sions?
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Chapter 5

Special Function Theory

We shall now reconsider the eigenvalue problem

Lu = λu ,

but we take λ to be a degenerate eigenvalue. This means that we take λ to have
more than one eigenvector. These eigenvectors span a subspace, the eigenspace of L
corresponding to λ. This subspace has a basis of eigenvectors, but its choice is not
unique.

In spite of this we ask: Is there a way of constructing a basis which is dictated
by objective criteria (for our purposes, by geometry and/or physics) and not by
subjective preferences?

The answer to this question is “yes” whenever one can identify a linear transfor-
mation, call it T , with the following three properties:

(i) The domain of T coincides with that of L,

(ii) the transformation T commutes with L, i.e.

TL = LT ,

and

(iii) the eigenvalues of T are non-degenerate.

A transformation with these properties determines a unique eigenbasis for each
eigenspace of the original eigenvalue problem. Indeed, let u be an eigenvector of
T :

Tu = τu .

313
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Then

T (Lu) = L(Tu) = τ Lu ,

i.e., Lu is again an eigenvector of T corresponding to the same eigenvalue τ . The
non-degeneracy of τ implies that Lu is a multiple of u; in other words,

Lu = λu .

Thus u is also an eigenvector of L. Conversely, if u belongs to the λ-eigenspace of L,
then Tu also belongs to this subspace. The set of all the eigenvectors of T which lie in
this λ-subspace form a basis for this subspace. This basis is orthonormal if T and L
are hermitian. The elements of this T -determined basis are uniquely labelled by the
real eigenvalues τ and, of course, by the subspace label λ. A set of commuting linear
transformations, such as L and T , whose eigenvalues uniquely label their common
eigenvectors, is called a complete set of commuting operators.

The operator T is not unique. Suppose there is another hermitian operator,
say S, which together with L forms another complete set of commuting operators.
This means that one now has two orthonormal bases for the λ-eigenspace of L, one
consisting of the eigenvectors of T , the second consisting of the eigenvectors of S.
Furthermore, these two bases are related by a unitary transformation, i.e. by a
rotation in the complex eigenspace of L.

One of the most far reaching applications of this geometrical framework consists
of identifying

• the operator L with the Laplacian on E2, the Euclidean two-dimensional plane,

• the operator T with the generator of translations in E2,

• the operator S with the generator of rotations in E2,

• the eigenvectors of T with the plane-wave solutions to the Helmholtz equation,

• the eigenvectors of S with the cylinder (Bessel) solutions to the Helmholtz
equation, and

• the unitary transformation with the Fourier series representation of a plane
wave in terms of the Bessel solutions.
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5.1 The Helmholtz Equation

Lecture 39

If the Sturm Liouville equation is the most important equation in one dimension,
then the Helmholtz equation

(∇2 + k2)ψ = 0

is the most important, and simplest, eigenvalue equation in two dimensions. The
two-dimensional domains we consider are first the Euclidean plane and later the
surface of a sphere.

The Helmholtz equation can be written down and then solved relative to any one
of many coordinate systems. In three dimensional Euclidean space there are at least
eleven such coordinate systems.

5.1.1 Cartesian versus Polar Coordinates

Relative to the standard rectilinear Cartesian coordinates Helmholtz’s equation has
the form

−∇2ψ ≡ −
(
∂2

∂x2
+

∂2

∂y2

)

ψ = k2ψ .

If one uses

x = r cos θ

y = r sin θ

to make a transition to polar coordinates, the Helmholtz equation assumes the form

−∇2ψ ≡ −
(
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ

)

ψ = k2ψ .

(Nota bene: To show that the Laplacian relative to polars has the form indicated, it is
easiest to actually start with that polar expression and then use the above coordinate
transformation to recover the Cartesian expression for ∇2. Going the other way is,
of course, equivalent but takes a little extra work.)

Given these two representations of the Laplacian ∇2, how do their eigenfunctions
compare and how are they related?

This is a very fruitful question to ask, because in answering it, we shall not only
obtain a deep and thorough understanding of waves on the flat Euclidean plane, but
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isograms
of equal
phase r

k

α θ x

y

Figure 5.1: An instantaneous plane wave consists of a set of parallel phase fronts,
the isograms of the phase function. Its gradient, which is perpendicular to these
isograms, is the wave propagation vector ~k.

also develop the framework for dealing with waves on a sphere as well as with waves
in three dimensional Euclidean space.

Plane wave solutions play a key role in the development. Thus we must have a
natural and precise way of identifying them relative to Cartesian as well as polar
coordinates.

The solutions to
∂2ψ

∂x2
+
∂2ψ

∂y2
+ k2ψ = 0

are the “plane wave” solutions

ei
~k·~x = ei(kxx+kyy) (relative to Cartesians).

Such a solution is characterized by its wave propogation vector

~k = (kx, ky) .

The polar representation of this vector,

~k = (k cosα, k sinα)

where

k2 = k2x + k2y ,
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is appropriate relative to polar coordinates. The wave propagation vector ~k is the
gradient of the phase for a plane wave solution. This phase has the form

phase ≡ kxx+ kyy (relative to Cartesians)

= kr(cosα cos θ + sinα sin θ)

= kr cos(α− θ) (relative to polars) .

Consequently,

ei
~k·x = eikr cos(α−θ) (relative to polars) .

Thus relative to polar coordinates, a plane wave is represented by the magnitude k,
and the direction angle α of its propagation vector ~k.

5.1.2 Degenerate Eigenvalues

Every eigenvalue of the eigenvalue equation

−∇2ψ = k2ψ

is highly degenerate. In fact, each eigenvalue k2 is infinitely degenerate. This means
that for one and the same eigenvalue k2, there is an infinite set of eigenfunctions,
namely,

{ei(kxx+kyy) : k2x + k2y = k2}
or

{eikr cos(α−θ) : α is a constant} .
These solutions form a basis for the subspace of solutions to the Helmholtz equation

(∇2 + k2)ψ = 0 .

Any solution to this equation is a unique superposition of the basis elements. We
shall refer to this subspace as the eigenspace of the (degenerate) eigenvalue k2.

A matrix, and more generally an operator, is diagonal relative to its eigenvector
basis. The Helmholtz operator −∇2 can, therefore, be viewed as an infinite diagonal
matrix

−∇2 =












. . .

k2 0
. . .

0 k2

. . .











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with degenerate eigenvalues k2 along the diagonal.
The question now is, how does one tell the difference between the eigenfunctions

having the same eigenvalue k2? Physically one says that these eigenfunctions are
plane waves propagating into different directions. However, one also would like to
express the difference algebraically.

5.1.3 Complete Set of Commuting Operators

There is only one way of doing this. It is very direct, and it consists of exhibiting
another “matrix”, i.e., operator, which

1. has the same domain as ∇2,

2. has the same eigenvectors that ∇2 has, but

3. has eigenvalues which are different for different eigenvectors.

Examples of such “matrices” are

1

i

∂

∂x
≡ Px and

1

i

∂

∂y
≡ Py .

Their eigenvectors are the plane wave solutions,

Pxe
i~k·~x = kxe

i~k·~x and Pye
i~k·~x = kye

i~k·~x ,

a fact which is also the case for the Helmholtz operator,

−∇2ei
~k·~x = k2 · ei~k·~x .

However, note that the eigenvalues, kx and ky, are different for different plane wave
solutions. Thus one has available a very succinct way of characterizing the elements
of each degenerate subspace for each eigenvalue k2 of −∇2. This way consists of the
statement that the eigenbasis spanning this subspace be labelled by the eigenvalue
triplet

(kx, ky, k
2)

of the corresponding three operators

{Px, Py,−∇2} .

This labelling is unique, i.e., the correspondence

{(kx, ky, k2)} ↔ {ei(kxx+kyy) = ψkx,ky ,k2(x, y)}
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is unique.The operators {Px, Py,∇2} form what is called a complete set of commuting
operators because their eigenvalues (kx, ky, k

2) serve as sufficient labels to uniquely
identify each of their (common) eigenbasis elements for the vector space of solutions
to the Hermholtz equation. No additional labels are necessary.

In addition, notice the following: that the three operators (Px, Py,−∇2 ≡ P 2
x+P

2
y )

have the same eigenvectors implies that they commute

[Px, Py] = [Px,∇2] = [Py,∇2] = 0 .

In fact, one can show that two operators, each having an eigenbasis for the vector
space, commute if and only if they have an eigenbasis in common. This commutativ-
ity is a representation independent way of stating that the invariant subspaces of one
operator coincide with the invariant subspaces of the other operator, even though
their eigenvalues do not. An alternate way of saying this is that

span{ei(kxx+kyy) : k2x + k2y = k2}

is a subspace invariant under Px, Py, and ∇2. To illustrate the commonality of these
subspaces, consider the one-dimensional subspace spanned by the eigenvector of the
nondegenerate eigenvalue kx of Px,

Pxψ = kxψ.

What can one say about ∇2ψ? To find out consider Px∇2ψ. Using the fact that
Px∇2 = ∇2Px one has

Px∇2ψ = ∇2Pxψ = kx∇2ψ .

The fact that the eigenvalue kx is nondegenerate implies that ∇2ψ is a multiple of
ψ:

∇2ψ = λψ .

Thus ψ is also an eigenvector of ∇2. Thus we have proved an important Theorem
Suppose that

[Px,∇2] = 0

and ψ is an eigenvector belonging to the nondegenerate eigenvalue kx:

Pxψ = kxψ;

then ψ is also an eigenvector of ∇2.
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5.1.4 Translations and Rotations in the Euclidean Plane

Lecture 40

What is the significance of the operators

Px =
1

i

∂

∂x
Py =

1

i

∂

∂y
,

and what are they good for? The answer is that they express the translation invari-
ance of the Euclidean plane and that they generate the rectilinear translations of the
wave system governed by the Helmholtz equation

(∇2 + k2)ψ = 0 .

Let us see what this means and why this is so.

Point Transformations

The Euclidean plane is characterized by various symmetry transformations which
leave invariant the distance

ds2 ≡ dx2 + dy2 = dr2 + r2dθ2

as well as the Laplacian

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
=

1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
. (5.1)

There are two obvious types of such transformations:

(i) Translations in the Euclidean plane E2

(a) along the x-axis by a fixed amount a:

Xa : E2 → E2

(x, y) (x′, y′) = (x+ a, y) (5.2a)

(b) along the y-axis by a fixed amount b:

Yb : E2 → E2

(x, y) (x′, y′) = (x, y + b) (5.2b)
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(c) and more generally along some generic direction by the fixed vectorial
amount ~a:

T~a : E2 → E2

(x, y) (x′, y′) = (x+ a, y + b) ≡ T~a(x, y); (5.2)

(ii) Rotations in the Euclidean plane around a chosen origin by an angle γ:

Rγ : E2 → E2

(r, θ) (r′, θ′) = (r, θ + γ ). (5.3)

These are point transformations. Even though a transformation takes each point of
the Euclidean plane into another, the distance between a pair of points before the
transformation is the same as the distance after this pair has been transformed to a
new location. This is expressed by the equality

dx′2 + dy′2 = dx2 + dy2 (invariant)

dr′2 + r2dθ′2 = dr2 + r2dθ2 (invariant)

or, in brief,
ds′2 = ds2 (invariant)

i.e., the distance ds2 in the Euclidean plane is invariant under translations and ro-
tations. It is also obvious that

∇′2 = ∇2 . (invariant)

Transformations on the Space of Functions

Point transformations such as Eqs.(5.2)-(5.3) induce corresponding transformations
T~a∗ on the vector space H of functions defined on E2,

H T~a∗−→ H
ψ  T~a∗[ψ] = ψ′. (5.4)

The logical leap from the given function ψ to its transform ψ′ consists of the re-
quirement that the new function at the new point be qual to the old function at the
corresponding old point, and that this equality hold for all transformed points. As
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ψ(x,y) ψ(x-a,y)

x

y

a

Figure 5.2: The point transformation x→ x′ = x+a induces a transformation which
acts on functions according to the rule: ψ(x, y)→ ψ(x− a, y). Because of the minus
sign, the transformed function is called the “pull-back” of ψ(x, y). What is the line
of reasoning giving rise to this pullback? The key is the observation that the value
of the new function, say ψ′ at the new point, say x′, must equal the old function
ψ at the old point x. In other words, ψ(x, y) = ψ′(x′, y). In light of the fact that
x = x′ − a, one has ψ(x′ − a, y) = ψ′(x′, y) for all x′. Dropping the “prime”, one
arrives at ψ(x, y)→ ψ′(x, y) = ψ(x− a, y).

shown in Figure 5.2, this means that the isograms of ψ (“loci of points where the
function has the same value”) get pushed forward by T~a∗,

ψ′(x′, y′) =ψ(x, y).

In light of Eq.(5.2) one has

ψ′(x′, y′) =ψ(x′ − a, y′ − b) for all (x′, y′). (5.5)

Dropping the prime, one finds that the transformed function is

ψ′(x, y) =ψ(x− a, y − b). (5.6)

This is the explicit form of the function induced by T~a, Eq.(5.2):

T~a∗[ψ](x, y) = ψ(x− a, y − b). (5.7)

Similarly, corresponding to the point transformations Eqs.(5.2a)-(5.3), one has

Xa∗[ψ](x, y) = ψ(x− a, y), (5.7 a)

Yb∗[ψ](x, y) = ψ(x, y − b), (5.7 b)
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and

Rγ∗[ψ](r, θ) = ψ(r, θ − γ). (5.8)

Each of the functions on the r.h.s. of Eqs.(5.7)-(5.8) is evaluated at a point shifted
by a fixed amount. This suggests a Taylor series around the unshifted point. For
example,

ψ(x− a, y) =
∞∑

0

(−a)n
n!

∂nψ(x, y)

∂xn
(5.9)

≡e−a ∂
∂xψ(x, y) (5.10)

=e−iaPxψ(x, y) . (5.11)

See Figure 5.2. Thus, by exponentiating the operator Px = 1
i

∂
∂x

in a way which is
identical to exponentiating a matrix, one obtains a linear operator which expresses
a translation along the x-axis. This operator

e−iaPx = 1− iaPx +
(−ia)2

2!
P 2
x + · · · ≡ Xa∗

is, therefore, called a translation operator. It translates a wave pattern, a solution to
the Helmholtz equation from one location to another, i.e.,

Xa∗ψ(x, y) = ψ(x− a, y) .

This translation transformation is evidently generated by the translation generator

Px =
1

i

∂

∂x
.

The effect of the translation operator Xa∗ is particularly simple when that oper-
ator is applied to an “eigenvector” of Px,

Pxe
i(kxx+kyy) = kxe

i(kxx+kyy) .

In that case, one obtains a power series in the eigenvalue kx,

Xa∗e
i(kxx+kyy) = e−iaPxei(kxx+kyy)

=

[

1− iakx +
(−ia)2

2!
k2x + · · ·

]

ei(kxx+kyy)

= e−ikxaei(kxx+kyy) .
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Thus, except for the phase factor e−ikxa, the plane wave remaines unchanged. It
is a translation eigenfunction. In other words, a plane wave is invariant (i.e. gets
changed only by a constant phase factor) under translation along the x-axis. This
result is the physical significance of the mathematical fact that a plane wave solution
is an “eigenvector” of Px = 1

i
∂
∂x
. It expresses the physical fact that a plane wave is

a translation invariant solution of the Helmholtz equation.
Analogous considerations lead to the definition of translations along the y-axis

and rotations around the origin. Thus, corresponding to the three point transforma-
tions (i), (ii), and (iii) earlier in this section, one has the three generators

1. Px =
1
i

∂
∂x

“x-translation generator”

2. Py =
1
i

∂
∂y

“y-translation generator”

3. ~P = Px + Py “generic translation generator”

4. Lθ =
1
i

∂
∂θ

“rotation generator”

which generate the finite transformations

1. Xa∗ = e−i a Px “x-translation by a ”

2. Yb∗ = e−i b Py “y-translation by b ”

3. T~a∗ = e−i~a ·
~P “generic translation by ~a ”

4. Rγ∗ = e−i γ Lθ “θ-rotation by γ ”

when they are applied to functions defined on the Euclidean plane. For example, the
application of the rotation operator Rγ∗ to ψ(r, θ) yields

Rγ∗ψ(r, θ) = ψ(r, θ − γ) .

5.1.5 Symmetries of the Helmholtz Equations

It is easy to see that if
(∇2 + k2)ψ = 0

then
Xa∗ψ , Yb∗ψ and Rγ∗ψ
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are also solutions to the Hermholtz equation. In other words,

(∇2 + k2)(Xaψ) = 0 , etc.

This is because the partial derivative can be interchanged and the coefficient of ∇2

are independent of x, y, and θ. One refers to this independence by saying that x, y
and θ are cyclic coordinates, or equivalently, that Xa∗, Yb∗, and Rγ∗ are symmetries
of ∇2.

This independence implies that the eigenspace of ∇2 is invariant under Xa∗, Yb∗,
and also Rγ∗. This is a very powerful result. It says that if ψ is a solution, then one
obtains the additional solutions

Xa∗ψ, Yb∗ψ, and Rγ∗ψ ,

which are parametrized by the translation parameter a and b, and by the angle γ
respectively.

5.1.6 Wanted: Rotation Invariant Solutions to the Helmholtz
Equation

A plane wave solution ei
~k·~x is also an eigenfunction of the translation operator:

Xa∗e
i~k·~x = e−ikxaei

~k·~x

Yb∗e
i~k·~x = e−ikybei

~k·~x

but

Rγ∗e
ikr cos(α−θ) ≡ eikr cos(α−θ−γ) 6= λeikr cos(α−θ)

for any λ!. In other words, a plane wave solution is not an eigenfunction of the
rotation operator! Nevertheless, we know that Rγ is a transformation which takes
eigenfunctions of ∇2 into eigenfucntions belonging to the same eigenvalue. This leads
to the following question:
Which linear combination of plane waves (having the same k2) is an eigenfunction
of Rγ?

We need a solution to the Helmholtz equation of the form

ψ = Z(kr)eiνθ (ν = complex constant)
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so that

Rγ∗ψ = e−iνγψ (“Rotation eigenfunction ψ”) .

If we can find Z(kr) such that

(∇2 + k2)Z(kr)eiνθ = 0 ,

then we shall have what we are looking for, namely a solution which is also an
eigenfunction of the rotation operator.

Using the polar representation of ∇2, and cancelling out the factor eiνθ, we have
{
d2

dr2
+

1

r

d

dr
+

(

k2 − ν2

r2

)}

Z(kr) = 0 ,

or with ρ = kr,
{
d2

dρ2
+

1

ρ

d

dρ
+

(

1− ν2

ρ2

)}

Z(ρ) = 0 .

In other words, Z(ρ) must satisfy Bessel’s equation.
The first impulse is to solve this equation using infinite series. However, we shall

take note of STOKE’S observation: “series solutions have the advantage of being
generally applicable, but are wholly devoid of elegance”. In our case “elegance” means
ability to capture the geometric and physical properties of the Euclidean plane.

Lecture 41

Instead of a series solution, we shall take the question on the previous page
seriously and construct an appropriate superposition of plane wave solutions with a
direction-dependent phase shift that varies linearly (∝ α) from one plane wave to
the next. Such a phase shift is expressed by the phase factor

eiνα ,

where ν is a constant. The superposition is therefore given by

ψ =

∫ α2

α1

eikr cos(α−θ)eiναdα . (5.12)

Different choices of ν will yield different linear combinations. Is each such solutions
invariant (i.e. gets changed only by a constant phase factor) under a rotation? To
find out, let α = α + θ so that

ψ =

∫ α2=α2−θ

α1=α1−θ
eikr cosαeiναdα

︸ ︷︷ ︸

Z(kr)

eiνθ .
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This superposition has the desired form

Z(kr)eiνθ

provided the effect of the θ-dependence in the integration limits can be removed. In
other words, expression (5.12), which is a solution of

0 = ∇2 + k2 =

(
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
+ k2

)

ψ ,

is an eigenfunction of Lθ =
1
i

∂
∂θ

if

Z ≡
∫ α2−θ

α1−θ
eikr cosαeiναdα

can be shown to be independent of θ. In that case Z = Z(kr), and it necessarily
satisfies [

1

r

d

dr
r
d

dr
+ k2 − ν2

r2

]

Z(kr) = 0 ,

which is Bessel’s equation, with ν equal to any complex constant.
Let us, therefore, consider more closely the complex line integral

Zν(ρ) =

∫

C

eiρ cosα+iναdα

Here we assume, for the time being, that ρ = |ρ| because

ρ = kr ,

a product of two positive numbers. The integration contour C is a curve in the
complex α-plane, whose points are

α = p+ iq p, q real .

We shall find that the chosen integration contour will start far away from the
origin at a point with large positive or negative imaginary part, q = ±∞, and
terminate at another such point, again with q = ∞ or q = −∞. This choice has a
dual purpose. (i) It guarantees, as we shall see, that the integral converges, and (ii) it
guarantees, as we shall see, that the contour integral will be independent of the real
angle θ, which is the amount by which the two end points get shifted horizontally in
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the complex α-plane. The value of the integral itself is independent of the integration
path because the integrand is analytic in the whole complex α-plane.

Where shall the starting and termination points of the contour integral be lo-
cated? This question is answered by the asymptotic behaviour of the dominant
terms in the exponent of the integrand,

i cosα = i cos(p+ iq)

= i cos p cosh q + sin p sinh q .

When the real part of this expression becomes large and negative (sin p sinh q →
−∞), then the convergence of the integral will be guaranteed because in that case
the term sin p sinh q dominates over all other contributions to the exponent of the
integrand. This is true for all complex numbers ν. The integration contour we choose

C

1

C

2

H

(1)

�

H

(2)

�

�2�

��

0

�

2�


omplex �-plane

p

q

1

Figure 5.3: Contour integration paths C1 and C2 for the two Hankel functions H
(1)
ν

and H
(2)
ν . The shaded regions are the regions of convergence as q → ±∞.

has endpoints which lie far in the upper α-plane or in the lower plane (q → ∞ or
q → −∞).

To obtain an integral which converges, one must have sin p sinh q → −∞ at both
endpoints. This implies that if q →∞, then the value of p must satisfy

sin p < 0 , i.e., − π < p < 0 mod 2π .

On the other hand, if q → −∞, then the value of p must satisfy

0 < sin p , i.e., 0 < p < π mod 2π .



5.1. THE HELMHOLTZ EQUATION 329

Thus the integration contour can start and terminate only in one of the shaded
regions in the complex α-plane of Figure 5.3.

There are only two basic contour integrals that one needs to consider, and they
give rise to the two kinds of fundamental functions. They are H

(1)
ν (ρ), the Hankel

function of the first kind , and H
(2)
ν (ρ), the Hankel function of the second kind.

All other integration contours give rise to contour integrals which merely are linear
combinations of these two fundamental functions.

Moving forward, we shall use in the next subsection these two functions to deduce
23 of their mathematical wave mechanical properties and applications.

Exercise 5.1.1 (DIFFERENT INTEGRATION CONTOUR)
Evaluate the integral

∫

C

eiρ cosα+iναdα

along the curve C (in the complex α-plane below) in terms of the two kinds of Hankel

functions H
(1)
ν (ρ) and H

(2)
ν (ρ)

�2�

��

0

�

2�

C


omplex �-plane

1

Exercise 5.1.2 (STRIPS OF CONVERGENCE)
In the complex β-plane determine those semi-infinite strip regions where the line integral

∫

C

eiρ cosh β−iωβdβ

converges if the integration limits of the integration path C are extended to infinity in each
of a pair of such strips.
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Exercise 5.1.3 (HANKEL FUNCTION AS A DEFINITE INTEGRAL)
By slightly deforming the integration path prove or disprove that the integral

∞∫

−∞

eiρ coshβ−iωβdβ

can be expressed in terms of a Hankel function. Which kind and which order?

Exercise 5.1.4 (WAVE EQUATION IN PSEUDOPOLAR COORDINATES)
Instead of applying

x = r cos θ

y = r sin θ

to the Helmholtz equation
∂2ψ

∂x2
+
∂2ψ

∂y2
+ k2ψ = 0

to obtain
1

r

∂

∂r
r
∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
+ k2ψ = 0 ,

apply

t = ξ cosh τ 0 < ξ <∞
z = ξ sinh τ −∞ < τ <∞

to the wave equation

−∂
2ψ

∂t2
+
∂2ψ

∂z2
− k2ψ = 0 (5.13)

in order to obtain the wave equation relative to the coordinates ξ and τ . To do this, take
advantage of the fact that letting

r = ξ

θ = iτ

and

x = t

y = iz

yields the hyperbolic transformation and the wave equation (5.13).

a) Write down the wave equation in terms of the (“pseudo”) polar coordinates ξ and
τ .
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b) Consider a solution which is a (“pseudo”) rotation eigenfunction ψω:

∂ψω
∂τ

= −iωψω
and determine the differential equation

[α(ξ)
d2

dξ2
+ β(ξ)

d

dξ
+ γ(ξ)]ψω = 0

it satisfies.

c) Verify that the translation (in the t, z-plane) eigenfunction

ψ = e−i(k0t−kzz)

is a solution to the wave Eq.(5.13) whenever the two constants k0 (“frequency”) and
kz (“wave number”) satisfy the dispersion relation

k20 − k2z = k2 .

Then, using k0 = k coshα, kz = k sinhα (with k > 0) and t = ξ cosh τ, z = ξ sinh τ ,
and the hyperbolic angle addition formula, rewrite the phase and hence the wave
function ψ in terms of ξ and τ .

d) Construct a superposition (as an integral over α) of waves ψ which is a (“pseudo”)
rotation eigenfunction, i.e. satisfies

∂ψω
∂τ

= −iωψω,

where ψω is that superposition.

e) Exhibit two independent solutions ψω to Eq.(5.13) corresponding to two different
integration contours. What are they? If your solutions are proportional to Hankel
functions, specify what kind, and identify their order.

5.2 Properties of Hankel and Bessel Functions

Associated with the two kinds of Hankel functions are two solutions to the Helmholtz
equation. They are the “cylinder harmonics” or order ν,

ψ1(kr, θ) = c1

∫ ε−i∞

−ε+i∞
eiρ cos(α−θ)+iναdα

= c1

∫ ε−i∞−θ

−ε+i∞−θ
eiρ cosα+iναdαeiνθ ≡ H(1)

ν eiνθ (5.14)
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and

ψ2(kr, θ) = c2

∫ π+ε+i∞

π−ε−i∞
eiρ cos(α−θ)+iναdα

= c2

∫ π+ε+i∞−θ

π−ε−i∞−θ
eiρ cosα+iναdαeiνθ ≡ H(2)

ν eiνθ (5.15)

Here

c1 = c2 =
e−iνπ/2

π

are normalization constants whose values are derived below (see Property 11 below).

The name “cylinder harmonic” arises from the fact that these two functions
emerge from those solutions of the Helmholtz equation whose level surfaces mold
themselves naturally to the cylindrical geometry of its domain. These functions have
the following properties:

Property 1
They are linear superpositions of plane waves.

Property 2
Their integration contours in the complex α-plane are as indicated in Figure 5.3.

Property 3 (No angular dependence)
The integral representatives

H
(1)
ν

H
(2)
ν

}

=
e−iνπ/2

π

∫ α2−θ

α1−θ
eiρ cosαeiναdα

of the two Hankel functions do not depend on any real changes in the integration
limits.

This means that the θ-dependent shift in the limits of the integral has no effect
on the value of the integral itself, whenever the integration limits α1 and α2 each lie
near infinity in a strip of convergence of the integral.
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p

α2

α1

0
π

q

©1

Figure 5.4: Integration contour for a Hankel function. If the integration limits are
such that Im α1 = +∞ and Im α2 = −∞ then the integral does not change under
horizontal shifts.

Suppose the integration contour is taken to be the curve labelled ©1 , where α1 is
near the vertical line p = 0 and α2 is near p = π. Then for 0 ≤ θ < π we see that

∫ α2

α1

eiρ cosα+iναdα =

∫ α2−θ

α1−θ
eiρ cosα+iναdα . (5.16)

This equality is a result of two facts:

1. The dominant contribution comes from the path between α1−θ and α2−θ, and
that path can be deformed into the original curve©1 and by the Cauchy-Goursat
theorem the integral will remain unchanged.

2. The θ-dependent change due to the shift in the end points α1 − θ and α2 − θ
is neglegible, because the integrand is already neglegibly small at these points.

When −π < θ ≤ 0, then the path of integration can again be deformed into a
standard one, but in that case one starts with α1 and α2 are near p = −π and p = 0
instead.

To summarize: ∫ α2

α1

eiρ cos(α−θ)+iναdα
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represents a continuous function of θ whenever −π < θ < π. When this inequality
is fulfilled one has

∫ α2

α1

eiρ cos(α−θ)+iναdα =

∫ α2

α1

eiρ cosα+iναdα eiνθ (5.17)

If this inequality is not fulfilled, then the right hand side of this equation diverges
and is therefore not valid. This is because in this case the contour of the integral on
r.h.s. of Eq.(5.16) cannot be deformed into that of the l.h.s.: The integration limits
would fall outside the shaded strips of convergence, the integral would diverge, and
the r.h.s. of Eq.(5.17) would loose its meaning.

As usual, the circumstance θ = −π or θ = π are defined in terms of limits as
θ → ±π from the inside of the interval..

Thus we conclude that H
(1)
ν = H

(1)
ν (kr) and H

(2)
ν = H

(2)
ν (kr) are independent of

θ indeed. The result is that the two cylinder harmonics have the form

ψ(r, θ) = Zν(ρ)e
iνθ , ρ = kr

a product of two functions, each one depending separately on its own variable, but
independent of the other.

Property 4 (Eigenfunction of rotations in the Euclidean plane)
The cylinder harmonics are eigenfunctions of the rotation generator Lθ =

1
i

∂
∂θ
,

Lθψ = νψ ;

that is to say, they are invariant (modulo a constant multiplicative factor) under
rotation around the origin

Rγ∗ψ ≡ e−iγLθψ

= e−iγνZν(ρ)e
iνθ .

Property 5 (Solution to the Helmholtz equation)
They satisfy the Helmholtz’s equation, which in polar coordinates becomes Bessel’s
equation

0 = [∇2 + k2]ψ

=

[
1

r

∂

∂r
r
∂

∂r
+ k2 +

1

r2
∂2

∂θ2

]

ψ

=

[
1

r

∂

∂r
r
∂

∂r
+ k2 − ν2

r2

]

Zν(kr)e
iνθ

= k2
[
d2

dρ2
+

1

ρ

d

dρ
+ 1− ν2

ρ2

]{

H
(1)
ν (ρ)

H
(2)
ν (ρ)

}

eiνθ .
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Even through the eigenvalue k2 of the operator −∇2 is infinitely degenerate, the
eigenvalues of Lθ in the equation

1

i

∂

∂θ

{

H
(1)
ν (ρ)

H
(2)
ν (ρ)

}

eiνθ = ν

{

H
(1)
ν (ρ)

H
(2)
ν (ρ)

}

eiνθ ,

serve to distinguish the elements of the degenerate set.

Property 6 (Cylinder waves)
The domain of a cylinder harmonic is the r and θ coordinatized transverse cross
section of a cylinder. A cylinder harmonic itself is the r and θ dependent part of a
cylinder wave

z
r θ

Figure 5.5: The domain of a cylinder harmonic is the perpendicular cross section of
a cylindrical configuration.

ψ = Hν(kr)e
iνθeikzze−iωt ,

which satisfies the wave equation

[
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
− 1

c2
∂2

∂t2

]

ψ = 0

whenever the constants k, kz and ω satisfy the dispersion relation

ω2

c2
= k2 + k2z .

Lecture 42
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Property 7 (Two kinds of Hankel functions)
The ρ = kr dependent factors of these cylinder harmonics,

H(1)
ν (ρ) = c1

∫

C1

eiρ cosα+iναdα

H(2)
ν (ρ) = c2

∫

C2

eiρ cosα+iναdα ,

are called Hankel functions of the first and second kind of (complex) order ν. The
constants c1 and c2 are not arbitrary. Their values, as shown in Properties 8 and 11,
are equal and are given by Eq.(5.22), namely,

c1 = c2 =
e−

iνπ
2

π
.

Thus one has

H(1)
ν (ρ) =

1

π

∫

C1

eiρ cosα+iν(α−
π
2
)dα (5.18)

H(2)
ν (ρ) =

1

π

∫

C2

eiρ cosα+iν(α−
π
2
)dα . (5.19)

It is worthwhile to reemphasize that the integral representations of H
(1)
ν and H

(2)
ν

converge and are well defined for any complex number ν.

Property 8 (Bessel function)
Having equal normalization constants,

c1 = c2 ≡ c(ν) .

the two Hankel functions, Eqs. (5.14) and (5.15), determine the Bessel function of
(complex) order ν,

Jν(ρ) =
1

2
[H(1)

ν (ρ) +H(2)
ν (ρ)] . (5.20)

One arrives at this definition by means of the union of the two paths C1 and
C2 which define H

(1)
ν and H

(2)
ν . By the Cauchy-Goursat theorem these paths can be

deformed into a single path as depicted in Figure 5.7
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Nν

Nν NνJν Jν

−2π −π
0

π
2π

complex α-plane

p

q

Figure 5.6: Contour integration paths for the Bessel function Jν . The integration
contour for the Neumann function Nν is the union of the two indicated paths.

If c1 were not equal to c2, then the contributions to the complex integral from the
lower parts of C1 and C2 would not cancel.

Property 9 (Neumann function)
Their difference

Nν(ρ) ≡ Yν(ρ) ≡
1

2i
[H(1)

ν (ρ)−H(2)
ν (ρ)] (5.21)

is the Neumann function of (complex) order ν.

Its integral representation requires the two integration contours depicted in Figure
5.6.

Property 10 (Analogue to trigonometric and exponential functions)
The Hankel functions are the analogues of the exponential functions in trigonometry.
In fact, as we shall see, one has the following scheme

∼=

eix ; e−ix ; cos x ; sin x

H
(1)
ν (ρ) ; H

(2)
ν (ρ) ; Jν(ρ) ; Nν(ρ) .

√
2
πρ
ei[ρ−(ν+

1
2)π/2] ;

√
2
πρ
e−i[··· ] ;

√
2
πρ

cos[· · · ] ;
√

2
πρ

sin[· · · ]

for large ρ, as we shall see later.
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The next property asks and answers the the question: How do the Bessel and the
Neuman functions depend on their complex order ν? With the universally agreed-
upon value for the normalization constant c(ν), the answer could be no simpler: For
real ν these functions are real and for complex ν these functions are their analytic
extensions into the complex domain. More precisely, we have

Property 11 (Reflection Principle)
1. If the order ν is real then their sum (the “Bessel function”)

(a) Jν(ρ) =
1
2
[H

(1)
ν (ρ) +H

(2)
ν (ρ)] is real when ν is real and

(b) J0(0) = 1

provided the normalization constant c(ν) is

c1 = c2 ≡ c(ν) =
e−iνπ/2

π
. (5.22)

2. If ν is complex, then, for fixed positive ρ, both Jν(ρ) and Nν(ρ) are analytic
functions of their order ν. Furthermore, they obey the reflection principle:

Jν(ρ) = Jν(ρ) and Nν(ρ) = Nν(ρ)

That the Bessel and the Neumann functions are analytic in their order ν follows from
their defining integral representations and the form of the normalization constant
c(ν).

The reflection principle is a general property which analytic functions enjoy when-
ever their values are real on the real (ν) axis. It is shown below that the form of the
normalization constant c(ν) guarantees this. Indeed, for the Bessel function Jν(ρ) the
proof consists of three steps below. (We delay the application of the reflection prin-
ciple to the Neumann function until after we have exhibited the complex conjugation
property applied to the two Hankel functions on page 345.)

Step 1: Deform the integration path into straight lines. The result is

Jν(ρ) =
c(ν)

2

[
∫ −π

2

−π
2
+i∞

+

∫ 3π
2

−π
2

+

∫ 3π
2
+i∞

3π
2

]

eiρ cosα+iναdα .
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−π
2

0
π

3π
2

©1

©2

©3

Figure 5.7: Three-part integration contour for the Bessel function.

Step 2: Symmetrize the integrals by shifting the integration limits to the left. This
is achieved by introducing the new dummy variable

β = α− π

2
, α = β +

π

2
.

The result is

Jν(ρ) =
c(ν)

2









©1
︷ ︸︸ ︷
∫ −π

−π+i∞
+

©2
︷︸︸︷∫ π

−π
+

©3
︷ ︸︸ ︷
∫ π+i∞

π









eiρ sinβeiνβdβ eiνπ/2 .

Reminder: We have not shifted the path of integration. Instead, we have only altered
the coordinate labelling used to describe that path in the complex plane.
Step 3:

1. Fix the normalization constant c(ν) by requiring that Jν be real when ν is real.
This is achieved by setting c(ν) = 1

π
e−iνπ/2. This cancels out the last factor.

2. To bring this reality of Jν to light, combine the first and third integral by
introducing

β = −π + iγ for ©1
β = π + iγ for ©3

} to make the
integration limits
equal!
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The result, after dropping the bar, is

Jν(ρ) =
1

2π

∫ γ=∞

0

e−ρ sinh γ−νγdγ [

©1
︷ ︸︸ ︷

(−i)e−iνπ +
©3
︷︸︸︷

ieiνπ]
︸ ︷︷ ︸

−2 sin νπ
+

1

2π

∫ π

−π
e−iρ sinβ+iνβdβ

︸ ︷︷ ︸

1

π

∫ π

0

cos(ρ sin β − νβ)dβ

Conclusion: When ν is real, then

Jν(ρ) is real

J0(0) = 1 ,

also, if ν is complex, then by inpection one finds

Jν(ρ) = Jν(ρ) ,

which is what we set out to show.

