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The derivatives of ¥ turn out to be just as required by the Cauchy-
Riemann conditions dz/du = dy/dv, ete. It is also possible now to
evaluate

de_ 0w oy oz _ 0w _ 1 _ 1
df ~ du du " du_ ‘3 (Gu/ox) — i(9u/dy) _ dfjdz

proving the final statement of the thcorem. We shall devote a con-
siderable portion of the chapter later to develop the subject of conformal
representation further, for it is very useful in application.

Integration in the Complex Plane. The theory of integration in the
complex plane is just the theory of the line integral. If C is a possible
contour (to be discussed below), then from the analysis of page 354
[see material above Eq. (4.1.12)] it follows that

chdz= L,Egds+ich,.ds; ds = |dz|

where E; is the component of the vector E along the path of integration
while E, is the normal component. Integrals of this kind appear fre-
quently in physics. For example, if E is any force ficld, then the integral

E. ds is just the work done against the force field in moving along the

contour C. The second integral measures the total flux passing through
the contour. If E were the velocity vector in hydrodynamics, then the
second integral would be just the total fluid current through the contour.

In order for both of these integrals to make physical (and also mathe-
matical) sense, it is necessary for the contour to be sufficiently smooth.
Such a smooth curve is composed of arcs which join on continuously,
each arc having a continuous tangent. This last requirement eliminates
some pathological possibilities, such as a contour sufficiently irrcgular
that is of infinite length, For purposes of convenience, we shall also
insist that each arc have no multiple points, thus eliminating loops.
However, loops may be easily included in the theory, for any contour
containing a loop may be decomposed into a closed contour (the loop)
plus a smooth curve, and the theorem to be derived can be applied to
each. A closed contour is a closed smooth curve. A closed contour is
described in a positive direction with respect to the domain enclosed by
the contour if with respect to some point inside the domain the contour
is traversed in a counterclockwise direction. The negative direction is
then just the clockwise one. Integration along a closed contour will
be symbolized by .

One fairly obvious result we shall use often in our discussions: If
f(2) is an analytic function within and on the contour, and if df/dz is
single-valued in the same region,

F(df/dz) dz = 0

This result is not necessarily true if df/dz is not single-valued.
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Contours involving smooth curves may be combined to form new
contours. Some examples are shown in Figure 4.4. Some of the con-
tours so formed may no longer he smooth. For example, the boundary
b’ is not bounded by a smooth curve (for the inner circle and outer cirgle
are not joined) so that this contour is not composed of ares which join
on continuously. Regions of this type are called multiply connected,
whereas the remaining examples in the figure arc simply connected. To
test for connectivity of a region note that any closed contour drawn
within a simply connected region can he shrunk to a point by continuous
deformation without crossing the bhoundary of the region. In b' a
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Fig. 4.4 Possible alterations in contours in the complex plane.

curve C, intermediate to the two boundary circles cannot be so deformed.
The curve b illustrates the fact that any multiply connected surface
may be made singly connected if the boundary is extended by means
of crosscuts so that it is impossible to draw an irreducible contour.
For example, the intermediate contour C; drawn in b’ would not, if
drawn in b, be entirely within the region as defined by the boundary
lines. The necessity for the discussion of connectivity and its physical
interpretation will become clear shortly.

Having disposed of these gcometric matters, we are now able to
state the central theorem of the theory of functions of a complex variable.

Cauchy’s Theorem. If a function f(z) is an analytic function, con-
tinuous within and on a smooth closed contour C, then

Ff(2)dz =0 (4.2.3)

For a proof of Cauchy’s theorem as stated above, the reader may be
referred to several texts in which the Goursat proof is given. The
simple proof given carlier assumes that f’(2) not only exists at every
point within C but is also continuous therein. It is useful to establish
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the theorem within a minimum number of assumptions about f(z), for
this extends the ease of its applicability. In this section we shall content
ourselves with assuming that C bounds a star-shaped region and that f'(z)
18 bounded everywhere within and on C.

