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Chapter 1

FUNDAMENTAL IDEAS

Lecture 1

1.1 Multivariable Calculus as a Prelude to the Cal-
culus of Variations.

Calculus of several variables deals with the behaviour of (multiply) differentiable
functions whose domain is spanned by a finite number of coordinates.
The utility of this calculus stems from the fact that it provides, among others,

methods for finding the “critical" points of a given function. For, say f(zt, 22, -+ ,a"),
this function has points where it has an extremum, which is characterized by

Of /1 2

8xi(x0’w0’ oxy) =0
The critical point ?0 = (x},23,...,25) is a point where the function has a maximum,

a minimum or an inflection behaviour. Which type of these extremal behaviours the
function has in the neighborhood of its critical point can, in general, be inferred from
the properties of the (symmetric) second derivative matrix,

O*f(zo)| i L n
0xi0xI Jj) o
at the critical point ;0.

The calculus of variations extends these methods from a finite to an infinite
dimensional setting.
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The distinguishing feature is that each point in this infinite dimensional setting
is a function. Furthermore, the task of finding the extremum of a function becomes
the task of finding the extremum of a “functional".

A “functional" is a map whose domain is the infinite dimensional space, each of
whose points is a function. A “critical" point in this space is an “optimal” function
which maximizes, minimizes, or in general, extremizes the given functional.

1.2 Some Typical Problems in the Calculus of Vari-
ations.

Nearly all problems in mathematical engineering, physics and geometry are closely
related in one form or another to the calculus of variations. It turns out that these
problems can be expressed in terms of some kind of optimization principle which
says that some functional must be maximized, minimized or, in general, extremized.
Let us consider some typical examples of such problems.

Problem 1. (The Suspended Cable Problem)

Consider a pearl necklace of fixed length ¢ and n + 1 pearls. This necklace is a
discrete approximation to a continuous cable.
Question: What is the shape of this necklace when suspended freely between two
fixed points?
Answer: Its shape is such as to minimize the total potential energy (P.E.) of the
system pearls. As depicted in in Figure 1, this shape is specified by the locations

yi(z;) or z;(y;); i=0,1,---,n

of its n + 1 pearls.

Figure 1.1: FIGURE GOES HERE. Necklace of fixed length suspended between
fixed points (20, yo) = (a,6) and (,,y) = (c,d)

The total potential energy of the freely suspended necklace is
P.E.(xg,x1, - ,2y) = —ngxi. (1.1)
i=0

The length of the necklace is

l= ) i = | V(@i = 2 1)? + (i — yia)? (1.2)
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The fixed ends are at

(z0,90) = (a,b) and (2, y,) = (¢, d) (1.3)
The task is: FIND
yi(z;) or a;(y;) fori =1,--- ,n—1

such that
P.E. = minimum,

but subject to the constraints

Zn: d; = { fixed
i=0

and
(0, y0) = (a,b) and (x,, yn) = (¢, d).
Comment:
This problem is a multivariable calculus problem, easy to set up and easy to solve for
n = 2 (three pearls), but becomes challenging for n = 4,5, ---. However, as we shall

see, it becomes easily solvable when n — oo and the necklace becomes a continuous
cable suspended between two fixed points.

Problem 2. (The Brachistochrone Problem)

Given: A particle moves along a curve y(x) without friction. The particle starts with
zero velocity from point (zq,y;) = (0,0) and advances, because of a vertical constant
gravitational field, to the point (xs,ys).

Question: For what curve is the travel time a minimum?
Let us formulate the problem more precisely. The travel time is given by the

integral
(z2,y2

to ) 2
time — /dt _ / d(path length) _ ds ‘
speed v
t1

(x1,y1) 1

d
For a typical curve y(z) with slope d—y, the speed v and the path length differentials
T

are obtained from the following considerations:

(a) time independent gravitational field implies that the total energy of a system
s conserved, i.e. independent of time. Hence,

T.E. = K.E.+P.E. = constant ,
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x5y

(X 2 9y2)
X

Figure 1.2: Particle sliding down a bent wire.

or )
imUQ —mgr =0 .
Here we have chosen the P.E. energy to be zero at x = 0:
PE.(x=0)=0
Thus

v =+/29% .