Property 12 (Bessel function of integral order)
The Bessel functions of integral order (ν = m = 0, 1, 2, . . . ) is given by

Jm(ρ) =
1

2π

∫ π

−π
e−iρ sinβ+imβdβ

=
1

2π

∫ π

−π
eiρ sinβ−imβdβ

=
1

π

∫ π

0

cos(ρ sin β −mβ)dβ .

Furthermore, the set {Jm, J−m} forms a linearly dependent set. Indeed,

J−m(ρ) = (−1)mJm(ρ) m = 0, 1, 2 . . . . (5.23)

This equation is the result of changing the integration variable β. Letting β = π−β,
one obtains

Jm(ρ) =
1

2π

∫ 0

2π

e−iρ sinβ−imβ(−1)m(−)dβ

= (−1)m 1

2π

∫ π

−π
e−iρ sinβ−imβdβ

= (−1)mJ−m(ρ) .
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Exercise 5.2.1 (HANKEL AND NEUMANN FUNCTIONS OF INTEGRAL ORDER)
Show that

H
(1)
−n(ρ) = (−1)nH(1)

n (ρ)

H
(2)
−n(ρ) = (−1)nH(2)

n (ρ)

N−n(ρ) = (−1)nNn(ρ)

Lecture 43

Property 13 (Power series)
The Bessel function Jν(ρ) of complex order and for real ρ has the following Frobenious
expansion around the origin

Jν(ρ) =
(ρ

2

)ν
[

1

Γ(ν + 1)
− 1

1!Γ(ν + 2)

(ρ

2

)2

+
1

2!Γ(ν + 3)

(ρ

2

)4

− · · ·
]

=
(ρ

2

)ν
∞∑

k=0

(−1)k (ρ/2)2k

Γ(1 + ν + k)k!
(5.24)

Remark: Near ρ = 0 the dominant behaviour of Jν(ρ) is given by

Jν(ρ) =
1

Γ(1 + ν)

(ρ

2

)ν

ρ≪ 1 .

The power series, together with its normalization constant, follows from the integral
representation

Jν(ρ) =
e−iνπ/2

2

∫

C

eiρ cosα+iναdα ,

where C is the integration contour indicated in Figure 5.7. Indeed, introduce the
new variable of integration

z =
ρ

2
e−i(α−3π/2), dα = i

dz

z
, eiα =

ρ

2

1

z
ei3π/2 .

Under this change, the new integration contour is the one depicted in Figure 5.8,
which is based on the following scheme:

α = i∞− π
2
| −π

2
| 0 | π

2
| 3π

2
| i∞+ π

2

z = ∞ | ρ
2
| ρ

2
exp 3πi

2
| ρ

2
exp πi | ρ

2
exp πi

2
| ∞ .
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The integral becomes

Jν(ρ) = −
eiνπ

2πi

(ρ

2

)ν
∫

Z0

e−z+
ρ2

4z z−ν−1dz .

Z0

complex z-plane

Figure 5.8: The transformed integration contour in the complex z-plane surrounds
and touches the branch cut of the multiple-valued function z−(ν+1).

By expanding the exponential e
ρ2

4z in a Taylor series one obtains Eq.(5.24), pro-
vided one sets

1

Γ(ν + 1)
=
eiπ(ν+1)

2πi

∫

Z0

e−zz−(ν+1)dz ,

which is one of the definitions of the gamma function. This contour integral along Z0

is meaningless unless one specifies the branch of the multiple-valued function z−(ν+1).
The branch is dictated by the requirement that

1

Γ(m+ 1)
=

1

m!
.

For this branch the domain is restricted to 0 < arg z < 2π whenever the cut for this
branch is the positive x-axis, as in Figure 5.8.

The power series representation, Eq.(5.24), of Jν(ρ) can be readily extended from
the the positive reals |ρ| ≡ ρ > 1 into the domain of complex numbers

z = ρeiθ.

This is because the positive reals are imbedded into the complex numbers while still
being closed under the various arithmetic operations +,−,×,÷. Any one of them
can be used with impunity in the domain of real numbers and the complex numbers.
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In the light of this fact, Eq.(5.24) is also a valid definition for any complex number
z = ρeiθ:

Jν(z) =
(z

2

)ν
∞∑

k=0

(−1)k
(ρ

2

)2k 1

Γ(1 + ν + k)k!
.

Let us apply this definition to
z = ρei

π
2 .

One obtains,

Property 14 (Modified Bessel Functions)
namely,

Jν(ρe
iπ
2 ) = ei

π
2
ν
(ρ

2

)ν
∞∑

k=0

(ρ

2

)2k 1

Γ(1 + ν + k)k!
(5.25)

≡ ei
π
2
νIν(ρ) (“Modified Bessel Function of the 1st Kind”) (5.26)

Applying this equality to Eq.(5.32) on page 344 leads to

H(1)
ν (ρei

π
2 ) =

(
e−i

π
2

)ν

i

[I−ν(ρ)− Iν(ρ)]
sin πν

≡
(
e−i

π
2

)ν

i

2

π
Kν(ρ) (5.27)

The thusly defined function

Kν(ρ) =
π

2

[I−ν(ρ)− Iν(ρ)]
sin πν

(5.28)

is the “Modified Bessel Function of the 2nd Kind”.
Both of these functions are solutions to the modified Bessel equation

[

ρ
d

dρ
ρ
d

dρ
− (ρ2 + ν2)

]{
Iν(ρ)
Kν(ρ)

}

= 0.

For the physical circumstance where ν is purely imaginary, ν = iω, one has
[

ρ
d

dρ
ρ
d

dρ
+ (ω2 − ρ2)

]{
Iiω(ρ)
Kiω(ρ)

}

= 0. (5.29)

where

Kiω(ρ) =
π

sinh πω

[I−iω(ρ)− Iiω(ρ)]
2i

(5.30)
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and

Iiω(ρ) =
(ρ

2

)iω
∞∑

k=0

(ρ

2

)2k 1

Γ(1 + iω + k)k!
(5.31)

One sees that for this circumstance the modified Bessel functions are highly oscil-
latory for small ρ but exponential for large ρ. In fact, Iiω(ρ) blows up exponentially,
while Kiω(ρ) is a real function which decays exponentially for large ρ.

Let us look at the solutions to Bessel’s equation from the viewpoint of linear
algebra. The solution space is two dimensional. There are two important spanning
sets. The first one, {

Jν ≃
(ρ/2)ν

Γ(1 + ν)
, J−ν ≃

(ρ/2)−ν

Γ(1− ν)

}

is simple whenever ρ≪ 1. By contrast, the second one

{

H(1)
ν ≃

√
2

πρ
ei[ρ−(ν+

1
2
)π
2
], H(2)

ν ≃
√

2

πρ
e−i[ρ−(ν+

1
2
)π
2
]

}

is simple whenever 1≪ ρ. However, we know that these two bases are related by a
linear transformation.

[

H
(1)
ν H

(2)
ν

]

=
[
Jν J−ν

]
[
a b
c d

]

The question is: what is this linear transformation? The answer is provided by the
following

Property 15 (Hankel-Bessel relation)
When the order of a Bessel function is not an integer (ν 6= m), then the set of Bessel
functions {Jν , J−ν} form an independent set. Moreover, one has

H(1)
ν (ρ) =

e−iνπJν(ρ)− J−ν(ρ)
−i sin πν (5.32)

H(2)
ν (ρ) =

eiνπJν(ρ)− J−ν(ρ)
i sin πν

. (5.33)

Once one recalls the defining equation for the Bessel equation, Eq.(5.20), i.e. that

H
(2)
ν = 2Jν−H(1)

ν , one finds that Eq.(5.32) is a mere consequence of Eq.(5.33). Thus
one’s primary concern is the validity of that second equation. However, before vali-
dating it, let us identify some consequences of the fundamental identities, Eqs.(5.32)
and (5.33).
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Property 16 (Complex conjugation property)
If the Hankel functions are of real order ν (and ρ = |ρ|), then

H
(2)
ν (ρ) = H(1)

ν (ρ) ,





This is analogous to

e−ix = eix for
real x



 (5.34)

i.e., they are complex conjugates of each other. This follows from equations 5.32 and
5.33 of Property 13.

Remark: There are three additional consequences:

First of all, it follows from Property 12 that if ν is complex, then

Jν(ρ) = Jν(ρ)⇒ H
(2)
ν (ρ) = H

(1)
ν (ρ) .

Second, apply this complex conjugation property to the defining Eq.(5.21) and obtain
the reflection principle applied to the Neumann functions

Nν(ρ) = Nν(ρ) .

Third, if ρ is complex also, then

H
(2)
ν (ρ) = H

(1)
ν (ρ) .

Returning to the validation of the Hankel-Bessel identities, one finds that this
process consists of four steps. They consist primarily of manipulating the intergration
paths of the integral representations of Jν and J−ν .

Step 1. Recall the definition of J−ν(ρ):

2πe−iνπ/2J−ν(ρ) =

∫

C0

eiρ cosα−iναdα

= −
∫

C

eiρ cosα+iαdα α = −α , and then drop the “bar”

Here the C is the integration path obtained from C0 by inversion through the origin.
It is obtained by drawing a straight line through the origin and extending it by an
equal amount to the corresponding old point on C.
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0 π 2π
−π−2π

C0

C

Figure 5.9: Integration path C0 and C, its inversion symmetric twin c.

The rest of the proof consists of

Step 2. Subtract this from an analogous expression for Jν .

Step 3. Deform the contour and reexpress the r.h.s. in terms of H
(2)
ν . This yields

the desired equation.

Step 4. Use Property 8 to obtain the expression for H
(1)
ν .

The details of these remaining steps are

Step 2. Subtract the expression in Step 1 from the analogous expression for Jν . After
a slight deformation of the two respective integration path, obtain

2π(eiνπ/2Jν − e−iνπ/2J−ν) =

[∫

C0

+

∫

C

]

eiρ cosα+iναdα

=

[
∫

C2

+

∫

C′

2

]

eiρ cosα+iναdα .

Here C2 is the integration contour for H
(2)
ν and C ′2 is −C2 shifted by 2π to the left.
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0 π 2π
−π−2π

C ′2

C2

Figure 5.10: The two paths in Figure 5.9 have been deformed into C ′2 and C2.

Step 3.

1. Recall from Property 7 that
∫

C2

eiρ cosα+iναdα = πeiνπ/2H2
ν (ρ) .

2. In addition, we have
∫

C′

2

eiρ cosα+iναdα =

∫ −π−ε−i∞

−π+ε+i∞
eiρ cosα+iναdα α = α + 2π

=

∫ π−ε−i∞

π−ε+i∞
eiρ cosα+iναdαe−iν2π

= (−)πeiνπ/2H(2)
ν (ρ)e−iν2π .

3. Introduce the results of 1. and 2. into the last expression in Step 2, and obtain

2π(eiνπ/2Jν − e−iνπ/2J−ν) = π(eiνπ/2 − e−i3πν/2)H(2)
ν .

Using
eνπ/2 − e−3πν/2 = 2ie−iπν/2 sin νπ ,

and solving for H
(2)
ν one obtains

H(2)
ν =

eiνπJν − J−ν
i sin νπ

.
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Step 4. Use Property 8 to obtain

H(1)
ν = 2Jν −H(2)

ν = 2Jν −
eiνπJν − J−ν
i sin νπ

=
−e−iνπJν + J−ν

i sin νπ
.

These are the two expressions for the two kinds of Hankel functions in terms of Bessel
functions of order ν and −ν.
Property 17 (Contiguity relations)
Let Zν = H

(1)
ν or H

(2)
ν or Jν or Nν(≡ Yν) be any solution to Bessel’s equation of

complex order ν. Then

Zν+1(ρ) + Zν−1(ρ) =
2ν

ρ
Zν(ρ) (5.35)

Zν+1(ρ)− Zν−1(ρ) = −2 d
dρ
Zν(ρ) . (5.36)

Proof (in two steps):
Step 1. Apply the definition to the sum and difference

I1
I2

}

=
π

2
{Hν+1 ±Hν−1}

=

∫

C

eiρ cosαeiν(α−
π
2 ) 1

2
[ei(α−

π
2 ) ± e−i(α−π

2 )]dα .

Step 2. Observe that

1

2
[ei(α−

π
2 ) ± e−i(α−π

2 )] =

{
cos
(
α− π

2

)
= sinα

i sin
(
α− π

2

)
= −i cosα

Consequently,

I1 =
−1
iρ

∫

C

d

dα
(eiρ cosα)eiν(α−

π
2 )dα

=
−1
iρ

∫

C

(−)eiρ cosα d

dα
(eiν(α−

π
2 ))dα = π

ν

ρ
Hν

I2 = −π d
dρ
Hν .

These are the two recursion relations (5.35) and (5.36).
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These relations are quite useful. Note that by adding and subtracting the recur-
sion relations one obtains

Zν+1(ρ)e
i(ν+1)θ = −eiθ

(
∂

∂ρ
+
i

ρ

∂

∂θ

)

Zν(ρ)e
iνθ

Zν−1(ρ)e
i(ν−1)θ = e−iθ

(
∂

∂ρ
− i

ρ

∂

∂θ

)

Zν(ρ)e
iνθ .

Let us call

eiθ
(
∂

∂ρ
+
i

ρ

∂

∂θ

)

=
1

k

(
∂

∂x
+ i

∂

∂y

)

≡ L+ the raising operator

and

−e−iθ
(
∂

∂ρ
− i

ρ

∂

∂θ

)

= −1

k

(
∂

∂x
− i ∂

∂y

)

≡ L− the lowering operator .

These operators yield

Property 18 (Raising and lowering the order of Zν)

L+Zν(ρ)e
iνθ = −Zν+1(ρ)e

i(ν+1)θ

L−Zν(ρ)e
iνθ = −Zν−1(ρ)ei(ν−1)θ

and

L+L− = L−L+ = − 1

k2

(
∂2

∂x2
+

∂2

∂y2

)

= −
[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂θ2

]

≡ − 1

k2
∇2 , (5.37)

which is the (rotationally and translation) invariant Laplacian operator.

Comment: (Factorization Method for Finding Cylinder Harmonics.)
It is difficult to exclude these raising and lowering operators as the fastest way for
establishing relationships between normal modes in a cylindrical cavity. For example,
suppose one knows explicitly the rotationally symmetric (ν = 0) mode J0(ρ)e

i0·θ.
Then all the other modes

Jm(ρ)e
imθ = (−1)m(L+)

mJ0(ρ) ,
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can be obtained by repeated application of the raising operator L+. The lowering
operator undoes the work of the raising operators

L−L+Zνe
iνθ = Zνe

iνθ ,

i.e.,
(∇2

ρ + 1)Zνe
iνθ = 0 .

This feature also illustrates the fact that the 2-dimensional Laplacian ∇2 = −L−L+

(in E2) can be factorized into a product of first order operators. This method is
purely algebraic and its essentials are as follows:

Recalling the definition of the rotation generator Lθ =
1
i
∂
∂θ

in Section 5.1.4, notice
that

[Lθ, L±] ≡ LθL± − L±Lθ = ±L± .
This commutation relation is fundamental for the following reason:
Suppose we have a solution to the Helmholtz equation

(∇2 + k2)ψm = 0 ,

and suppose that the solution is a rotation eigenfunction, i.e.

Lθψm = mψm .

Then the commutation relation implies

LθL+ψm = (L+Lθ + L+)ψm

= (m+ 1)L+ψm .

In other words, L+ψm is another rotation eigenfunction. Furthermore,

(∇2 + k2)L+ψm = (−k2L+L− + k2)L+ψm

= L+(−k2L−L+ + k2)ψm

= L+(∇2 + k2)ψm

= 0 , (5.38)

i.e. the new rotation eigenfunction

L+ψm ≡ ψm+1

is again a solution to the Helmholtz equation. The analogous result holds for L−ψm.
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To summarize: The algebraic method for solving the Helmholtz equation is a two
step process: (i) Factor the Laplacian, Eq.(5.1) into two factors L+ and L−, and (ii)
for each eigenspace of ∇2 construct a basis using L+ and L−, whose capability as
raising and lowering operators is implied by the two commutation relations

[Lθ, L±] = ±L± . (5.39)

These operators obviously commute,

[L+, L−] = 0 . (5.40)

This is evident from Eq.(5.37). Furthermore, as we have seen from Eq.(5.38), the
fact that

[∇2, L±] = 0 (5.41)

acts as a guarantee that all the basis elements obtained from these raising and low-
ering operators lie in the same subspace characterized by the degenerate eigenvalue
−k2 of the Laplacian.

For illustrative purposes we compute the first few cylinder harmonics. Starting
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with Z0(ρ) = Z0(kr), one obtains:

Z1e
iθ = −eiθ

(
∂

∂ρ
+
i

ρ

∂

∂θ

)

Z0

⇒ Z1 = −Z ′0 (5.42)

Z2e
2iθ = −eiθ

(
∂

∂ρ
+
i

ρ

∂

∂θ

)

(−)eiθZ ′0

= e2iθ
(

Z ′′0 −
1

ρ
Z ′0

)

⇒ Z2 = Z ′′0 −
1

ρ
Z ′0

Z3e
3iθ = −eiθ

[
∂

∂ρ
+
i

ρ

∂

∂θ

]

e2iθZ2

= −e3iθ
[(

Z ′′0 −
1

ρ
Z ′0

)′
− 2

ρ

(

Z ′′0 −
1

ρ
Z ′0

)]

= −e3iθ
[

Z ′′′0 −
3

ρ
Z ′′0 +

3

ρ2
Z ′0

]

⇒ Z3 = −Z ′′′0 +
3

ρ
Z ′′0 −

3

ρ2
Z ′0

Z4e
4iθ = −eiθ

[
∂

∂ρ
+
i

ρ

∂

∂θ

]

e3iθZ3

= −e4iθ
[(

−Z ′′′0 +
3

ρ
Z ′′0 −

3

ρ2
Z ′0

)′
− 3

ρ

(

−Z ′′′0 +
3

ρ
Z ′′0 −

3

ρ2
Z ′0

)]

= e4iθ
[

Ziv
0 −

6

ρ
Z ′′′0 +

12

ρ2
Z ′′0 −

15

ρ3
Z ′0

]

⇒ Z4 = Ziv
0 −

6

ρ
Z ′′′0 +

12

ρ2
Z ′′0 −

15

ρ3
Z ′0 . (5.43)

Lecture 44

Property 19 (Plane wave as a combination of cylinder waves)
Recall that the cylinder harmonics of (complex) order ν where constructed as a linear
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superposition of plane wave solutions

ψ(r, θ) = Hν(kr)e
iνθ

=
1

π

∫

C

eikr cos(α−θ)eiν(α−
π
2
)dα .

Let us now consider that harmonic which satisfies (i) the periodicity requirement

ψ(r, θ + 2π) = ψ(r, θ)

and (ii) the requirement of being finite at the origin r = 0. These boundary conditions
give rise to the cylinder waves or cylinder harmonics of integral order,

Jm(kr)e
imθ =

1

2π

∫ 2π

0

eikr cosαeim(α−π
2
)dα eimθ m = 0,±1, . . . (5.44)

=
1

2π

∫ 2π

0

eikr sinαe−imαdα eimθ α =
π

2
− α .

We see that this is the mth term of the Fourier series of eikr sin θ in disguise:

eikr sin θ =
∞∑

m=−∞
Jm(kr)e

imθ . (5.45)

Jm(kr) =
1

2π

∫ 2π

0

eikr sin θe−imθdθ (5.46)

Remark: The plane waves eikr sin θ, Eq.(5.45) is sometimes called generating functions
of the Bessel functions of integral order. By setting eiθ = t this expression becomes

e
ρ
2
(t− 1

t
) =

∞∑

m=−∞
Jm(ρ)t

m.

Then by considering appropriate derivatives and power series expansions one obtains
various identities among these Bessel functions. For example, on both sides of the
equation, take the derivative with respect to ρ and thereby obtain

−2∂Jm(ρ)
∂ρ

= Jm+1(ρ)− Jm+−(ρ);

with respect to t obtain

2m

ρ
Jm(ρ) = Jm+1(ρ) + Jm−1(ρ).

Equation (5.45) is a represention of a plane wave propagating along the y axis,
and it is easy to remember.
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θ

r

Figure 5.11: Isograms of Re eikr sin θ. The arrow points into the direction of increasing
phase.

More generally, an arbitrary plane wave is also represented as a linear combination
of cylinder waves.

r

θ α

Figure 5.12: Isograms of Re eikr cos(θ−α).

Indeed, if one replaces θ with π
2
− (α− θ) in Eq.(5.45), one obtains

ei(kxx+kyy) = eikr cos(θ−α)

=
∞∑

m=−∞
Jm(kr)i

meim(θ−α) . (5.47)

This means that any plane wave in the Euclidean plane can be represented as a linear
combination of cylinder harmonics of integral order. Each term, and hence also this
sum, satisfies the Helmholtz equation. Conversely, each cylinder harmonic can be
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represented as a plane wave integral as is done by Eq.(5.44). It follows that a plane
wave, Eq.(5.47), moving along direction α can be represented as

eikr cos(θ−α) =
∞∑

m=−∞
Jm(kr)e

imπ/2eim(θ−α) (5.48)

= lim
N→∞

∫ π

−π

{

1

2π

N∑

m=−N
eim(θ−β)

}

eikr cos(β−α)dβ (5.48′)

Figure 5.13: Intensity isograms and phase isograms (“phase fronts”) of a collimated
beam, Eqs.(5.49), which has its waist (of size 2N+1

2π
≈ kr) centered around the origin.

Property 18b (Plane Wave as the limit of Bessel-based collimated beams)
In reality plane waves as such do not exist. Instead they refer to asymtotic limits,

which convey information of their wave geometries in the large. The “infinity” in
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Eqs.(5.48) refers to the mathematical process of going to the limit1.
The content of the curly bracket in Eq.(5.48) is a projection operator. It recovers

from asymptotic limits their referents in reality, in particular, collimated beams
such as the one in Figure 5.13. This operator acts on periodic functions, including
plane wave solutions such as f(r, θ) = eikr cos(θ−α) in the Helmholtz equation solution
space, and projects them into the 2N + 1-dimensional subspace W2N+1 spanned by
{ eimθ√

2π
}Nm=−N . The result as pictured geometrically in Figure 2.8 on page 89 is the

vector w∗2N+1, a Bessel-based collimated beam,

w∗2N+1(r, θ) =
N∑

m=−N
Jm(kr)e

imπ/2eim(θ−α) (5.49)

=

∫ π

−π

{ 1

2π

N∑

m=−N
eim(θ−β)

︸ ︷︷ ︸

sin[(2N + 1)(θ − β)/2]
sin[(θ − β)/2]

}

eikr cos(β−α)dβ . (5.49′)

The physical difference between Eqs.(5.48) and (5.49) is that the first refers to Figure
5.12, the phase fronts of a plane wave, while the second refers to Figure 5.13, the
amplitude and phase fronts of a collimated beam (with propagation direction α = 0).

A plane-wave, Eq.(5.47), is the asymptotic limit of Bessel-based collimated beam
w∗2N+1(r, θ) as N approaches infinity.

5.3 Applications of Hankel and Bessel Functions

Being rotation eigenfunctions, cylinder harmonics are the natural framework for the
solution of a variety of boundary value problems. Their solutions are fundamental
because the underlying philosophy can be readily extended to higher dimensions and
other geometries.

5.3.1 Exterior Boundary Value Problem: Scattering

Let us apply the properties of the Bessel function to solve the following exterior
boundary value (“scattering”) problem:

1Quite generally, the limit concept refers to a mathematical procedure whose purpose is objec-
tivity in one’s thinking, i.e. to get reality right. One thereby avoids the logical error of ascribing to
“infinity” a metaphysical status, i.e. of the claim that in reality there is such a thing as “infinity”.
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Find that solution to the Helmholtz equation (∇2+ k2)ψ = 0 in the Euclidean plane
which satisfies

1. the Dirichlet boundary condition on the circular boundary r = a and

2. the condition that its asymptotic form, as r → ∞, is that of a plane wave
propagating into the x-direction,

ψinc = Aeikx = Aeikr cos θ

plus only outgoing waves, if any; i.e. no incoming waves.

Mathematically the second condition is a type of boundary condition at infinity.
It is evident that this boundary condition states that the solution consists of “plane
wave + outgoing wave”. The physical meaning of this condition is that it represents
a scattering process.

ψ = ψincident + ψscattered

Figure 5.14: Scattering by a cylinder. An incoming plane wave ψincident in the
presence of a cylindrical boundary gives rise to a circular scattered wave ψscattered
which at large radii propagates away from the cylindrical boundary.

If the circular boundary were absent, then there would have been no scattering.
The Dirichlet boundary condition 1. would have been replaced by the regularity
requirement that ψ = finite at r = 0 while the second boundary condition 2. at
r = ∞ would have remained the same, i.e. the incident wave is moving into the
positive x-direction. In that case the resulting “no scattering” solution is immediate,
namely,

Ψinc =Aeikr cos θe−iωt

=A

∞∑

m=−∞
Jm(kr)i

meimθe−iωt (5.50)

≡ψinc(kr, θ) e−iωt
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By contrast, if the circular boundary is present as stipulated by the problem, then
this solution2 must be augmented so that the Dirichlet boundary conditions are
satisfied,

Ψ = Aeikr cos θe−iωt + ψscatte
−iωt

≡ Ψinc + Ψscatt . (5.51)

5.3.2 Solution via Partial Waves

This augmentation can be implemented with Hankel functions of the first kind, or
of the second kind, or with a combination of the two. The boundary condition that
the solution represent a plane wave plus a scattered wave, outgoing only, demands
that the augmentation have the form

Ψscatt =
∞∑

m=−∞
ame

imθimH(1)
m (kr)e−iωt .

It expresses the requisite outgoing wave condition with its e−iωt time dependence.
This is because as r →∞,

H(1)
m (kr)e−iωt ≃

√

2

πkr
ei[kr−ωt−(m+ 1

2)π/2] .

Both Ψinc and Ψscatt are represented by Fourier series in eimθ. The imposition of the
Dirichelet boundary condition,

0 = Ψ(r = a, θ)

= A
∞∑

m=−∞
eimθimJm(ka) e

−iωt +
∞∑

m=−∞
ame

imθimH(1)
m (ka) e−iωt,

2It is understood, but worth mentioning, that the k and ω-dependent solutions satisfy the wave
equation

(
∇2 − κ2 − 1

c2
∂2

∂t2

)
Ψ = 0. As a consequence, the propagation scalar k is a function of the

frequency

k(ω) =

√

ω2

c2
− κ2.

It follows that the infinite wave trains Ψinc and Ψscatt are simply the Fourier basis components
that comprise realistic wave packets

∫ ∞

−∞
f(ω)

(
ψinc(rk(ω), θ) + ψscatt(rk(ω), θ)

)
e−iωtdω.
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at r = a requires that each Fourier component also satisfies this boundary condition.
The sum of two Fourier series is zero if and only if their respective Fourier coefficients
are zero. Consequently,

am = − Jm(ka)

H
(1)
m (ka)

A m = 0,±1, . . . .

It follows that the hard cylinder scattering process yields

Ψ = Aeikr cos θe−iωt +
∞∑

m=−∞
(−) Jm(ka)

H
(1)
m (ka)

AeimθimH(1)
m (kr)e−iωt, (5.52)

5.3.3 Its Properties: Physical, Epistemic, and Mathematical

The most striking feature of the scattering solution becomes evident at large distances
(kr ≫ 1) away from the scatterer. There both the incident wave Ψinc and the
scattered wave complex Ψscatt(kr), both having entangled θ and r dependencies,
morph into simple product signals. Indeed, the incident wave

Ψinc(kr, θ, t) ≡ A eikr cos θe−iωt

= A
∞∑

m=−∞

1

2

[
H(1)
m (kr) +H(2)

m (kr)
]
imeimθe−iωt (5.53)

becomes for kr ≫ 1

r→∞
=

g(θ)
︷ ︸︸ ︷
(

1

i
√
k

∞∑

m=−∞

eimθ√
2π

)

× Ae
i(kr−ωt)
√
r

eiπ/4 (5.54)

+

(

1√
k

∞∑

m=−∞

eimθ√
2π
e−imπ

)

× Ae
−i(kr+ωt)
√
r

eiπ/4,

while the scattered wave

Ψscatt(kr, θ, t) ≡
∞∑

m=−∞
(−) Jm(ka)

H
(1)
m (ka)

AeimθimH(1)
m (kr)e−iωt

becomes

r→∞
=

∞∑

m=−∞
(−) Jm(ka)

H
(1)
m (ka)

Aeimθim
√

2

krπ
ei(kr−(m+ 1

2
)π
2
) e−iωt,
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which simplifies to

=
1

i
√
k

∞∑

m=−∞
(−) 2Jm(ka)

H
(1)
m (ka)

eimθ√
2π

︸ ︷︷ ︸

≡

f(θ)

×A ei(kr−ωt)√
r

ei
π
4 . (5.55)

Each is a product of two signals with separated variables dependencies, one θ only,
the other r only.
Remark 1:
This separation mathematizes the fact that the angular dependence f(θ) of Ψscatt is
the same for all circular arrays of radiation detectors – irrespective of the particular
size of the circumference 2πr where a detector array is located.
Remark 2:
In one’s quest of extending the evidence of one’s senses into realms beyond one’s
direct perception, it is difficult to identify a method more far-reaching and more
successful than observations and analyses of scattering processes. As illustrated by
the above angular expression, these processes, once mathematized, serve as build-
ing blocks for formulating theories and laws in physics, and implementations and
applications in engineering.
Remark 3:
The interaction of a plane-wave with a cylinder illustrates the law of causality, the
law of identity applied to action.

It relates the cylinder illumunated by a plane-wave to the resulting scattered
radiation. In particular, it relates both the identity of the cylinder (as specified by
its shape , its size, and the hardness of its surface) and the identity of the plane wave
(as specified by its strength, its direction, and the uniform spacing of its phase-fronts)
to the action that results in the scattered radiation.
Remark 4:
The scattering signal consists of an outgoing wave of strength A,

A
ei(kr−ωt)√

r
eiπ/4,

multiplied by the θ-dependent (and implicitly k-dependent) full scattering amplitude

f(θ) =
∞∑

m=−∞

1

i
√
k
(−) 2Jm(ka)

H
(1)
m (ka)

eimθ√
2π
. (5.56)
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It is a Fourier series in {eimθ} with k-dependent coefficients, and the central problem
confronting an engineer/physicist is to determine the coefficients from the observed
scattered radiation.

The system of Fourier coefficients,

{fm(k)} =
{

1

i
√
k

−2Jm(ka)
H

(1)
m (ka)

: m = 0,±, · · ·
}

,

roots, via measurements, theory to reality. Because of that pivotal role the Fourier
coefficients fm(k) ,m = 0,±1, · · · are referred to as partial scattering amplitudes.

Remark 5:
The presence of the cylinder changes the observed radiation from one which is solely
in the form of an incident plane-wave to one which is that plus the scattered radiation,
namely, Eq.(5.52). Its two contributing angular dependencies, g(θ) in Eq.(5.54)
and f(θ) in Eq.(5.55) of Ψ interfere with each other. However such interference is
generally not observed in experiments. This is because the incident radiation is in
the form of a collimated beam as depicted in Figure 5.15 and mathematized by the
truncated Fourier series, Eqs. (5.49).

Figure 5.15: Cylinder illuminated by a collimated beam of minimum width 2N+1
2π
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5.3.4 The Scattering Matrix

The scattering process is one which gets conceptualized under the purview of linear
mathematics in the form of a linear transformation. This transformation is

Scatterer absent −→ Scatterer present
Plane wave only Plane wave + scattered wave
Aeikr cos θe−iωt = (Aeikr cos θ + ψscatt)e

−iωt =

=
∞∑

m=−∞
imeimθ(1)A

2
H

(1)
m (kr)e−iωt =

∞∑

m=−∞
imeimθ

(

1− 2Jm(ka)

H
(1)
m (ka)

)
A
2
H

(1)
m (kr)e−iωt

+imeimθ A
2
H

(2)
m (kr)e−iωt +imeimθ A

2
H

(2)
m (kr)e−iωt

Furthermore, it is also unitary. This is because for large r its form is

Scatterer absent −→ Scatterer present
Plane wave only Plane wave + scattered wave
Aeikr cos θe−iωt = (Aeikr cos θ + ψscatt)e

−iωt =

= 1
i
√
k

∞∑

m=−∞
eimθ√
2π

(

1
)

× A ei(kr−ωt)√
r

eiπ/4 = 1
i
√
k

∞∑

m=−∞
eimθ√
2π

(

1− 2Jm(ka)

H
(1)
m (ka)

)

× A ei(kr−ωt)√
r

eiπ/4

+ 1√
k

∞∑

m=−∞
eim(θ+π)√

2π
× A e−i(kr+ωt)√

r
eiπ/4 + 1√

k

∞∑

m=−∞
eim(θ+π)√

2π
× A e−i(kr+ωt)√

r
eiπ/4

.

Indeed, note that the transformation manifests itself on each of the m-labeled out-
going partial waves separately, and that it is unitary:

(

1
)

−→
(

1− 2Jm(ka)

H
(1)
m (ka)

)

= −H
(2)
m (ka)

H
(1)
m (ka)

(5.57)

= −H
(1)
m (ka)

H
(1)
m (ka)

≡ e2iδm(ka), (5.58)

which is based on using Properties 8 and 15. The phase δm(ka) is real because the
change is unitary3.

The effect of the scatterer is to induce the linear transformation

3The incoming patial wave being proportional to H
(2)
m (kr)e−iωt does not suffer any change

because the scatterer produces only outgoing diverging waves when it interacts at r = a with the
impinging plane wave. The scatterer does not receive any converging waves from very far away.
This fact is mathematized by the purely outgoing boundary condition.
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. . . 0 0 0 0
0 e2iδ−1 0 0 0

[
S(ka)

]
= 0 0 e2iδ0 0 0

0 0 0 e2iδ1 0

0 0 0 0
. . .

on the outgoing parts of the plane wave:
(

1

i
√
k

∞∑

m=−∞

eimθ√
2π

)

× Ae
i(kr−ωt)
√
r

eiπ/4
[
S(ka)

]

−−−−→
(

1

i
√
k

∞∑

m=−∞
e2iδm(kr) e

imθ

√
2π

)

× Ae
i(kr−ωt)
√
r

eiπ/4

The matrix
[
S(ka)

]
is the scattering matrix for the cylindrical scatterer, and the scat-

tering process is described completely in terms of the the phase shifts δm(ka), m =
0,±1, · · · for each of the m-labeled “scattering channels”. The matrix

[
S(ka)

]
is

diagonal whenever the scatterer is rotationally symmetric, as the case for the cylin-
drical scatterer under consideration.

The phase shifts are determined from the measurements of the full scattering
amplitude, Eq.(5.56). Indeed, the defining equations (5.57) and (5.58) yield

− Jm(ka)

H
(1)
m (ka)

=
1

2

(
e2iδm − 1

)
.

= ieiδm sin δm

Introduce this expression into Eq.(5.56). The result is that the full scattering ampli-
tude is

f(θ) =
∞∑

m=−∞

2√
k
eiδm sin δm

︸ ︷︷ ︸

‖
fm(k)

eimθ√
2π

. (5.59)

Using Eq.(5.58) one finds that its partial scattering amplitudes

fm(k) =
1

i
√
k

−2Jm(ka)
H

(1)
m (ka)

, m = 0,±1, · · · ,

have the form

fm(k) =
2√
k
eiδm sin δm m = 0,±1, · · · ,
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or equivalently,

(√
kfm − i

)

= ei(2δm−π/2) m = 0,±1, · · ·

when expressed in terms the phase shifts. This is a set of complex numbers
√
kfm(k)

distributed over the unitary circle of radius 1 centered on the imaginary axis of the
complex Argand plane. They form a k-parametrized distribution function on that
unitary circle.

Figure 5.16: Argand diagram of the unitary circle for partial scattering amplitude
fm. The length OP is the magnitude of

√
k fm, the polar angle δm is its phase, while

∠OCP = 2δm.
The unitary circle accommodates all partial scattering amplitudes

√
k fm(k), m =

0,±1, · · · . Consequently, the system {
√
k fm(k) : m = 0,±1, · · · } manifests itself as

a k-dependent distribution function on the initary circle.
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This distribution has a long wave limit. In this limit the spacing between the
phase fronts (as in Figure 5.15) is large compared to the size of the target: ka≪ 1.
One finds that the partial scattering amplitudes, the Fourier coefficients in Eq.(5.59),
are crowded near the bottom in the Argand circle in Figure 5.16.
The other extreme is the short wave limit, when 1≫ ka and the target size a is large
compared to the collimated beam width. This is depicted in Figure 5.17.
Scattering of Collimated Plane Wave Beam: Short Wave Length Limit

Figure 5.17: Collimated beam scattered by a large cylinder. The incident beam with
its impact parameter b is scattered by the cylinder surface in the neighborhood of
location ~r0. In the short wave limit this scattering is a reflection. The resulting beam
proceeds from that location to the distant observer.

The illuminated target in Figure 5.15 is small compared to the waist of the
collimated beam. By contrast the opposte is the case in Figure 5.17.