The geometric concept of ““star-shaped” requires some elucidation.
A star-shaped region exists if a point O can-be found such that every
ray from O intersects the bounding curve in precisely one point. A
simple example of such a region is the region bounded by a circle. A
region which is not star-shaped is illustrated by any annular region.
Restricting our proof to a star-shaped region is not a limitation on the
theorem, for any simply connected region may be broken up into a
number of star-shaped regions and the Cauchy theorem applied to each.
This process is illustrated in Fig. 4.4¢ for the case of a semiannular region.
Here the semiannular region is broken up into parts like IT and III, each
of which is star-shaped. The Cauchy theorem may then be applied to
each along the indicated contours so that

9Sfdz+35fdz =0

11 III

However, in the sum of these integrals, the integrals over the parts of
the contour common to III and II cancel out completely so that the
sum of the integrals over I, II, and III just becomes the integral along
the solid lines, the boundary of the semiannular contour.

The proof of the Cauchy theorem may now be given. Take the
point O of the star-shaped region to be the origin. Define F(\) by

FA) = Agf(2)dz; 02K (4.2.4)

The Cauchy theorem is that F(1) = 0. To prove it, we differentiate
F(\):
F'(\) = £f(Az) dz + N F2f'(A2) dz

Integrate the second of these integrals by parts [which is possible only
if f'(z) is bounded]:

F'O) = §10a) dz + {[’f—(;i)] — s $s0) dz}

where the square bracket indicates that we take the difference of values
at beginning and end of the contour of the quantity within the bracket.
Since zf(A\2) is a single-valued function, [2f(Az)/A] vanishes for a closed
contour so that

F'A\) =0 or F(\) = constant

To evaluate the constant, let A = 0 in Eq. (4.2.4), yielding F(0) = 0 =
F = F(\). Therefore F(1) =0, which proves the theorem. This
proof, which appears so simple, in reality just transfers the onus to the
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question as to when an integral can he integrated by parts. The require-
ments, of course, involve just the ones of differentiability, continuity, and
finiteness which characterize analytic functions.

Cauchy’s theorem does not apply to multiply connected regions, for
such regions are not bounded by a smooth contour. The physical reason
for this restriction is easy to find. Recall from the discussion of page 354
that the Cauchy theorem, when applied to the electrostatic field, is
equivalent to the statement that no charge is included within the region
bounded by the contour C. Using Fig. 4.4b’ as an example of a multiply
connected region, we see that contours entirely within the region in
question exist (for example, contour C, in Fig. 4.4b’) to which Cauchy’s

Fig. 4.6 Contours in multiply connected regions.

theorem obviously cannot apply because of the possible presence of
charge outside the region in question, e.g., charge within the smaller
of the two boundary circles. The way to apply Cauchy’s theorem with
certainty would be to subtract the contour integral around the smaller
circle; i.e.,

56 oS = 9gc’fdz =0 (4.2.5)

This may be also shown dircctly by using crosscuts to reduce the multiply
connected domain to a single-connected one.  From Fig. 4.5 we see that a
contour in such a simply connected domain consists of the old contours Cy
and C; (C, described in a positive direction, C, in a negative direction)
plus two additional sections C; and C,. Cauchy’s theorem may be
applied to such a contour. The sections along C; and C, will cancel,
yielding Eq. (4.2.5).

Some Useful Corollaries of Cauchy’s Theorem. From Cauchy’s
theorem it follows that, if f(2) is an analytic function within a region

bounded by closed contour C, then /‘ :’ f(2) dz, along any contour within C

depends only on z; and z,. That is, f(2) has not only a unique derivative
but also a unique integral. The uniqueness requirement is often used as
motivation for a discussion of the Cauchy theorem. To prove this, we

J
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compare the two integrals fc and /;, in Fig. 4.6, where C; and C, are
two different contours starting at z; and going to z,. According to

Cauchy’s theorem ﬁ: 1 f(z) dz — /; f(z) dz = 56 f(2) dz, is zero, proving
the corollary. '

It is a very important practical consequence of this corollary that
one may deform a confour without changing the value of the integral, pro-
vided that the conlour crosscs no singularity of the intcgrand during the
deformation. We shall have many occasions to use this theorem in the
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evaluation of contour integrals, for it thus becomes possible to choose
a most convenient contour.