Comment: The fact that the total energy is independent of time,
T.E.=constant ,

is an illustration of a general principle, the principle of energy conservation. It
applies to all dynamical systems evolving in a time-invariant environment, e.g.
a freely swinging pendulum or vibrating body. It does not apply to dynamical
systems subjected to externally applied driving forces which depend on time.

(b) The element of path length is

[ du\ 2
ds = \/dx? + dy? = dx 1+<di> :

The total travel time is therefore

(1727112) d 2
L+ (3)

thy= [ =

2gx

(x1,y1)
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which is a function of the function y(z), i.e. t13 is a “functional".

Thus, to solve the brachistochrone problem requires that we find a function y(x)
such that the “functional" t;,=minimum!

Problem 2. (Minimum Surface of Revolution)

Given: Some curve between two fixed points (z1,y1) and (z2,y2) in the plane z = 0.
A surface of revolution is formed by revolving the curve around the y-axis.

y
(X 1 7Y1)

(XZ’yZ)

Z

Figure 1.3: Surface area of revolution generated by a curve in the x — y plane.

Question: For what curve y(x) is the surface area a minimum?

One must find a function y(z) such that the functional

2 (x2.y2) du\ 2
Arealy] = / 2nxds = 27 / x| 1+ (di) dx
1 (z1,y1)

= minimum!

Problem 3. (Fermat’s Principle of Least Time)

Given: An inhomogeneous medium through which light (or sound) can propagate
with a velocity that depends on position,

v(z,y) = @)
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Y e

< MIRAGE

~

(Xla

Figure 1.4: Optical path as determined by Fermat’s principle of least time. In the
lighter regions the propagation speed of light is faster. Thus the optimal (least time)
path includes such regions in its domain of passage.

Here n(x,y) is the position dependent refractive index, which is assumed to be given.

Statement of Fermat’s Principle:

A light (or a radio, or a sound) beam takes that path y(x) through two points (z1,y1)
and (xq,ys2) for which the travel time is a minimum.

This principle subsumes many natural phenomena, including 1.) mirages !, 2.)
ionospheric bending of radio beacons, 3.) twinkling of stars?, 4.) sonar beams
refracted by underwater temperature and salinity changes, 5.) light beam traversing
an optical interface, etc.

The application of Fermat’s principle consists of finding y(z) such that

2

y _/ ds
" v(z,y)

1
2

1+ 12
= / n(x, y)ﬂ dx = minimum!
c

it

'Due to a refractive index increasing with altitude.
2Due to light rays from a star propagating through atmospheric plumes of warm and cold air.
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1.3 Methods for Solving Problems in Calculus of
Variations.
There are three known ways of finding an optimal function which minimizes (or
maximizes) the given integral expression for the functional.
1. the method of finite differences,
2. the method of variations,
3. the direct method via minimizing sequences.

We shall briefly discuss the first, extensively develop the second, and postpone dis-
cussion of the third until later.

1.3.1 Method of Finite Differences.

In order to appreciate the basic meaning of problems in the calculus of variations
and methods for solving them, it is important to see how they are related to the
calculus of n variables. We are given a functional of the form

b
Jly] = /F(w,y,y’)dm with y(a) = A and y(b) = B.

a

This is a map which assigns a number to cach curve y(x) passing through the two
points (a, A) and (b, B). One may find the curve which minimizes the integral J
by the following approximation scheme, which is based on the construction of a
Riemann sum with the derivative function approximated by the partition-induced
set, of differential quotients:

1. Subdivide the interval [a, b] into n + 1 equal parts by using the points

To=a, Ti,...,Tp, l'n_;,_l:b

2. Replace the curve y(x) with the polygonal line whose vertices are
(,’,Co, A)7 (5171, y(l’l))7 ceey (.’,Un, Z/(xn))» (xn+17 B)

3. Approximate the integral J[y] by a finite Riemann sum,

n+1
J(Y1s- -y Yn) ZFGHZQH /Z )AZE,
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B=y(Xp+1)

y(xp)
A=y(x)

Figure 1.5: Curve approximated by a polygonal line.

where

yi = y(z;) and Az = x; — x4

Thus, each polygonal line is uniquely determined by the ordinates yi, yo, . . ., ¥, of
the vertices because the end points are assumed to be fized. Consequently, the func-
tional J[y] may be considered as being approzimated by the function J(y1,...,Yn),
and the problem of finding the optimal curve y(z) which minimizes J[y] may be ap-
proximated by the problem of finding the critical point (yi,...,y}) which minimizes
the finite Riemann sum J(y1,...,¥n).