The implementation of the scattering process in Figure 5.15 is achieved by means
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of a single incident collimated beam, Eq.(5.15). Its waist is wide enough (2N+1
2π

> ka)
for the beam domain to subsume the whole target, even when the wave length is small
(provided 2N+1

2π
> ka).

The scattering process depicted in Figure 5.17 is interesting because the size of
the target (ka > 2N+1

2π
) requires a multi-element family of incident collimated beams

to probe the target. The mathematical form of these elements is

Ψ =
L+N∑

ℓ=−L−N
Jℓ(kR)i

ℓeiℓΩe−iωt.

Each is defined by three parameters:

Figure 5.18: Collimated beam scattered by a large cylinder. The location of the
observer is ~r : reiθ relative to the “old origin”, the center of the cylinder; it is
~R : ReiΩ relative to the “new origin”. The angle Ω is the scattering angle relative to
the “new origin” at ~r0 : r0e

iθ0 .
Simple geometrical reasoning shows that Ω equals twice the angle between the line
tangent at ~r0 : r0e

iθ0 and the direction of the incident beam, i.e. the tangent line
bisects Ω.
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1. The locatiion of the origin around which the beam’s waist is centered. That
origin is located at ~r0 : r0e

iθ0 , which is the displacement from the center of the
cylinder to its surface as depicted in Figure 5.18.

2. Its mean impact parameter

b =
L

k
L = 0.± 1, · · · ,±ka

(because angular momentum L~ = bp, where b is the impact parameter, and
p = k~ is the linear momentum)

3. Its waist size 2N+1
2π

1
k

Problem
Construct a/the complete set of collimated beam solutions to the (∇2 + k2)Ψ = 0 in
the Euclidean plane.

Scattering Cross Sections: Differential and Total

The plane-wave power per unit length (in 3-d this would be per unit area) incident
on the illuminated target is

|ψinc|2 = |Aeiρ cos θ|2 = |A|2 (“energy flux”) (5.60)

What is the power scattered into the angular interval ∆θ and intercepted at (r, θ)
by the arc segment r∆θ? With the help of Eq.(5.55) it is

|ψscatt|2r∆θ = |f(θ)|2|A|2∆θ . (5.61)

It follows that, on a per incident (power)
(length)

basis, this power is

|ψscatt|2r∆θ
|ψinc|2

= |f(θ)|2∆θ (5.62)

≡ dσ(θ)

dθ
∆θ . (5.63)

The squared magnitude of the Fourier series f(θ), Eq.(5.59), is

|f(θ)|2 = 4

k

∣
∣
∣
∣
∣

∞∑

m=−∞
eiδm sin δm

eimθ√
2π

∣
∣
∣
∣
∣

2

≡ dσ(θ)

dθ
,
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and it is called the differential scattering cross section. It has units of length and is
measured by each of a circular array of distant observers. By integrating over the
whole circle one obtains the total scattering cross section,

σtotal =

∫ 2π

0

dσ

dθ
dθ (5.64)

=

∫ 2π

0

|fk(θ)|2dθ (5.65)

σtotal =
4

k

∞∑

m=−∞
sin2 δm(k) . (5.66)

It has units of length and is a measure of the width of the cylinder as determined via
the scattering method. This numerical result is interesting if one compares it to the
full scattering amplitude f(θ), Eq.(5.59), evaluated at θ = 0, the forward scattering
amplitude

f(θ = 0) =
2√
2πk

∞∑

m=−∞
eiδm sin δm .

Compare its imaginary part to the above total scattering cross section and conclude
that

Imf(0) =
1

2

√

k

2π
σtotal (5.67)

This illustrates in two dimansions what in thee-dimensional electromagnetic and
quantum mechanical scattering theory is the “optical theorem”. One of its virtues
is that it expresses part of the difficult-to-measure forward scattering amplitude in
terms of the readily measurable total cross section.
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5.3.5 Finite Interior Boundary Value Problem: Cavity Vi-
brations

Lecture 45

Let us extend our study of wave amplitudes from the two-dimensional Euclidean
plane to three-dimensional Euclidean space plus temporal dimension as determined
by the wave equation.

∇2ψ − 1

c2
∂2ψ

∂t2
= 0 .

The spatial domain we consider is the interior of a finite cylinder of length L and
radius a







L

a

Figure 5.19: Cylindrical Cavity.

Its geometry demands that the wave equation, which governs the wave amplitude
inside that cylinder for all times, be expressed relative to cylindrical coordinates,

1

r

∂

∂r
r
∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
+
∂2ψ

∂z2
− 1

c2
∂2ψ

∂t2
= 0 . (5.68)

The wave field ψ is finite and single valued (obviously!) inside the cylinder, and
vanishes on its boundary. These observations are expressed by the fact that ψ satisfies
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the following three pairs of boundary conditions for all times.

ψ = 0 at z = 0 (5.69)

ψ = 0 at z = L ;

ψ = finite at r = 0 (5.70)

ψ = 0 at r = a ;

ψ(θ = 0) = ψ(θ = 2π) (5.71)

ψ′(θ = 0) = ψ′(θ = 2π) .

We shall see that these homogeneous boundary conditions characterize three
Sturm-Liouville eigenvalue problems, with their three sets of eigenvalues.

Suppose we know in addition the initial amplitude and velocity profiles

ψ(r, θ, z, t = 0) = f(r, θ, z)

and

∂ψ

∂t
(r, θ, z, t = 0) = g(r, θ, z)

at t = 0. The functions f and g are called the initial value data for the wave equation.
The problem before us is to determine, from this initial value data, ψ(r, θ, z, t),
namely, the amplitude inside the cylinder for all times.

The first step is to solve the wave equation, Eq. 5.68, by the method of “sep-
aration of variables”. It consists of finding those solutions which have the product
form

ψ = R(r)Θ(θ)Z(z)T (t) .

Introducing it into the wave equation, dividing by the product of these four factors,
one obtains

1

R

1

r

d

dr
r
dR

dr
+

1

r2
1

Θ

d2Θ

dθ2
+

1

Z

d2Z

dz2
− 1

c2
1

T

d2T

dt2
= 0 .

Bring the z-term to the right hand side. The resulting equality holds for all r, θ, z,
and t. Thus the right hand must be independent of r, θ and t, while the left hand
side must be independent of z. But the two sides are equal. Thus the common
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quantity must be independent of r, θ, t, and z, i.e., it must be some constant. Call it
k2z . Consequently, Z(z) satisfies

1

Z

d2Z

dz2
= −k2z . (5.72)

Next isolate the Θ term, and by the analogous argument obtain

1

Θ

d2Θ

dθ2
= −ν2 . (5.73)

Similarly obtain

1

R

[
1

r

d

dr
r
dR

dr
− ν2

r2
R

]

= −k2 . (5.74)

Here k2z , ν
2 and k2 are three arbitrary constants. For obvious reasons they are

called separation constants. Finally, the wave equation, together with these three
equations, implies

d2T

dt2
+ ω2T = 0

where
ω2 = (k2z + k2)c2 .

The initial value data f and g is nonzero at t = 0. Consequently, none of the four
factors, whose products constitutes the solution to the wave equation, is allowed to
be identically zero. Thus the boundary conditions Equations 5.69, 5.70, and 5.71,
are conditions on the solutions to the differential equations, Equations 5.72, 5.73,
and 5.74. There are three of each. They give rise to three Sturm-Louiville systems

1. d2Z
dz2

+ k2zZ = 0 Z(0) = 0 Z(L) = 0

2. d2Θ
dz2

+ ν2Θ = 0 Θ(0) = Θ(2π) Θ′(0) = Θ′(2π)

3. 1
r

d
dr
r dR
dr

+
(

k2 − ν2

r2

)

R = 0 R(0) =finite R(a)=0 .

Each of these three S-L eigenvalue problems determines its own eigenvalue spec-
trum, namely

kz = nπ
L

n = 1, 2, . . .

ν = m m = 0,±1, . . .
k = kmj Jm(ka) = 0, jth root of the Bessel function Jm(x) .
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For each triplet of eigenvalues there is a corrsponding amplitude profile,

Rmj(r)Θm(θ)Zn(z) .

The product of the first two factors,

Rmj(r)Θm(θ) ,

is the amplitude profile in the transverse plane. The last factor, Zn(z), is the ampli-
tude profile along the longitudinal direction.

The eigenvalue spectra are an expression of the boundary condition. Change the
boundary conditions, and the eigenvalue spectra and their amplitude profiles will
change. However, the boundary conditions remain fixed for all times. Consequently,
the eigenvalue spectra and the corresponding amplitude profiles remain the same for
all times.

Each triplet of eigenvalues
(
kz =

2π
L
, ν = m, k = kmj

)
determines three corre-

sponding eigenfunctions and hence a solution to the wave equation, whose consequent
reduced form is

1

c2
∂2ψmjn
∂t2

+ c2
[

k2mj +
(nπ

L

)2
]

ψmjn = 0 .

Here
ψmjn(r, θ, z, t) = Rmj(r)Θm(θ)Zn(z)T (t) .

Such a product solution, ψmjn, to the wave equation is called a normal mode. Normal
modes have the same (oscillatory) time dependence at every point of its domain.
The unique features of any particular normal mode are determined by the three
integers (m, j, n) of the three eigenvalues (kz, ν, k). This is true not only for its
spatial amplitude profile

Rmj(r)Θm(θ)Zn(z) ,

but also for its oscillatory frequency

ω = c

(

k2mj +
(nπ

L

)2
)1/2

≡ ωmjn

which determines its oscillatory behavior as a function of time

ψmjn(r, θ, z, t) = Rmn(r)Θm(θ)Zn(z)[Amjn cosωmjnt+ Bmjn sinωmjnt] .

In brief, the boundary conditions determine the spectrum of allowed oscillatory fre-
quencies of its normal modes. Furthermore, a cylindrical cavity illustrates a universal
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feature which is shared by all linear systems governed by a wave equation: a finite
system always has a discrete eigenvalue spectrum.

Any vibratory system governed by linear wave equation obeys the linear superpo-
sition principle. Consequently, the general solution to the wave equation is a linear
combination of normal modes

ψ =
∞∑

m=−∞

∞∑

j=1

∞∑

n=1

Rmj(r)Θm(θ)Zn(z)[Amjn cosωmjnt+ Bmjn sinωmjnt] .

This is a generalized triple Fourier series. The two sets of Fourier coefficients {Amjn}
and {Bmjn} are determined by the initial value data f(r, θ, z) and g(r, θ, z):

Amjn =

∫ a

0

∫ 2π

0

∫ L

0

Rmj(r)Θm(θ)Zn(z)f(r, θ, z)rdrdθdz

ωmjnBmjn =

∫ a

0

∫ 2π

0

∫ L

0

Rmj(r)Θm(θ)Zn(z)g(r, θ, z)rdrdθdz .

5.3.6 Infinite Interior Boundary Value Problem: Waves Prop-
agating in a Cylindrical Pipe

Let us compare waves vibrating in a finite cylindrical cavity (0 ≤ z ≤ L) with waves
propagating in an infinite cylinder (−∞ < z <∞).

The wave equation is the same in both cases,

∇2ψ − 1

c2
∂2ψ

∂t2
= 0 . (5.75)

The boundary conditions along the radial and angular direction (“transverse direc-
tion”) are also the same in both cases:

ψ(r = 0, θ, z, t) = finite

ψ(r = a, θ, z, t) = 0 (Dirichlet b.c.)

ψ(r, θ, z, t) = ψ(r, θ + 2π, z, t) (Periodic b.c.) .

These are the familiar two sets of boundary conditions for the two Sturm-Liouville
problems on the radial and the angular domain.What do their solutions tell us?
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I.) Their eigenfunctions yield the amplitude profile across any transverse cross section
(z = const.) at any time (t = const.). These cross sectional profiles are determined
by the two sets of eigenvalues,

m = 0,±1, , · · · and kmj : Jm(kmja) = 0; j = 1, 2, · · ·

II.) By virtue of the wave equation (5.75) each of these transverse eigensolutions
determines the properties of a wave disturbance

ψ = ψmj(t, z)Jm(kmjr)e
imθ .

propagating along the longitudinal direction. The wave equation tells us that these
properties are captured by

1

c2
∂2ψ

∂t2
− ∂2ψ

∂z2
+ k2mjψ = 0 . (5.76)

The mathematical behavior of its solutions is the same as that of a string imbedded
in an elastic medium as discussed on page 12. If one happens to be familiar with its
physical properties, one can infer the mathematical properties of wave propagation
along the z-direction.

The problem of waves trapped in a cavity is similar to that of waves propagating
along a pipe: both are most efficiently attacked in terms of normal modes, which
satisfy

∂ψ

∂t
= −iωψ → ψ ∝ e−iωt ,

However, the difference in the boundary conditions on the z-domain demands a
different point of view in regard to what is given and what is to be determined. First
of all, instead of Dirichlet boundary conditions, the new condition is that for a given
frequency ω the normal modes express waves travelling along the z-direction. This
implies that a normal mode satisfies

∂ψ

∂t
∓ i ω

kz

∂ψ

∂z
= 0

so that
ψ ∝ Rmj(r)Θm(z)e

±ikzze−iωt .

Second, the fact that this mode satisfies the wave equation,

1

c2
∂2ψ

∂t2
+ (k2mj + k2z)ψ = 0 ,
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implies that

−ω
2

c2
+ k2mj + k2z = 0

or

k2z =
ω2

c2
− k2mj .

Third, and finally, our viewpoint is now necessarily different. Instead of kz being
determined by an eigenvalue problem, we now take ω to be the given frequency of
the wave ψ to be launched into the positive (+) or negative (−) z-direction and ask:
for what values of ω will kz be real so that ψ expresses a travelling wave

ψ ∝ Rmj(r)Θm(θ)e
±i|kz |ze−iωt

and for what values of ω will kz be imaginary so that ψ expresses a spatially damped
(or antidamped) wave

ψ ∝ Rmj(r)Θm(θ)e
±|kz |ze−iωt .

It is evident, that the answer is to be inferred from the dispersion relation

kz = ±
(
ω2

c2
− k2mj

)1/2

.

This relation between kz and ω depends on the eigenvalues kmj for the amplitude
profile in the transverse plane. A wave which decays exponentially along its puta-
tive direction of propagation is called an evanescent wave. This happens when the
frequency of the launched wave is low enough. It is evident that there is a critical
frequency

ωcritical = c kmj

at which the wave changes from being a propagating to being an evanescent wave.
The eigenvalues kmj are, of course, determined by the given Dirichlet boundary
condition. For a hollow cylinder these eigenvalues are the roots of the equation

Jm(ka) = 0 .

This implies that the smaller the radius of the cylindrical pipe the higher the critical
frequency below which no wave can propagate. A wave which meets such a small
radius pipe gets simply reflected.
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Exercise 5.3.1 (AXIALLY SYMMETRIC AMPLITUDES)
The transverse amplitude of an axially symmetric wave propagating in a cylindrical pipe
of radius a is determined by the following eigenvalue problem:

− d

dr
r
du

dr
= k2ru 0 ≤ r ≤ a

u(0) = finite

u(a) = 0.

The eigenfunctions are um(r) = J0(rkm) where the boundary condition J0(akm) = 0
determines the eigenvalues k2m m = 1, 2, . . . .

(a) Show that {J0(rkm)} is an orthogonal set of eigenfunctions on (0, a).

(b) Using the problem “How to normalize an eigenfunction” on page 33, find the squared
norm of J0(rkm).

(c) Exhibit the set of orthonormalized eigenfunctions.

(d) FIND the Green’s function for the above boundary value problem.

Exercise 5.3.2 (NORMAL MODES FOR A VIBRATING DRUM)
On a circular disc of radius a FIND an orthonormal set of eigenfunctions for the system
defined by the eigenvalue problem

−∇2ψ = k2ψ

∂ψ

∂r
(r = a, θ) = 0 a = radius of disc

ψ(r = 0, θ) = finite 0 ≤ θ ≤ 2π .

Here ∇2 = 1
r
∂
∂rr

∂
∂r +

1
r2

∂2

∂θ2
,

and EXIBIT these eigenfunctions in their optimally simple form, i.e. without referring to
any derivatives.

Exercise 5.3.3 (CRITICAL FREQUENCIES FOR WAVE PROPAGATION)
Consider a wave disturbance ψ which is governed by the wave equation

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2

]

ψ =
1

c2
∂2ψ

∂t2
.

Let this wave propagate inside an infinitely long cylinder; in other words, it satisfied

∂ψ

∂z
= ikzψ
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where kz is some real number, not equal to zero. Assume that the boundary conditions
satisfied by ψ is

ψ(r = a) = 0 with a = radius of cylinder

ψ(r = 0) = finite

(a)Find the “cut off” frequency, i.e. that frequency ω = ωcritical below which no propagation

in the infinite cylinder is possible.

(b)Note that this frequency depends on the angular integer m and the radial integer j. For
fixed j, give an argument which supports the result that smaller m means smaller critical
frequency.

(c)What is the smallest critical frequency, ωcritical, in terms of a and c to an accuracy of
2% or better?

Exercise 5.3.4 (PIE-SHAPED DRUM)
Consider the circular sector

S : 0 ≤ r ≤ a
0 ≤ θ ≤ α

α

(a) Exhibit the set of those normalized eigenfunctions for this sector which satisfy

(∇2 + k2)ψ = 0

ψ = 0 on the boundary of S

(b) Compare the set of normal modes of a circular drum with the set of normal modes
in Part A when α = 2π

Exercise 5.3.5 (VIBRATING MEMBRANES)
Consider

(a) a circular membrane of radius a

(b) a square membrane

(c) a rectangular membrane which is twice as long as it is wide.

Assume the two membranes
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(i) have the same area.

(ii) obey the same wave equation
2h
ψ =

1

c2
∂2ψ

∂t2

(iii) Have the same boundary conditions ψ = 0 at their boundaries

(A) TABULATE

(i) the 3 lowest frequencies for each of the two membranes

(ii) all the concomitant normal modes.

(B) For each of the normal modes of the circular membrane DRAW a picture of the
nodes,
i.e. the locus of points where ψ = 0. LABEL each of the normal mode pictures.

(C) Do the same for the other membrane. (Caution: Watch out for degeneracies!)

Roots. λj is the jth root of the Bessel Functions Jm(λj):

m = 0 m = 1 m = 2 m = 3 m = 4

j = 1 2.405 3.832 5.136 6.380 7.586

j = 2 5.520 7.016 8.417 9.760 11.064

j = 3 8.654 10.173 11.620 13.017 14.373

j = 4 11.792 13.324 14.796 16.223 16.223

Lecture 46

5.4 More Properties of Hankel and Bessel Func-

tions

Plane waves, i.e. disturbances with planar wave fronts, can be subjected to trans-
lations in the Euclidean plane. They can also be used as basis functions for the
two-dimensional Fourier transform. Both of these features extend to cylinder har-
monics. The first one is captured by Property 19, the second one by Eq.(5.90)
of Property 21. An example of a problem which uses the translation property for
cylinder harmonics is a scattering problem similar to the one on page 357:
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Consider a cylindrical source of waves and some distance away from it there is a
scatterer also cylindrical in shape. Given the distance between these two cylinders,
find the scattered wave field.

r0

ψ = ψemitted + ψscattered

Figure 5.20: Scattering of a cylindrical disturbance by a cylinder. A cylindrical wave
ψemitted emanating from a source on the left gives rise in the presence of a cylindrical
boundary to a circular scattered wave ψscattered on the right.

Subjecting the circular harmonics eiℓθ, ℓ = 0,±1, · · · , to the point translation
T : θ → θ + θ0 on S1 by means of T∗(θ0) on the space of functions results in the
alterate harmonics T∗(θ0)e

iℓθ = eiℓθ−θ0 ≡ eiℓΩ ℓ = 0,±1, · · · on S1.

How are the shifted basis functions eiℓΩ related to the original circular harmonics
eiℓθ? The answer is furnished by the familiar addition theorem for 1-d harmonics on
S1,

eiℓΩ = e−iℓθ0eiℓθ ℓ = 0,±1, · · · .

The extension of this to the cylinder harmonics on the 2-d Euclidean plane is ex-
pressed by means of the addition theorem for the cylinder harmonics

Property 20 (Addition theorem for cylinder harmonics)
A displaced cylinder harmonicHν(kR)e

iνΩ is a linear superposition of the undisplaced
cylinder harmonics. Mathematically one states this fact by the equation

Hν(kR)e
iνΩ =

∞∑

m=−∞
Jm(kr0)Hν+m(kr)e

i(ν+m)θ (5.77)
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or equivalently by

Hν(kR)e
iν(Ω−θ0) =

∞∑

m=−∞
Jm(kr0)Hν+m(kr)e

i(ν+m)(θ−θ0) , (5.78)

The inverse relationships are

Hν(kr)e
iνθ =

∞∑

m=−∞
Jm(kr0)Hν−m(kR)e

i(ν−m)Ω (5.79)

or equivalently

Hν(kr)e
iν(θ−θ0) =

∞∑

m=−∞
Jm(kr0)Hν−m(kR)e

i(ν−m)(θ−θ0) , (5.80)

where the implicit r and θ dependencies of the l.h.s. are made explicit by Eq.(5.83).
Equations (5.77) and (5.79) are known as the “addition theorem” for cylinder har-
monics, be they singular or non-singular at the origin R = 0. This theorem has the
following geometrical meaning: Consider a displacement in the Euclidean plane by
the vectorial amount ~r0 and express this displacement in terms of polar coordinates:

~r0 = (r0 cos θ0, r0 sin θ0) : x0 + iy0 = r0e
iθ0 .

Next, consider a point of observation, also expressed in terms of polar coordinates,

~r = (r cos θ, r sin θ) : x+ iy = reiθ .

Finally, consider this same point of observation, but relative to the displaced origin
at ~r0. In terms of polar coordinates one has

~R ≡ ~r − ~r0 : (x− x0) + i(y − y0) = reiθ − r0eiθ0
= |~r − ~r0|eiΩ

= ReiΩ (5.81)

where

R cosΩ = r cos θ − r0 cos θ0 ≡ x− x0
R sinΩ = r sin θ − r0 sin θ0 ≡ y − y0

R2 = r2 + r20 − 2rr0 cos(θ − θ0)

e2iΩ =
ReiΩ

Re−iΩ
=

reiθ − r0eiθ0
re−iθ − r0e−iθ0

are the observation coordinates relative to the displaced origin.
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x

y

X

Y

observation point

R

Ω

θ

r

Figure 5.21: Displaced cylinder harmonic and its displaced coordinate system. The
observation point is labelled (“coordinatized”) in two different ways; by (r, θ) and by
(R,Ω). The dotted vector is the displacement vector ~x0 : r0e

iθ0 .

The problem is this: express a typical displaced cylinder harmonic,

Hν(kR)e
iνΩ = Hν(k|~r − ~r0|)eiνΩ

a solution to the Helmholtz equation, in terms of the undisplaced cylinder harmonics,

Hν(kr)e
iνθ = Hν(k|~r|)eiνθ, |~r| =

√

x2 + y2 , (5.82)

which are also solutions to the same Helmholtz equation.
The solution to this problem is given by the “addition theorem”, Eq.(5.77).

Note that both R and Ω, and hence Hν(kR)e
iνΩ are periodic functions of θ.

Indeed, one notices that

~R = ~r − ~r0

or, equivalently, that

ReiΩ = reiθ − r0eiθ0 .
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As a consequence, the old and the new polar coordinates are related by

R2 = r2 + r20 − 2rr0 cos(θ − θ0)

and

e2iΩ =
ReiΩ

Re−iΩ
=

reiθ − r0eiθ0
re−iθ − r0e−iθ0

,

and these relations show that each of the new polar coordines is periodic in θ. Thus
one is confronted with the problem of finding the Fourier series of the periodic func-
tion

Hν(kR)e
iν(Ω−θ0) = Hν

(

k
√

r2 + r20 − 2rr0 cos(θ − θ0)
)(

r0 − rei(θ−θ0)
r0 − re−i(θ−θ0)

)ν/2

(5.83)

The solution to this problem is given by the “addition theorem”, Eq.(5.77). We shall
refrain from validating this Fourier series by a frontal assault. Instead, we give a
simple three-step geometrical argument. It accomplishes the task of expressing the
displaced cylinder harmonics in terms of the undisplaced cylinder harmonics.

(i) Represent the displaced harmonic as a linear combination of plane waves in
the usual way

Hν(kR)e
iνΩ =

e−iνπ/2

π

∫

eikR cos(α−Ω)eiναdα , (5.84)

(ii) take each of these plane waves and reexpress them relative to the undisplaced
origin:

eikR cos(α−Ω) ≡ ei
~k·~R = ei

~k·(~r−~r0) = e−i
~k·~r0ei

~k·~r

The phase shift factor is a plane wave amplitude in its own right, which depends
periodically on the angel θ0, and is therefore, according to Property 18, a linear
combination of Bessel harmonics

e−i
~k·~r0 ≡ e−ikr0 cos(α−θ0)

=
∞∑

m=−∞
Jm(kr0)e

imαe−im(θ0+
π
2 ) .

(iii) Reintroduce the translated plane wave

ei
~k·~r = eikr cos(α−θ)
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and its concomitant phase shift factor e−i
~k·~r0 from step (ii) into the displaced

cylinder harmonic. The result is a linear sum of phase shifted cylinder har-
monics, Eq.(5.84),

Hν(kR)e
iνΩ ≡ e−iνπ/2

π

∫

ei
~k·~re−i

~k·~r0eiναdα

=
e−iνπ/2

π

∞∑

m=−∞
Jm(kr0)

∫

eikr cos(α−θ)ei(ν+m)α dα e−im(θ0+
π
2 )

=
∞∑

m=−∞
Jm(kr0)

e−i(ν+m)π/2

π

∫

eikr cos(α−θ)ei(ν+m)α dα

︸ ︷︷ ︸

Hν+m(kr)ei(m+ν)θ

e−imθ0 .

According to the definitions, Eqs.(5.14)-(5.15), the integral is a cylinder harmonic of
order ν +m. Consequently, one obtains

Hν(kR)e
iνΩ =

∞∑

m=−∞
Jm(kr0)Hν+m(kr)e

i(m+ν)θe−imθ0 .

Multiplying both sides by e−iνθ0 yields the following geometrically perspicuous result:

Hν(kR)e
iν(Ω−θ0) =

∞∑

m=−∞
Jm(kr0)Hν+m(kr)e

i(m+ν)(θ−θ0)

Note that the left hand side is a displaced cylinder harmonic of order ν relative to
the new x-axis which point along the displacement vector ~x0 and whose origin lies
along the tip of this vector. The angle Ω− θ0 is the new angle of observation relative
to the new tilted x-axis and the new origin.

The sum on the right is composed of the cylinder harmonics of order ν+m undis-
placed relative to the tilted x-axis. The angle θ − θ0 is the old angle of observation
relative to the tilted x-axis and the old origin.

The displacement formula can be summarized as follows

(
displaced wave

of order ν

)

=
∑

m

Jm(kr0)×
(

undisplaced wave
of order ν +m

)

.

Property 21 (Translations represented by cylinder harmonics)
It is amusing to specialize to the case where ν = n is an integer and Hν = Jn is a
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Bessel function of integral order n. In that case the displacement formula becomes

Jn(kR)e
inΩ =

∞∑

m=−∞

[
Jn+m(kr)e

i(n+m)θ
]
Jm(kr0)e

−imθ0

=
∞∑

m=−∞

[
Jn−m(kr)e

i(n−m)θ
]
Jm(kr0)e

im(θ0+π) ,

or equivalently, after changing the summation index,

Jn−ℓ(kR)e
i(n−ℓ)Ω =

∞∑

m=−∞

[
Jn−m(kr)e

i(n−m)θ
] [

Jm−ℓ(kr0)e
i(m−ℓ)θ0

]

(5.85)

where

θ0 = θ0 + π ,

while Eq.(5.81) for the vector triangle becomes

ReiΩ = reiθ + r0e
iθ0 . (5.86)

Compare Eq.(5.86) with Eq.(5.85). Observe that (i) for each translation in the
Euclidean plane, say reiθ, there is a corresponding infinite dimensional matrix

{Jn−m(kr)ei(n−m)θ : n,m = 0,±1,±2, · · · }

and (ii) the result of successive translations, such as Eq.(5.86), is represented by the
product of the corresponding matrices, Eq.(5.85).

Exercise 5.4.1 (ADDITION FORMULA FOR BESSEL FUNCTIONS)
Express Jn(x1 + x2) as a sum of products of Bessel functions of x1 and x2 respectively.

Property 22 (Completeness)
The cylinder waves form a complete set. More precisely,

δ(r − r0)δ(θ − θ0)
r

=
∞∑

m=−∞

1

2π

∫ ∞

0

kdkJm(kr)Jm(kr0)e
im(θ−θ0) . (5.87)
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This relation is the cylindrical analogue of the familiar completeness relation for
plane waves,

δ(x− x0)δ(y − y0) =

∫ ∞

−∞

∫ ∞

−∞
dkxdky

ei(kxx+kyy)

2π

e−i(kxx0+kyy0)

2π

=

∫ ∞

0

∫ 2π

0

kdkdα
eikr cos(α−θ)

2π

e−ikr0 cos(α−θ0)

2π
. (5.88)

In fact, the one for plane waves is equivalent to the one for cylinder waves. The
connecting link between the two is the plane wave expansion, Eq.(5.47),

eikr cos(θ−α) =
∑

imJm(kr)e
im(θ−α) .

Introduce it into Eq.(5.88) and obtain

δ(x− x0)δ(y − y0) =
∑

m

∫ ∞

0

kdk

∫ 2π

0

dαJm(kr)i
m e

im(θ−α)

2π

∑

m′

Jm′(kr0)
e−im

′(θ0−α)

2π
(−i)m′

.

Using the orthogonality property
∫ 2π

0

dα
ei(m

′−m)α

2π
= δmm′ , (5.89)

the definition

δ(x− x0)δ(y − y0)dxdy = δ(r − r0)δ(θ − θ0)drdθ ,

and
dxdy = rdrdθ ,

one obtains

δ(r − r0)δ(θ − θ0)
r

=
∞∑

m=−∞

1

2π

∫ ∞

0

kdkJm(kr)Jm(kr0)e
im(θ−θ0) , (5.90)

the completeness relation for the cylinder waves.

Property 23 (Fourier-Bessel transform)
The Bessel functions {Jm(kr) : 0 ≤ k < ∞} of fixed integral order form a complete
set

δ(r − r0)
r

=

∫ ∞

0

Jm(kr)Jm(kr0)kdk . (5.91)
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This result is a direct consequence of Property 21. Indeed, multiply the cylinder
wave completeness relation, Eq.(5.87) by e−im

′θ, integrate over θ from 0 to 2π, again
use the orthogonality property, Eq. 5.89, and cancel out the factor common factor
e−im

′θ0 from both sides. The result is Eq.(5.91), the completeness relation for the
Bessel functions on the positive r-axis.

Remark: By interchanging the roles of k and r one obtain from Eq.(5.91)

δ(k − k0)
k

=

∫ ∞

0

Jm(kr)Jm(k0r)rdr .

Remark: The completeness relation, Eq.(5.91), yields

f(r) =

∫ ∞

0

F (k)Jm(kr)kdk

where

F (k) =

∫ ∞

0

f(r)Jm(kr)rdr .

This is the Fourier-Bessel transform theorem.

It is interesting to note that the completeness relation, Eq.(5.91), is independent
of the integral order of Jm(kr). One therefore wonders whether Eq.(5.91) also holds
true if one uses Jν(kr), Bessel functions of any complex order ν. This is ideed the
case.

Property 24 (Bessel transform)
The Bessel functions {Jν(kr) : 0 < k,∞ } of complex order ν form a complete set

δ(r − r0)
r

=

∫ ∞

0

Jν(kr)Jν(kr0)kdk . (5.92)

This result gives rise to the transform pair

f(r) =

∫ ∞

0

F (k)Jν(kr)kdk (5.93)

F (k) =

∫ ∞

0

f(r)Jν(kr)rdr . (5.94)

and it is obvious that mathematically Property 22 is a special case of Property 23.
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5.5 The Method of Steepest Descent and Station-

ary Phase

Lecture 47

The repeated encounter with complex integrals such as

Hν(ρ) =

∫ α2

α1

eiρ cosαeiναdα ,

especially when ρ ≫ 1, demands that we have at our disposal a systematic method
for evaluating, at least approximately, integrals of the type

I(ρ) =

∫ B

A

X(z)eρf(z)dz ; 1≪ ρ . (5.95)

This is an integral in the complex z-plane along a curve which starts at A and
terminates at B. The exponential is a rapidly changing function because 1≪ ρ. The
function X(z), by contrast, is a slowly varying function. The success of the method
hinges on the following circumstance: the dominant contribution to the integral
comes from only a small segment of the integration contour, and the accuracy of
that dominant contribution improves with increasing ρ.

The value of the integral depends obviously on the behavior of the integrand
along the integration path. However, the Cauchy-Goursat theorem implies that the
integration path between the fixed limits A and B can be quite arbitrary provided
that

f(z) = f(x+ iy) = u(x, y) + iv(x, y)

is analytic, i.e., all its derivatives exist. This is usually, if not always, the case.
Analyticity of f(z) = f(x+ iy) is equivalent to

∂f

∂x
=

∂f

∂(iy)

∂u

∂x
+ i

∂v

∂x
=

1

i

∂u

∂y
+
∂v

∂y
,

which yields the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
;
∂u

∂y
= −∂v

∂x
.
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They imply
[
∂2

∂x2
+

∂2

∂y2

]{
u
v

}

= 0

or
∂2f

∂x2
+
∂2f

∂y2
= 0 ,

i.e., f is “harmonic”. (Nota bene: a harmonic function need not be analytic.)
Let z0 be an extremum of f , i.e.,

∂f

∂x
= 0 and

∂f

∂y
= 0, or equivalently

∂f

∂z
= 0 .

At such a critical point, f has neither a maximum nor a minimum, it has a saddle
point instead, because ∂2f

∂x2
= −∂2f

∂y2
prevents f from having a maximum or minimum

anywhere.

0 π 2π
−π−2π

Figure 5.22: Critical points of the function f(z) = iρ cos z. The solid contours
in the shaded regions (“valleys”) are the isograms of Re f which are below zero
elevation, while the dashed contours in the unshaded regions (“mountain ranges”)
are the isograms of Re f which are above zero elevation. Each solid dot is located in
a mountain pass which connects two valleys by a path of steepest ascent and descent.

Example:

f(z) = i cos z = i cos x cosh y + sin x sinh y

f ′(z) = −i sin z
z0 = nπ , n = 0 , ± 1 , ± 2 (location of critical points)
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The integrand of I(ρ) is

X(z)eρf(z) = X(z)eρu(x,y)+iρv(x,y)

and the integration path is assumed to start and end where this integrand vanishes,
i.e., where

u(A) = −∞
u(B) = −∞ .

This means that, in the example, points A and B would lie in different shaded strips
in Figure 5.22.

The integration path between these end points can be deformed without changing
the value of the integral. The method of steepest descent takes advantage of this
fact by deforming the integration path so that it goes through the critical point z0
in such a way that

Ref(z0) = maximun along the path

and that the rate at which Ref(z0) decreases along either direction away from z0 as
rapidly as possible.

One suspects that the integral

∫ B

A

X(z)eρu(x,y)+iρv(x,y)dz

gets its major contribution along this path through z0. A possible objection against
such a suspicion is that along this path the integrand

X(z)eρf(z) = X(z)eρu(x,y)eiρv(x,y)

might oscillate very rapidly. One might blame such a behaviour on the phase factor

eiρv(x,y) .

As a consequence, one might think that the value of the integral would average
to approximately zero and make its evaluation through z0 not give the dominant
contribution to the total integral. Fortunately this can never happen. Remarkably
enough, the opposite is the case, the path of steepest ascent and descent is also the
path of stationary phase. In other words, the direction along which u(x, y) changes
must rapidly, namely,

~∇u =

(
∂u

∂x
,
∂u

∂y

)

(“gradient of u”)
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is also the direction along which

v = v(x(τ), y(τ))

is constant ; indeed,

dv

dτ
=

dx

dτ

∂v

∂x
+
dy

dτ

∂v

∂y

=
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

=
∂v

∂y

∂v

∂x
− ∂v

∂x

∂v

∂y
= 0 .

Thus v is constant along the direction of the gradient of u. In still other words,
the level surfaces of u(x, y) and v(x, y) are perpendicular to each other, a direct
consequence of the Cauchy-Riemann equations.

z0

complex z−plane

Figure 5.23: Path of steepest ascent and descent through the critical point z0 of
the function f(z). The dotted lines are the isograms of Im f (= v(x, y)), the locus
of points where the phase of the integrand eρf is constant. Perpendicular to these
are the solid lines. They are the isograms of Re f (= u(x, y)). The heavily dotted
directed line through z0 is the integration path of stationary phase and steepest
descent.

The important conclusion is, therefore, this:

eiρv(x,y)

has constant phase along the direction of ~∇u. It is clear that if ~∇u were not tangent
to the line of constant phase, then the method of steepest descent would not work.
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We now expand f(z) in the neighborhood of the critical point z0:

f(z) = f(z0) +
1

2
(z − z0)2f ′′(z0) +

1

3!
(z − z0)3f ′′′(z0) + · · ·

= f(z0) +
1

2
(z − z0)2eiδ0 |f ′′(z0)|+ · · · (5.96)

Here δ0 is the phase of f
′′(z0). We are assuming that the third and higher derivative

terms make a negligible contribution in controlling the asymptotic behavior of

eρf(z) .