Because of the uniqueness of the integral /; “ Sfdz it is possible to
define an indefinite inlegral of f(2) by l

F@) = [} 1)z

where the contour is, of course, within the region of analyticity of f(z).
It is an interesting theorem that, if f(z) is analytic in a given region,
then F(z) is also analytic in the same region. Or, conversely, if f(2) is
singular at zo, 50 is F(z). To prove this result, we nced but demonstrate
the uniqueness of the derivative of F(z), which can be shown by consider-
ing the identity

F(z) — F(t) _ [ @) = f()] dz
_;_._—g-— - @) = —L—‘:“I——“—

I%ecause of the continuity and single-valuedness of f(z) the right-hana
side of the above equation may be made as small as desired as z is made
to approach {. Therefore in the limit

. |F@)—-F

lim [ 7= O]

=
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Since the limit on the left is just the derivative F'(¢), the theorem is
proved.

We recall from Eqs. (4.1.19) et seq. that, if f(z) is the conjugate of
the electrostatic field, then the real part of F(z) is the electrostatic
potential while the imaginary part is constant along the electric lines of
force and is therefore the stream function (see page 355). Therefore
the two-dimensional electrostatic potential and the stream function
form the real and imaginary parts of an analytic function of a complex
variable.

Looking back through the proof of Cauchy’s theorem, we sce that we
used only the requirements that f(z) be continuous, one-valued, and that
the integral be unique, with the result that we proved that F(z) was
analytic. We shall later show that, if a function is analytic in a region,
so is its derivative [see Eq. (4.3.1)]. Drawing upon this information in
advance of its proof, we see that, once we have found that FF(z) is analytic,
we also know that f(z) is analytic. This leads to the converse of Cauchy’s
theorem, known as Morera's theorem:

If f(z) is continuous and single-valued within a closed contour C, and
if £f(z) dz = 0 for any closed contour within C, then f(z) is analytic
within C.

This converse serves as a means for the identification of an analytic
function and is thus the integral analogue of the differential requirement
given by the Cauchy-Riemann conditions. Since the latter requires
continuity in the derivative of f, the integral condition may sometimes
be easier to apply. .

The physical interpretation of Morera’s theorem as given by the
electrostatic analogue will strike the physicist as being rather obvious.
It states that, if f(2) is an electrostatic ficld and the net charge within
any closed contour [evaluated with the aid of f(z)] within C is zero, then
the charge density within that region is cverywhere zero.

Cauchy’s Integral Formula. This formula, a direct deduction from
the Cauchy theorem, is the chief tool in the application of the theory of
analytic functions to other branches of mathematics and also to physics.
Its electrostatic analogue is known as Gauss’ theorem, which states that
the integral of the normal component of the electric field about a closed
contour C equals the net charge within the contour. In electrostatics
the proof essentially consists of separating off the field due to sources
outside the contour from the field due to sources inside. The first,
when integrated, must yield zero, while the second may be found by
adding up the .contribution due to each source. Cauchy’s integral
formula applies to the situation in which there is but one source inside C.

Consider the integral

J(a@) = £f(2)/(z — o)) dz (4.2.6)
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around a closed contour C within and on which f(2) is analytic. The
contour for this integral may be deformed into a small circle of radius p
about the point a according to the corollary of Cauchy’s theorem on the
deformation of contours. Thus letting z — a = pe',

J =i [ fe+ pe¥) do = if(@) Jde i [ (f(a + pe®) - fla)] do
4.2.7)

Taking the limit as p — 0, the second integral vanishes because of the
continuity of f(z). The Cauchy integral formula states, therefore, that,
if f(2) 1s analytic inside and on a closed contour C, and if a is a point within
C, then