This minimization process consists of solving the following n simultaneous equa-
tions

a—J =0 j=1....n
Gyj

Using the expression for J, namely

Yy — 1 vy — 1
T 50m) = F<5’31»ylaJlAw‘lO> Aa:+F<m2,y2, JQAle) Az
+ F(xj’yj’ %) Ax+F<xj+17yj+17 yJHA;yJ> Ax

o +F<b,B, B_y") Az,
Az
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let us calculate the partial derivative w.r.t y;:

oJ 0 Yji — Yj- Yi+r — Yi
= {F(xj,yj,JTJl) Ar + F(xj1.Yj41 JHA L) Ax}
yi Oy Ar N L
/ /
Yi—1 Y;
Yi — Vi1 1
oy, =) A+ Byl g5, y5) 1A
~1

+ Fy;('errl:ijrl:y;) A_ZU Ax

As Av — 0; x;, v,1 — x; y; — y the number of subintervals increases without limit
and the expression approaches zero. But if we divide by Ax, then we have
1 o0J _4§J

I
Arso Az 0y, Y

Remark: The expression Azdy; has a direct geometrical significance as the area
between the given curve and the varied (dashed) curve. The limit of the differential

y

Figure 1.6: The area between the solid and the dashed curve is Azdy;. In the
continuum limit, Figure 1.12, the solid (given) curve becomes a “trial function” and
the dashed (varied) curve becomes its “variant”.

quotient is the variational derivative of J,

0 _OF(x.y.y) d OF(x.y.y)
oy oy dz ay
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The process of minimizing the functional J[y] by first approximating it as J(y1, - . . , Yn),
a function of the n independent variables y1, . .., y,, is called the method of finite dif-
ferences.

Leonard Euler used it to solve problems in the calculus of variations. By replacing
smooth curves with polygonal lines he solved such problems as multivariable problems
in n-dimensions. By letting n — 0o, he obtained the mathematically exact® solution.

Thus the functional J[y] may be considered a function of infinitely many vari-
ables, and the calculus of variations may be considered an extension of multivariable
calculus into a space of infinite dimensions.

Lecture 2

1.4 The Method of Variations.

The method of finite differences first approximates an infinite dimensional problem
by one of finite dimensions. Solving the finite dimensional problem consists of finding
the critical point of a scalar function having a finite number independent variables.
The coordinates of this critical point, say {y; = y(z;) : ¢ = 1,...,n}, are the ver-
tices of a polygonal curve, the finite approximation to the curve that optimizes the
scalar functional. One obtains the exact solution, the optimal curve, to the infinite
dimensional problem by letting n, the dimension of the approximation space, be-
come infinite. There exist numerical optimization techniques for finding the critical
point scalar function on a finite dimensional approximation space. One obtains the
exact solution to the infinite problem by letting n, the dimension of the approxima-
tion space, become infinite. But in that case the numerical optimization technique
becomes very computationally expensive.

However, one can dispense with the intermediate approximation process entirely
by dealing with the infinite dimensional problem directly. In this strategy one does
not obtain the optimal curve directly. Instead, one obtains a differential equation
which this curve must satisfy. However, finding solutions to a differential equation
is a highly developed science. Hence, dispensing with the intermediate approxima-
tion process is an enormous advantage if, as is usually the case, one can solve the
differential equation.

It is difficult to overstate the importance of the method which allows us to do
this. It is called the method of variations, which we shall now describe.

3Mathematical exactness is the limit of physical ezactness. The latter presupposes a specific
context of the measurements underlying the results. This context is limited both by the range and
the precision of the measured data it subsumes. Thus, given such a context, a result is said to be
physically exact in relation to such a specified context. The process of going to the above limit of
physical exactness is made mathematically precise by means of the familiar é — € process.
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1.4.1 Variants and Variations
The basic problem of the calculus of variation is this:

Given: (a) F(z;q,p) a function of three variables and (b) a pair of points (z1,41)
and (z2,9s).