This is a good assumption provided the second derivative of f(z) does not vanish at
z0,

f ′′(z0) 6= 0 .

Assuming that this is the case, we now must choose the integration path through z0.
The linear part of this path is

z = z0 + eiφτ . (5.97)

so that
dz = eiφdτ . (5.98)

Here τ is the path parameter and eiφ controls the direction of the path. Now comes
the important step: We choose the direction of the path so that in the process of
passing through z0 the function f(z) makes the integrand

eρf(z)

rise as fast as possible to a maximum at z0 and subsequently makes that integrand
decrease as rapidly as possible. Such a path is exhibited in Figure 5.23. Along this
path the function f(z) has the form

f(z) = f(z0)−
1

2
τ 2|f ′′(z0)|+ · · ·

This form must coincide with Eq.(5.96) along the path. Consequently,

(z − z0)2eiδ0 ≡ e2iφτ 2eiδ0 = −τ 2 .

This condition determines the angle φ of the integration path.

e2iφeiδ0 = −1 (= e±iπ) . (5.99)
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The path itself is

z − z0 = e−iδ0/2e±iπ/2τ .

The (±) ambiguity expresses the fact that the integration may proceed into the
forward direction or the backward direction. The two directions obviously differ by
π radians. The ambiguity is resolved by the fact that the integral

∫ B

A
· · · dz has its

integration path along a direct path from A over the critical point z0 to B. For
example, the complex integrals for the Hankel functions

Hν(ρ) =
e−iπν/2

π

∫ B

A

eiρ cos z+iνzdz

have the integrand eiρ cos z whose critical points are located at z0 = 0,±π, · · · , as
in Figure 5.22. A cursory inspection of this integrand reveals quite readily through
which of these critical points the directed integration path must pass.

In general, the ambiguity in

dz = ei(±π/2−δ0/2)dτ

can only be resolved by drawing a global picture in which the direct, and hence
directed, integration path connecting A→ z0 → B is exhibited.

After the global ambiguity has been settled, the evaluation of the integral be-
comes straightforward. The integral, Eq.(5.95), is approximated by restricting the
integration to the path segment −τ1 ≤ τ ≤ τ1 centered around the saddle point:

I(ρ) = eρf(z0)
∫ τ1

−τ1
X(z0 + eiφτ)e−

ρ
2
τ2|f ′′(z0)|dτ

dz

dτ

∣
∣
∣
∣
z0

(5.100)

The accuracy of this approximation is determined by two seemingly irreconcilable
demands. On one hand we are neglecting cubical (and higher) order terms in the
exponential, and this is permitted only if

τ 21 |f ′′| ≫ τ 31 |f ′′′| or equivalently τ1 ≪
∣
∣
∣
∣

f ′′

f ′′′

∣
∣
∣
∣
. (5.101)

On the other hand, at first glance one would think that τ1 would have to be large
enough in order not to miss any contributions to the to-be evaluated integral. How-
ever, there is no conflict. The highly localized nature of the gaussian guarantees
that the integral be independent of its limts ±τ1, even when τ1 is small, i.e. satisfies
Eq.(5.101). This is because the localized nature of the exponential is controlled by
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the positive parameter ρ. To make the value of the integral independent of τ1, this
parameter must be so large that

τ1 ≫
2

√

ρ|f ′′(z0)|

(

=
width of neighborhood

where integrand is non-neglegible

)

(5.102)

Comparing Eq.(5.102) with (5.101), one finds
∣
∣
∣
∣

f ′′

f ′′′

∣
∣
∣
∣
≫ τ1 ≫

2
√

ρ|f ′′(z0)|
.

This chain of inequalities reconciles the two seemingly contradictory demands. The
more the two length scales |f ′′ |/|f ′′′ | and 2/

√

ρ|f ′′(z0)| differ from each other the
better the chain of inequalities can be satisfied., and the greater the accuracy with
which the given integral Eq.(5.95) gets approximated by Eq.(5.100).

Moving forward, expand the slowly varying function X in a Taylor series and
obtain

I(ρ) = eρf(z0)
∞∑

n=0

dnX

dzn

∣
∣
∣
∣
z0

einφ

n!

∫ τ1

−τ1
τne−

ρ
2
τ2|f ′′(z0)|dτ

dz

dτ

∣
∣
∣
∣
z0

=
eρf(z0)

√

ρ|f ′′(z0)|
dz

dτ

∣
∣
∣
∣
z0

∞∑

n=0

dnX

dzn

∣
∣
∣
∣
z0

(

eiφ
√

ρ|f ′′(z0)|

)n
1

n!

∫ τ1
√
ρ|f ′′|

−τ1
√
ρ|f ′′|

tne−
1
2
t2dt

One can simplify this expression in two ways:
First of all, it is permissible to replace the integration limits by t = ±∞ whenever

τ1
√

ρ|f ′′| ≫ √n ≥ 1 .

Under this condition the integral may be replaced by its limiting value,

1

n!

∫ ∞

−∞
tne−t

2/2 dt =
√
2π ×







0 n = odd
1 n = 0
1

2mm!
n = 2m

It is obvious that the inequality is violated for sufficiently large n. However, this
will not happen if the Taylor series representation of X(z) can be truncated without
compromising the accuracy with which X(z) is to be represented.
Secondly, one may apply Eqs.(5.99) and (5.96) to

e2iφ

|f ′′(z0)|
=
−e−iδ0
|f ′′(z0)|

≡ −1
f ′′(z0)

. (5.103)
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With these two simplifications the steepest descent evaluation of the contour integral
Eq.(5.95) yields the following series in inverse powers of ρ:

∫ B

A

X(z)eρf(z)dz =

√
2π

ρ

eρf(z0)

[−f ′′(z0)]1/2

N∑

m=0

d2mX

dz2m

∣
∣
∣
∣
z0

(−1)m
m!

(
1

2ρf ′′(z0)

)m

(5.104)

Here N is the mandatory truncation integer, and

[−f ′′

(z0)]
1/2 = |f ′′

(z0)|1/2e−iφ (= |f ′′

(z0)|1/2eiδ0/2e±iπ/2)

is that root which has the phase factor e−iφ whose angle φ points along the integration
path through the critical point z0.
Example: Evaluate

H(1)
ν =

e−iπν/2

π

∫

C1

eiρ cos zeiνzdz

=
e−iπν/2

π

∫

C1

eρf(z)X(z)dz . (5.105)

to second order accuracy in 1/ρ. Here

X(z) = eiνz

f(z) = i cos z

f ′(z) = −i sin z
f

′′

(z) = −i cos z

The critical points determined by f ′(z) = 0 are

z = 0,±π, · · · .

The integration limits of H
(1)
ν in the complex z−plane are indicated in Figure 5.3.

They dictate that the most direct path of steepest descent passes through the critical
point

z0 = 0 .

Consequently,

f
′′

(z0) = −i = e−iπ/2

X(z0) = 1

X
′′

(z0) = −ν2
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The phase angle φ of the integration path z−z0 = τeiφ is determined by the condition
that

(z − z0)2f
′′

(z0) = −τ 2|f
′′

(z0)| .
Consequently, Eq.(5.99) becomes

e2iφe−iπ/2 = −1 (= e±iπ)

or

eiφ = ±e−iπ/4

The fact that the path goes from the second to the fourth quadrant (as in Figure 5.23)
requires that one choose the upper sign,

eiφ = e−iπ/4

Thus, in light of Eq.(5.103, namely

−f ′′

(z0) = |f
′′

(z0)|e2iφ ,

one has

[−f ′′

(z0)]
1/2 = eiπ/4 .

This is because4 the square root of a polar representation is unique5 It follows that
the large ρ expansion of Eq.(5.105) is

H(1)
ν (ρ) =

e−iπν/2

π

√
2π

ρ
eiρe−iπ/4

[

1− ν2−1
1

(
1

2ρ(−i)

)1

+ · · ·
]

=

√
2

πρ
eiρ−i(ν+1/2)π

2

[

1 + i
ν2

2ρ
+ · · ·

]

(5.106)

4See the discussion surrounding Figures 4.12 and 4.13 on page 294.
5Indeed, another polar representation, namely,

−f ′′

(z0) = |f
′′

(z0)|e2iφ+2πi

would have given the wrong result

[−f ′′

(z0)]
1/2 = −eiπ/4 .
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Exercise 5.5.1 (STEEPEST DESCENT)
(a) Using the method of steepest descent FIND an asymptotic expression for H

(2)
ν (ρ)

and for Jν(ρ) when ν << ρ.

(b) The gamma function Γ(w + 1) which for Re w > −1 is represented by

Γ(w + 1) =

∫ ∞

0
e−ττwdτ

Using the steepest descent approach, FIND an asymptotic expression for Γ(w + 1)
when Re w >> 1. Why does’t it work? Try again by substituting wz for τ , and
obtaining

Γ(w + 1) = ww+1

∫ ∞

0
e−wzzwdz = ww+1

∫ ∞

0
ew(ln z−z)dz

5.6 Boundary Value Problems in Two Dimensions

Consider the following problem: A vibrating system has an amplitude response ψ to
a source function f which is governed by the inhomogeneous Helmholtz equation

(∇2 + k2)ψ(~x) = −f(~x) . (5.107)

Assume that this equation applies to a 2-dimensional region R whose boundary is
designated by ∂R. Suppose that on this boundary the response amplitude satisfies
the inhomogeneous mixed Dirichlet-Neumann boundary condition

[

a(~x)ψ(~x) + ~n · ~∇ψ(~x)
]

∂R
= g(~x)|∂R . (5.108)

Find the response amplitude ψ(~x)!

This problem is characterized by

1. the shape of the as-yet-unspecified region R,

2. the as-yet-unspecified inhomogeneities f and g, and

3. the as-yet-unspecified effective stiffness of the boundary, the function a(~x).
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Thus, by omitting reference to the particular measurement of these properties, one
has mentally subsumed a vast number of particular problems, which govern the
response of a vast number of linear systems, into a new concept 6, an equivalence
class of problems. A representative class member is characterized by Eqs.(5.107) and
(5.108).

5.6.1 Solution via Green’s Function

The most delightful aspect about this problem is that its solution can readily be
expressed in terms of the Green’s function for the given linear system.

The reasoning leading to this solution is an extension into two dimensions of the
1-dimensional problem considered in Sections 4.2 (p. 238) and 4.9 (p. 259). As in
that case, the solution is easily given in terms of the associated Green’s function
G(~x; ~x0). It satisfies

(∇2 + k2)G(~x; ~x0) = −δ2(~x− ~x0) ≡







−δ(x− x0)δ(y − y0) in Cartesian
coordinates

−δ(r − r0)
r

δ(θ − θ0) in polar co-
ordinates

(5.109)

and [

a(~x)G(~x; ~x0) + ~n · ~∇G(~x; ~x0)
]

∂R
= 0 . (5.110)

The solution process to this 2-dimensional problem parallels the one for one dimen-
sion. First of all, use Lagrange’s identity

ψ∇2G−G∇2ψ = ∇ · (ψ~∇G−G~∇ψ)
Its integral over the region R yields the Green’s identity

∫

R

∫

(ψ∇2G−G∇2ψ)d2x =

∮

∂R

(ψ~∇G−G~∇ψ) · ~n ds

Secondly, applying the inhomogeneous Helmholtz equation, Eq.(5.107), and Eq.(5.109)
to the left hand side, one obtains

∫

R

∫
[
ψ(~x)(−)δ2(~x− ~x0) +G(~x; ~x0)f(~x)

]
d2x =

∮

∂R

(ψ~∇G−G~∇ψ) · ~n ds .

6It is worthwhile to point out that the process of measurement omission is the process by which
all concepts are formed. This observation and the procedure for implementing this process were
first spelled out by Ayn Rand in Chapters 1-2 of Introduction to Objectivist Epistemology, 2nd

Edition, edited by H. Binswanger and L. Peikoff. Penguin Books, Inc., New York, 1990.
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R

R
n

ds

Figure 5.24: Integration region R with boundary ∂R having outward pointing normal
~n perpendicular to each boundary element ds.

Finally, substituting the two boundary conditions, Eqs.(5.108) and (5.110) into the
right hand side, one finds that

ψ(~x0) =

∫

R

∫

f(~x)G(~x; ~x0)d
2x−

∮

∂R

g(~x)G(~x; ~x0)|∂R ds .

Thus, knowledge of the Green’s function G, automatically yields the response am-
plitude ψ in terms of its values on the boundary ∂R and in terms of the source
distribution f in the region R.

5.6.2 Green’s Function via Dimensional Reduction

To find the Green’s function whose domain dimension is two or higher, introduce a
technique whose virtue is that it reduces the problem to a Green’s function problem
in just one dimension. The potency of this technique is a consequence of the fact
that it leads to success whenever the Helmholtz equation is separable relative to the
curvilinear coordinate system7 induced by the boundarie(s) of the given domain.

Polar coordinates is a case in point. It is illustrated by the following

Problem (Green’s Function for Radiation in the Euclidean Plane) The

7In three dimensions the Helmholtz equation is separable in eleven coordinate systems. They
are listed and depicted at the end of chapter five of reference [3]
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equation for the Green’s function relative to polar coordinates is
[
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
+ k2

]

Gk(~x; ~x0) = −
δ(r − r0)

r
δ(θ − θ0) . (5.111)

Let the homogeneous boundary conditions for G be

(i) Sommerfeld’s outgoing radiation condition

0 =
√
r
(

a(~x)Gk(~x; ~x0) + ~n · ~∇G(~x; ~x0)
)∣
∣
∣
∂R
≡ lim

r→∞

√
r

(

(−)ikG+
∂

∂r
G

)

(ii) Gk(~x; ~x0) is finite at r = 0, where θ is undefined.

Solution
This problem is solved by expanding the Green’s function as a Fourier series on
[0, 2π]:

Gk(~x; ~x0) =
∞∑

−∞
gm(r; r0)

eim(θ−θ0)

2π
(5.112)

with to-be-determined Fourier coefficients. The method of dimensional reduction
consists of establishing that each of them satisfies a 1-dimensional Green’s function
problem. Next one constructs its solution using formula Eq.(4.38) on page 255.
Finally one introduces this solution into the Fourier series expansion. This yields the
desired 2-dimensional Green’s function. As an additional benefit one finds that this
expansion can be summed into a closed form expression given by a familiar function.

The details of this four step procedure are as follows: Introduce the Fourier
expansion into the 2-dimensional Green’s function equation and obtain

∞∑

−∞

eim(θ−θ0)

2π

[
1

r

d

dr
r
d

dr
+

(

k2 − m2

r2

)]

gm(r; r0) = −
δ(r − r0)

r
δ(θ − θ0) . (5.113)

To isolate the equation obeyed by the each of the coefficient functions gm(r; r0)
introduce the Fourier representation of the Dirac delta function restricted to [0, 2π]:

δ(θ − θ0) =
∞∑

−∞

eim(θ−θ0)

2π
,

and make use of the linear independence of the functions eim(θ−θ0). Alternatively,
multiply both sides of Eq.(5.113) by e−im

′(θ−θ0), integrate
∫
e−im

′(θ−θ0)(· · · )dθ, make
use of orthogonality, and finally drop the prime to obtain

[
d

dr
r
d

dr
+

(

rk2 − m2

r

)]

gm(r; r0) ,= −δ(r − r0)
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the equation for the 1-dimensional Green’s function. The boundary conditions for G
imply that the solution

gm(r; r0) =
−1
c

{
u1(r)u2(r0) for r < r0
u1(r0)u2(r) for r0 < r

satisfies

gm(r = 0; r0) = finite

gm(r; r0) ∼
eikr√
r
for very large r

This is a set of 1-dimensional Green’s function problems whose solutions yield the
2-d Green’s funtion, Eq.(5.112). The two functions which satisfy the homogeneous
differential equation and the respective boundary conditions are

u1 = Jm(kr)

and

u2 = H(1)
m (kr) ,

while their Wronskian is

u1u
′
2 − u′1u2 =

2i

πr
.

Consequently, the 1-dimensional Green’s function is

gm(r; r0) =







πi

2
Jm(kr)H

(1)
m (kr0) r ≤ r0

πi

2
Jm(kr0)H

(1)
m (kr) r0 ≤ r

The 2-dimensional Green’s function, Eq.(5.112), for outgoing radiation in the Eu-
clidean plane is therefore

Gk(~x; ~x0) =
∞∑

−∞

i

4
eim(θ−θ0)Jm(kr<)H

(1)
m (kr>) .

This expression can be simplified by means of the displacement formula for cylinder
modes, Property 19, on page 379,

Hν(k|~x− ~x0|)eiν(Ω−θ0) =
∞∑

m=−∞
ei(ν+m)(θ−θ0)Jm(kr0)Hν+m(kr)
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Set ν = 0, compare the Green’s function with the right hand side of the displacement
formala, and conclude that

Gk(~x; ~x0) =
i

4
H0(k|~x− ~x0|) ; (5.114)

in other words,
(
∇2 + k2

) i

4
H0(k|~x− ~x0|) = −δ2(~x− ~x0) (5.115)

Thus one has obtained an expression for the 2-dimensional Green’s function which
exhibits the rotational and translational symmetry of the linear system. It represents
an asymtotically (large |~x| !) outgoing wave whose source is located at |~x0|. This is
the amplitude profile of a wave that you make when you stick your wiggling finger
at |~x0| into an otherise motionless pond.

5.6.3 Green’s Function: 2-D Laplace vs. (Limit of) 2-D
Helmholtz

It is instructive to attempt to solve Eq.(5.111) and its boundary conditions by simply
computing the limit of the solution, Eq.(5.114),

lim
k→0

i

4
H0(kR); R = |~x− ~x0| ,

and compare this limit with the result obtained by directly solving the boundary
value
Problem (Green’s Function for the Potential of an Isolated Source)
Setting k = 0 in the previous problem, find the Green’s function which satisfies

[
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2

]

G0(~x; ~x0) = −
δ(r − r0)

r
δ(θ − θ0) . (5.116)

together with

(i)

0 =
√
r~n · ~∇G0(~x; ~x0)

∣
∣
∣
∂R
≡ lim

r→∞

√
r
∂

∂r
G0

and

(ii) G0(~x; ~x0) is finite at r = 0, where θ is undefined.
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Solution: Using the method of dimensional reduction, one again starts with

G0(~x; ~x0) =
∞∑

−∞
gm(r; r0)

eim(θ−θ0)

2π
(5.117)

and the implied boundary conditions

gm(r = 0; r0) = finite

lim
r→∞

=
√
r
∂gm
∂r

= 0 .

The solution can be summed into the closed form

G0(~x; ~x0) = −
1

2π
ln |~x− ~x0| whenever r 6= r0 (5.118)

How does this Green’s function compare with the asymptotic limit of the Helholtz
Green’s function, Eq.(5.114),

lim
k→0

Gk(~x; ~x0) ?

The answer is contained in a comparison with the following
Problem (Potential Green’s Function as an Asymtotic Limit)
Exhibit the limiting form of Eq.(5.114) as k → 0.
Solution
Using Property 14 on page 344,

H(1)
ν (kR) = e−iνπ/2

e−iνπ/2Jν(kR)− eiνπ/2J−ν(kR)
−i sin πν ,

one needs to calculate

lim
k→0

H
(1)
0 (kR) = lim

k→0
lim
ν→0

H(1)
ν (kR)

This is a double limit which one obtains by evaluating

lim
ν→0

H(1)
ν (kR)

for kR ≪ 1, and then by examining the behaviour of the resulting expression as
k → 0.

The evaluation yields

lim
ν→0

H(1)
ν (kR) =

0

0
.
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Consequently, l’Hospital’s rule

lim
ν→0

H(1)
ν (kR) = lim

ν→0

d

dν

(
e−iνπ/2Jν(kR)− eiνπ/2J−ν(kR)

)

d

dν
(−i sin πν)

(5.119)

= lim
ν→0

e−iνπ/2
[

−iπ
2
Jν(kR) +

dJν
dν

]

− eiνπ/2
[

iπ
2
J−ν(kR) +

dJ−ν
dν

]

−iπ cos πν

must be used. Taking advantage of the asymptotic small-k expansion of Jν(kR),
Eq.(5.24),

Jν(kR) ≈
(
kR

2

)ν
1

Γ(1 + ν)
,

d

dν

(
kR

2

)ν

=

(
kR

2

)

ln

(
kR

2

)

,

and

lim
ν→0

d

dν

(
1

Γ(1 + ν)

)

= lim
ν→0

−1
Γ(1 + ν)

× Γ′(1 + ν)

Γ(1 + ν)

= −1× (−)C ; C = .5772 (Euler-Mascheroni constant)

≡ ln γ ; γ = 1.781

one finds that

dJν(kR)

dν
=

(
kR

2

)ν

ln

(
kR

2

)

+ ln γ

=

(
kR

2

)ν

ln

(
γkR

2

)

Consequently, l’Hospital’s rule tells us that

lim
ν→0

H(1)
ν (kR) =

[−iπ
2

+ ln
γkR

2

]

× 2

−iπ
= 1 +

2i

π
ln
γkR

2
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Thus the small-k form of the 2-D helmholtz Green’s function, Eq.(5.114), is

Gk(~x; ~x0) =
i

4
H0(k|~x− ~x0|) (5.120)

= − 1

2π
ln |~x− ~x0|+

(
i

4
− 1

2π
ln
γkR

2

)

whenever k ≪ 1.

This is the solution to the problem and it expresses the amplitude profile of a mem-
brane responding to a unit force applied at ~x0. This membrane is imbedded in an
elastic medium whose local force of restitution (per unit area) is proportional to k2:

Gk × k2∆(area) = ∆(force of restitution)

Thus k2 is the Young’s modulus of the elastic medium in which the membrane is
imbedded. As k2 → 0 there is nothing to push the membrane back towards its
zero-amplitude equilibrium. Consequently, the smaller that Young’s modulus is, the
further the membrane gets pushed away from this equilibrium by the Dirac delta
function force density. This is why Gk(~x; ~x0) → ∞ as k2 → 0. Equation (5.120)
expresses this fact quantitatively.

By contrastG0(~x; ~x0) as given by Eq.(5.118) does not presume any elastic medium.
The asymptotic Neumann boundary condition that went into G0 forbids it being in-
terpreted as the amplitude of any membrane. Instead G0 expresses the potential due
to an electrostatic charge.

5.7 Wave Equation for Spherically Symmetric Sys-

tems

Lecture 48

The formulation of linear wave phenomenon in terms of the wave equation, the
Helmholtz equation, and its solutions in terms of orthonormal function on the Eu-
clidean plane can be extended readily to three dimensional Euclidean space. For this
space the wave equation

∇2ψ − 1

c2
∂2ψ

∂t2
= 0

can be solved relative to various orthogonal coordinate systems (there are at least
eleven of them). The choice of coordinates is invariably dictated by symmetry and
boundary conditions. This means that the coordinates are usually chosen so one or
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more of the coordinate surfaces mold themselves onto boundaries where the boundary
conditions are specified. In terms of ubiquity, the three most important coordinate
systems are the rectangular, cylindrical, and the spherical coordinates.

We shall now consider the wave equation relative to spherical coordinates given
by

x = r sin θ cosϕ 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π
y = r sin θ sinϕ 0 ≤ r <∞
z = r cos θ

The angles ϕ and θ are called the azimuthal and the polar angle respectively. Relative
to these coordinates, the Laplace operator has the form

∇2ψ =
1

r2
∂

∂r
r2
∂ψ

∂r
+

1

r2

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]

ψ .

A useful observation, rather valuable as we shall see momentarily, is the fact that
the first term can be written in the form

1

r2
∂

∂r
r2
∂

∂r
ψ =

(
1

r

∂

∂r
r

)2

ψ ≡ 1

r

∂2

∂r2
rψ .

Another useful observation is that the second term is easy to remember. Indeed, for
small θ (θ ≪ 1) one has

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
≈ 1

θ

∂

∂θ
θ
∂

∂θ
+

1

θ2
∂2

∂ϕ2
,

the familiar two-dimensional Laplacian, Eq.(5.1) on P320, for the Euclidean plane.
This is as it should be: around the north pole of a sphere the spherical coordinates
reduce to the polar coordinates of the Euclidean plane around the origin.

The physically and mathematically most revealing solutions are the normal modes.
They are time translation eigenfunctions and, as we have already learned from Sec-
tion 5.1.4, they satisfy the equation

∂

∂t
Ψ = iωΨ .

A normal mode has the form

Ψ(r, θ, ϕ, t) = ψ(r, θ, ϕ)eiωt .
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Here ψ(r, θ, ϕ) is the spatial amplitude profile which satisfies the Helmholtz equation

(∇2 + k2)ψ = 0 , k2 =
ω2

c2

or {
1

r

∂2

∂r2
r +

1

r2

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]

+ k2
}

ψ = 0 ,

relative to spherical coordinates. This partial differential equation lends itself to be-
ing separated into a system of ordinary differential equations. Letting ψ = j(r)Y (θ, ϕ),
dividing by j(r), multiplying by r2, and tranferring the r-dependent term to the right
hand side, one finds that the r.h.s. is independent of θ and φ, while the l.h.s. is in-
dependent of r. But these two sides are equal and hence are independent of all three
variables. Thus both the l.h.s. and the r.h.s. are equal to the same constant, the sep-
aration constant, say −λ. This yields two equations for Y (θ, φ) and j(r) respectively.
Explicitly one has

1

sin θ

∂

∂θ
sin θ

∂Y

∂θ
+

1

sin2 θ

∂2Y

∂ϕ2
= −λY ; (5.121)

and
{
d2

dr2
+

2

r

d

dr
+

(

k2 − λ

r2

)}

j(r) = 0 (5.122)

These are two eigenvalue equations. The separation constant λ is the eigenvalue
determined by the boundary conditions on the angular function, and k2 is the eigen-
value determined by the boundary conditions on the radial function j(r). One of
the allowed eigenvalues for λ expresses the circumstance where the amplitude pro-
file is spherically symmetric, i.e. is independent of the angles θ and φ. For this
circumstance the solutions to the Helmholtz equation can be found immediately.

5.7.1 Spherically Symmetric Solutions

Spherically symmetric solutions are those whose form is characterized by Y (θ, φ) ≡const.
so that λ = 0. Consequently, the radial part j(r) of the solution obeys

[
1

r

d2

dr2
r + k2

]

j = 0

so that

j(r) =
eikr

r
,
e−ikr

r
,
sin kr

r
,
cos kr

r
,



5.7. WAVE EQUATION FOR SPHERICALLY SYMMETRIC SYSTEMS 407

or any of their linear combinations. Which one it is, and what the allowed values of k
are, depends entirely on the given boundary conditions. The concomitant spherically
symmetric normal modes have the form

Ψ = e−iωt
eikr

r
, e−iωt

e−ikr

r
, etc.

For example, the amplitudes of the spherically symmetric normal modes confined to
the interior of a hard sphere of radius a are

Ψ = e−iωt
sinnπr/a

r
ω =

nπ

ca
, n = 1, 2, · · ·

A pure sound note in a spherical resonator is an example of such a normal mode. It
vibrates with frequency ω

2π
= n

2ca
.

5.7.2 Factorization Method for Solving a Partial Differential
Equation: Spherical Harmonics

Now back to the remaining eigenvalues, λ 6= 0. The radial equation can be changed
into a familiar one by letting

j =
J√
r
.

This results in
d2J

dr2
+

1

r

dJ

dr
+

(

k2 − λ+ 1
4

r2

)

J = 0

which is the familiar Bessel equation of order
√

λ+ 1
4
. Its solutions are H

(1)√
λ+ 1

4

(kr)

and H
(2)√
λ+ 1

4

(kr), where λ is to be determined.

Lecture 49

The value of λ is not arbitrary. It is one of the (degenerate) eigenvalues of
Eq.(5.121), the two-dimensional Helmholtz equation on the unit two-sphere. As al-
ready observed on page 405, for θ ≪ 1 this equation reduces to Helmholtz’s equation
on the Euclidean plane. This observation is very useful for several reasons. One of
them is that it implies, as shown on page 349, that there is a simple algebraic way
of generating a complete basis for each degenerate eigenspace of

∇2Y = −λY .
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We shall now extend this algebraic method from the eigenfunctions of ∇2 on the
two-dimensional Euclidean plane to those of ∇2 on the two-dimensional surface of a
unit sphere.

The factorization method of solving a partial (or ordinary) differential equation
is remarkable. This method differs from a power series or a numerical approach
in that one solves a calculus problem without the use of calculus: one obtains the
linear algebraic aspects of the problem (eigenvalues, all normalized eigenvectors, their
properties, etc.) in one fell swoop without ever having to determine explicitly the
detailed functional form ( i.e. local behaviour) of the solutions. To be sure, one can
readily determine and exhibit these solutions in explicit form in terms of Legendre
and associated Legendre polynomials, and we shall do so. However, this is a straight
forward, but secondary, calculus exercise which is an implied but not an integral part
of the algebraic approach.
Important Reminder: Throughout the ensuing discussion an eigenfunction on the
unit sphere refers to a function which is square-integrable, i.e.

0 < 〈Y, Y 〉 ≡
∫ π

0

∫ 2π

0

|Y (θ, ϕ)|2 sin θdθdϕ <∞ . (5.123)

One will see that the very existence of the eigenvalue spectrum of ∇2 on the unit
sphere hinges on this fact. For this reason, the extension of this algebraic method is
considerably more powerful. It yields not only the basis for each eigenspace of ∇2,
but also the actual value for each allowed degenerate eigenvalue.
Global Analysis: Algebra

Global analysis deals with the solutions of a differential equation “wholesale”. It
characterizes them in relationship to one another without specifying their individual
behaviour on their domain of definition. Thus one focusses via algebra, linear or
otherwise, on “the space of solutions”, its subspaces, bases etc.

Local analysis (next subsubsection), by contrast, deals with the solutions of a
differential equation “retail”. Using differential calculus, numerical analysis, one
zooms in on individual functions and characterizes them by their local values, slopes,
location of zeroes, etc.
1. Factorization
The algebraic method depends on factoring

∇2 =
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

into a pair of first order operators which are adjoints of each other. The method is
analogous to factoring a quadratic polynomial, except that here one has differential
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operators ∂/∂θ and ∂/∂ϕ instead of the variables x and y. Taking our cue from
Properties 16 and 17, one attempts

∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

?
= eiφ

(
∂

∂θ
+

i

sin θ

∂

∂ϕ

)

e−iφ
(
∂

∂θ
− i

sin θ

∂

∂ϕ

)

However, one immediately finds that this factorization yields 1
sin θ

∂
∂θ

for a cross term.
This is incorrect. What one needs instead is cos θ

sin θ
∂
∂θ
. This leads us to consider

eiφ
(
∂

∂θ
+ i

cos θ

sin θ

∂

∂ϕ

)

e−iφ
(
∂

∂θ
− icos θ

sin θ

∂

∂ϕ

)

=
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

i

sin2 θ
(1− cos2 θ)

∂

∂ϕ
+

cos2 θ

sin2 θ

∂2

∂ϕ2

=
1

sin2 θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
− ∂2

∂ϕ2
− 1

i

∂

∂ϕ

≡ ∇2 + L2
ϕ − Lϕ (5.124)

Here we have introduced the self-adjoint operator

Lϕ =
1

i

∂

∂ϕ
.

It generates rotations around the polar axis of a sphere. This operator, together with
the two mutually adjoint operators

L± = ±e±iφ
(
∂

∂θ
± icos θ

sin θ

∂

∂ϕ

)

are of fundamental importance to the factorization method of solving the given differ-
ential equation. In terms of them the factorized Eq.(5.124) and its complex conjugate
have the form

L±L∓ = −∇2 − L2
ϕ ± Lϕ . (5.125)

This differs from Eq.(5.37), (Property 17 on page 349), the factored Laplacian on
the Euclidean plane.
2. Fundamental Relations
In spite of this difference, the commutation relations corresponding to Eqs.(5.39),
(5.40), and (5.41) are all the same, except one. Thus, instead of Eq.(5.40), for a
sphere one has

[L+, L−] = 2Lϕ . (5.126)
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This is obtained by subtracting the two Eqs.(5.125). However, the commutation
relations corresponding to the other two equations remain the same. Indeed, a little
algebraic computation yields

LϕL∓ = L±Lϕ ± Lϕ ,

or
[Lϕ, L±] = ±L± . (5.127)

Furthermore, using Eq.(5.125) one finds

[∇2, L+] = [−L+L− − L2
ϕ + Lϕ, L+]

= −[L+L−, L+]− [L2
ϕ, L+] + [Lϕ, L+]

= −L+(L−L+ − L+L−)

− Lϕ(LϕL+ − L+Lϕ)− (LϕL+ − L+Lϕ)Lϕ

+ (LϕL+ − L+Lϕ)

= 0 . (5.128)

The last equality was obtained with the help of Eqs.(5.126) and (5.127). Together
with the complex conjugate of this equation, one has therefore

[∇2, L±] = 0 . (5.129)

In addition, one has quite trivially

[∇2, Lϕ] = 0 (5.130)

The three algebraic relations, Eqs.(5.126)-(5.127) and their consequences, Eq.(5.129)-
(5.130), are the fundamental equations from which one deduces the allowed degener-
ate eigenvalues of Eq.(5.121) as well as the corresponding normalized eigenfunctions.
3. The Eigenfunctions
One starts by considering a function Y m

λ which is a simultaneous solution to the two
eigenvalue equations

LϕY
m
λ = mY m

λ

∇2Y m
λ = −λY m

λ .

This is a consistent system, and it is best to postpone until later the easy task of
actually exhibiting non-zero solutions to it. First we deduce three properties of any
given solution Y m

λ .
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The first property is obtained by applying the operator L+ to this solution. One
finds that

Lϕ(L+Y
m
λ ) = (L+Lϕ + L+)Y

m
λ

= (m+ 1)(L+Y
m
λ )

Similarly one finds
Lϕ(L−Y

m
λ ) = (m− 1)(L−Y

m
λ ) .

Thus L+Y
m
λ and L−Y

m
λ are again eigenfunctions of Lϕ, but having eigenvalues m+1

and m− 1. One is, therefore, justified in calling L+ and L− raising and lowering op-
erators. The “raised” and “lowered” functions L±Y

m
λ have the additional property

that they are still eigenfunctions of ∇2 belonging to the same eigenvalue λ. Indeed,
with the help of Eq.(5.129) one finds

∇2L±Y
m
λ = L±∇2Y m

λ = −λL±Y m
λ .

Thus, if Y m
λ belongs to the eigenspace of λ, then so do L+Y

m
λ and L−Y

m
λ .

4. Normalization and the Eigenvalues
The second and third properties concern the normalization of L±Y

m
λ and the allowed

values of λ. One obtains them by examining the sequence of squared norms of the
sequence of eigenfunctions

Lk±Y
m
λ , k = 0, 1, 2, · · · .

All of them are square-integrable. Hence their norms are non-negative. In particular,
for k = 1 one has

0 ≤
∫ π

0

∫ 2π

0

|L±Y m
λ (θ, ϕ)|2 sin θdθdϕ ≡ 〈L±Y m

λ , L±Y
m
λ 〉

= 〈Y m
λ , L∓L±Y

m
λ 〉

= 〈Y m
λ , (−)(∇2 + L2

ϕ ± Lϕ)Y m
λ 〉

= [λ−m(m± 1)]〈Y m
λ , Y

m
λ 〉 (5.131)

This is the second property. It is a powerful result for two reasons:
First of all, if Y m

λ has been normalized to unity, then so will be

1

[λ−m(m± 1)]1/2
L±Y

m
λ (θ, ϕ) ≡ Y m±1

λ (θ, ϕ) (5.132)

This means that once the normalization integral has been worked out for any one
of the Y m

λ ’s, the already normalized Y m±1
λ are given by Eq.(5.132); no additional
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normalization integrals need to be evaluated. By repeatedly applying the operator
L± one can extend this result to Y m±2

λ , Y m±3
λ , etc. They all are already normalized

if Y m
λ is. No extra work is necessary.

Secondly, repeated use of the relation (5.131) yields

〈Lk±Y m
λ , L

k
±Y

m
λ 〉 = [λ− (m± (k − 1)) (m± k)] · · · [λ−m(m± 1)]〈Y m

λ , Y
m
λ 〉

This relation implies that for sufficiently large integer k the leading factor in square
brackets must vanish. If it did not, the squared norm of Lk±Y

m
λ would become

negative. To prevent this from happening, λ must have very special values. This is
the third property: The only allowed values of λ are necessarily

λ = ℓ(ℓ+ 1) ℓ = 0, 1, 2, · · · .