£lf@)/(z — a)] dz = 2mif(a) (4.2.8)

If a is & point outside of C, then #[f(2)/(z — a)]dz = 0. If aisa point
on C, the integral will have a Cauchy principal value’ equal to =¢f(a) (just
halfway between). The Cauchy principal value corresponds to putting
half of the point source inside C and half outside. To summarize:

1) 1; if a within C
9Smdz = 2rif(a){ 4; if a on C (principal value) (4.2.9)
: 0; if a outside C

Cauchy’s formula is an integral representation of f(z) which permits
us to compute f(2) anywhere in the interior of C, knowing only the value
of f(z) on C. Representations of this kind occur frequently in physics
(particularly in the application of Green’s or source functions) with the
same sort of discontinuity as is expressed by Eq. (4.2.9). Thus if f is
an electrostatic field, Eq. (4.2.8) tells us that the field within C may be
computed in terms of the field along C. Similar theorems occur in the
theory of wave propagation, where they are known collectively as
Huygens’ principle.

Cauchy’s formula provides us with a very powerful tool for the
investigation of the properties of analytic functions. It points up the
strong correlation which exists between the values of an analytic function
all over the complex plane. For example, using Eq. (4.2.7) we see that
f(a) is the-arithmetic average of the values of f on any circle centered at a.
Therefore |f(a)] < M where M is the mazimum value of |f| on the circle.
Equality can occur only if f is constant on the contour, in which case f is
constant within the contour. This theorem may be easily extended to a
region bounded by any contour C.

" 1The Cauchy principal value is defined as follows: Let g(z) — « asz — g, then the
principal value of

. -2
L ® g(z) dz, written @ ﬁ"q(x) ds, & <a < islim { L“ o(@) dz + j; ‘4@ d:c}
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In terms of the electrostatic analogue, the largest values of an electro-
static field within a closed contour occur at the houndary. If f(z) has
no zeros within C, then {1/f(z)] will be an analytic function inside C
and therefore |1/f(z)| will have no maximum within C, taking its maxi-
mum value on C. Therefore |f(z)| will not have a minimum within C but
will have its minimum value on the contour C. The proof and theorem do
not hold if f(z) has zeros within C. The absolute value of an analytic
function can have neither a maximum nor & minimum within the region
of analyticity. If the function assumes either the maximum or minimum
value within C, the function is a constant. Points at which f(z) has a
zero derivative will therefore be saddle points, rather.than true maxima
or minima,

Applying these results to the electrostatic field, we see that the field
will take on both its minimum and maximum values on the boundary
curve.

These theorems apply not only to |f(z)| but also to the real and
imaginary parts of an analytic function and therefore to the electrostatic
potential V. To see this result rewrite Eq. (4.2.7) as

orif(a) = 2mi(u + v) = 1 ﬁ" f(@ + iy) do = 3 ﬁf’ (u + ) do

Equating real parts of the second and fourth expressions in this sequence
of equations one obtains

1 [
u= Zr_/ u do (4.2.10)

s0 that u at the center of the circle is the arithmetic average of the
values of % on the boundary of the circle. We may now use precisely the
same reasoning as was employed in the discussion above for |f(2)| and
conclude that u will take on its minimum and maximum value on the
boundary curve of a region within which f is analytic.

We therefore have the theorem that the electrostatic potential
within a source-free region can have neither & maximum nor a minimum
within that region. This fact has already been established in Chap. 1
(page 7) in the discussion of the Laplace equation which the electro-
static potential satisfies. From the theorem it immediately follows that,
if V is constant on & contour enclosing a source-free singly connected
region, then V is a constant within that region. This is just the well-
known electrostatic result which states that the electrostatic field within
a perfect conductor forming a closed surface is zero.

From these examples the general usefulness of the Cauchy integral
formula should be clear. In addition we have once more demonstrated
the special nature of analytic functions. We shall return to & more
thorough discussion of these properties later on in this chapter.