Determine: That “optimal" function y(x) which passes through (xy,y;) and (22, y9)
such that

x2

Jly) = / Fa:y(z), ' (2))dz (1.4)

x1

has the largest (or smallest or, in general, extremal) value for y(z) as compared to
any variant of y(x) also passing through (z1,%1) and (za, y2).
Remark 1: The dictionary definition of “variant" is as follows:

variant — something that differs in form only slightly from something else. | Remark

y
(X2, ¥2)

y(x) [ / variant of y(x)

(X1, ¥

Figure 1.7: A function y(r) and one of it variants

2: In order to determine whether y(x), which passes through (z1,y1) and (xq, y2), is
an “optimal" curve, one must compare the functional J evaluated for all variants of
y(x), including y(z) itself.

Remark 3: We shall assume that an optimal curve exists, and then deduce as a
consequence the conditions that y(x) must satisfy. In other words, we shall determine
the necessary conditions for y(z) to exist. We are not developing sufficient conditions®
for the existence of an optimal curve.

“4Sufficient conditions for the functional J[y] to have an extremum are discussed and given in
Chapters 5 and 6 in Calculus of Variations by LM. Gelfand and S.V. Fomin; Dover Publications,
Inc., Mineola, N.Y., 2000.
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To test whether a curve is optimal by comparing values of J, pick a curve sus-
pected of being an optimal one and deform it slightly. This yields a wvariant, a
deformed curve, of the original curve, namely

y = f(x1ai)
= f(z,0) + arhi(x) + agho(x) + ...
= f(z,0)+0f(x)

Here
Y= f(@,0) = f(x)

is the optimal curve under consideration, while
df(x) = anhy(x) + ashe(z) + ...

is a variation in the function f, a variation which is a generic sum of linearly inde-
pendent functions {hx(z)}.

y

18 f(x)= OZiocihi(x)

X

Figure 1.8: Arbitrary variation of f as a superposition of basis functions.

Definition. The fact that all variants of f pass through the same pair of endpoints
we express by saying that they are admissible functions; in other words admissible
functions have the property that their variations vanish at the endpoints,

0f(z1) = 0f(x2) =0

Because of the linear independence of the h;’s, this is equivalent to

hi(zy) = hi(w2) =0 i=1,2...]
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Relative to the set of basis functions {h;} the variants

A: f(z,0) — 2h(x)
B:  f(x,0) — .1hy(x)
C:  f(z,0)

D:  f(zx,0)+.1h

E:  f(z,0)+ 2
F:  f(z,0)+ 2h

G:  f(z,0)+ .2

J=17.1
J=17.0

(a) (b)

Figure 1.9: (a) Optimal curve (C) and some of its variants in x-y space. (b) Isograms
of J on the function space of variants.

are represented as points

QT Qe
k=

in the function spacecoordinatized by «q, i, etc. as depicted in Figure 1.9.

Lecture 3
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1.4.2 The Euler-Lagrange Equation

The problem of variational calculus is the task of optimizing Eq.(1.4). In particular,
the mathematization of the calculus of variations consists of setting up the problem,
defining the framework, its key concepts, and the causal relations between them.

The solution to the problem consists of identifying the optimization method in
mathematical terms.

I. The Problem

The achievement of these goals requires three steps.
(i) Specify the space of trial functions on which that integral is defined,
(ii) recognize that this integral J is a mapping from these trial function into the
reals, and
(iii) find the critical point(s) in the domain space for which the mapping has extremal
values in this space, i.e. find the optimal function(s).

The space of trial functions is a non-linear submanifold of the linear space of
functions which have the norm

ly(x)l = max [y(z)]+ max [y'(z)] <oo. (1.5)

z1<z<x2 z1<z<x2

These functions form a vector space. Because of its norm structure it is called a
“Banach” space.