(Note that ℓ = −1,−2, · · · would give nothing new.) Any other value for λ would
yield a contradiction, namely a negative norm for some integer k. As a consequence,
one has the result that for each allowed eigenvalue there is a sequence of eigenfunc-
tions

Y m
ℓ (θ, ϕ) m = 0,±1,±2, · · · (5.133)

(Nota bene: Note that these eigenfunctions are now labelled by the non-negative
integer ℓ instead of the corresponding eigenvalue λ.) Of particular interest are the
two eigenfunctions Y ℓ

ℓ and Y −ℓℓ . The squared norm of L+Y
ℓ
ℓ ,

‖L+Y
ℓ
ℓ ‖2 = [ℓ(ℓ+ 1)− ℓ(ℓ+ 1)]‖Y ℓ

ℓ ‖2

is not positive. It vanishes. This implies that

Y ℓ+1
ℓ ∝ L+Y

ℓ
ℓ = 0 . (5.134)

In other words, Y ℓ+1
ℓ and all subsequent members of the above sequence, Eq.(5.133)

vanish, i.e. they do not exist. Similarly one finds that

Y −ℓ−1ℓ ∝ L−Y
−ℓ
ℓ = 0 . (5.135)

Thus members of the sequence below Y −ℓℓ do not exist either. It follows that the
sequence of eigenfunctions corresponding to ℓ(ℓ+1) is finite. The sequence has only
2ℓ+ 1 members, namely

Y −ℓℓ (θ, ϕ), Y −ℓ+1
ℓ (θ, ϕ), · · · , Y −1ℓ (θ, ϕ), Y 0

ℓ (θ, ϕ), Y
1
ℓ (θ, ϕ), · · · , Y ℓ−1

ℓ (θ, ϕ), Y ℓ
ℓ (θ, ϕ)

for each integer ℓ. The union of these sequences forms a semi-infinite lattice in the
(ℓ,m) as shown in Figure 5.25.
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ℓ

m

m
=
ℓ

m
= −

ℓ

Figure 5.25: Lattice of eigenfunctions (spherical hamonics) labelled by the angular
integers ℓ and m. Application of the raising operator L+ increases m by 1, until
one comes to the top of each vertical sequence (fixed ℓ). The lowering operator L−
decreases m by 1, until one reaches the bottom. In between there are exactly 2ℓ+ 1
lattice points, which express the (2ℓ+ 1)-fold degeneracy of the eigenvalue ℓ(ℓ+ 1).
There do not exist any harmonics above or below the dashed boundaries.

For obvious reasons it is appropriate to refer to this sequence as a ladder with
2ℓ+1 elements, and to call Y ℓ

ℓ the top, and Y −ℓℓ the bottom of the ladder. The raising
and lowering operators L± are the ladder operators which take us up and down the
(2ℓ+1)-element ladder. It is easy to determine the elements Y ±ℓℓ at the top and the
bottom, and to use the ladder operators to generate any element in between.
5. Orthonormality and Completeness

The operators{∇2, Lφ} form a complete set of commuting operators. This means
that their eigenvalues (ℓ,m) serve as sufficient labels to uniquely identify each of their
(common) eigenbasis elements for the vector space of solutions to the Hermholtz
equation

[∇2 + ℓ(ℓ+ 1)]Y m
ℓ (θ, ϕ) = 0

on the two-sphere. No additional labels are necessary. The fact that these oper-
ators are self-adjoint relative to the inner product, Eq.(5.123), implies that these
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eigenvectors (a.k.a spherical harmonics) are orthonormal :

〈Y m
ℓ , Y

m′

ℓ′ 〉 = δℓℓ′δmm′

The semi-infinite set {Y m
ℓ (θ, ϕ) : − ℓ ≤ m ≤ ℓ; ℓ = 0, 1, · · · } is a basis for the

vector space of functions square-integrable on the unit two-sphere. Let g(θ, ϕ) be
any such function. Then

g(θ, ϕ) =
∞∑

ℓ=0

ℓ∑

m=−ℓ
Y m
ℓ (θ, ϕ)〈Y m

ℓ , g〉

=
∞∑

ℓ=0

ℓ∑

m=−ℓ
Y m
ℓ (θ, ϕ)

∫ π

0

sin θ′dθ′
∫ 2π

0

dϕ′Y m
ℓ (θ′, ϕ′)g(θ′, ϕ′)

In other words, the spherical harmonics are the basis elements for a generalized
double Fourier series representation of the function g(θ, ϕ). If one leaves this function
unspecified, then this completeness relation can be restated in the equivalent form

∞∑

ℓ=0

ℓ∑

m=−ℓ
Y m
ℓ (θ, ϕ)Y m

ℓ (θ′, ϕ′) =
δ(θ − θ′)
sin θ

δ(ϕ− ϕ′)

in terms of the Dirac delta functions on the compact domains 0 ≤ θ ≤ π and
0 ≤ ϕ ≤ 2π.
Local Analysis: Calculus

What is the formula for a harmonics Y m
l (θ, φ)? An explicit functional form deter-

mines the graph, the location of its zeroes, and other aspects of its local behaviour.
1. Spherical Harmonics: Top and Bottom of the Ladder

Each member of the ladder sequence satisfies the differential equation

LϕY
m
ℓ ≡

1

i

∂

∂ϕ
Y m
ℓ (θ, ϕ) = mY m

ℓ (θ, ϕ) .

Consequently, all eigenfunctions have the form

Y m
ℓ (θ, ϕ) = cℓmP

m
ℓ (θ)

eimϕ√
2π

. (5.136)

Here cℓm is a normalization factor. The two eigenfunctions Y ℓ
ℓ and Y −ℓℓ at the top

and the bottom of the ladder satisfy Eqs.(5.134) and (5.135) respectively, namely

L±Y
±ℓ
ℓ ≡ ±eiφ

(
∂

∂θ
± icos θ

sin θ

∂

∂ϕ

)

P±ℓℓ (θ)e±iℓϕ = 0 (5.137)
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It is easy to see that their solutions are

Y ℓ
ℓ = cℓ sin

ℓ θeiℓϕ

Y −ℓℓ = cℓ sin
ℓ θe−iℓϕ .

The normalization condition
∫ π

0

∫ 2π

0

|Y ±ℓℓ (θ, ϕ)|2 sin θdθdϕ = 1

implies that

Y ℓ
ℓ (θ, φ) =

(−1)ℓ
2ℓℓ!

√

(2ℓ+ 1)!

4π
sinℓ θeiℓφ. (5.138)

The phase factor (−1)ℓ is not determined by the normalization. Its form is chosen so
as to simplify the to-be-derived formula for the Legendre polynomials, Eq.(5.142).
2. Spherical harmonics: Legendre and Associated Legendre polynomials

The functions Y m
ℓ (θ, ϕ) are obtained by applying the lowering operator L− to

Y ℓ
ℓ (θ, ϕ). A systematic way of doing this is first to apply repeatedly the lowering

relation

Y m−1
ℓ (θ, ϕ) =

=
1

√

ℓ(ℓ+ 1)−m(m− 1)
L−Y

m
ℓ (θ, ϕ)

=
1√

ℓ2 −m2 + ℓ+m
(−1)e−iϕ

(
∂

∂θ
− icos θ

sin θ

∂

∂ϕ

)

Y m
ℓ (θ, ϕ)

=
−1

√

(ℓ+m)(ℓ−m+ 1)
e−iϕ

(
∂

∂θ
+m

cos θ

sin θ

)

Y m
ℓ (θ, ϕ)

=
1

√

(ℓ+m)(ℓ−m+ 1)

1

sinm−1 θ

∂

∂(cos θ)
sinm θe−iϕY m

ℓ (5.139)

to Y ℓ
ℓ (θ, ϕ) until one obtains the azimuthally invariant harmonic Y 0

ℓ (θ, ϕ) = Y 0
ℓ (θ).

Then continue applying this lowering relation, or alternatively the raising relation

Y m
ℓ (θ, ϕ) =

=
1

√

ℓ(ℓ+ 1)−m(m− 1)
L+Y

m−1
ℓ (θ, ϕ)

=
−1

√

(ℓ+m)(ℓ−m+ 1)
sinm θ

∂

∂(cos θ)

1

sinm−1 θ
eiϕY m−1

ℓ (5.140)
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until one obtains the desired harmionic Y m
ℓ (θ, ϕ). The execution of this two-step

algorithm reads as follows:

Step 1: Letting m = |m|, apply Eq.(5.139) m times and obtain

Y 0
ℓ (θ, ϕ) =

√

(ℓ−m)!

(ℓ+m)!
L−L− · · ·L−
︸ ︷︷ ︸

m times

Y m
ℓ (θ, ϕ)

=

√

(ℓ−m)!

(ℓ+m)!

∂m

∂(cos θ)m
sinm θe−imϕY m

ℓ (θ, ϕ),

which, because of Eq.(5.136), is independent of ϕ. Now let m = ℓ, use Eq.(5.138),
and obtain

Y 0
ℓ (θ, ϕ) =

(−1)ℓ
2ℓℓ!

√

(2ℓ+ 1)

4π

∂ℓ

∂(cos θ)ℓ
sin2ℓ θ (5.141)

≡
√

(2ℓ+ 1)

4π
Pℓ(cos θ).

The polynomials in the variable x = cos θ

Pℓ(x) ≡
1

2ℓℓ!

dℓ

dxℓ
(x2 − 1)ℓ (5.142)

are called the Legendre polynomials. They have the property that at the North pole
they have the common value unity, while at the South pole their value is +1 whenever
Pℓ(x) is an even polynomial and −1 whenever it is odd:

Pℓ(x = ±1) = (±1)ℓ.

Step 2: To obtain the harmonics having positive azimuthal integer m, apply the
raising operator L+ m times to Y 0

ℓ . With the help of Eq.(5.140) one obtains (for
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m = |m|)

Y m
ℓ (θ, ϕ) =

√

(ℓ−m)!

(ℓ+m)!
L+L+ · · ·L+
︸ ︷︷ ︸

m times

Y 0
ℓ (θ, ϕ)

=

√

(ℓ−m)!

(ℓ+m)!
(−1)m sinm θ

∂m

∂(cos θ)m
eimϕY 0

ℓ (θ, ϕ)

=

√

(ℓ−m)!

(ℓ+m)!

(−1)ℓ+m
2ℓℓ!

√

2ℓ+ 1

4π
sinm θ

∂ℓ+m

∂(cos θ)ℓ+m
sin2ℓ θeimϕ

=

√

(ℓ−m)!

(ℓ+m)!

√

2ℓ+ 1

4π
Pm
ℓ (cos θ) eimϕ (5.143)

The polynomials in the variable x = cos θ

Pm
ℓ (x) ≡ (−1)m

2ℓℓ!
(1− x2)m/2 d

ℓ+m

dxℓ+m
(x2 − 1)ℓ (5.144)

are called the associated Legendre polynomials. Inserting Eq.(5.143) into Eq.(5.121),
one finds that they satisfy the differential equation

[
1

sin θ

d

dθ
sin θ

d

dθ
+ ℓ(ℓ+ 1)− m2

sin2 θ

]

Pm
ℓ (cos θ) = 0 .

Also note that P−mℓ (cos θ) satisfies the same differential equation. In other words,
P−mℓ and Pm

ℓ must be proportional to each other. (Why?) Indeed,

P−mℓ (cos θ) = (−1)m (ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ) . (5.145)

This one sees by comparing the right hand side of Eq.(5.143) with the right hand
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side of

Y
|m|
ℓ (θ, ϕ) =

√

(ℓ+ |m|)!
(ℓ− |m|)! L−L− · · ·L−︸ ︷︷ ︸

ℓ−|m| times

Y ℓ
ℓ (θ, ϕ)

=

√

(ℓ+ |m|)!
(ℓ− |m|)!

1

sin|m| θ

∂ℓ−|m|

∂(cos θ)ℓ−|m|
sinℓ θ e−i(ℓ−|m|)ϕ Y ℓ

ℓ (θ, ϕ)

=

√

(ℓ+ |m|)!
(ℓ− |m|)!

1

sin|m| θ

∂ℓ−|m|

∂(cos θ)ℓ−|m|
(−1)ℓ
2ℓℓ!

√

2ℓ+ 1

4π
sin2ℓ θei|m|ϕ

=

√

(ℓ+ |m|)!
(ℓ− |m|)!

√

2ℓ+ 1

4π
(−1)mP−|m|ℓ (cos θ) ei|m|ϕ . (5.146)

This validates Eq.(5.145), but only for m = |m|. One sees, however, that this
formula is also true for m = −|m|. Could it be that formulas Eqs.(5.143) and (5.144)
are also true whenever m = −|m|? The answer is ‘yes’. This follows from considering
the m = −|m| harmonics. They are obtained by using Eq.(5.139) |m| times starting
with Y 0

ℓ :

Y
−|m|
ℓ (θ, ϕ) =

√

(ℓ− |m|)!
(ℓ+ |m|)! L−L− · · ·L−︸ ︷︷ ︸

|m| times

Y 0
ℓ (θ, ϕ)

=

√

(ℓ− |m|)!
(ℓ+ |m|)! sin

|m| θ
∂|m|

∂(cos θ)|m|
e−i|m|ϕY 0

ℓ (θ, ϕ)

=

√

(ℓ− |m|)!
(ℓ+ |m|)!

(−1)ℓ
2ℓℓ!

√

2ℓ+ 1

4π
sin|m|

∂ℓ+|m|

∂(cos θ)ℓ+|m|
sin2ℓ θe−i|m|ϕ

=

√

(ℓ− |m|)!
(ℓ+ |m|)!

√

2ℓ+ 1

4π
(−1)mP |m|ℓ (cos θ) e−i|m|ϕ (5.147)

=

√

(ℓ+ |m|)!
(ℓ− |m|)!

√

2ℓ+ 1

4π
P
−|m|
ℓ (cos θ) e−i|m|ϕ (5.148)

(Nota bene: The first line was obtained by using Eq.(5.139) and lettingm = −1,−2, · · · ,−|m|,
the third, fourth, and fifth line used Eqs.(5.141), (5.144), and (5.145), respectively.
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) Comparison with Eq.(5.143) verifies that the spherical harmonic

Y m
ℓ (θ, ϕ) =

√

(ℓ−m)!

(ℓ+m)!

√

2ℓ+ 1

4π
Pm
ℓ (cos θ) eimϕ (5.149)

is indeed correct for all positive and negative integers m that satisfy −ℓ < m < ℓ.
A second result is obtained by comparing Eq.(5.147) with Eq.(5.143). This com-

parison yields the complex conjugation formula

Y m
ℓ (θ, ϕ) = (−1)mY −mℓ (θ, ϕ),

which holds for both for positive and negative azimuthal integers m.

5.8 Static Solutions

Lecture 50

Solutions to the wave equation which are static, are characterized by ∂2ψ
∂t2

= 0, and
hence by k2 = 0. The governing equation becomes

∇2ψ = 0 .

Relative to spherical coordinates this equation reads

∇2ψ =

{
1

r

∂2

∂r2
r +

1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)}

ψ = 0 .

Its solution is a superposition of solutions having the simple product form,

ψℓm(t, θ, ϕ) = Rℓ(r)Y
m
ℓ (θ, ϕ) .

They give rise to the two ordinary differential equations

{
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
+ λ

}

Y m
ℓ (θ, ϕ) ,

where

λ = ℓ(ℓ+ 1) , ℓ = 0, 1, 2, . . .
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and hence
1

r

{
d2

dr2
− ℓ(ℓ+ 1)

r2

}

rRℓ(r) = 0 .

This equation is Euler’s differential equation whose solutions are rℓ and r−(ℓ+1).
Thus, the static solution is a superposition

ψ =
∞∑

ℓ=0

ℓ∑

m=−ℓ
(Aℓmr

ℓ + Bℓmr
−(ℓ+1))Y m

ℓ (θ, ϕ)

whose coefficients, the A’s and the B’s, are determined by the given boundary con-
ditions. These coefficients are called the multipole moments of the source of the
field.

5.8.1 Static Multipole Field

The manner in which static multipole moments of a source give rise to a multipole
field is illustrated by the following
Problem (Multipole field of an asymmetric static source).
Given:

1. The potential inside and outside a sphere of radius r = r0 satisfies the Laplace
equation

∇2ψ = 0 .

2. The value of the potential on the sphere is

ψ(r0, θ, ϕ) =
g(θ, ϕ)

r0
.

Find the potential ψ(r, θ, ϕ) inside (r < r0) and outside (r0 < r) the sphere.
The potential may be an electrical potential, in which case its value on the sphere

is determined by the charge distribution on sphere. By contrast, if the potential is a
gravitational potential, its value on the sphere is determined by the mass distribution.

In either case, the governing equation would be

∇2ψ = −δ(r − r0)
r2

g(θ, ϕ) ,

as one can verify after we have found the solution to the given problem.
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There are two boundary conditions implicit in the given problem, namely

ψ(r = 0, θ, ϕ) = finite

and

ψ(r =∞, θ, ϕ) = 0 .

The second boundary condition expresses the fact that there are no masses (or
charges) distributed at very large r. The two boundary conditions demand that the
radial part of the potential be

Rℓ(r) ∝







(
r
r0

)ℓ

r < r0
(
r0
r

)ℓ+1
r0 < r

The total solution is, therefore,

ψ(r, θ, φ) =
∞∑

ℓ=0







1
r0

(
r
r0

)ℓ

1
r0

(
r0
r

)ℓ+1







ℓ∑

m=−ℓ
Y m
ℓ (θ, ϕ)〈Y m

ℓ , g〉
INSIDE

OUTSIDE ,

where

〈Y m
ℓ , g〉 =

∫ π

0

∫ 2π

0

Y
m

ℓ (θ, ϕ)g(θ, ϕ) sin θdθdϕ .

Let us exhibit explicitly the exterior potential. It is a superposition of various “mul-
tipole” potential fields,

ψ = Y 0
0 (θ, ϕ)

〈Y 0
0 , g〉
r

+
1∑

m=−1
Y m
1 (θ, ϕ)

〈Y m
1 , g〉r0
r2

+
2∑

m=−2
Y m
2 (θ, ϕ)

〈Y m
2 , g〉r20
r3

+ · · ·

They are called the monopole, dipole, quadrupole, ... and 2ℓ-pole fields respectively.
The constant numerators express the source strengths of the fields. These numerators
are called the monopole moment, dipole moment (which has three components),
quadrupole moment (which has five components), . . . and 2ℓ-pole moment (which
has 2ℓ+ 1 components). Each one of them is an example of a multipole moment.
Analogous descriptive names hold for the interior field.
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5.8.2 Addition Theorem for Spherical Harmonics

One can use the static multipole solution in order to infer the behavior of the spherical
harmonics under rotation. We consider an arbitrary orthogonal coordinate rotation

z

y

x

y’

z’

x’

P

For any fixed point P the effect of this change is given

(x(P), y(P), z(P)) ∼→ (x′(P), y′(P), z′(P))
(θ, ϕ) ∼→ (θ′, ϕ′)

but the radius and the Laplacian remain fixed;

√

x2 + y2 + z2 = r =
√

x′2 + y′2 + z′2

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

∂2

∂x′2
+

∂2

∂y′2
+

∂2

∂z′2
.

Thus for any fixed point P the potential ψ determined relative to the rotated
coordinate system is the same as that relative to the unrotated one,

ψ(r(P), θ(P), ϕ(P)) = ψ(r′(P), θ′(P), ϕ′(P)) .

In other words, relabelling the coordinates of a fixed point has no effect on the
(measured) potential at this point. This equality holds for all radii r.

It follows that the coresponding 2ℓ-pole fields are equal for each integral. Thus

ℓ∑

m=−ℓ
Y m
ℓ (θ, ϕ)〈Y m

ℓ , g〉 =
ℓ∑

m=−ℓ
Y m
ℓ (θ′, ϕ′)〈Y m

ℓ , g〉 .
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This equality also holds for all boundary value functions g. Consequently,

ℓ∑

m=−ℓ
Y m
ℓ (θ, ϕ)Y

m

ℓ (θ0, ϕ0) =
ℓ∑

m=−ℓ
Y m
ℓ (θ′, ϕ′)Y m

ℓ (θ′0, ϕ
′
0) ,

ℓ = 0, 1, 2, . . . . This is a remarkable statement: it says that this particular sum of
products is unchanged under a rotation. It is a scalar, even though each individual
factor does get altered.
Question: What is this rotationally invariant sum equal to?
To find out, orient the z′-axis so that it passes through the source point P0, which
now becomes the new North pole. Relative to the new (x′, y′, z′) frame the spherical
coordinates of the source point P0 and the observation point P are given by

Source point P0 (“new North Pole”) :

{
θ′0 = 0
ϕ′0 = indeterminate

Observation point P :

{
θ′ = Θ
ϕ′ = Φ

Suppose we reexpress the spherical harmonics in terms of the associated Legendre
polynomials Pm

ℓ (cos θ). Then

Y m
ℓ (θ, ϕ) =

√

2ℓ+ 1

2

√

ℓ−m!

ℓ+m!
(−1)mPm

ℓ (cos θ)
eimϕ√
2π

.

These polynomials satisfy

Pm
ℓ (cos 0) = 0 m 6= 0

and
P 0
ℓ (cos 0) = 1 .

Consequently,

Y
m

ℓ (0, ϕ
′
0) = δm0

√

2ℓ+ 1

4π

Y 0
ℓ (Θ,Φ) =

√

2ℓ+ 1

4π
Pℓ(cosΘ) .

The rotationally invariant sum simplifies into

Pℓ(cosΘ) =
ℓ∑

m=−ℓ

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)Pm

ℓ (cos θ0)e
im(ϕ−ϕ0) .
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We conclude that Pℓ(cosΘ), which is an amplitude pattern azimuthally symmet-
ric around the new North pole (θ0, ϕ0), is a finite linear combination of amplitude
patterns centered around the old North pole.

5.8.3 The Bessel-Legendre Connection

The spherical harmonics of this section constitute the main elements arising from
the application of spherical symmetry to the Helmholtz equation. We have already
learned in the previous section that the same is true about the cylinder harmonics
arising from the application of rotational and translational symmetry applied to that
same equation

Recall from page 405 that, upon letting θ → 0 and ℓ→∞ in such a way that θℓ
remains finite, the associated Legendre equation

[
1

sin θ

d

dθ
sin θ

d

dθ
+ ℓ(ℓ+ 1)− m2

sin2 θ

]

Pm
ℓ = 0

becomes [
1

θ

d

dθ
θ
d

dθ
+ ℓ2 − m2

θ2

]

Pm
ℓ = 0 .

Consequently,

Pm
ℓ → Jm(ℓθ) ≡ Jm(kr) . (5.150)

Furthermore, recall the expression for the translated cylinder wave, Eq.(5.77) on
page 379,

Hν(k|~x− ~x0|)eiν(φ−ϕ0) =
∞∑

m=−∞
Hν+m(kr)Jm(kr0)e

i(ν+m)(ϕ−ϕ0) .

Specialize to the case where the wave is rotationally symmetric around the point
~x0 : (r0, ϕ0). Consequently, ν = 0. This, together with the requirement that the
wave amplitudes be finite everywhere leads to

J0(k|~x− ~x0|) =
∞∑

m=−∞
Jm(kr)Jm(kr0)e

im(ϕ−ϕ0) .

It is evident that, with the help of Equation 5.150, this is the “small θ, large ℓ”
asymptotic limit of the spherical addition theorem

Pℓ(cosΘ) =
ℓ∑

m=−ℓ

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)Pm

ℓ (cos θ0)e
im(ϕ−ϕ0) .
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These equations illustrate the relational nature of our knowledge: In the limit of
large ℓ the spherical harmonics becomes indistinguishable from the Bessel hamonics.
Learning about one allows us more readily to grasp the other.
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Chapter 6

Partial Differential Equations

Linear algebra is the mathematical guide of choice for implementing the principle of
unit-economy1 applied to partial differential equations. The present chapter considers
two kinds:

1. Single linear partial differential equations corresponding to the linear system

A~u = ~0 .

However, instead of merely exhibiting general solutions to such a system, we
shall take seriously the dictum which says that a differential equation is never
solved until “boundary” conditions have been imposed on its solution. As iden-
tified in the ensuing section, these conditions are not arbitrary. Instead, they
fall into three archetypical classes determined by the nature of the physical
system which the partial differential equation conceptualizes.

2. Systems of pde’s corresponding to an over-determined system

A~u = ~b . (6.1)

The idea for solving it takes advantage of the fundamental subspaces2 of A [5].
Let A be a 4× 4 matrix having rank 3. Such a matrix, we recall, has a vector

1As identified in the footnote on Page 198.
2Besides the domain and the target space, there are four of them:

(i) the column space of A, denoted by R(A),
(ii) the nullspace (or kernel) of A, denoted by N (A), or also by Ker(A),

(iii) the row space of A, denoted by R(AT ), and

(iv) the left nullspace of A, denoted by N (AT ).

429
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~ur which satisfies A~ur = ~0, or, to be more precise

A~urc0 = ~0 , (6.2)

where c0 is any non-zero scalar. Thus ~ur spans A’s one-dimensional nullspace

N (A) = span{~ur} .

This expresses the fact that the columnes of A are linearly dependent.

In addition we recall that the four rows of A are linearly dependent also, a fact
which is expressed by the existence of a vector ~uℓ which satisfies

~uTℓ A = ~0 , (6.3)

and which therefore spans A’s one-dimensional left nullspace

N (AT ) = span{~uTℓ } .

In general there does not exist a solution to the over-determined system Eq.(6.1).

However, a solution obviously does exist if and only if ~b satisfies

~uTℓ
~b = 0 .

Under such a circumstance there are infinitely many solutions, each one differing
from any other merely by a multiple of the null vector ~ur. The most direct path
towards these solutions is via eigenvectors.

One of them is, of course, the vector ~ur in Eq.(6.2). The other three, which (for
the A under consideration) are linearly independent, satisfy A~vi = λi~vi with λi 6= 0,
or, in the interest of greater precision (which is needed in Section 6.2.3),

A~v1c1 = λ1~v1c1 (6.4)

A~v2c2 = λ2~v2c2 (6.5)

A~v3c3 = λ3~v3c3 (6.6)

where, like c0, the ci’s are any non-zero scalars. Because of the simplicity of ~uTℓ for
the A under consideration one can find the eigenvectors {~v1, ~v2, ~v3}, and hence their
eigenvalues, by a process of inspection. These vectors span the range of A,

R(A) = span{~v1, ~v2, ~v3} ,
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and therefore determine those vectors ~b for which there exists a solution to Eq.(6.1).
Such vectors belong to R and thus have the form

~b = ~v1b1 + ~v2b2 + ~v3b3 .

These eigenvectors also serve to represent the corresponding solution,

~u = ~urc0 + ~v1c1 + ~v2c2 + ~v3c3 .

This, the fact that A~u = ~b, and the linear independence of the ~v′is imply that the
scalars ci satisfy the three equations

λ1c1 = b1 (6.7)

λ2c2 = b2 (6.8)

λ3c3 = b3 . (6.9)

As expected, the contribution c4 along the direction of the nullspace element is
left indeterminate. These ideas from linear algebra and their application to solving
a system, such as Eq.(6.1), can be extended to corresponding systems of partial
differential equations. The Maxwell field equations, which we shall analalyze using
linear algebra, is a premier example. In this extension the scalar entries of A and ~uTℓ
get replaced by differential operators, the vectors ~u and ~b by vector fields, the scalars
bi and ci by scalar fields, the eigenvalues λi by a second order wave operator, and the
three Eqs.(6.7)-(6.9) by three inhomogeneous scalar wave equations corresponding
to what in physics and engineering are called

• transverse electric (TE),

• transverse magnetic (TM), and

• transverse electric magnetic (TEM),

modes respectively.

Lecture 51

6.1 Single Partial Differential Equations: Their

Origin

There are many phenomena in nature, which, even though occuring over finite regions
of space and time, can be described in terms of properties that prevail at each point
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of space and time separately. This description originated with Newton, who with
the aid of his differential calculus showed us how to grasp a global phenomenon, for
example, the elliptic orbit of a planet, by means of a locally applied law, for example
F = ma.

This manner of making nature comprehensible has been extended from the motion
of single point particles to the behavior of other forms of matter and energy, be it in
the form of gasses, fluids, light, heat, electricity, signals traveling along optical fibers
and neurons, or even gravitation.

This extension consists of formulating or stating a partial differential equation
governing the phenomenon, and then solving that differential equation for the pur-
pose of predicting measurable properties of the phenomenon.

There exist many partial differential equations, but from the view point of math-
ematics, there are basically only three types of partial differential equations.

They are exemplified by

1. Laplaces equation
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= 0 ,

which governs electrostatic and magnetic fields as well as the velocity potential
of an incompressible fluid, by

2. the wave equation

∇2ψ − 1

c2
∂2ψ

∂t2
= 0

for electromagnetic or sound vibrations, and by

∂2ψ

∂x2
− 1

c2
∂2ψ

∂t2
= 0

for the vibrations of a simple string, and by

3. the diffusion equation

∇2ψ − 1

k

∂ψ

∂t
= 0

for the temperature in three dimensional space and in time, or by

∂2ψ

∂x2
− 1

k

∂ψ

∂t
= 0

for the temperature along a uniform rod.
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6.1.1 Boundary Conditions of a Typical Partial Differential
Equation in Two Dimensions

For the purpose of simplicity, we shall start our consideration with partial differential
equations in only two variables and linear in the second derivatives. Such equations
have the general form

A(x, y)
∂2ψ

∂x2
+ 2B(x, y)

∂2ψ

∂x∂y
+ C(x, y)

∂2ψ

∂y2
= Φ

(

x, y, ψ,
∂ψ

∂x
,
∂ψ

∂y

)

.

Such an equation is called a quasilinear second order partial differential equation. If
the expression Φ where linear in ψ, i.e., if

Φ = D(x, y)
∂ψ

∂x
+ E(x, y)

∂ψ

∂y
+ F (x, y)ψ +G(x, y) ,

then the equation would be a linear p.d.e., but this need not be the case.
The equation has a nondenumerable infinity of solution. In order to single out a

unique solution, the to-be-found function ψ(x, y) must satisfy additional conditions.
They are usually specified at the boundary of the domain of the p.d.e.

In three dimensional space, this boundary is a surface, but in our two dimensional
case, we have a boundary line which can be specified by the parametrized curve

x = ξ(s)

y = η(s) ,

where s is the arclength parameter

s =

∫

ds =

∫
√

dx2 + dy2 .

The tangent to this curve has components
(
dξ

ds
,
dη

ds

)

.

They satisfy
(
dξ

ds

)2

+

(
dη

ds

)2

= 1 .

The normal to this boundary curve has components
(
dη

ds
,−dξ

ds

)

= ~n .
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We assume that ~n points towards the interior of the domain where the solution is
to be found. If this is not the case, we reverse the signs of the components of it.

The additional conditions which the to-be-found solution ψ is to satisfy are im-
posed at this boundary curve, and they are conditions on the partial derivatives and
the value of the function ψ evaluated at the curve.

The boundary curve accomodates three important types of boundary conditions.

1. Dirichlet conditions: ψ(s) is specified at each point of the boundary.

2. Neumann conditions: dψ
dn
(s) = ~n · ∇ψ, the normal componet of the graident of

ψ is specified at each point of the boundary.

3. Cauchy conditions: ψ(s) and dψ
dn
(s) are specified at each point of the boundary.

The parameter s is usually a time parameter. Consequently, Cauchy conditions
are also called intial value conditions or initial value data or simply Cauchy
data.

There exists also themixed Dirichlet-Neumann conditions. They are intermediate
between the Dirichlet and the Neumann boundary conditions, and they are given by

α(s)ψ(s) + β(s)
dψ

dn
(s) = f(s) .

Here α(s), β(s), and f(s) are understood to be given on the boundary.
We recall that in the theory of ordinary second order differential equations, a

unique solution was obtained once the solution and its derivative were specified at a
point. The generalization of this condition to partial differential equations consists
of the Cauchy boundary conditions.

Consequently, we now inquire whether the solution of the partial differential
equation is uniquely determined by specifying Cauchy boundary conditions on the
boundary (ξ(s), η(s)).

6.1.2 Cauchy Problem and Characteristics

In order to compute the function ψ(x, y) at points off the boundary curve, we resort
to the Taylor series on two dimensions;

ψ(x, y) = ψ(ξ, η) + (x− ξ)∂ψ
∂x

+ (y − η)∂ψ
∂y

+
1

2!

[

(x− ξ)2∂
2ψ

∂x2
+ 2(x− ξ)(y − η) ∂2ψ

∂x∂y
+ (y − ξ)2∂

2ψ

∂y2

]

+ · · · .
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Here the derivatives are to be evaluated on the boundary.
The problem we are confronted with is this:
Determine all partial derivatives, starting with the first partials on up from the

given Cauchy boundary conditions, the given boundary, and the given partial differ-
ential equation!

We shall do this first for the first derivatives.
From the Cauchy data we obtain two equations

dψ(s)

dn
=

dη

ds

∂ψ

∂x
− dξ

ds

dψ

dy
dψ(s)

ds
=

dξ

ds

∂ψ

∂x
+
dη

ds

dψ

dy







at (x, y) = (ξ(s), η(s)) . (6.10)

From these we obtain the first partial derivatives of ψ evaluates on the boundary

(
∂ψ

∂x

)

(ξ,η)

=
dψ(s)

dn

dη

ds
+
dψ

ds

dξ

ds
(
∂ψ

∂y

)

(ξ,η)

= −dψ(s)
dn

dη

ds
+
dψ

ds

dξ

ds
.

(6.11)

The procurement of the second derivatives is more interesting. We differentiate
the (known) first derivatives along the boundary. Together with the given p.d.e. we
have

d

ds

(
∂ψ

∂x

)

=
dξ

ds

∂2ψ

∂x2
+
dη

ds

∂2ψ

∂y∂x

d

ds

(
∂ψ

∂y

)

=
dξ

ds

∂2ψ

∂x∂y
+
dη

ds

∂2ψ

∂y2

Φ = A
∂2ψ

∂x2
+ 2B

∂2ψ

∂x∂y
+ C

∂2ψ

∂y2
.

The left hand sides of these three equations are known along the whole boundary.
So are the coefficients of the three unknown partial derivatives on the right hand side.
One can solve for these partial derivatives unless

∣
∣
∣
∣
∣
∣
∣
∣
∣

dξ

ds

dη

ds
0

0
dξ

ds

dη

ds
A 2B C

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0
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or

A

(
dη

ds

)2

− 2B
dη

ds

dξ

ds
+ C

(
dξ

ds

)2

= 0 .

If this determinant does not vanish, one can solve for the second derivatives
evaluated on the boundary. Differentiating along the boundary yields

d

ds
ψxx =

dξ

ds
ψxxx +

dη

ds
ψyxx

d

ds
ψxy =

dξ

ds
ψxxy +

dη

ds
ψyxy

Φx + · · · = Aψxxx + 2Bψxyx + Cψxyy .

Subscripts refer to partial derivatives. The last equation was obtained differentiating
the given p.d.e. with respect to x. The left hand side contains only lower order
derivatives, which are known on the boundary.

We see that one can solve for

ψxxx , ψyxx , ψxyy

on the boundary unless the determinant, the same one as before, vanishes. It is
evident that one can continue the process of solving for the other higher order
derivatives, provided the determinant of the system does not vanish. We are led
to the conclusion that one can expand ψ(x, y) in a Taylor series at every point of
the boundary and that the coefficients of the series are uniquely determined by the
Cauchy boundary conditions on the given boundary.

We must now examine the vanishing of the system determinant

A(x, y)

(
dy

ds

)2

− 2B(x, y)
dy

ds

dx

ds
+ C(x, y)

(
dx

ds

)2

= 0 (6.12)

at every point of the domain of the partial differential equation.
Depending on the coefficients A, B, and C, this quadratic form determines two

characteristic curves, λ(x, y) = const. and µ(x, y) = const., through each point (x, y).
We distinguish between three cases:

1. AC−B2 > 0: elliptic type in which the two characteristics λ and µ are complex
conjugates of each other.

2. AC−B2 < 0: hyperbolic type in which case for each (x, y) the characteristics λ
and µ are real. They sre two curves intersecting at (x, y). As one varies (x, y)
one obtains two distinct families.



6.1. SINGLE PARTIAL DIFFERENTIAL EQUATIONS: THEIR ORIGIN 437

3. AC−B2 = 0: parabolic type in which there is only one family of characteristics.

These three cases imply three different types of differential equations. By utilizing
the characteristic, one can introduce new coordinates relative to which a differential
equation of each type assumes a standard normal form. Let the new coordinate
surfaces be

λ(x, y) = const µ(x, y) = const .

Then the coordinate transformation

u+ iv = λ and u− iv = µ

yields a normal form of the elliptic type,

∂2ψ

∂u2
+
∂2ψ

∂v2
= Φ

(

u, v, ψ,
∂ψ

∂u
,
∂ψ

∂v

)

.

By contrast the coordinate transformation

λ = λ(x, y) and µ = µ(x, y)

yields a normal form of the hyperbolic type,

∂2ψ

∂λ∂µ
= Φ

(

λ, µ, ψ,
∂ψ

∂λ
,
∂ψ

∂µ

)

. (6.13)

Finally, the coordinate transformation

λ = λ(x, y) = µ(x, y), x = x

yields a normal form of the parabolic type,

∂2ψ

∂λ2
= Φ

(

x, λ, ψ,
∂ψ

∂x
,
∂ψ

∂λ

)

.

We recognize that elliptic partial differential equations express an equilibrium or a
static potential phenomenon.

By introducing the standard coordinates

t = λ+ µ and z = λ− µ

in terms of which

λ =
1

2
(t+ z) and µ =

1

2
(t− z) ,
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one finds that
∂2ψ

∂t2
− ∂2ψ

∂z2
= Φ′

(

t, z, ψ,
∂ψ

∂t
,
∂ψ

∂z

)

,

the wave equation of a general vibrating string. We, therefore, recognize that a
hyperbolic p.d. equation expresses the phenomenon of a propagating wave or distur-
bance.

Finally, a parabolic p.d. equation expresses a diffusion process. In fact, the
two dimensional Laplace equation, the equation for a vibrating sting, and the heat
conduction equation are the simplest possible examples of elliptic, hyperoblic, and
parabolic equations.

6.1.3 Hyperbolic Equations

The quadratic form, Eq.(6.12), determined by the coefficients A, B, and C of the
given p.d.e. can be factored into two ordinary differential equation

Ady = (B +
√
B2 − AC) dx and Ady = (B −

√
B2 − AC) dx .