The space of trial functions does not consist of all Banach space elements, only
of those functions y(z) whose graphs run through the fixed ends points (z1,y;) and
(22,y2) as in Figures 1.7, 1.8, 1.9(a):

y(r1) = y1 and y(z2) = yo . (1.6)

The set of functions that satisfy Eqs.(1.5) and (1.6) (integrability and the end point
conditions) forms the set of the already mentioned trial functions. For emphasis one
also calls them admissible trial functions. Taking into account

1. that they make up the above-mentioned non-linear submanifold, .S,
S = {y : y(z) satisfies Fqs.(1.5) and (1.6)}, (1.7)
the set of admissible functions, and

2. that the variational integral

Tl = /F (W Zf) dz. (1.8)
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ﬂywmﬁfmﬁi{
ot it

Figure 1.10: The functional J maps its domain space, the submanifold S, into the
target space R, the reals

being real-valued, one arrives at the conclusion that, as depicted in Figure 1.10,
J is a real-valued functional that maps the submanifold into the reals

J: S — R=reals (1.9)
I B :
Y~ J[y]—/ F(:r,y, dT) dz (1.9

z1

3. Among the set S of admissible functions find the function f which extremizes

Jyl.

I1I. The Solution

Based on observations and experiments (ultimately via one’s five senses) we have
already illustrated the existence of optimal solutions to some typical problems in
the calculus of variations. Denoting an optimal solution by f, one mathematize the
method for finding it by calculating

JIF+6f = Jlf=Ad
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and setting its principal linear part to zero. The calculation is very compact and
proceeds as follows:

T2
AJ = / {F(@; 9,9 ) ly=p@ytor@) — F@:9,9)y=f) } do
1
5(f' ()

= / Pt 7T+ L 1, 1951 (0) + 2 0y 1, ) 2L )
_ LT+ G £000 @) + Gl £ ) S

x1

)

higher
order
non-linear | M dx

terms

The Taylor series expansion theorem was used to obtain this result. It depends on
the variation ¢ f and its derivative. However, we would like to have the result depend
only on ¢ f, and not on its derivative.This desire can be realized by integrating the

second term by parts. This means, we recall, that one use oF d0Of) _ % (%5 f) —
Y

oy’ dx
% (g—ﬁ) 0 f. One obtains

o higher
oF d OF oF 2 order
u terms

~
“Principal Linear Part” of AJ

The fact that f 4+ df € S implies that

6f(x1) = 0f(z2) =0,

which we specified already on page 18. Consequently, the boundary contribution to
AJ vanishes. We now consider the Principal Linear Part of AJ, which is linear in
df. We designate it by ¢.J, and find

1= [ [F- "5 o i

This is the 1st variation of the functional J at y = f(z,0). It is a linear functional
which is also called the differential of J.
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1.4.3 Variational Derivative

The fact that an arbitrary variant of f(x,0) is given by
Flra) = F,0) + 3 ahi(x)
i=1
implies that the variations of f,
Sf(x) = i a;h;(x) (1.12)
i=1

form a linear vector space which is spanned by the basis vectors {h;(z) : i =1,2,...}.
Taking a cue from multivariable calculus, we can use the differential 6 of J, and
identify the directional derivatives of J along the respective directions hy in the space
of admissible functions defined on page 18.

These directional derivatives, we recall, are given with the help of

J(x4)
AJ:J(OZV"' ,ak”...;_(]((),... 707...)’

and of Egs.(1.11) and (1.12) by

8J(C¥i)

— lim AJ(O,...,Ozk,...)
Gak

ap—0 O[k

Oziz()
x2

_ /[Fy - (Z(Fy/)] h(w)de, k=1,2,... (1.13)

xy

(1.14)

In order to establish the parallel with multivariable calculus, let us designate

- % Fy = (55({1:) T < T < Ty (1.15)
as the (first) variational derivative of J[y.

It is clear that this derivative depends on z.
Reminder: R

Recall that in multivariable calculus the gradient V f of a function is related to
its directional derivative D?kf along the same basis vector e, by the equation

1

Do f = (V) - &
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One may look at the right hand side of the directional derivative, Eq. (1.13), in the
same way. It follows that the variational derivative of the functional J,

0J d

Sy T o

Ey 1 <z < Tog,

corresponds to what in multivariable calculus is the gradient of a function. The
obvious difference between the two is that the number of components of a gradient
in multivariable calculus is finite and they are labeled by integers. By contrast the
“oradient” of a function J, i.e. its variational derivative, has a continuous infinity of
components which are labeled by the values of = (z1 < z < z2).

1.4.4 Euler’s Differential Equation

The usefulness of the first variational arises when one considers an “optimal" curve,
say

y=f(x) (1.16)

for which J has a maximal (or minimum, or extremal) value. In such a circumstance
all the directional derivates, Eq. (1.13), vanish, i.e.

oJ(c) [ 6J
= [ = hu(2)da =12,
Do 5y(x)hk(T)dT k ,2,

x1

O:

It follows that for 7 < z < x4

= Fyfsu(a), v/ (@) - Fy(ry(e) o/ (@) = 0 (1.17)

oy(x)

This is Fuler’s differential equation. This is the equation which the curve, Eq. (1.16),
must satisfy if it extremizes the functional J.

) 0J
= 0 for 7S 0 in th
5y(0) or r; < < Iy uppose 5y(0) # 0 in the

neighborhood of some point x = z’. Then from the set

Why must one have

{hk(l’)]{?ZLQ}
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we choose or construct a localized “blip" function® (see Figure 1.11)

0f(x) =Y Brhu(x) .
k=1

oJ
V(6—}/#0

d f(x)="blip" function

} } } X
X1 X X9

Figure 1.11: A “blip” function is a variation which is differentiable but is nonzero
only in a neighborhood around a point z’.

A “blip” function is a type of variation 0 f(x), which is the difference between a
trial function f(z) and its variant, say, f(z)+0f(z), as in Figure 1.12. Its use would
yield

Ry, < 9J
0 f}/w SFows =30 505

This contradicts the fact that
_9J _

0=
8ak

0 vV k.

The conclusion is therefore that Euler’s differential Eq.(1.17) is indeed the equation
which an optimal curve must satisfy. Explicitly, with F' = F(z;y(z),y (x)), this

equation is
A (OF\ _0F
dz \ 0y oy

5An example of a smooth (i.e. infinitely differentiable) blip function which vanishes for

r=lz—2a|>e€

2
5f(x) = {exp <_e2 —7"2) forr <e

0 for r > e.
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n | trial function: f(x) |
I
or ,

X=X’
A | [ "blip" function:5 f(x |
> 3 1(x)
|
0 Il
X=X
n — "blipped" trial function: f(x) + & f(x) |
0
T f(x) + 8 f(x)
X=X’

— X

Figure 1.12: The area under any “blip” function equals the area between the trial
function f(x) and its variant f(x) + 0 f(x) as depicted in the bottom panel. This
area is what in Euler’s discrete formulation is the area between a polygonal curve
and its variant (the dashed one) in Figure 1.6.

or
y//Fy/y/ + y,Fy/y + ]‘Ty/Jc — Fy =0.
This Euler’s differential equation is one of second order. It constitutes a necessary

condition which y(z) must satisfy if it is to be an optimal curve for the functional

Iyl
The Euler equations for the three extremum problems in Section 2 are as follows:
1. Brachistochrone:

2. Least area:
F=ax1+y? zy+y(1+y?) =0
3. Fermat:
F=n(zy)V1+y? ny' =(n,—ny)1+y?)



1.5. SOLVED EXAMPLE
1.5 Solved Example

Let us solve the Brachistochrone problem for which F' =

?75 = 0 implies that the Euler equation is
d (OF
0=—{—]) .
dx \ 0y’
Consequently

/

Y

Square the result to obtain

1 y? 1
1+y2 = 2a
or
y'*2a =z + xy’? .
Thus

@2_ r x?
dv)  2a—2x 2ar —a2’

0=2ZITt
(0,0) Ta 2w a

2a) oo Toe

X

1 1\ /2
2 — =const = | — :
T e cons (Qa)

27

1?/2. The fact that

(1.18)

Figure 1.13: The solution curve for the brachistochrone problem is a cycloid.

Equation (1.18) can be integrated. One obtains

zdx

yle) =

(a? — a? + 2ax — x2)1/2



28 CHAPTER 1. FUNDAMENTAL IDEAS
We make the substitution a — x = a cosf, or
z =a(l —cosf)

to obtain

0 . .
y :/ a(l 00§9)a81n9d9 .
o asin

Thus we have

y = a(f — sinf) + const. < zero to make y; = 0 the starting height.

x=a(l —cosf) .