These are the equations for the two families of characteristic curves of the given
p.d.e.

Their significance, we recall, is this: if the boundary line coincides with one of
them, then specifying Cauchy data on it will not yield a unique solution. If, however,
the boundary line intersects each family only once, then the Cauchy data will yields
a unique solution.

This point becomes particularly transparent if one introduces the curvilinear
coordinates λ and µ relative to which the given p.d.e. assumes its standard form,
Eq.(6.13). We shall consider the hyperbolic case by assuming that

B2(x, y)− A(x, y)C(x, y) > 0

throughout the (x, y) domain.
We shall demand the new coordinates λ and µ – the characteristic coordinates –

have the property that their isograms (“loci of points of constant values”) contain
the characteristic lines (x(s), y(s)), i.e.,

λ(x(s), y(s)) = const and µ(x(s), y(s)) = const

for all s. This implies that

λx
dx

ds
+ λy

dy

ds
= 0 and µx

dx

ds
+ µy

dy

ds
= 0
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where, as usual

λx =
∂λ

∂x
, etc.

Substituting these equations into Eq.(6.12), the equation for the characteristic
directions, one obtains

A

(
∂λ

∂x

)2

+ 2B
∂λ

∂x

∂λ

∂y
+ C

(
∂λ

∂y

)2

= 0 . (6.14)

An equation with the same coefficients is obtained for the other function µ(x, y).
The two solutions λ(x, y) and µ(x, y) are real valued functions. Their isograms, the
characteristics of the hyperbolic equation, give us the new curvilinear coordinate
system

λ = λ(x, y) µ = µ(x, y) .

The partial derivatives of the given differential equation are now as follows

∂2ψ

∂x2
=

∂2ψ

∂λ2
(λx)

2 + 2
∂2ψ

∂λ∂µ
λxµx +

∂2ψ

∂µ2
(µx)

2 + · · ·

∂2ψ

∂x∂y
=

∂2ψ

∂λ2
λxλy +

∂2ψ

∂λ∂µ
(λxµy + µxλy) +

∂2ψ

∂µ2
µxµy + · · ·

∂2ψ

∂y2
=

∂2ψ

∂λ2
λ2y + 2

∂2ψ

∂λ∂µ
λyµy +

∂2ψ

∂µ2
µ2
y + · · · .

Here + · · · refers to additional terms involving only the first partial derivatives
of ψ. Inserting these expressions into the given p.d. equation, one obtains

[Aλ2x + 2Bλxλy + Cλ2y]
∂2ψ

∂λ2
+ [2Aλxµx + B(λxµy + µxλy) + 2Cλyµy]

∂2ψ

∂λ∂µ

+ [Aµ2
x + 2Bµxµy + Cµ2

y]
∂2ψ

∂µ2

= Φ′
(

λ, µ, ψ,
∂ψ

∂λ
,
∂ψ

∂µ

)

. (6.15)

It follows from Equation 6.14 that the coefficients of ψλλ and ψµµ vanish. Solving for
∂2ψ
∂λ∂µ

yields Equation 6.13, the hyperbolic equation in normal form.
The coordinates λ and µ, whose surfaces contain the characteristic lines, are

called the characteristic coordinates or null coordinates of the hyperbolic equation.
These coordinates are important for at least two reasons. First of all, they are

boundaries across which a solution can be nonanalytic. If λ(x, y) = λ0 is one of the
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isograms (“locus of points where λ has constant value”) of the solution to Eq.(6.14),
then the first term of the p.d. Eq.(6.15)

[Aλ2x + 2Bλxλy + Cλ2y]
∂2ψ

∂λ2
= finite

even if ∂2ψ
∂λ2
→ ∞ as λ → λ0. In other words, there are solutions to Eq.(6.15) for

which the first derivative ∂ψ
∂λ

has a discontinuity across the characteristic λ(x, y) = λ0.

Similarly, there exist solutions to Eq.(6.15) whose first derivative ∂ψ
∂µ

has a disconti-

nuity across µ(x, y) = µ0 whenever µ(x, y) satisfies Eq.(6.14) with λ replaced by µ.

Secondly, these coordinates depict the history of a moving disturbance. The
simple string illustrates the issue involved.
Example: The Simple string The governing equation is

∂2ψ

∂z2
− 1

c2
∂2ψ

∂t2
= 0 .

Its characteristic coordinates are the “retarded” and the “advanced” times

λ = ct− z and µ = z + ct

and its normal form is
∂2ψ

∂λ∂µ
= 0 .

The solution is
ψ = f(λ) + g(µ)

where f and g are any functions of λ and µ.
Next consider the initial value data at t = 0:

ψ0(z) ≡ ψ(t = 0, z) = f(−z) + g(z) “initial amplitude”

V0(z) ≡
∂ψ(t, z)

∂t

∣
∣
∣
∣
t=0

=
∂λ

∂t

∂ψ

∂λ

∣
∣
∣
∣
λ=−z

+
∂µ

∂t

∂ψ

∂µ

∣
∣
∣
∣
µ=z

“initial velocity”

= cf ′(−z) + cg′(z) .

These equations imply

f(λ) =
1

2
ψ0(−λ) +

1

2c

∫ −λ

0

V0(z
′)dz′

g(µ) =
1

2
ψ0(µ) +

1

2c

∫ µ

0

V0(z
′)dz′ .
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Consider the intersection of the two families of characteristics with the boundary line
t = 0 as in the figure below.

R S

P

Qµ = −1
0

1
2

-2
-1

0
1

2
λ

ct

z

Figure 6.1: Characteristic coordinate lines µ and λ as determined by the wave equa-
tion for a simple string.

Note that f is constant along the λ characteristics (i.e., where λ =constant),
while g is constant along the µ characteristics. It follows that if f is known on the
boundary segment RS, then f is known along all the λ-characteristics intersecting
RS. Similarly, if g is known along RS, then g is known along all the µ-characteristics
intersecting RS. And this is precisely the case because the Cauchy data on RS
determine the values of both f and g on that segment.

Being the sum of the two functions, the solution to the wave equation is

ψ(z, t) = f(ct− z) + g(ct+ z)

=
1

2
ψ0(z − ct) +

1

2
ψ0(z + ct) +

1

2c

∫ z+ct

z−ct
V0(z

′)dz′ (6.16)

Thus one sees that any disturbance on a string consists of two parts: one propagating
to the right the other to the left. The propagation speeds are ±c, the slopes of the
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characteristics relative to the t-z coordinate system. The idiosyncratic aspect of the
simple string is that these two parts do not change their shape as they propagate
along the string.

A general linear hyperbolic system does not share this feature. However, what
it does share with a simple string is that its solution is uniquely determined in the
common region traversed by the two sets of characteristics which intersect RS. In
fact, the Cauchy data on RS determine a unique solution ψ(z, t) at every point in
the region PRQS. This is why it is called the domain of dependence of RS. To
justify these claims it is neccessary to construct this unique solution to a general
second order linear hyperbolic differential equation.

6.1.4 Riemann’s Method for Integrating the Most General
2nd Order Linear Hyperbolic Equation

In its most general form a linear second order hyperbolic equation is

0 =
∂2ψ

∂u∂v
+D

∂ψ

∂u
+ E

∂ψ

∂v
+ Fψ ≡ L(ψ) . (6.17)

In compliance with standard practice one designates the characteristic coordinates
by u and v. The problem to be solved is this:
Given
(a) the differential Eq.(6.17) and

(b) the initial value data (=Cauchy conditions) ψ(s) and its normal derivative dψ(s)
dn

on the given curve in Figure 6.2,
Find: the function ψ(u, v) which satisfies (a) and (b).

Riemann’s method of solving this problem is a three-step process whose essence
parallels the Green’s function method described on page 238:

1. Identify Cauchy Data in Characteristic Form

By means of the derivative dψ(s)
ds

the Cauchy data

dψ(s)

dn
=

dη

ds

∂ψ

∂x
− dξ

ds

dψ

dy
dψ(s)

ds
=

dξ

ds

∂ψ

∂x
+
dη

ds

dψ

dy







at (x, y) = (ξ(s), η(s)) .
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P

Q

19.1

19.2

19.3

19.4

19.5

17.2

17.3

17.4

R S

v=17.1

u

v

x

y

boundary line: (s); y=η ξ (s)x=

Figure 6.2: Characteristic coordinates of a hyperbolic differetial equation in two
dimensions.

determines the partial derivatives ∂ψ/∂x and ∂ψ/∂y. Alternatively, the known char-
acteristics

u = u(x, y)

v = v(x, y)

also yield the partial derivatives ∂ψ/∂u and ∂ψ/∂v on the given curve.

2. Determine Green’s Identity for the Given Differential Operator

To construct in a systematic way the solution to the differential equation specified
by (a) and (b) above, one introduces the adjoint differential equation and its solu-
tion. This philosophy is an extension of the approach already used to solve ordinary
differential equations of second order.

Central to this approach was the consideration of the linear operator

Lψ =
d2ψ

dx2
+ β

dψ

dx
+ γψ

and its adjoint

L∗φ =
d2φ

dx2
− βdφ

dx
+ γφ
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which was determined by the compatibility condition, the Lagrange identity Eq.(1.23)

φLψ − ψL∗φ =
d

dx
P (φ, ψ) . (6.18)

Here the right hand side was the derivative of

P (φ, ψ) = φ
dψ

dx
− ψdφ

dx
+ βφψ ,

the “bilinear concomitant” introduced with Eq.(4.20) on page 237 for a one-dimensional
domain.

The extension of Lagrange’s identity to a two-dimensional domain is straight
forward. Given the differential operator, Eq.(6.17), one seeks the corresponding
adjoint, L∗φ, which is determined by the compatibility condition

φLψ − ψL∗φ =
∂Pu
∂u

+
∂Pv
∂v

(6.19)

Here the right hand side is the divergence of a two-component vectorial concomitant.
It replaces the total derivative of the scalar concomitant, Eq.(6.18).

What are L∗φ and (Pu, Pv)? Comparing the sought-after expressions in Eq.(6.19),
with the known result, Eq.(6.18), one finds with a little scrutiny that

L∗φ =
∂2φ

∂u∂v
− ∂Dφ

∂u
− ∂Eφ

∂v
+ Fφ (6.20)

and

Pu =
1

2

(

φ
∂ψ

∂v
− ψ∂φ

∂v

)

+Dφψ (6.21)

Pv =
1

2

(

φ
∂ψ

∂u
− ψ∂φ

∂u

)

+ Eφψ (6.22)

The boxed Eq.(6.19) is the key to success. By integrating it over a triangular region,
say RSQ in Figure 6.2, one obtains Green’s identity adapted to the given differential
operator, Eq.(6.17). Indeed, applying Stokes’ theorem to the right hand side, one
obtains ∫

RSQ

∫

(φLψ − ψL∗φ)du dv =

∫

S→Q→R→S
Pudv − Pvdu (6.23)

This equation relates a behavior of φ and ψ inside the 2-d domain RSQ to their
behaviour on its boundary.
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3. Apply Green’s Identity

One obtains the solution ψ(u, v) to the given hyperbolic equation by expressing it in
terms of its Cauchy data and in terms of a simple solution to the adjoint differential
equation, namely

L∗φ = 0 ,

subject to the boundary conditions

∂φ

∂u
− Eφ = 0 along SQ where v is constant (6.24)

∂φ

∂v
−Dφ = 0 along RQ where u is constant , (6.25)

and

φ(u, v) = 1 at (u, v) = (uQ, vQ) . (6.26)

Riemann noticed that if one can solve this adjoint boundary value problem, the
solution to the given problem is obtained as follows:

Apply the fact that ψ and φ satisfy their respective differential equations. Green’s
identity, Eq.(6.23) becomes

0 =

∫

SQ

Pudv − Pvdu+
∫

QR

Pudv − Pvdu+
∫

RS

Pudv − Pvdu . (6.27)

The left hand side vanishes because L∗φ = 0 and because the given differential
Eq.(6.17) has no source. The r.h.s. is a line integral along a closed figure, here the
boundary of the triangle SQR. The goal is to infer the value of ψ at Q from (a) its
values along RS and from (b) the value of φ along SQ and RQ.

Consider the first integral. The integration segment SQ consists of

SQ :

{
v = const. ≡ vQ

uS < u < uQ
(6.28)
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Consequently, one is left with

∫

SQ

Pudv − Pvdu 1
= −

∫ uQ

uS

Pv|vQdu

2
= −1

2

∫ [

φ
∂ψ

∂u
− ψ∂φ

∂u
+ 2Eφψ

]

vQ

du

3
= −1

2

∫ [
∂(φψ)

∂u
+ 2ψ

(

Eφ− ∂φ

∂u

)]

vQ

du

4
= −1

2

[
φψ|uQuS

]

vQ

5
= −1

2
ψ(uQ, vQ) +

1

2
φ(uS, vS)ψ(uS, vS)

6≡ −1

2
ψ(Q) +

1

2
φ(S)ψ(S) .

(Equality 1 uses the fact that
∫

SQ
Pudv = 0 because v is constant; 2 uses Eq.(6.22); 3

adds and subtracts ∂φ/∂u; 4 uses Eq.(6.24); 5 uses Eq.(6.26). ) Equality 6 introduces
the short hand notation

ψ(Q) = ψ(uQ, vQ), φ(S) = φ(uS, vS), etc.

Similarly the second integral reduces to

∫

QR

Pudv − Pvdu =

∫ vR

vQ

Pu|uQdv

= −1

2
ψ(Q) +

1

2
φ(R)ψ(R) .

Consequently, the vanishing of the closed line integral, Eq.(6.27), implies

ψ(Q) =
1

2
φ(S)ψ(S) +

1

2
φ(R)ψ(R) +

∫

RS

Pudv − Pvdu . (6.29)

This is Riemann’s representation of the solution ψ to the hyperbolic differential equa-
tion in terms of the given initial value data on the curve segment RS. A function such
as ψ(u, v) establishes a quantitative relationship between two sets of measurements:

1. The quantity ψ which typically expresses a measured amplitude or voltage and
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2. the coordinates (u, v) which, for a hyperbolic system, indirectly express mea-
surements of time and place, namely

u = t− z
v = t+ z

in terms of the familiar laboratory space and time coordinates.

Thus it is necessary to express the solution, Eq.(6.29), in terms of these coordinates.
Using

du = dt− dz
dv = dt+ dz

and

∂ψ

∂v
+
∂ψ

∂u
=

∂ψ

∂t
∂ψ

∂v
− ∂ψ

∂u
=

∂ψ

∂z

one finds that with the help of Eqs.(6.21)-(6.22) that the solution is

ψ(tQ, zQ) =
1

2
φ(R)ψ(R) +

1

2
φ(S)ψ(S) + (6.30)

∫ S

R

{[
1

2

(

φ
∂ψ

∂z
− ψ∂φ

∂z

)

+ (D − E)φψ
]

dt+

[
1

2

(

φ
∂ψ

∂t
− ψ∂φ

∂t

)

+ (D + E)φψ

]

dz

}

Example: String Imbedded in an Elastic Medium
Let us illustrate the integration method with a simple string imbedded in an

elastic medium. The governing equation is the Klein-Gordon wave equation in 1+1
dimensions,

0 =
∂2ψ

∂t2
− ∂2ψ

∂z2
+ k2ψ .

Its solution is to satisfy at t = 0 the initial value conditions

ψ(t = 0, z) = ψ0(z) (6.31)

∂ψ

∂t
(t = 0, z) = V0(z) . (6.32)

Here ψ0(z) and V0(z) are the given initial value data (“Cauchy data”) associated
with this initial value problem.
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The equation for the characteristic coordinate functions is

(
∂S

∂t

)2

−
(
∂S

∂z

)2

= 0

Being a quadratic, this equation has two distinct real solutions

S(x, y) =

{
u(t, z) = t− z
v(t, z) = t+ z

Its characteristic coordinate functions are

u = t− z and v = z + t (6.33)

and its normal form is

L(ψ) =
∂2ψ

∂λ∂µ
+
k2

4
ψ = 0 .

Thus one has D = E = 0, which means that the hyperbolic operator is formally
self-adjoint. Consequently, the adjoint differential equation is

L∗(φ) =
∂2φ

∂v∂u
+
k2

4
φ = 0 .

The adjoint boundary conditions are

∂φ

∂u
= 0 along SQ : v = vQ (6.34)

∂φ

∂v
= 0 along RQ : u = uQ , (6.35)

and
φ(u, v) = 1 at observation point Q: (u, v) = (uQ, vQ) . (6.36)

Remark. One can draw a very useful conclusion from Eqs.(6.34)-(6.36). The solution
φ to the hyperbolic problem adjoint to the given one under consideration is constant
along the two characteristics through point Q:

φ(u, vQ) = 1

φ(uQ, v) = 1 .

Note that the two points R and S in Figure 6.2 lie on these charateristics. Conse-
quently,

φ(R) = φ(S) = 1 .
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This simplifies the solution to the solution, Eq.(6.30), to the given problem consid-
erably.

The solution to the adjoint boundary boundary value problem is achieved by
recalling that the Bessel function of order zero, J0(x), satisfies

d2J0
dx2

+
1

x

dJ0
dx

+ J0 = 0 .

Letting
x = k

√
uv ,

one finds

∂J0(k
√
uv)

∂v
=

1

2
k

√
u

v
J ′0(k
√
uv)

∂2J0(k
√
uv)

∂u ∂v
=

1

4
k

1√
vu
J ′0(k
√
uv) +

k2

4
J0
′′(k
√
uv)

= −k
2

4
J0(k
√
uv) .

Consequently,
[

∂2

∂v ∂u
+
k2

4

]

J0

(

k
√

(uQ − u)(vQ − v)
)

= 0

Furthermore, note that

φ(u, v) = J0

(

k
√

(uQ − u)(vQ − v)
)

satisfies the three required boundary conditions

∂φ(u, v)

∂u

∣
∣
∣
∣
v=vQ

= 0

∂φ(u, v)

∂v

∣
∣
∣
∣
u=uQ

= 0

φ(uQ, vQ) = 1 ,

and also
φ(u, vQ) = φ(uQ, v) = 1 ,

as required.
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The solution, Eq.(6.30), to the given problem is determined by the initial value
data, Eqs.(6.31)-(6.32) at t = 0. Substituting this data into the expression for this
solution, taking note of the fact

R : (t, z) = (0, zQ − tQ)
S : (t, z) = (0, zQ + tQ) ,

introducing (with the help of Eq.(6.33))

φ = J0

(

k
√

(uQ − u)(vQ − v)
)

= J0

(

k
√

(t− tQ)2 − (z − zQ)2
)

into the integrand, and setting t = 0, one finds that the solution is

ψ(tQ, zQ) =
1

2
ψ0(zQ − tQ) +

1

2
ψ0(zQ + tQ) +

1

2

∫ zQ+tQ

zQ−tQ

[

J0

(

k
√

(t− tQ)2 − (z − zQ)2
)

V0(z)−

ψ0(z)
∂

∂t
J0

(

k
√

(t− tQ)2 − (z − zQ)2
)]

t=0

dz

or in terms of standard variables,

ψ(t, z) =
1

2
ψ0(z − t) +

1

2
ψ0(z + t) + (6.37)

1

2

∫ z+t

z−t

[

J0

(

k
√

(t′ − t)2 − (z′ − z)2
)

V0(z
′)−

ψ0(z
′)
∂

∂t′
J0

(

k
√

(t′ − t)2 − (z′ − z)2
)]

t′=0

dz′ .

Compare this result with Eq.(6.16) and observe the influence of the elastic medium
on the propagation of a disturbance along the string:
In the absence of that medium an initial pulse separates into two pulses also highly
localized in the same way. They move into opposite directions, but they don’t change
their shapes and amplitudes. The region between these pulses is a widening gap
having zero amplitude.

However, the presence of an elastic medium (k2 6= 0) changes all this. An initial
pulse also separates into two pulses, but each one leaves a nonzero trailing wake
which fills the widening gap between them with a space-time dependent amplitude.
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It decreases with time in a manner dictated by the behaviour of the Bessel function
in the integrand of Eq.(6.37).

Equations (6.16) and (6.37) are in perfect harmony. Indeed, the first is the k2 = 0
limit of the second. This is as it must be. It is a mathematical consequence of the
fact that J0(0) = 1 and that J ′0(0) = 0 in the integrand of Eq.(6.37).

Lecture 523

6.2 System of Partial Differential Equations: How

to Solve Maxwell’s Equations Using Linear

Algebra

The theme of the ensuing development is linear algebra, but the subject is an overde-
termined system of partial differential equations, namely, the Maxwell field equations.
The objective is to solve them via the method of eigenvectors and eigenvalues. The
benefit is that the task of solving the Maxwell system of p.d. equations is reduced
to solving a single inhomogeneous scalar equation4

(
∂2x + ∂2y + ∂2z − ∂2t

)
= −4πS(t, ~x) ,

where S is a time and space dependent source. The impatient reader will find that
once this master equation, or its manifestation in another coordinate system, has
been solved, the electric and magnetic fields are entirely determined as in Tables 6.1-
6.9.

The starting point of the development is Maxwell’s equations. There is the set
of four functions, the density of charge

ρ = ρ(~x, t)

[
(charge)

(volume)

]

(6.38)

and the charge flux

~J = ~J(~x, t)

[
(charge)

(time)(area)

]

, (6.39)

3Presentation given 10/3/2006 at the OSU Electro Science Lab.
4For the purpose of putting the time derivative on the same footing as the space derivatives, we

express the conventional time tconv. in terms of the geometrical time t, which is measured in units
of length, by the equation t = c tconv..
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which are usually given. These space and time dependent charge distributions give
rise to electric and magnetic fields, ~E(~x, t) and ~B(~x, t). The relationship is captured
by means of Maxwell’s gift to twentieth century science and technology,

∇ · ~B = 0 (“No magnetic monopoles”) (6.40)

∇× ~E +
∂ ~B

∂t
= 0 (“Faraday’s law”) (6.41)

and

∇ · ~E = 4πρ (“Gauss’ law”) (6.42)

∇× ~B − ∂ ~E

∂t
= 4π ~J (“Ampere’s law”) , (6.43)

Maxwell’s field equations5.

Exercise 6.2.1 (Charge Flux-Density of an Isolated Charge)
Microscopic observations show that charged matter is composed of discrete point charges.
On the other hand, macroscopic observations show that charged matter is the carrier of an
electric fluid which is continuous. Dirac delta functions provide the means to grasp both
attributes from a single perspective. This fact is highlighted by the following problem.

Consider the current-charge density due to an isolated moving charge,

~J(x, y, z, t) = q

∫ ∞

−∞

d ~X(τ)

dτ
δ(x−X(τ))δ(y − Y (τ))δ(z − Z(τ))δ(t− T (τ)) dτ

ρ(x, y, z, t) = q

∫ ∞

−∞

dT (τ)

dτ
δ(x−X(τ))δ(y − Y (τ))δ(z − Z(τ))δ(t− T (τ)) dτ

a) Show that this current-charge density satisfies

∇ · ~J +
∂ρ

∂t
= 0 .

Remark. The four-vector
(
d ~X(τ)
dτ , dT (τ)dτ

)

is the charge’s four-velocity in spacetime. The

parameter τ is the “wristwatch” time (as measured by a comoving clock) attached to this
charge.

5The introduction of geometrical time t is extended to the introduction of charge flux in geomet-

rical units, ~J ( (charge)
(volume) ). Its relation to the charge flux in conventional units, ~Jconv. (

(charge)
(time)(area) ),

is given by the equation ~J = ~Jconv./c .
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b) By taking advantage of the fact dT (τ)
dτ > 0, evaluate the τ -integrals, and obtain explicit

expressions for the components ~J and ρ.
Answer:

ρ(x, y, z, t) = q δ(x−X(t))δ(y − Y (t))δ(z − Z(t))

~J(x, y, z, t) =
d ~X

dt
q δ(x−X(t))δ(y − Y (t))δ(z − Z(t))

where

~X(t) = ~X(τ) evaluated at τ as determined by δ(t− T (τ)) .

6.2.1 Maxwell Wave Equation

The first pair of Maxwell’s equations, (6.40) and (6.41), imply that there exists a

vector potential ~A and scalar potential φ from which one derives the electric and
magnetic fields,

~B = ∇× ~A (6.44)

~E = −∇φ− ∂ ~A

∂t
. (6.45)

Conversely, the existence of these potentials guarantees that the first pair of these
equations is satisfied automatically. By applying these potentials to the differential
expressions of the second pair of Maxwell’s equations, (6.42)-(6.43), one obtains the
mapping

[
φ
~A

]

A∼❀ A
[
φ
~A

]

, (6.46)

where

A
[
φ
~A

]

≡







−∇2φ−∇ · ∂
~A

∂t

∇×∇× ~A+∇∂φ
∂t

+
∂2 ~A

∂t2






. (6.47)

It follows that Maxwell’s field equations reduce to Maxwell’s four-component wave
equation, 





−∇2φ−∇ · ∂
~A

∂t

∇×∇× ~A+∇∂φ
∂t

+
∂2 ~A

∂t2






= 4π

[
ρ
~J

]

. (6.48)
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Maxwell’s wave operator is the linch pin of his theory of electromagnetism. This is
because it has the following properties:

1. It is a linear map from the space of four-vector fields into itself, i.e.

R4 A−→ R4

at each point event (t, ~x).

2. The map is singular. This means that there exist nonzero vectors ~Ur and ~Uℓ
such that

A ~Ur = ~0

and

~UTℓ A = ~0 .

In particular, one has

(a) the fact that

A
[ −∂t

~∇

]

Λ =

[ −∇2∂t − ∂t∇2

0− ∂t~∇∂t + ∂2t ~∇

]

Λ =

[
0
~0

]

(6.49)

for all three-times differentiable scalar fields Λ(t, ~x). Thus

~Ur ≡
[ −∂t

~∇

]

∈ N (A) .

The null space of A is therefore nontrivial and 1-dimensional at each (t, ~x).

(b) the fact that

[

∂t ~∇·
]

A
[
φ
~A

]

= −∂t∇2φ+ ∂2t ~∇ · ~A+ 0 + ∂t∇2φ+ ~∇ · ∂2t ~A = 0 ,

for all 4-vectors

[
φ
~A

]

. Thus

~UTℓ ≡
[

∂t ~∇·
]

∈ left null space of A , (6.50)

or

~Uℓ ∈ N (AT ) . (6.51)

The left null space of A is therefore also 1-dimensional at each (t, ~x).
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In light of the singular nature of A, the four-component Maxwell wave equation

A
[
φ
~A

]

= 4π

[
ρ
~J

]

(6.52)

has no solution unless the source

[
ρ
~J

]

also satisfies

~UTℓ
[
ρ
~J

]

= 0 .

This is the linear algebra way of expressing

∂tρ+ ~∇ · ~J = 0 , (6.53)

the differential law of charge conservation. Thus Maxwell’s equations apply if and
only if the law of charge conservation holds. If charge conservation did not hold,
then Maxwell’s equations would be silent. They would not have a solution. Such
silence is a mathematical way of expressing the fact that at its root theory is based
on observation and established knowledge, and that arbitrary hypotheses must not
contaminate the theoretical.

6.2.2 The Overdetermined System A~u = ~b

The linear algebra aspects of Maxwell’s wave operator A are illustrated by the fol-
lowing problem from linear algebra:

Solve A~u = ~b for ~u, under the stipulation that

A : R4 −→ R4

~ur : A~ur = ~0 so that N (A) = span{~ur}
~uTℓ : ~uTℓ A = ~0 so that N (AT ) = span{~uℓ}
~b : ~b ∈ R(A) so that ~uTℓ

~b = 0 (6.54)

The fact that A is singular and ~b belongs to the range of A makes the system
over-determined but consistent. This means that there are more equations
than there are unknowns.
One solves the problem in two steps.
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Step I: Let {~v1, ~v2, ~v3} be the set of eigenvectors having non-zero eigenvalues.
Whatever A is, the task of finding three vectors that satisfy

A~v1c1 = ~v1λ1c1
A~v2c2 = ~v2λ2c2
A~v3c3 = ~v3λ3c3






λi 6= 0, ci are scalars (6.55)

and

A~urc4 = ~0 . (6.56)

Being spanned by the three eigenvectors with non-zero eigenvalues, the
range space of A,

R(A) = span{~v1, ~v2, ~v3} ,

is well-determined. However, the scalars ci are at this stage as yet unde-
termined.

Step II: Continuing the development, recall that quite generally

A~u = ~b has a solution⇔ ~b ∈ R(A)
⇔ ~b = ~v1b1 + ~v2b2 + ~v3b3 , (6.57)

and that if

~u = ~v1c1 + ~v2c2 + ~v3c3 + ~u4c4 ,

then

A~u = ~v1λ1c1 + ~v2λ2c2 + ~v3λ3c3 . (6.58)

It is appropriate to alert the reader that in the ensuing section the vectors ~vi and
the eigenvalues λi become differential operators which act on scalar fields ci and that
the three subscript labels will refer to the TE, TM, and TEM eletromagnetic6 vector
potentials respectively.

6The acronyms TE, TM, as well as TEM stand for transverse electric, transverse magnetic, and
transeverse electric magnetic The justification for these apellations are given on Pages 462, 463,
and 464, repectively.
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Equating (6.57) and (6.58), one finds that the linear independence of {~v1, ~v2, ~v3}
implies the following equations for c1, c2, and c3:

λ1c1 = b1 −→ c1 =
1

λ1
b1 (6.59)

λ2c2 = b2 −→ c2 =
1

λ2
b2 (6.60)

λ3c3 = b3 −→ c3 =
1

λ3
b3 (6.61)

Consequently, the solution is

~u = ~v1
1

λ1
b1 + ~v2

1

λ2
b2 + ~v3

1

λ3
b3 + ~u4c4

where ~u4c4 is an indeterminate multiple of the null space vector ~u4.
If one represents the stated problem A~u = ~b (~u determines ~b) as an input-output

process, as in Figure 6.3,

u u bA =A

Figure 6.3: The matrix A defines an input-output process.

then its solution is represented by the inverse input-output process as in Figure 6.4.

In general, the task of finding the eigenvectors of a 4×4 matrix can be a nontrivial
task. However, given the fact that the solution to

~uTℓ A = ~0

is already known, one finds that the associated constraints on the eigenvectors,

~uTℓ ~vi = 0

make the task quite easy, if not trivial.
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v1b1

b2v2

b3v3

λ11/

λ21/

λ31/

v1

v2

c1

c2

v3c3

c4ur

b
u

Figure 6.4: The solution to A~u = ~b defines an inverse input-output process.

6.2.3 Maxwell Wave Equation (continued)

The above linear algebra two-step analysis of an overdetermined (but consistent)

system A~u = ~b is an invaluable guide in solving Maxwell’s wave equation

A







φ
Az
Ax
Ay






= 4π







ρ
Jz
Jx
Jy







}

longitudinal components
}

transverse components,
(6.62)

2+2 Decomposition

We now interrupt the development to emphasize that this linear algebra analysis is
not restricted to rectilinear coordinates. We shall see that the coordinates relative to
which the Maxwell system can be decoupled (and solved) via the method of eigen-
vectors and eigenvalues are the cartesian, cylindrical, spherical, and other coordinate
orthogonal coordinate systems, with time added as the fourth coordinate. For these
the spacetime version of the infinitesimal interval (Pythagorean theorem) assumes
the familiar form

ds2 = −dt2 + dz2 + dx2 + dy2 cartesian

ds2 = −dt2 + dz2 + dr2 + r2dθ2 cylindrical

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dϕ2) spherical

or more generally

ds2 = gAB(x
C)dxAdxB +R2(xC)(dθ2 + sin2 θ dϕ2)

general
spherical
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Their conceptual common denominator is that the first two coordinates – the lon-
gitudinal coordinates – are orthogonal to the last two – the transverse coordinates.
The longitudinal spatial direction is the propagation direction of e.m. radiation, say
in the direction of a cylindrical wave guide or the radial direction of a spherical coor-
dinate system. The two spatial transverse directions point along the cross sectional
area of that wave guide or the angular directions of the concentric spheres of constant
radii.

This two-plus-two decomposition applies not only to the coordinates and their
differentials, but also to four-dimensional vector fields tangent to such coordinate
surfaces, e.g.,







φ
Az
Ax
Ay







and







ρ
Jz
Jx
Jy







}

longitudinal components
}

transverse components,
(6.63)

the four-vector potential and the charge density-flux four-vector respectively.

We shall decompose the four-vector potential

[
φ
~A

]

into three parts. The key

finding from this decomposition is that these parts are eigenvectors of the Maxwell
wave operator A, Eq.(6.47), and that they are identified with the transverse electric
(TE), transverse magnetic (TM), and transverse electric-magnetic (TEM) fields of
Maxwell theory 7.

The eigenvector decomposition takes advantage of the fact that any two-dimensional
vector field, be it longitudinal or transverse, can be decomposed uniquely into the
gradient of a scalar function and into what amounts to a pure curl vector field in
three dimensions. As a consequence, any four-vector such as those in Eq.(6.63) has
the unique decomposition






φ
Az
Ax
Ay






=







0
0
∂y
−∂x






ΦTE

︸ ︷︷ ︸

transverse
curl

+







−∂z
∂t
0
0






ΦTM

︸ ︷︷ ︸

longitudinal
curl

+







0
0
∂x
∂y






Ψ

︸ ︷︷ ︸

transverse
gradient

+







−∂t
∂z
0
0






Φ

︸ ︷︷ ︸

longitudinal
gradient

. (6.64)

This 2+2 decomposition establishes a one-to-one correspondence between four-vector
fields and the scalar fields Φ,ΦTE and Ψ,ΦTM in the transverse and longitudinal
planes respectively.

7The justification for these apellations are given on on Pages 462, 463, and 464, repectively.
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The existence and uniqueness of this 2+2 decomposition is established in Exercise
6.2.2 on page 477.

Divergenceless Vector Fields

We now resume the development by recalling that the wave operator A satisfies

[∂t ∂z ∂x ∂y]A
[
φ
~A

]

= ~0 (6.65)

for all four-vectors

[
φ
~A

]

, and that, as a consequence, the wave Eq.(6.62) implies

that

[
ρ
~J

]

has zero divergence (which is an expression of charge conservation)

[∂t ∂z ∂x ∂y]







ρ
Jz
Jx
Jy






= 0 (6.66)

whenever a solution exists. Our interest lies in the converse:

Given that the source

[
ρ
~J

]

satisfies charge conservation, does there exist a solution

to the Maxwell wave equation?
An affirmative answer is obtained by construction. It is based on decomposing the
source four-vector into a linear combination each part of which is so simple that it
separately satisfies charge conservation. This decomposition is







ρ
Jz
Jx
Jy






=







0
0
∂y
−∂x







︸ ︷︷ ︸

≡~V(1)

STE +







−∂z
∂t
0
0







︸ ︷︷ ︸

≡~V(2)

STM +







0
0
∂x
∂y






I +







−∂t
∂z
0
0






J

︸ ︷︷ ︸

≡ ~W(3)I+ ~W(4)J

(6.67)

Charge conservation, ∂t + ~∇ · ~J = 0, holds for all scalar fields STE, STM , I and J
provided the latter two satisfy

0 =
(
−∂2t + ∂2z

)
J +

(
∂2x + ∂2y

)
I
(

= ∂t + ~∇ · ~J
)

. (6.68)



6.2. SYSTEMOF PARTIAL DIFFERENTIAL EQUATIONS: HOWTO SOLVEMAXWELL’S EQUATIONS

The Eigenvector Fields of A
The task of identifying and determining those eigenvector fields of A which have
nonzero eigenvalues is facilitated by the fact that Eq.(6.65) demands that they be
divergenceless. The three vector fields in Eq.(6.67) do satisfy this condition. That
they span the eigenspaces in the range of A is verified by three explicit calcula-
tions, one for each the three eigenvector fields. Inserting them into the Maxwell
wave equation, one finds that their linear independence results in the following three
independent vector equations:

A







0
0
∂y
−∂x






ΦTE =







0
0
∂y
−∂x






(−)

(
−∂2t + ∂2z + ∂2x + ∂2y

)

︸ ︷︷ ︸

λ1

ΦTE = 4π







0
0
∂y
−∂x






STE (6.69)

A







−∂z
∂t
0
0






ΦTM =







−∂z
∂t
0
0






(−)

(
−∂2t + ∂2z + ∂2x + ∂2y

)

︸ ︷︷ ︸

λ2

ΦTM = 4π







−∂z
∂t
0
0






STM (6.70)

and

A







−∂tΦ
∂zΦ
∂xΨ
∂yΨ






=







(
−∂t
∂z

)
(
∂2x + ∂2y

)
(Ψ− Φ)

(
∂x
∂y

)

(∂2t − ∂2z ) (Ψ− Φ)






= 4π







(
−∂t
∂z

)

J
(
∂x
∂y

)

I







(6.71)

What is remarkable about these equations is that each of them is an integrable
system which can be integrated by inspection. Doing so results in what in linear
algebra corresponds to the three equations (6.59)-(6.61) on page 457 for the eigen-
vector amplitudes ci. Here. however, the result is three scalar wave equations for
the scalar fields ΦTE,ΦTM ,Ψ and Φ, namely8

(
∂2x + ∂2y + ∂2z − ∂2t

)
ΦTE = −4πSTE (6.72)

(
∂2x + ∂2y + ∂2z − ∂2t

)
ΦTM = −4πSTM (6.73)

and

(∂2x + ∂2y)(Φ−Ψ) = −4πJ (6.74)

(∂2z − ∂2t )(Φ−Ψ) = +4πI . (6.75)

8The superscripts TE, TM, as well as TEM below are acronyms which stand for transverse elec-

tric, transverse magnetic, and transeverse electric magnetic The justification for these apellations
are given on Pages 462, 463, and 464, repectively.
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The last two equations are the TEM equations, a Poisson and a wave equation, for one
and the same quantity, the difference Φ − Ψ. These two equations are consistent,
and hence integrable, because the TEM source scalars I and J are guaranteed to
satisfy Eq.(6.68) on page 460. Put differently, any two of the three equations (6.74),
(6.75), and (6.68) imply the third.