This is a O-parametrized cycloid whose amplitude ¢ must be adjusted so that the
curve goes through (x2,ys).

Lecture 4

1.6 Integration of Euler’s Differential Equation.

I. The Brachistochrome problem where

1+y?
X

F:

(1.19)

illustrates the simplification which occurs if the variational integrand F' is indepen-
dent of y. In that case

oF
— = const. 1.20
8y/ ( )
along the curve, and one has to deal only with a 1st order differential equation as
was done on page 27. Equation (1.20) is called an integral of motion.

II. If F is independent of x, as, for example, in Fermat’s problem for a stratified

atmosphere where
F=n(y)v1+y?

then an analogous simplification is possible. This is seen best from the “Second Form"
of Euler’s Equation. Euler’s motivational method towards this equation was his desire
to obtain an alternate differential equation which contains no second derivatives of
y whenever his original equation

d (OF\ OF
o ok o 1.21
dx <3y/> dy ! (1.21)
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was satisfied. To this end he noticed that
dF (xz,y,y) _@_ﬁ_@i , OF

dx oxr Oy v+ oy’ 4

A (porN _ por i d (OF
dz \Yoy ) "V oy TV ar \oy )

To obtain an expression with no derivatives higher than the first, he subtracted to
eliminate the y” term and obtained

A (L OPY_OF (0P _d
da Voy) or T \oy )Y

By Euler’s equation, Eq.(1.21), the last term vanishes and we are left with the “second
form” of Euler’s equation

and

0£
Ox

d
%(F—y/ Fy) =

(1.22)

Remark:

1. If the variational integrand F' is independent of x, i.e. if ?TI; = 0, then one
obtains an integral of motion,

F — y'F, = constant. (1.23)

This expression involves only the first derivative of the to-be-determined func-
tion y(z). It is evident that we have reduced the problem from solving a second
order differential equation to solving one of first order.

2. By switching independent variables from x to y:

dy\ dx dx
F — | —dy=G — ] d
(2 ) G v = (00 ) a

the Euler equation becomes

_d oG oG
N df dz B % ’
Ao (%)
which implies that
oG

TN const.
X
o(3)
is an integral of motion. Thus there is an alternate way of arriving at the
integral of motion (1.23).
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Example 1 Fermat’s Principle for a Stratified Atmosphere.
The variational integrand for least time propagation in an x-translation invariant
but y-stratified medium is

F =n(y)yV/1+y>

The corresponding E-L equation is a differential equation of second order, and be-
cause it is of second order, the method of solving it is a two-stage process.

Stage 1.
In light of the second form of Kuler’s equation, the first stage reduces to a single
step: by inspection obtain a first integral of motion,namely

/2

oY __ny)
RV e Ve

The result is a c-parametrized family of first order differential equations

dy _
dr V2 '

From its right hand side one draws a key conclusion,

F—y'F,=n(y) = constant = ¢

No real solution exists whenever n?(y) < 2.

This mathematizes the fact that, for an integral of motion satisfying this inequality,
no propagation is posible.

To concretize this feature, and to exhibit a type of stratified Fermat problem
which is explicitly soluble in mathematically closed form, consider propagation in an
exponential atmosphere. There the refractive index has the form

n(y) = nee Y.

Focus on propagation which starts at the origin (z = 0,y = 0). There the initial
data is

= =y, = tan « (“initial slope”), (1.24)

=0
n(y =0) =ng (“refractive index at ground level”). (1.25)

This initial data determines the integral of motion:

c= _ M Ng COS (1, (1.26)
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and the equation governing the corresponding unique motion is

dy\ V/nz(y) B \/ e
Qm)—i B R ! (1.27)

The upper sign mathematizes the upward progress of the trajectory y(x), the lower
sign its downward progress. These two branches of y(x) meet at the turning point
where their slopes vanish.

Thus the first stage of the solution process yields, among others, the result the

maximum height ¥,,,.. is achieved when % =
e Ymer = cos (1.28)
or
Ymaz = — lOg cOS av. (1.29)

This maximum height depends on the launching angle a:

a=0= Ynw =0 (1.30)

w%g:%m%+w (1.31)

Stage 2.