The Electric and the Magnetic Fields

The electric and the magnetic fields, Eqs.(6.44) and (6.45), are obtained for each
type of e.m. field from the three respective vector potentials,







φ
Az
Ax
Ay






=







0
0

∂yΦ
TE

−∂xΦTE







︸ ︷︷ ︸

Transverse
Electric

,







−∂zΦTM

∂tΦ
TM

0
0







︸ ︷︷ ︸

Transverse
Magnetic

,







−∂tΦ
∂zΦ
∂xΨ
∂yΨ







︸ ︷︷ ︸

Transverse
Electric
Magnetic

. (6.76)

It needs to be reemphasized that for the TEM field it is unnecessary (and, in fact,
uncalled for) to calculate the scalars Φ and Ψ individually. All that is necessary (and
sufficient) is the difference Φ−Ψ.

From the perspective of the principle of conceptual unit-economy9 the e.m. poten-
tial is superior to the electric and magnetic field. This is because the mathematical
characterization of the e.m. potential is simpler than that of the e.m. field. However,
in the hierarchy of concepts, the e.m. field is much closer to the electromagnetism’s
foundation, namely that which is directly accessible to measurements. Thus, in order
to comply with this hierarchy and prevent the e.m. potential from being a floating
abstraction disconnected from reality, it is mandatory that one explicitly exhibit
the e.m. field. We shall do this for TE, TM, and TEM fields relative to cartesian
coordinates, and later extend the result to cylindrical and spherical coordinates.

The TE Field: The result of deriving the e.m. field, Eqs.(6.44)-(6.45), from the TE potential in
Eq.(6.76), together with the corresponding TE source, have been consolidated
into Table 6.1. Any e.m. field of the type exhibited in this table is called purely
transverse electric (TE). This is because the electric field vector ~E is nonzero

9As identified in the footnote on Page 198
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TE Potential TE Electric Field
Ax Ay Az φ Ex Ey Ez
∂ΦTE

∂y
−∂ΦTE

∂x
0 0 − ∂

∂y
∂ΦTE

∂t
∂
∂x

∂ΦTE

∂t
0

TE Source TE Magnetic Field
Jx Jy Jz ρ Bx By Bz

∂STE

∂y
−∂STE

∂x
0 0 ∂

∂x
∂ΦTE

∂z
∂
∂y

∂ΦTE

∂z
−
(
∂2

∂x2
+ ∂2

∂y2

)

ΦTE

Table 6.1: The TE system: The components of a TE e.m. field ( ~E, ~B) are derived

from a four-vector TE potential ( ~A, φ), a solution the inhomogeneous Maxwell wave
Eq.(6.52) on page 455. Its source is the divergenceless TE charge density-flux four-

vector ( ~J, ρ).

only in the transverse (x, y)-plane, the plane perpendicular to the longitudinal
direction, the z-axis. The longitudinal electric field component,

Elong. ≡ Ez = 0 ,

of a TE electromagnetic field vanishes!

The TM Field: The result of deriving the e.m. field, Eqs.(6.44)-(6.45), from the TM potential
in Eq.(6.76), together with the corresponding TM source, have been consoli-
dated into Table 6.2. Any e.m. field of the type exhibited in this table is

TM Potential TM Electric Field
Ax Ay Az φ Ex Ey Ez

0 0 ∂ΦTM

∂t
−∂ΦTM

∂z
∂
∂x

∂ΦTM

∂z
∂
∂y

∂ΦTM

∂z

(
∂2

∂z2
− ∂2

∂t2

)

ΦTM

TM Source TM Magnetic Field
Jx Jy Jz ρ Bx By Bz

0 0 ∂STM

∂t
−∂STM

∂z
∂
∂y

∂ΦTM

∂t
− ∂
∂x

∂ΦTM

∂t
0

Table 6.2: The TM system: The components of a TM e.m. field ( ~E, ~B) are derived

from a four-vector TM potential ( ~A, φ), a solution the inhomogeneous Maxwell wave
Eq.(6.52) on page 455. Its source is the divergenceless TM charge density-flux four-

vector ( ~J, ρ).

called purely transverse magnetic (TM). This is because the magnetic field
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vector ~B is nonzero only in the transverse (x, y)-plane, the plane perpendic-
ular to the longitudinal direction, the z-axis: the longitudinal magnetic field
component,

Blong. ≡ Bz = 0 ,

of a TM electromagnetic field vanishes!

Remark. Note that the TM field is the same as the TE field except that the
roles of ~E and ~B are essentially reversed:

~E −→ − ~B
~B −→ ~E (whenever ΦTM satisfies the sourceless wave equation)

TEM Potential TEM Electric Field
Ax Ay Az φ Ex Ey Ez
∂Ψ
∂x

∂Ψ
∂y

∂Φ
∂z

−∂Φ
∂t

∂
∂x

∂(Φ−Ψ)
∂t

∂
∂y

∂(Φ−Ψ)
∂t

0

TEM Source TEM Magnetic Field
Jx Jy Jz ρ Bx By Bz

∂ITEM

∂x
∂ITEM

∂y
∂J
∂z

−∂J
∂t

∂
∂y

∂(Φ−Ψ)
∂z

− ∂
∂x

∂(Φ−Ψ)
∂z

0

Table 6.3: The TEM system: The components of a TEM e.m. field ( ~E, ~B) are

derived from a four-vector TEMpotential ( ~A, φ), a solution the inhomogeneous
Maxwell wave Eq.(6.52) on page 455. Its source is the divergenceless TEM charge

flux-density four-vector ( ~J, ρ).

The TEM Field: The result of deriving the e.m. field, Eqs.(6.44)- (6.45), from the TEM po-
tential in Eq.(6.76), together with the corresponding TEM source, have been
consolidated into Table 6.3.

Any e.m. field of the type exhibited in the table is called purely transverse
electric and magnetic (TEM). This is because both the ~E field and the ~B field
lie strictly in the trasverse (x, y)-plane. There are no longitudinal components:

Elong. ≡ Ez = 0 and Blong. ≡ Bz = 0 . (6.77)

6.2.4 Cylindrical Coordinates

The benefits of the linear algebra viewpoint applied to Maxwell’s equations can be
extended by inspection from rectilinear cartesian to cylindrical coordinates. This is
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because the four-dimensional coordinate system lends itself to being decomposed into
two orthogonal sets of coordinate surfaces. For cylindricals these are spanned by the
transverse coordinates (r, θ) in the transverse plane, and the longitudinal coordinates
(z, t) in the longitudinal plane.

The transition from a rectilinear to a cylindrical coordinate frame is based on the
replacement of the following symbols:

dx −→ dr ; dy −→ rdθ (6.78)

∂

∂x
−→ ∂

∂r
;

∂

∂y
−→ 1

r

∂

∂θ
(6.79)

and

∂2

∂x2
+

∂2

∂y2
−→ 1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
. (6.80)

Such a replacement yields the vector field components relative to an orthonormal
(o.n.) basis tangent to the coordinate lines. To emphasize this orthonormality, hats
(̂ ) are placed over the vector components.

This replacement is very powerful. It circumvents the necessity of having to repeat
the previous calculations that went into exhibiting the individual components of
Maxwell’s TE, TM , and TEM systems of equations. We shall again take advantage
of the power of this algorithm in the next section when we apply it to Maxwell’s
system relative to spherical coordinates.

Applying it within the context of cylindrical coordinates, one finds that the source
and the vector potential four-vectors are as follows:

1. for a TE source

(ρ, Ĵz, Ĵr, Ĵθ) =

(

0, 0,
1

r

∂STE

∂θ
,−∂S

TE

∂r

)

, (6.81)

the solution to the Maxwell field equations has the form

(φ, Âz, Âr, Âθ) =

(

0, 0,
1

r

∂ΦTE

∂θ
,−∂Φ

TE

∂r

)

; (6.82)

2. for a TM source

(ρ, Ĵz, Ĵr, Ĵθ) =

(

−∂S
TM

∂z
,
∂STM

∂t
, 0, 0

)

, (6.83)
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the solution to the Maxwell field equations has the form

(φ, Âz, Âr, Âθ) =

(

−∂Φ
TM

∂z
,
∂ΦTM

∂t
, 0, 0

)

; (6.84)

and

3. for a TEM source

(ρ, Ĵz, Ĵr, Ĵθ) =

(

−∂J
∂t

,
∂J

∂z
,
∂I

∂r
,
1

r

∂I

∂θ
,

)

, (6.85)

the solution to the Maxwell field equations has the form

(φ, Âz, Âr, Âθ) =

(

−∂Φ
∂t
,
∂Φ

∂z
,
∂Ψ

∂r
,
1

r

∂Ψ

∂θ

)

. (6.86)

The corresponding electromagnetic fields and their master scalar wave equations are
then as follows:

The TE Field

The result of deriving the Maxwell TE electromagnetic field components Eqs.(6.44)-
(6.45) from the TE potential Eq.(6.82), arising from the corresponding TE source
– all relative to the o.n. cylindrical coordinate basis – have been consolidated into
Table 6.4.

The TE master scalar ΦTE from which this result is obtained satisfies the wave
equation

(
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
− ∂2

∂t2

)

ΦTE = −4πSTE . (6.87)

The TM Field

The result of deriving the TM electromagnetic field components Eqs.(6.44)-(6.45)
from the TM potential Eq.(6.84), arising from the corresponding TM source – all
relative to the o.n. cylindrical coordinate basis – have been consolidated into Table
6.5.

The TM master scalar ΦTM for these results satisfies the wave equation

(
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
− ∂2

∂t2

)

ΦTM = −4πSTM . (6.88)
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TE Potential

Âr Âθ Âz φ
1
r
∂ΦTE

∂θ
−∂ΦTE

∂r
0 0

TE Electric Field

Êr Êθ Êz

−1
r
∂
∂θ

∂ΦTE

∂t
∂
∂r

∂ΦTE

∂t
0

TE Magnetic Field

B̂r B̂θ B̂z

∂
∂z

∂ΦTE

∂r
1
r
∂
∂θ

∂ΦTE

∂z
−
(

1
r
∂
∂r
r ∂
∂r

+ 1
r2

∂2

∂θ2

)

ΦTE

TE Source

Ĵr Ĵθ Ĵz ρ
1
r
∂STE

∂θ
−∂STE

∂r
0 0

Table 6.4: The TE system: All components of any TE e.m. field ( ~E, ~B), as well as

those of any four-vector TE potential ( ~A, φ), are derived from a single master scalar
function ΦTE. Its source scalar STE determines the vectorial charge flux vector field,
which is purely transverse, i.e. it is tangent to the set of nested cylinders.

The TEM Field

The Maxwell TEM electromagnetic field components relative to the o.n. cylindri-
cal coordinate basis, the corresponding vector potential and its source have been
consolidated into Table 6.6.

The underlying master scalar is the difference function Φ − Ψ. It satisfies the
two separate equations. The first is an equation for the two-dimensional amplitude
profile in the transverse plane,

(
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2

)

(Φ−Ψ) = −4πJ . (6.89)

The second is the equation for the propagation of this profile along the z-direction,

(
∂2

∂z2
− ∂2

∂t2

)

(Φ−Ψ) = 4πI . (6.90)
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TM Potential

Âr Âθ Âz φ

0 0 ∂ΦTM

∂t
−∂ΦTM

∂z

TM Electric Field

Êr Êθ Êz
∂
∂r

∂ΦTM

∂z
1
r
∂
∂θ

∂ΦTM

∂z

(
∂2

∂z2
− ∂2

∂t2

)

ΦTM

TM Magnetic Field

B̂r B̂θ B̂z

1
r
∂
∂θ

∂ΦTM

∂t
− ∂
∂r

∂ΦTM

∂t
0

TM Source

Ĵr Ĵθ Ĵz ρ

0 0 ∂r2STM

∂t
−∂r2STM

∂z

Table 6.5: The TM system: All components of any TM e.m. field ( ~E, ~B), as well as

those of any four-vector TM potential ( ~A, φ), are derived from a single master scalar
function ΦTM . Its source scalar STM determines the vectorial charge flux vector field,
which is purely longitudinal.

these two equations are consistent because the source satisfies the charge conservation
law (

1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2

)

I +

(
∂2

∂z2
− ∂2

∂t2

)

J = 0 ,

which is the polar coordinate version of Eq.(6.68).

6.2.5 Spherical Coordinates

One of the chief virtues of the linear algebra viewpoint applied to Maxwell’s equa-
tions is that it directs attention to the system’s fundamental vector spaces and their
properties. The easiest way to identify them in a computational way happens when
the underlying coordinate system permits a 2+2 decomposition into what amounts
to longitudinal and transverse surfaces. Spherical coordinates provide a nontrivial
example of this. There a transverse surface is a sphere spanned by (θ, φ), while the
longitudinal coordinates are (r, t).

The distinguishing feature of spherical coordinates, as compared to rectilinear or
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TEM Potential

Âr Âθ Âz φ
∂Ψ
∂r

1
r
∂Ψ
∂θ

∂Φ
∂z

−∂Φ
∂t

TEM Electric Field

Êr Êθ Êz
∂
∂r

∂(Φ−Ψ)
∂t

1
r
∂
∂θ

∂(Φ−Ψ)
∂t

0

TEM Magnetic Field

B̂r B̂θ B̂z

1
r
∂
∂θ

∂(Φ−Ψ)
∂z

− ∂
∂θ

∂(Φ−Ψ)
∂z

0

TEM Source

Ĵr Ĵθ Ĵz ρ
∂I
∂r

1
r
∂I
∂θ

∂J
∂z

−∂J
∂t

Table 6.6: The TEM system: All components of any TEM e.m. field ( ~E, ~B) are
derived from a single master scalar function, the difference Φ − Ψ between the two
scalar functions. Even though both, separately, are necessary for the definition of the
TEM vector potential ( ~A, φ), it is only their difference which is determined by an
inhomogeneous Poisson equation and an inhomogeneous wave equation, Eqs.(6.89)
and (6.90).

cylindrical coordinates, is that coordinate rectangles on successive transverse surfaces
(nested spheres) are not congruent. Instead, they have areas that scale with the
square of the radial distance from the origin. This scaling alters the representation of
the divergence of a vector field and hence the Maxwell wave operator. Nevertheless,
the eigenvalue method with its resulting TE-TM-TEM decomposition of the e.m.
field readily accomodates these alterations.

Left Null Space

The key to success is to identify the divergence

∂ρ

∂t
+∇ · ~J = 0
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as an element of the to-be-diagonalized Maxwell wave operator. Relative to the o.n.
spherical coordinate basis { ∂

∂r
, 1
r
∂
∂θ
, 1
r sin θ

∂
∂ϕ
} one has

∂t(1 · ρ) +
1

r2
∂r(r

2 · Ĵr) +
1

r sin θ
∂θ(sin θ · Ĵθ) +

1

r sin θ
∂ϕ(1 · Ĵφ) = 0 (6.91)

or

~UTℓ







ρ

Ĵr
Ĵθ
Ĵϕ






= 0 . (6.92)

Here
~UTℓ = [∂t

1

r2
∂rr

2 1

r sin θ
∂θ sin θ

1

r sin θ
∂ϕ] (6.93)

is the left nullspace element ofA, the spherical representative of Eq.(6.50) on page 454.
By inspecting the above four-dimensional divergence expression one readily identifies
the following three divergenceless independent 4-vector fields











ρ

Ĵr

Ĵθ

Ĵϕ











=







0
0

1
r sin θ

∂STE

∂ϕ

−1
r
∂STE

∂θ






,










− 1
r2
∂ (r2STM )

∂r

1
r2
∂ (r2STM )

∂t

0
0










,









0

0
1
r
∂ I
∂θ

1
r sin θ

∂I
∂ϕ









+










− 1
r2
∂ (r2J)
∂t

1
r2
∂ (r2J)
∂r

0
0










.

(6.94)
Here STE and STM are arbitrary scalar functions, while J and I are required to
satisfy

∂2(r2J)

∂r2
− ∂2(r2J)

∂t2
+

(
1

sin θ

∂

∂θ
sin θ

∂ I

∂θ
+

1

sin2 θ

∂2I

∂ϕ2

)

= 0 ,

the spherical coordinate version of Eq.(6.68)

Eigenvector Fields

According to the method of eigenvalues and eigenvectors we wish to arrive at a
solution to

A







φ

Âr
Âθ
Âϕ






= 4π







ρ

Ĵr
Ĵθ
Ĵϕ







(6.95)
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in terms of those eigenvectors of Maxwell’s wave operator A which are proportional
to the divergenceless sources in Eq.(6.94). We achieve this goal by first validating
that the vector fields







φ

Âr
Âθ
Âϕ






=







0
0

1
r sin θ

∂ϕΦ
TE

−1
r
∂θΦ

TE







︸ ︷︷ ︸

≡~V(1)ΦTE

,







−∂r ΦTM

∂t Φ
TM

0
0







︸ ︷︷ ︸

≡~V(2)ΦTM

,







0
0

1
r
∂θ Ψ

1
r sin θ

∂ϕΨ






+







−∂t Φ
∂r Φ
0
0







︸ ︷︷ ︸

≡ ~W(3)Ψ+ ~W(4)Φ

. (6.96)

are invariant under A, i.e. there exist functions F TE, F TM , G and H such that

A~V (1)ΦTE = α~V (1)F TE (6.97)

A~V (2)ΦTM = β~V (2)F TM (6.98)

A[ ~W (3)Ψ+ ~W (4)Φ] = γ ~W (3)G+ δ ~W (4)H , (6.99)

where α, β, γ, and δ are unique coefficients which are determined by A. The veri-
fication of the form of these three equations and the determination of their scalars
F TE, F TM , G and H in terms of ΦTE,ΦTM ,Φ and Ψ is not unfamiliar. It constitutes
relative to spherical coordinates what was done in Section 6.2.3 on page 461 relative
to cartesian coordinates.

There, we recall, we diagonalized the operator A by exhibiting the TE, TM, and
the TEM eigenvector fields and their respective eigenvalues, all relative to cartesian
coordinates. Here we shall do the same relative to spherical coordinates.

At first sight this seems like a computationally intense task, especially because
one has to calculate the curl of a curl, ∇ × ∇ × ~A, in Eq.(6.47) relative to these
coordinates. However, the task becomes managable, in fact, downright pleasant, if
one extends to curvilinear coordinates the familiar determinantal expression for the
curl,

∇× ~A =

∣
∣
∣
∣
∣
∣

~i ~j ~k
∂x ∂y ∂z
Ax Ay Az

∣
∣
∣
∣
∣
∣

.

Suppose one has orthogonal curvilinear coordinates (x1, x2, x3) whose scale factors
are hi(x

1, x2, x3), i = 1, 2, 3. Then one has

dx2 + dy2 + dz2 = h21(dx
1)2 + h22(dx

2)2 + h23(dx
3)2 ,
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and the determinantal expression for the curl is10

∇× ~A =

∣
∣
∣
∣
∣
∣

h1~e1 h2~e2 h3~e3
∂x1 ∂x2 ∂x3

h1Â1 h2Â2 h3Â3

∣
∣
∣
∣
∣
∣

1

h1h2h3
.

Here ~e1, ~e2, ~e3 are the o.n. basis vectors tangent to the coordinate lines, and Â1, Â2, Â3

are the components of ~A relative to this o.n. basis. Relative to spherical coordinates
one has therefore

dx2 + dy2 + dz2 = dr2 + r2dθ2 + r2 sin2 θ dϕ2

and

∇× ~A =

∣
∣
∣
∣
∣
∣

~er r~eθ r sin θ ~eϕ
∂r ∂θ ∂ϕ
Âr rÂθ r sin θ Âϕ

∣
∣
∣
∣
∣
∣

1

r2 sin θ
. (6.100)

To exhibit the TE, TM, and TEM eigenvector fields, one inserts each of the vector
potential four-vector fields, Eq.(6.96) into Eqs.(6.47) on page 453 and uses Eq.(6.100).
One also uses the corresponding sources, Eq.(6.94). The result is as follows:

TE:







0
0

1
r sin θ

∂ϕ
−1
r
∂θ







{

−∂2t + ∂2r +
1

r2

(
1

sin θ
∂θ sin θ ∂θ +

1

sin2 θ

)}

ΦTE

= 4π







0
0

1
r sin θ

∂ϕ
−1
r
∂θ






STE , (6.101)

10This result is a consequence of Stoke’s theorem applied to infinitesimal elements of area ex-
pressed in terms of these curvilinear coordinates.
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TM:

1

r2







∂r
−∂t
0
0






r2
{

−∂2t + ∂2r +
1

r2

(
1

sin θ
∂θ sin θ ∂θ +

1

sin2 θ

)}

ΦTM

= 4π
1

r2







−∂r
∂t
0
0







(
r2STM

)
, (6.102)

TEM:







0
0

1
r
∂θ

1
r sin θ

∂ϕ







{
−∂2t + ∂2r

}
(Φ−Ψ) = 4π







0
0

1
r
∂θ

1
r sin θ

∂ϕ






I (6.103)

−1
r2







−∂t
∂r
0
0







(
1

sin θ
∂θ sin θ ∂θ +

1

sin2 θ

)

(Φ−Ψ) = 4π
1

r2







−∂t
∂r
0
0






J . (6.104)

These three systems of vector field equations constitute a step forward in one’s un-
derstanding of Maxwell’s equations. This is because each system, which can be
integrated by inspection, yields three master wave equations which

1. are decoupled and hence independent,

2. are inhomogeneous scalar wave equations, each one with its own scalar source,

3. can be solved with the methods developed in Chpter 5 and 6,

4. have solutions from which one derives the three (TE, TM, and TEM) types
e.m. fields corresponding to the three types of concomitant e.m. sources.
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These three master scalar equations are

TE:

{

−∂2t + ∂2r +
1

r2

(
1

sin θ
∂θ sin θ ∂θ +

1

sin2 θ
∂2ϕ

)}

ΦTE = −4πSTE (6.105)

TM:

{

−∂2t + ∂2r +
1

r2

(
1

sin θ
∂θ sin θ ∂θ +

1

sin2 θ
∂2ϕ

)}

ΦTM = −4πSTM (6.106)

TEM:
(
−∂2t + ∂2r

)
(Φ−Ψ) = +4πI (6.107)

(
1

sin θ
∂θ sin θ ∂θ +

1

sin2 θ
∂2ϕ

)

(Φ−Ψ) = −4πJ (6.108)

The TEM system results in a pair coupled differential equations. However, they are
integrable. Their source functions satisfy

(
−∂2t + ∂2r

)
(r2J) = −

(
1

sin θ
∂θ sin θ ∂θ +

1

sin2 θ

)

I . (6.109)

This is because the left nullspace element ~UTℓ , Eq.(6.93), annihilates the sum of the
two TEM vectors, Eqs.(6.103) and (6.104). This guarantees that one can find a
function Φ−Ψ which satisfies Eqs.(6.107) and (6.108). The validation of this claim
is consigned to Exercise 6.2.7 on page 482.

Whereas the TE and the TM systems are characterized by a single wave equation
in 3+1 dimensions, the TEM system is characterized by two different problems in
the form of two independent equations:

• A potential problem expressed by Poisson’s equation on the transverse (θ, φ)-
surface, and

• a wave propagation problem expressed by the wave equation on the longitudinal
(r, t)-plane.

The domain of these two problems are orthogonal and independent, but their solu-
tions are not. In fact, they are one and the same. This means that the existence of
a solution Φ − Ψ implies that the source scalars J and I are not independent ei-
ther. Instead, they are related so as to guarantee that the law of charge conservation
~∇ · ~J + ∂ρ

∂t
= 0, i.e. Eq.(6.109), is satisfied.

Conversely, as shown in Exercise 6.2.7, this conservation law implies the existence
of a solution, Φ−Ψ, to the two differential equations.
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TE Potential

Âθ Âφ Âr φ
1

r sin θ
∂ΦTE

∂φ
−1
r
∂ΦTE

∂θ
0 0

TE Electric Field

Êθ Êφ Êr

− 1
r sin θ

∂
∂φ

∂ΦTE

∂t
1
r
∂
∂θ

∂ΦTE

∂t
0

TE Magnetic Field

B̂θ B̂φ B̂r

1
r
∂
∂θ

∂ΦTE

∂r
1

r sin θ
∂
∂φ

∂ΦTE

∂r
− 1
r2

(
1

sin θ
∂
∂θ

sin θ ∂
∂θ

+ 1
sin2 θ

∂2

∂φ2

)

ΦTE

TE Source

Ĵθ Ĵφ Ĵr ρ
1

r sin θ
∂STE

∂φ
−1
r
∂STE

∂θ
0 0

Table 6.7: The TE system: All components of any TE e.m. field ( ~E, ~B), as well as

those of any four-vector TE potential ( ~A, φ), are derived from a single master scalar
function ΦTE. Its source scalar STE determines the vectorial charge flux vector field.
It is purely transverse: it is tangent to the set of nested two-spheres.

6.2.6 Electromagnetic Fields in a Spherical Coordinate Sys-
tem

A spherical coordinate system induces a decomposition into a set of nested transverse
manifolds (concentric spheres) spanned by the angular coordinates and a longitudinal
manifold spanned by the radial and the time cordinates.

Such a coordinate decomposition induces a corresponding one in the Maxwell
field equation. Following our experience with cylindrical coordinates, we make a
corresponding transition to spherical coordinates according to the following heuristic
replacement recipe:

dx→ rdθ; dy → r sin θ dφ; dz → dr; dt→ dt

∂

∂x
→ 1

r

∂

∂θ
;

∂

∂y
→ 1

r sin θ

∂

∂φ
;

∂

∂z
→ ∂

∂r
;

∂

∂t
→ ∂

∂t
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TM Potential

Âθ Âφ Âr φ

0 0 ∂ΦTM

∂t
−∂ΦTM

∂r

TM Electric Field

Êθ Êφ Êr
1
r
∂
∂θ

∂ΦTM

∂r
1

r sin θ
∂
∂φ

∂ΦTM

∂r

(
∂2

∂r2
− ∂2

∂t2

)

ΦTM

TM Magnetic Field

B̂θ B̂φ B̂r

1
r sin θ

∂
∂φ

∂ΦTM

∂t
−1
r
∂
∂θ

∂ΦTM

∂t
0

TM Source

Ĵθ Ĵφ Ĵr ρ

0 0 1
r2
∂r2STM

∂t
− 1
r2
∂r2STM

∂r

Table 6.8: The TM system: All components of any TM e.m. field ( ~E, ~B), as well as

those of any four-vector TM potential ( ~A, φ), are derived from a single master scalar
function ΦTM . Its source scalar STM determines the vectorial charge flux vector field,
which is purely longitudinal.

and

∂2

∂x2
+

∂2

∂y2
→ 1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)

As already mentioned, once the cartesian components of Maxwell’s TE, TM , and
TEM system have been exhibited explicitly, one can apply this recipe also to spher-
ical coordinates. The results are given in Tables 6.7, 6.8, and 6.9 respectively.

The recipe guarantees that all electric and magnetic field components in these
tables satisfy the first half, Eq.(6.40)-(6.41), of Maxwell’s field equations. Further-
more, the application of this recipe to the TE, TM , and TEM cartesian master
scalar Eqs.(6.72), (6.73), (6.74), and (6.75), yields Eqs.(6.105)-(6.108), the corre-
sponding master equations relative to spherical coordinates. The above replacement
recipe applies to the e.m. field and its vector potential.

However, the relation between the concentric spheres introduces the squared ra-
dius as a conformal factor between their squared elements of arclength and hence
their areas. This conformal factor enters only into the the TM source and the longi-
tudinal part of the TEM source, and hence does not seem to be under the purview
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TEM Potential

Âθ Âφ Âr φ
1
r
∂Ψ
∂θ

1
r sin θ

∂Ψ
∂φ

∂Φ
∂r

−∂Φ
∂t

TEM Electric Field

Êθ Êφ Êr
1
r
∂
∂θ

∂(Φ−Ψ)
∂t

1
r sin θ

∂
∂φ

∂(Φ−Ψ)
∂t

0

TEM Magnetic Field

B̂θ B̂φ B̂r

1
r sin θ

∂
∂φ

∂(Φ−Ψ)
∂r

−1
r
∂
∂θ

∂(Φ−Ψ)
∂r

0

TEM Source

Ĵθ Ĵφ Ĵr ρ
1
r
∂I
∂θ

1
r2

1
r sin θ

∂I
∂φ

1
r2

∂J
∂r

1
r2

−∂J
∂t

1
r2

Table 6.9: The TEM system: All components of any TEM e.m. field ( ~E, ~B) are
derived from a single master scalar function, the difference Ψ − Φ between the two
scalar functions. Even though both, separately, are necessary for the definition of the
TEM vector potential ( ~A, φ), it is only their difference which is determined by an
inhomogeneous Poisson equation and an inhomogeneous wave equation, Eqs.(6.107)
and (6.108).

of the above recipe. It is, however, taken into account by the explicit calculations
that lead to Eqs.(6.101)-(6.108).

Exercise 6.2.2 (Existence and Uniqueness of the 2+2 Decomposition)
a) Exhibit the partial differential equation which each of the scalars Φ, · · · ,ΦTM satis-

fies, point out why each solution is unique and hence why

[φ,Az, Ax, Ay]
T ↔ (Φ,ΦTE ,Ψ,ΦTM ) (6.110)

is a one-to-one mapping.

Solution: Given [φ,Az, Ax, Ay]
T , one has the following system of equations for the
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scalars Φ and ΦTE ,

∂Φ

∂x
+
∂ΦTE

∂y
= Ax (6.111)

∂Φ

∂y
− ∂ΦTE

∂x
= Ay . (6.112)

Taking the two-dimensional curl and divergence of this system, one finds

∂2ΦTE

∂x2
+
∂2ΦTE

∂y2
=
∂Ax
∂y
− ∂Ay

∂x
(6.113)

∂2Φ

∂x2
+
∂2Φ

∂y2
=
∂Ax
∂x

+
∂Ay
∂y

. (6.114)

With appropriate boundary conditions in the x-y plane, these 2-d Poisson equations
have unique scalar solutions ΦTE and Φ. Similarly one obtains

∂2ΦTM

∂t2
− ∂2ΦTM

∂z2
=
∂Az
∂t

+
∂φ

∂z
(6.115)

∂2Ψ

∂z2
− ∂2Ψ

∂t2
=
∂Az
∂z

+
∂φ

∂t
. (6.116)

(6.117)

With appropriate initial conditions in the z-t plane, these inhomogeneous 2-d wave
equations have unique scalar solutions ΦTM and Ψ.

On the other hand, given the four scalar fields, Eq.(6.64) implies the unique four-
vector field (φ, ~A). Thus Eq.(6.110) is a one-to-one mapping indeed.

b) Point out why the four vectors













0
0
∂y
−∂x






,







−∂z
∂t
0
0






,







−∂t
∂z
0
0






,







0
0
∂x
∂y













(6.118)

form a linearly independent set, i.e. why the only solution to







0
0
∂y
−∂x






ΦTE +







−∂z
∂t
0
0






ΦTM +







−∂t
∂z
0
0






Φ+







0
0
∂x
∂y






Ψ =







0
0
0
0







(6.119)

is the trivial one, ΦTE = ΦTM = Φ = Ψ ≡ 0 .
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c) Show that the set of vectors







~V(1) =







0
0
∂y
−∂x






, ~V(2) =







−∂z
∂t
0
0






, ~V(3) =







∂tc
−∂zc
∂xd
∂yd






, ~Ur =







−∂t
∂z
∂x
∂y













,

(6.120)
where

c = ∂2x + ∂2y (6.121)

and

d = ∂2z − ∂2t , (6.122)

also forms a linearly independent set.

Exercise 6.2.3 (TE SCALAR WAVE EQUATION: ITS MAXWELL ORIGIN)
Consider a TE e.m. potential and its source,

[φ,Az, Ax, Ay] = [0, 0, ∂yΦ
TE ,−∂xΦTE ] (6.123)

[ρ, Jz, Jx, Jy] = [0, 0, ∂yS
TE ,−∂xSTE ] . (6.124)

a) Which two of the Maxwell field equations

∇ · ~E = 4πρ

∇× ~B − ∂t ~E = 4π ~J

are satisfied trivially (0 = 0), and which imply the nontrivial result

∂

∂y
{· · · }TE = 0

∂

∂x
{· · · }TE = 0 ?

b) What is {· · · }TE?

Solution.

a) Introducing the ~E-field, the ~B-field, and the charge flux-density ( ~J, ρ) into Eqs.(6.42)
and (6.43) yields the following results:

∇ · ~E = 4πρ : 0 = 0

(∇× ~B)z −
∂Ez
∂t

= 4πJz: 0 = 0
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(∇× ~B)x −
∂Ex
∂t

= 4πJx :

∂

∂y
(−)

(
∂2ΦTE

∂x2
+
∂2ΦTE

∂y2

)

− ∂

∂z

(
∂

∂y

∂ΦTE

∂z

)

− ∂

∂t

(
∂

∂y
(−)∂Φ

TE

∂t

)

= 4π
∂STE

∂y

or equivalently

∂

∂y

{
(∂2x + ∂2y + ∂2z − ∂2t )ΦTE + 4πSTE

}
= 0 . (6.125)

Similarly, and finally,

(∇× ~B)y −
∂Ey
∂t

= 4πJy

yields
∂

∂x

{
(∂2x + ∂2y + ∂2z − ∂2t )ΦTE + 4πSTE

}
= 0. (6.126)

b) {· · · }TE ≡
(
∂2x + ∂2y + ∂2z − ∂2t

)
ΦTE + 4πSTE .

Exercise 6.2.4 (TM SCALAR WAVE EQUATION: ITS MAXWELL ORIGIN)
Consider a TM e.m. potential and its source,

[φ,Az, Ax, Ay] = [0, 0, ∂yΦ
TM ,−∂xΦTM ] (6.127)

[ρ, Jz, Jx, Jy] = [0, 0, ∂yS
TM ,−∂xSTM ] . (6.128)

a) Which two of the Maxwell field equations

∇ · ~E = 4πρ

∇× ~B − ∂t ~E = 4π ~J

are satisfied trivially (0 = 0), and which imply the nontrivial result

∂

∂z
{· · · }TM = 0

∂

∂t
{· · · }TM = 0 ?

b) What is {· · · }TM?

Solution.

a) Introducing the ~E-field, the ~B-field, and the charge flux-density ( ~J, ρ) into Eqs.(6.42)
and (6.43) yields the following result:

∇ · ~E = 4πρ :
∂

∂z

{
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− ∂2

∂t2

}

ΦTM = −4π∂S
TM

∂z
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or equivalently

∂

∂z

{
(∂2x + ∂2y + ∂2z − ∂2t )ΦTM + 4πSTM

}
= 0 . (6.129)

(∇× ~B)x −
∂Ex
∂t

= 4πJx: 0 = 0

(∇× ~B)y −
∂Ey
∂t

= 4πJy : 0 = 0

(∇× ~B)z −
∂Ez
∂t

= 4πJz :

∂

∂x
(−)∂

2ΦTM

∂x ∂t
− ∂

∂y

∂2ΦTM

∂y ∂t

− ∂

∂t

(
∂2

∂z2
− ∂2

∂t2

)

ΦTM = 4π
∂STM

∂t

or equivalently

∂

∂t

{
(∂2x + ∂2y + ∂2z − ∂2t )ΦTM + 4πSTM

}
= 0 . (6.130)

b) {· · · }TM ≡
(
∂2x + ∂2y + ∂2z − ∂2t

)
ΦTM + 4πSTM .

Exercise 6.2.5 (TEM SCALAR WAVE EQUATIONS: THEIR MAXWELL ORIGIN)
Consider a TEM e.m. potential and its source,

[φ,Az, Ax, Ay] = [−∂tΦ, ∂zΦ, ∂xΨ, ∂yΨ] (6.131)

[ρ, Jz, Jx, Jy] = [−∂tJ, ∂zJ, ∂xI, ∂yI] . (6.132)

a) Which two of the Maxwell field equations

∇ · ~E = 4πρ

∇× ~B − ∂t ~E = 4π ~J

imply

∂

∂t
{· · · }TEM = 0

∂

∂z
{· · · }TEM = 0 ,

and which two imply

∂

∂x
[· · · ]TEM = 0

∂

∂y
[· · · ]TEM = 0 ?
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b) What is {· · · }TEM? What is [· · · ]TEM?

Solution.

a) Introducing the ~E-field, the ~B-field, and the charge flux-density ( ~J, ρ) into Eqs.(6.42)
and (6.43) yields the following result:

∇ · ~E = 4πρ :
∂

∂t

(
∂2

∂x2
+

∂2

∂y2

)

(Φ−Ψ) = 4π(−)∂J
∂t

(6.133)

(∇× ~B)z −
∂Ez
∂t

= 4πJz : −
∂

∂z

(
∂2

∂x2
+

∂2

∂y2

)

(Φ−Ψ) = 4π
∂J

∂z
(6.134)

(∇× ~B)x −
∂Ex
∂t

= 4πJx :
∂

∂x

(
∂2

∂z2
− ∂2

∂t2

)

(Φ−Ψ) = 4π
∂I

∂x
(6.135)

(∇× ~B)y −
∂Ey
∂t

= 4πJy :
∂

∂y

(
∂2

∂z2
− ∂2

∂t2

)

(Φ−Ψ) = 4π
∂I

∂y
(6.136)

b) {· · · }TEM ≡
(
∂2x + ∂2y

)
(Φ−Ψ) + 4πJ ;

[· · · ]TEM ≡
(
∂2z − ∂2t

)
(Φ−Ψ)− 4πI.

Exercise 6.2.6 (TE, TM, AND TEM SCALAR WAVE EQUATIONS)
Point out why the previous three exercises imply

(
∂2x + ∂2y + ∂2z − ∂2t

)
ΦTE = −4πSTE (6.137)

(
∂2x + ∂2y + ∂2z − ∂2t

)
ΦTM = −4πSTM (6.138)

and

(∂2x + ∂2y)(Φ−Ψ) = −4πJ (6.139)

(∂2z − ∂2t )(Φ−Ψ) = +4πI . (6.140)

Exercise 6.2.7 (TEM MASTER SCALAR SYSTEM IS INTEGRABLE)
Show that if I and J satisfy Eq.(6.68) then there exists a scalar, call it Φ − Ψ, such that
Eqs.(6.139) and (6.140) are satisfied.
Hint: Use Green’s function.

Exercise 6.2.8 (MAGNETIC DIPOLE MOMENT AS A TE FIELD SOURCE)
The total energy of a charge flux and charge density distribution ( ~J, ρ) interacting with

the electromagnetic potential ( ~A, φ) is

W =
1

2

∫ ∫ ∫

( ~J · ~A+ ρφ)d3x .

(Nota bene: This energy is the work which an external agent expends to assemble such
a distribution against the quasistatic electric and magnetic force fields generated by the
distribution at any moment of time.)
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a) Show that for the Transverse Electric vector potential in Eq.(6.76), this energy is

W =
1

2

∫ ∫ ∫

STEBzd
3x .

Comment. If one assumes that the TE source density STE is localized to such a small
region that the magnetic field Bz is constant across it, then

W =
1

2
BzM .

Here

M =

∫ ∫ ∫

STEd3x

is called the magnetic dipole moment along the z-axis, and STE is the magnetic moment

density, also known as the magnetization along the z-direction.
b) Let

θ(x) =

{
1 0 ≤ x
0 x < 0

(6.141)

be the Heaviside unit step function so that

dθ

dx
= δ(x)

is the Dirac delta function.
Consider a charge flux distribution confined to the boundary of a rectangular cylinder,

Jx =+ J(z, t)θ(x)θ(L1 − x) [δ(y)θ(L2 − y)− θ(y)δ(L2 − y)]
Jy =− J(z, t)θ(y)θ(L2 − y) [δ(x)θ(L1 − x)− θ(x)δ(L1 − x)]
Jz =0

ρ =0 .

x

y

z

I(t)

I(t)

I(t)

I(t)

L1

L2
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Figure 6.5: Current distributed in the form of a rectangular loop of aerea L1L2. This
loop has linear current density J(z, t) = I(t) δ(z).

(i) Show that it satisfies the conservation law, Eq.(6.53).

(ii) Find the magnetic dipole density STE .

Answer: STE = J(z, t) θ(x)θ(L1 − x)θ(y)θ(L2 − y).

(iii) Point out why the magnetic moment is

M = I ×Area

where Area = L1L2 and

I(t) =

∫

J(z, t) dz

is the current circulating around the rectangular boundary. The linear current den-
sity exemplified in Figure 6.5 has the form J(z, t) = I(t) δ(z).

Exercise 6.2.9 (ELECTRIC DIPOLE AS A SOURCE OF TM RADIATION)
Consider the rate at which a given external agent does work on two charges q1 and q2 in
order to keep them on their symmetrically placed trajectories

~X(t) = (0, 0, Z(t)) (6.142)

and

− ~X(t) = (0, 0,−Z(t)) . (6.143)

Given that they move in an environment having an electric field ~E(x, y, z, t), the power
expended by this agent is

d(Energy)

dt
= q2

d ~X(t)

dt
· ~E(0, 0, Z(t), t)− q1

d ~X(t)

dt
· ~E(0, 0,−Z(t), t) (6.144)

=

∫ ∫ ∫

~J(x, y, z, t) · ~E(x, y, z, t) d3x (6.145)

where

~J(x, y, z, t) = δ(x)δ(y)

[

q2 δ (z − Z(t))
d ~X

dt
− q1 δ (z + Z(t))

d ~X

dt

]

. (6.146)

is the total charge flux vector due to these two charges.
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q1 q2

z = Z(t)z = − Z(t)

z

t

Figure 6.6: Spacetime trajectories of two charges, q1 = −q and q2 = q, sym-
metrically placed and moving into opposite directions.Their dipole moment is
q × (separation) = 2qZ(t).

a) Taking advantage of linear superposition, find the charge flux-density four-vector
(Jx, Jy, Jz, ρ) such that it expresses the conservation of charge,

~∇ · ~J +
∂ρ

∂t
= 0

Answer: Jx = 0

Jy = 0

Jz = q2
dZ(t)

dt
δ(x)δ(y)δ(z − Z(t))− q1

dZ(t)

dt
δ(x)δ(y)δ(z + Z(t))

ρ = q2 δ(x)δ(y)δ(z − Z(t)) + q1 δ(x)δ(y)δ(z + Z(t))

Note: Even though we shall (in compliance with physical observations) ulti-
mately set

q2 = −q1 ≡ q , (6.147)

it is somewhat easier to keep track of distinguishing contributions to the charge
flux vector ~J by assigning correspondingly distinguishing labels to them.

b) Show that there exists a function STM such that

Jz =
∂STM

∂t
, ρ = −∂S

TM

∂z
.
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Do this by expressing the answer in terms of the Heaviside unit step function θ,
Eq.(6.141), on page 483.

Answer: STM = −δ(x)δ(y) [q2 θ (z − Z(t)) + q1 θ (z + Z(t))]

c) In compliance with the observation of many cases of interest, assume that the frac-
tional temporal rate of change of Ez is neglegibly small compared to that of Z(t):

1

Ez

∂Ez
∂t
≪ 1

Z

∂Z

∂t
=

1

STM
∂STM

∂t

In light of this observation, point out why the power expended by the external agent,
Eq.(6.145), can be written as

d(Energy)

dt
=

d

dt

∫ ∫ ∫

STMEz d
3x . (6.148)

d) Designating
∫ ∫ ∫

STMEz d
3x as the energy of the (q1, q2)-system, exhibit

(i) its form whenever q2 = −q1 ≡ q, Eq.(6.147), as well as
(ii) its explicit value when in addition Ez is constant on [−Z,Z], the support of

STM , i.e.

∂Ez
∂z
|Z(t)| ≪ Ez . (6.149)

Answer:

(i)
∫ ∫ ∫

STMEz d
3x =

∫ ∫ ∫
(−)δ(x)δ(y)q [θ (z − Z(t))− θ (z + Z(t))]Ez d

3x

(ii)
[∫ ∫ ∫

STM d3x
]
Ez(0, 0, 0, t0)

where
∫ ∫ ∫

STM d3x = 2Z(t)q is the “dipole moment” of the system.

Comment: The quantity
∫ ∫ ∫

STM d3x is called the dipole moment of the “microscopic”
[as identified by the inequality (6.149)] (q1, q2)-system. The function

STM (x, y, z, t) =
(dipole moment)

(volume)

is called its dipole moment density, and ~Ez(0, 0, 0, t0) is the electric field at the location of
the system.
Comment: If one has an aggregate of such systems, then their total energy is their sum.
Under suitable circumstances it can be approximated by the integral

∫ ∫ ∫

STM (x, y, z, t)Ez(x, y, z, t0) d
3x

(

=

∫ ∫ ∫

~J · ~E d3x
)
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where Ez(x, y, z, t0) refers to the average electric field associated with the microscopic
dipole moment centered around (x, y, z).



488 CHAPTER 6. PARTIAL DIFFERENTIAL EQUATIONS



Bibliography

[1] R. Courant and D. Hilbert. Methoden der Mathematischen Physik, volume II.
Verlag von Julius Springer, Berlin, 1937.

[2] Jon Mathews and R. L. Walker. Mathematical Methods of Physics, chapter 8,
pages 219–226. W.A. Benjamin Co., Inc., New York, 2 edition, 1970.

[3] Philip M. Morse and Herman Feshbach. Methods of Theoretical Physics, volume I,
chapter 6, pages 676–688. McGraw-Hill Book Company, Inc., New York, 1953.

[4] Arnold Sommerfeld. Partial Differential Equations in Physics, volume VI of
LECTURES ON THEORETICAL PHYSICS, chapter II, Sec.19–21, pages 32–
45, 52–54. Academic Press, Inc., New York, 1949.

[5] Gilbert Strang. Linear Algebra and Its Applications, chapter 2.4, pages 90–
101,443. Harcourt Brace Jovanovich, Inc., San Diego, 3 edition, 1986.

489



490 YOU AND YOUR RESEARCH



YOU AND YOUR RESEARCH:

A stroke of genius: striving for greatness in all

you do
by

Richard W. Hamming

Little has been written on managing your own research (and very little on avoiding
other people managing your research); However, your research is much more under
your control than you may realize.

We are concerned with great research here. Work that will get wide recognition,
perhaps even win a Nobel Prize. As most people realize, the average paper is read
by the author, the referee, and perhaps one other person. Classic papers are read
by thousands. We are concerned with research that will matter in the long run and
become more than a footnote in history.

If you are to do important work then you must work on the right problem at the
right time in the right way. Without any one of the three, you may do good work
but you will almost certainly miss real greatness.

Greatness is a matter of style. For example, after learning the elements of paint-
ing, you study under a master. While studying you pay attention what the master
says in discussing your work, but you know if you are to achieve greatness then you
must find your own style. Furthermore, a successful style in one age is not neces-
sarily appropriate for another age. Cubism would not have gone over big during the
realism period.

Similarly, there is no simple formula for doing great science or engineering, I can
only talk around the topic. The topic is important because, so far as we have any
solid evidence, you have but one life to live. Under these circumstances it seems
better to live a life in which you do important things (important in your eyes, of
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course) than to merely live out your life. No sense in frittering away your life on
things that will not even appear in the footnotes.

Choosing the problem

I begin with the choice of problem. Most scientists spend their time working on
problems that even they admit are neither great or are likely to lead to great work;
hence, almost surely, they will not do important work. Note that importance of the
results of a solution does not make the problem important. In all the 30 years I spent
at Bell Telephone Laboratories (before it was broken up) no one to my knowledge
worked on time travel, teleportation, or antigravity. Why? Because they had no
attack on the problem. Thus an important aspect of any problem is that you have a
good attack, a good starting place, some reasonable idea on how to begin.

To illustrate, consider my experience at BTL (Bell Telephone Laboratories). For
the first few years I ate lunch with the mathematicians. I soon found that they
were more interested in fun and games than in serious work, so I shifted to eating
with the physics table. There I stayed for a number of years until the Nobel Prize,
promotions, and offers from other companies removed most of the interesting people.
So I shifted to the corresponding chemistry table, where I had a friend.

At first I asked what were the important problems in chemistry, then what impor-
tant problems they were working on, problems that might lead to important results.
One day I asked, “If what they were working on was not important, and was not
likely to lead to important things, then why were they working on them?” After
that I had to eat with the engineers!

About four months later my friend stopped me in the hall and remarked that my
question had bothered him. He had spent the summer thinking about the important
problems in his area, and while he had not changed his research he thought it was
well worth the effort. I thanked him and kept walking. A few weeks later I noticed
that he was made head of the department. Many years later he became a member of
the National Academy of Engineering. The one person who could hear the question
went on to do important things, and all the others – so far as I know– did not do
anything worth public attention.

There are many right problems, but very few people search carefully for them.
Rather they simply drift along doing what comes to them, following the easiest
path to tomorrow. Great scientists spend a lot of time and effort examining the
important problems in their field. Many have a list of 10 to 20 problems that might
be important if they had a decent attack. As a result, when they notice something
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new that they had not known but seems to be relevant, then they are prepared to
turn to the corresponding problem, work on it and get there first.

Some people work with their doors open in clear view of those who pass by, while
others protect themselves from interruptions. those with the door open get less work
done each day, but those with their door closed tend not to know what to work on,
nor are they apt to hear the clues to the missing piece to one of their “list” problems.
I cannot prove that the open door produces the open mind, or the other way around.
I can only observe the correlation. I suspect that each reinforces the other, that an
open door will more likely lead you to important problems than will a closed door.

Hard work is a trait which most scientists have. Edison said that genius was
99 % perspiration and 1 % inspiration. Newton said that if others worked as hard
as he did then they would get similar results. Hard work is necessary but it is not
sufficient. Most people do not work as hard as they easily could. However, many
who do work hard – work on the wrong problem, at the wrong time, in the wrong
way, and have very little to show for it.

You are all aware that frequently more than one person starts working on the
same problem at about the same time. In biology, both Darwin and Wallace had
the idea of evolution at about the same time. In the area of special relativity, many
people besides Einstein were working on it, including Poincaré. However, Einstein
worked on it in the right way.

The first person to produce definite results generally gets all the credit. Those
who come in second are soon forgotten. Thus working on the problem at the right
time is essential. Einstein tried to find a unified theory, spent most of his later life
working on it, and died in a hospital still working on it with no significant results.
Apparently he attacked the problem too early, or perhaps it was the wrong problem.

There are a pair of errors that are often made when working on what you think
is the right problem at the right time. One is to give up too soon, the other is to
persist and never get any results. The second is quite common. Obviously. if you
start on the wrong problem and refuse to give up, you are automatically condemned
to waste the rest of your life (see Einstein above). Knowing when to persist is not
easy—if you are wrong then you are stubborn; but, you turn out to be right, then
you are strong willed.

I now turn to the major excuse given for not working on important problems.
People are always claiming that success is a matter of luck, but as Pasteur pointed
out, “Luck favors the prepared mind.”

A great deal of direct experience, vicarious experience through the questioning
of others, and reading extensively, convinces me of the truth of this statement. Out-
standing successes are too often done by the same people for it to be a matter of
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random chance.
For example, when I met Feynman at Los Alamos during the WWII, I believed

that he would get a Nobel Prize. His energy, his style, his abilities, all indicated that
he would do many things, and at least one would be important. Einstein, around the
age of 12 or 14, asked himself what a light wave would look like when he went at the
speed of light. He knew that Maxwell’s theory did not support a local, stationary
maximum, but what he ought to see if the current theory was correct. So it is not
surprising that he later developed the special theory of relativity - he had prepared
his mind long before.

Many times a discussion with a person who has done something important will
produce a description of how they were led, almost step by step, to the result. It
is usually based on things they had done, or intensely thought about years ago.
You succeed because you have prepared yourself with the necessary background long
ago, without, of course, knowing then that it would prove to be a necessary step to
success.

Personal traits

These traits are not all essential, but tend to be present in most doers of great things
in science. First, successful people tend to exhibit more activity, energy, than most
people do. They look more places, they work harder, they think longer than less
successful people. Knowledge is much like compound interest - the more you do the
more you can do, and the more opportunities are open for you. Thus, among other
things, it was Feynman’s energy and his constantly trying new things that made one
think he would succeed.

This trait must be coupled with emotional commitment. Perhaps the ablest
mathematician I have watched up close seldom, if ever, seemed to care deeply about
the problem he was working on. He has done a great deal of first class work, but
not of the highest quality. Deep emotional commitment seems to be necessary for
success. The reason is obvious. The emotional commitment keeps you thinking about
the problem morning, noon, and night, and that tends to beat out mere ability.

While I was at Los Alamos after the war, I got to thinking about the famous
Buffon needle problem where you calculate the probability of a needle tossed at
random of crossing one of a series of equally spaced parallel lines. I asked myself
if was essential that the needle be a straight line segment (if I counted multiple
crossings)? No. Need they be equally spaced or is it only the average density of
the lines on the plane? Is it surprising that some years later at Bell Telephone
Laboratories when I was asked by some metallurgists how to measure the amount
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of grain boundary on some microphotographs I simply said, “Count the crossings
of a random line of fixed length on the picture?” I was led to it by the previous,
careful thought about an interesting, and I thought important, result in probability.
The result is not great, but illustrates the mechanism of preparation and emotional
involvement.

The above story also illustrates what I call the “extra mile.” I did more than the
minimum, I looked deeper into the nature of the problem. This constant effort to
understand more than the surface features of a situation obviously prepares you to
see new and slightly different applications of your knowledge. You cannot do many
problems such as the above needle problem before you stumble on an important
application.

Courage is an attribute of those who do great things. Shannon is a good example.
For some time he would come to work at about 10:00 a.m., play chess until about
2:00 p.m. and go home.

The important point is how he played chess. When attacked he seldom, if ever,
defended his position, rather he attacked back. Such a method of playing soon
produces a very interrelated board. He would then pause a bit, think, and advance
his queen saying, “I ain’t ascaired of nothin’.” It took me a while to realize that of
course that is why he was able to prove the existence of good coding methods. Who
but Shannon would think to average over all random codes and expect to find that
the average was close to the ideal? I learned from him to say the same to myself when
stuck, and on some occasions his approach enabled me to get significant results.

Without courage you are unlikely to attack important problems with any per-
sistence, hence not likely to do important things. Courage brings selfconfidence, an
essential feature for doing difficult things. However, it can border on overconfidence
at times, which is more of a hindrance than a help.

There is another trait that took me many years to notice, and that is the ability
to tolerate ambiguity. Most people want to believe what they learn is the truth; there
are a few people who doubt every thing. If you believe too much then you are not
likely to find the essentially new view that transforms a field, and if you doubt too
much you will not be able to do much at all. It is a fine balance between believing
what you learn and at the same time doubting thing things. Great steps forward
usually involve a change of viewpoint to outside the standard ones in the field.

While you are learning things you need to think about them and examine them
from many sides. By connecting them in many ways with what you already know· · · · · · you
can later retrieve them in unusual situations. It took me a long time to realize that
each time I learned something I should put “hooks” on it. This is another face of
the extra effort, the studying more deeply, the going the extra mile, that seems to
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be characteristic of great scientists.

The evidence is overwhelming that steps that transform a field often come from
outsiders. In archeology, carbon dating came from physics. The first airplane was
built by the Wright brothers who were bicycle experts.

Thus, as an expert in your field you face a difficult problem. There is apparently,
an ocean of kooks with their crazy ideas. However, if there is a great step forward it
probably will be made by one of them! If you listen too much to them you will not
get any of your own work done, but if you ignore them then you may miss your great
chance. I have no simple answer except do not dismiss the outsider too abruptly as
is generally done by the insiders.

“Brains” are nice to have, but often the top graduate students do not contribute
as much as some lower rated ones. Brains come in all kinds of flavors. Experimental
physicists do not think in the same way that theoreticians do. Some experimentalists
think with their hands, i.e. playing with equipment lets them think more clearly. It
took me few years to realize that people who did not know a lot of mathematics still
could contribute. Just because they could not solve a quadratic equation immediately
in their head does not mean that I should ignore them. When someone’s flavor of
brains does not match your may be more reason for paying attention to them.

Vision

You need a vision of who you are and where your field is going. A suitable parable is
that of the drunken sailor. He staggers one way and then the other with independent
random steps. In n steps he will be, on the average, about

√
n steps away from

where he started. But if there is a pretty girl in one direction he will get a distance
proportional to n. The difference, over a life time of choices, between

√
n and n

is very large and represents the difference between having no vision and having a
vision. The particular vision you have is less important than just having one –there
are many paths to success. Therefore it is wise to have a vision of what you may
become, of where you want to go, as well as how to get there. No vision, not much
chance of doing great work; with a vision you have good chance.

Another topic I must discuss is that of age. Historically, the greatest contributions
of mathematicians, theoretical physicists, and astrophysicists are done when they are
young. On the other hand, apparently in music composition, politics, and literature,
the later works are most valued by society. Other area seem to fall in between these
two extremes, and you need to realize that in some areas you had better get going
promptly.
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People often complain about the working conditions they have to put up with,
but it is easily observed that some of the greatest work was done under unfavorable
conditions. What most people believe is the best working conditions for them, is
seldom, if ever, true. In my opinion the Institute for Advanced Study in Princeton
has ruined more good people than it has helped. You only have to judge their work
before they were appointed and afterwards to come to this conclusion. There are
exceptions, to be sure, but on the average the ideal working conditions seem to
sterilize people.

Another obvious trait of great people is that they do their work in such a fashion
that others can build on top of it. Newton said, “If I have seen farther than others
it is because I stood on the shoulders of giants.” Too many people seem not to want
others to build on top of their work but they rather want to hoard it to themselves.
Don’t do things in such a fashion that next time it must be repeated by you, or by
others, but rather in a way that represents a significant step forward.

Selling

I must now take up the unpleasant topic of selling your ideas. Too many scientists
think that this is beneath them, that the world is waiting for their results. In truth,
the other researchers are busy with their own work. You must present your results
so that they will stop their own work and listen to you. Presentation comes in
three forms: published papers, prepared talks, and impromptu situations. You must
master all three forms.

Lots of good work has been lost because of poor presentation only to be rediscov-
ered later by others. There is a real danger that you will not get credit for what you
have done. I know of all too many times when the discoverer could not be bothered
to present things clearly, and hence his or her work was of no importance to society.

Finally, I must address the question of whether greatness is worth the large effort
it requires. Those who have done really great things generally report, privately, that
it is better than wine, the opposite sex, and song put together. The realization that
you have done it is overwhelming.

Of course, I have consulted only those who did great things, and have not dared
to ask those who did not. Perhaps they would reply differently. But as is often said,
it is the in struggle and not the success that real gain appears. In striving to do great
things, you change yourself into a better person, so they claim. The actual success
is of less importance, so they say. And I tend to believe this theory.

No one ever told me the kind of things I have just related to you; I had to find
them out for myself. Since I now have told you how to succeed, you have no excuse
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for not trying and doing great work in your chosen field.
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for a first order operator, 234
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for a second order operator, 238

adjoint boundary value problem in 2 di-
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adjoint eigenvalue problem, 246
adjoint of an operator, 230, 246, 443
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Argand diagram, 364
Argand plane, 364
Aristotle, i
asymptotic limit, 356
auto correlation function, 154, 156
Ayn Rand, 397

Banach space, 74–79
basis

optimal, 198
beauty of mathematics, iii
Bessel function

of order zero, 449
Bessel functions

of complex order, 343
modified of the first kind, 344

modified of the second kind, 343
orthonormalized, 34

Bessel’s inequality, 85
bilinear concomitant, 234, 237

vectorial, 444
Bloch’s theorem, 114
Born approximation, 279
Born series, 280
boundary conditions

Cauchy
in two dimentions, 434

compatibility between, 234, 238
Dirichlet
in one dimension, 7
in two dimentions, 434

homogeneous, 14–16
in two dimensions, 433–434
mixed Dirichlet and Neuman, 7
mixed Dirichlet and Neumann, 253
Neumann
in one dimension, 7
in two dimentions, 434

periodic, 7
phase formulation of, 50–51
three important types of, 434

boundary value problem
for a cavity, 369–373
exterior, 278, 356–367
via Green’s function, 277
homogeneous, 7
inhomogeneous, 259

499



500 INDEX

via integral equation, 277
interior, 281
interior and finite, 369–373
interior and infinite, 373–375

branch cut, 293–295
coalescence of poles, 304
integration around, 306

branch of a function, 293–295

Cauchy completeness, 74–79
Cauchy completion

of an inner product spacef, 79
of a normed linear space, 79

Cauchy conditions, see initial value con-
ditions

Cauchy criterion, 73
Cauchy data, see iitial value data1
Cauchy incomplete, 75
Cauchy sequence, 73–74
Cauchy-Schwarz inequality, 66
cause and effect, 230
central approximation space, 200, 211, 212
central space, see central approximation

space
characteristic coordinates, 438
characteristics

discontinuity across, 440
characteristics of a hyperbolic equation,

439
Chebyshev distance, 70
chirped signals, 195
collimated beam, 355, 356
commuting operators

complete set of, 314, 318–319, 413
compatibility condition between bound-

ary conditions, 234, 238
complete metric space, 72–79
complete set, 93

complete set of commuting operators, 318–
319

complete set of orthonormal functions, 93
completeness, 275

criterion for, 272
completeness of a set of S-L eigenfunc-

tions, 58–62, 275
completeness relation, 109, 178, 185, 277
completeness via Green’s function, 272,

275
Completion of a matric space, 77
complexity of mathematics, iii
conjunct, 234, 237
convolution, 160

applied to a translation invariant sys-
tem, 244

coordinate realization of a Hilbert space,
82

coordinatization of a Hilbert space, 82
critical frequency, 375
cross correlation function, 155
cross section

scattering, 367
cylinder harmonic, 353, 354

as a superposition of plane waves, 326,
332

cylinder waves, see cylinder harmonics
cylindrical cavity

wave equation for a, 369–373

David Harriman, ii, 230
degenerate eigenvalue, 313, 317
degrees of freedom, 26
differential equation

key principle for solving, 9
for Prüfer’s phase, 42
for Prüfer’s amplitude, 43
qualitative behaviour of its solutions,

45–49
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second solution to, 31
differential scattering cross section, 368
dipole

field, 421
moment, 421

Dirac delta function, 140–143
Dirichelet basis, 126
Dirichelet kernel of half-integral order, 117
Dirichelet kernel of integral order, 117
Dirichlet kernel, 115

its basic properties, 119
distance

Chebyshev, 70
Hamming, 70
Pythagorean, 69

distance function, 69–71
domain of dependence, 442
doubly degenerate eigenvalues, 29
dual basis, 124
Duality Principle, 124
duality relationship, 125

effectiveness of mathematics, i
eigenfunctions

via an integral equation, 283
even and odd, 32
normalization of, 33
unique, 32
uniqueness of, 29

eigenvalues
discrete and unbounded sequence of,

56–57
doubly degenerate, 29
nondegenerate, 32
simple, 29

Euclidean plane
Helmholtz equation in the, 315–331
rotations in the, 320–324
symmetry transformations of the, 320

translations in the, 320–324
evanescent wave, 375
exterior boundary value problem, 278

factorization method
applied to Laplacian on a two-sphere,

407–409
applied to Laplacian on the Euclidean

plane, 349–350
for solving Helmholtz’s equation on a

two-sphere, 407–409
for solving Helmholtz’s equation on

the Euclidean plane, 349–352
father wavelet, see scaling function
filter function, 244
first Born approximation, 279
Floquet’s theorem, 114
formal adjoint of an operator, 235
Fourier integral, 143–172
Fourier integral theorem, 146
Fourier series, 127
Fourier series representation theorem, 129
Fourier series theorem, 129
Fourier sine theorem, 308
Fourier theory, 113–226
Fourier transform

basic properties of, 160
via convolution, 160
eigenfunctions of the, 33
eigenvalues of the, 152
of generalized functions, 156
as an isomorphism, 151
of light from a mode-locked laser, 164
of an optical pulse train, 169, 171
via Parceval’s relation, 156–159
of a periodic function, 158
of a periodic train of Gaussians, 161
its robustness, 156
of a ticking clock, 157
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and tranlation invariance, 143
and translation invariant systems, 244
as a unitary transformation in L2(−∞,∞),

151
windowed, 108

Fourier-Bessel series, 35
Fraunhofer approximation, 121, 122
Fraunhofer-Kirchhoff theorem, 122
Fredholm alternative, 252
Fresnel approximation, 122
Fundamental theorem for Green’s func-

tions, 250

Gaussians
periodic train of, 161

generating functions, 353
Gibbs’ phenomenon, 135
Green’s function

acausal, 259
adjoint of a, 238–243
advanced, 259
for the Bessel operator, 247
causal, 259
construction of, 253–257, 273
continuity condition for the 1-dimensional,

248
for a vibrating string, 273
formula for a, 255
fundamental theorem for a, 250
for general homogeneous boundary con-

ditions, 257
initial conditions for, 258
jump condition for the 1-dimensional,

248
pictorial definition, 244–248
poles of a, 270
properties and utility, 249–253
reciprocity relation, 242
retarded, 259

self-adjoint, 242
spectral representation, 262–277
spectrum via, 274
for a static string, 256
for a translation invariant system, 243
uniqueness of, 251

Green’s function problem, 2
Green’s function theory, 229–310
Green’s identity

adapted to a given differential opera-
tor in 2 dimensions, 444

in one dimension, 26
in three dimension, 26

Hamming distance, 70
Hankel functions

applications of, 356–375
properties of, 331–356, 378–386

harmonic
cylinder, 353, 354

Harriman, David, ii, 230
heat conduction in 1 dimension

temperature profile for, 15
Helmholtz equation, 315–331

solution to, in three dimensions, 121
in three dimensions, 120

Hermite-Gauss polynomials, 32
Hermitian adjoint, 230
Hermitian operator, 232
Hilbert space, 74–79

coordinatization, 82
of square integrable functions, 81
of square summable sequences, 81

hyperbolic differential equation, 438–451
integration via Riemann’s method, 442–

446

induction in physics, 230
inductive reasoning, ii
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infinite dimensional vector spaces, 65–109
infinite string, 297–299

as the limit of a finite string, 300–303
initial value conditions, 434
initial value data, 434, 440, 447
initial value problem, 447
inner product norm, 68
inner product space, 66
integral equation, 279

eigenfunctions via, 283
integral equations, 277–287

of the first kind, 284
Fredholm –, 284
of the second kind, 284
types of, 284–287
Volterra –, 284

interior boundary value problem, 281
invariant subspace, 319
inverse of a function, 47
inversion ymmetry, 345
isometric transformation, 106
isometry, 106, 151
isomorphic Hilbert spaces, 103–106
isomorphism, 106

Klein-Gordon wave equation, 447

Lagrange’s identity, 26, 30, 36, 444
extension to two-dimensional domain,

444
laser

mode-locked, 164
phase-locked, 166

law of causality, 230
least squares approximation, 85, 118
Legendre polynomials

orthogonality of, 35
Legendre’s equation, 417, 424

its relation to Bessel’s equation, 424

“light bullets”, 166
linear algebra

archetypical problems, 1
logic

father of, i
lowering operator, 349, 411

magnetic dipole moment, 483
magnetic moment density, 483
magnetization, see magnetic moment den-

sity
Mallat, Stephane G., 134, 218
matched filter, 155
mathematics, i

as inductive, ii
as neither intrinsic nor subjective, i
basis of, i
beauty of, iii
definition of, i
effectiveness of, i
its complexity, iii
nature of, i–iii
power of, i
the language of, 230
theoretical vs. “pure”, iii

mathematization
definition of, 230

Maxwell’s equations, 452
how to solve them, 451–468
in cylindrical coordinates, 466–468

mean frequency, 176
mean position, 176
mean squared error, 86
Mean Value Theorem, 48
method of

separation of variables, 370
steepest descent and stationary phase,

387–396
metric space, 71–72
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complete, 72–79
definition of, 71
metric of, 71

mode-locked laser, 164
Modified Bessel Functions, 343–344

of complex order, 343, 344
moment

dipole, 421
monopole, 421
quadrupole, 421

monopole
field, 421
moment, 421

mother wavelet, 194
MRA, see multiresolution analysis
MSA, see multiscale analysis
MSA vs MRA, 214
multiple scattering, 280
multipole

field, 421
moment, 421

multipole field, 420–421
multiresolution analysis, 195, 211, 214
multiscale analysis, 211, 214

nondegenerate eigenvalues, 32, 33
nonessential properties, see essential prop-

erties
normal forms

three types of, 437
normal mode

energy residing in each, 26
spatial amplitude profile for, 13

normed linear spaces, 67
null coordinates, see characteristic coor-

dinates

onto, 99
optical oscillations, 168

optical pulse train, 164
Fourier transform of, 169, 171

optical theorem, 368
optimal basis, 198
orthogonal eigenfunctions

definition, 19
orthonormal wave packets, 172–188

definition and properties, 175–183
frequency spread, 176
general construction, 173–175
mean frequency, 176
mean position, 176
phase space representation, 183–188
sifting property, 176
temporal spread, 176

orthonormal wavelet representation, 189–
195

orthonormal wavelets
construction and properties, 190–195

orthonormality, 19
as an expression of energy conserva-

tion in each normal mode, 26
oscillation theorem, 52–56
outgoing

wave, 357

parity operator, 32
Parseval’s identity, 91
Parseval’s relation, 91, 109
partial differential equations, 432–451

classification of, 437
three types of, 432, 437

partial Fourier sum, 127
partial wave scattering amplitude, 368
partial waves, 358
periodic function

as a convolution, 162
Fourier transform of, 158

phase analysis, 38–57
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phase shift, 368
scattering, 363

phase space
partitioning of, 184, 201, 205, 206

phase space cells, 184
phase space representation, 183–188
phase-coherent pulses, 166
the physical world as perfect, 230
Plancherel’s theorem, 149
plane wave

as a superposition of cylinder waves,
352–356

Platonic error, ii
Poincaré phase plane, 40, 41
point transformations, 321
Poisson’s equation, 244
Poisson’s summation formula, 131, 134

alternate form of, 134
positive definite, 66
power of mathematics, i
Prüfer

amplitude, 43
phase, 42
substitution, 40
system, 39–49

preimage of an element, 99
principle of unit-economy, 429
principle of unit-economy, 198, 207
“pure” mathematics as an invalid notion,

ii
pyramid algorithm, 216–218
Pythagorean distance, 69

quadrupole
field, 421
moment, 421

raising operator, 349, 411
Rand, Ayn, 397

Rayleigh quotient, 59
reciprocity relation, 242
reconstruction problem, 125
regular S-L problem, 20, 37
resolution analysis, see also wavelet anal-

ysis, 203
resolution spaces, 202
resolvent, 262

of an operator, 262
retarded time, 440
Riemann sheets, 293–295
Riemann’s method for integrating a hy-

perbolic equation, 442–446
Riemann’s representation of a solution to

a hyperbolic equation, 446
Riemann-Lebesgue lemma, 129, 130, 148
Riesz basis, 200, 212
rotation eigenfunction, 326
rotation generator, 324
rotation operator, 324

scaling equation, 219
scaling function, 200, 203, 219
scattered wave, 358
scatterin

cross section, 368
scattering

multiple, 280
phase shift, 363

scattering amplitude
full, 360

scattering cross section, 367
differential, 368
partial , 368
total, 368

scattering matrix, 363
scattering phase shift, 368
scattering problem, 356–367
scattering process, 280
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self-adjoint, 232
Green’s function, 242
operator, 236

separation of variables, 370
Shannon basis, 201, 202
Shannon’s sampling functions, 108
sifting property, 124
simple string, 244
sinc function, 188
singular S-L problem, 20, 37
special function theory, 313–425
spectral representation

of a Green’s function, 262–277
of the identity, 93, 263
of a Green’s function, 270
of the Dirac delta function, 304
of an operator, 263
of a resolvent, 263

Spectrum via Green’s function, 274
spherical harmonics, 407–419

addition theorem for, 422–424
their relation to cylinder harmonics,

424–425
spherically symmetric solutions, 406–407
spherically symmetric systems, wave equa-

tion for, 404–406
square integrability, 295–297
square integrable functions, 81
square summable sequence, 81
steepest descent and stationary phase, the

method of, 387–396
string

imbedded in an elastic medium, 12,
447

static, 256
with free ends, 273–277

Sturm’s comparison theorem, 35–38
Sturm-Liouville

differential equation, 11–14
eigenvalue problem, 18–38
periodic, 21, 27
reality of its eigenvalues, 28
regular, 20, 27
singular, 20, 27
unique solution to, 32
uniqueness theorem for eigenfunc-
tions, 29

systems, 11–38
completeness of their sets of eigen-
functions, 58–62

meaning of, 19
phase analysis of, 49–57

theory, 5–62
symmetries

of the Helmholtz equation, 324

TE field, 466
TE mode, see TE field
TEM field, 467
TEM mode, see TEM field
time, definition of, 44
TM field, 466
TM mode, see TM field
total scattering cross section, 368
transfer function, 244
translation eigenfunction, 324
translation generator, 323, 324
translation invariant

function space, 213
systems, 243

translation operator, 323
transverse electric magnetic mode, see TEM

field
transverse electric mode, see TE field
transverse magnetic mode, see TM field
triangle inequality, 67, 71
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unit impulse response, see Green’s func-
tion

unit-economy, 207
principle of, 198, 207, 429

unitary transformation between Hilbert
spaces, 107, 175

vibrating string
simple, 9

vibrating cable, 12
vibrating string

equation, 12, 21
kinetic energy of, 25
normal mode for, 12
potential energy of, 25
total energy of, 25, 26

vibrational degree of freedom
energy in each, 26

vibrations in 1 dimensions
amplitude profile of, 15

wave equation, 12, 21
for a cylindrical cavity, 369–373
for an imbedded string, 447
Klein-Gordon, 447
spherically symmetric solutions to, 406–

407
for spherically symmetric systems, 404–

406
static solutions to, 419–421

wave packet expansion coefficient, 180, 185
wavelet

analysis, 222–226
generation theorem, 223

wavelet representation, 189
construction and properties, 190

wavepacket representation theorem, 184
Wheeler’s motto, vi
Wheeler, John A., vi

Whittaker-Shannon sampling theorem
finite interval version, 126
infinite interval version, 182

Wiener-Khintchine formula, 155
Wronskian, 27, 30
Wronskian determinant, 30

zeros of a solution, 45
are isolated, 46