That being is the case, what is the trajectory’s return distance d? How does it
depend on the initial angle « in Figure 1.147 The answer to these questions lies in
the second integral obtained by integrating the differential Eq.(1.27). Upon solving
this differential equation by separating variables, using the properties of elementary
functions, and introducing the appropriate integration limits, one finds that

d=2«a, where cosa =e ¥mer, (1.32)

Example 2. Geodesic on a Sphere.

A geodesic is a line which represents the shortest path between two given points
when the path is restricted to lie on some surface. On a sphere of radius p the square
element of length is

(ds)? = p*df? + p?sin? Od?

Hence the length of a path () between two points, say 1 and 2, is

2 2 e
5 = / ds = /)/ \/<d<p> + sin®6(p) dy
1 1
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- -
| ‘:‘ ";-."r (N )
I_,r’ g1 5 ¢
J— _,J ——-—"—‘—-"'-—-....:’:} —
0 d J S
=B

Figure 1.15: Curve on a two-sphere of radius p.

Here the variational integrand is

F= \/Hi—i—sinQH

Note that F' is independent of ¢. Consequently, one can apply the “second form" of
Euler equation. One finds that

F
F—-4, 39 = constant = a.
©

Explicitly one has

0
02 20— 0, —F— —q
: \J02 + sin” 6
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This is a differential equation which one readily solves in the usual way: Multiply by
/— and cancel 62 to obtain

2
sin ) = cw/(ji) + sin? 6 (1.33)

Isolate the derivative by solving for it. One obtains

d - 49 —-1/2
d—sg = <b122 —si1129)

csc? 6 csc? 6

\/%—08029 B VB = cot?0

Here 5% = ?12 — 1. The antiderivative is

o) = — sin™! CO;) i +

Consequently, one obtains
—cotf = fBsin(p — a)

This is the equation of a plane through the origin: Multiply by psin# and expand

Figure 1.16: A great circle is the intersection of a sphere with a plane through the
origin.

the sine function,

—pcos = B psinfsinpcosa — § psin b cos @ sin o
—— —_—— —_—

z Y T

’z+yﬂc0sa—xﬁsina=0‘

Thus, the geodesic is the locus of the sphere intersected by a plane. In other words,
the geodesic is a segment of a great circle.
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Remark: The variational integral is extremized by many solutions to the Euler equa-
tion. The shortest geodesic minimizes s. Other solutions are geodesics which consist
of great circles that wind around the sphere. They constitute saddle points of s in
the space of functions!



Chapter 2
GENERALIZATIONS

Lecture 5

2.1 Functional with Several Unknown Functions

The world is not two-dimensional but three-dimensional, and if you take time into
account, it is four-dimensional. Suppose we need to find the optimal curve between
two points in three dimensions. All curves between these points are specified by one
of the chosen coordinates, say x, as the curve parameter. Thus every point on this
curve has its three coordinate values

) = (x,y1(x), y2())

More generally, consider a variational integral on an n + 1-dimensional domain.
The integral is a functional of n functions with the value of the functions fixed at
the endpoints. The extremization of such an integral, namely

2

J[yz] = /F(:anlvyllvay/277yn7y7/7)dx

1

where y;(z) i = 1,...,n satisfy the prescribed boundary conditions at = x; and
& = w9, is achieved by a method analogous to the one described before. Thus, we
consider a system of variants

y; = y;(z,0) + Zafhi(x) = f;(z,0) + Zafhi(x)j =1,...,n
i=1 i=1
of the system of functions
y; = y;(z,0) = fi(z,0) j=1,...,n

35
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which we assume extremizes the functional J[y;].
The fact that these functions and their variants have prescribed values at the
endpoints z; and x5 can be stated by saying that each of the a-parametrized curves,

{v;=file. o), i =1,...n},
passes through the same two end points. This means that the system of variations

e (fix o))

{fjx, 0)}

{81j(x)}

Y

X

Figure 2.1: A variant and its system of variations 6{ f;(z)}

5f7($) j=1,...,n,

which can be pictured as an n-component vector, vanishes at the endpoints:

6fj(1'1) = (Sfj(l‘g) =0 ] = 1, Lo,

The procedure for obtaining the necessary condition for J to be an extremum follows
the same pattern as before. The first variation of the functional J is

oS (3 (1)

Using the fact that

5<df> _ dfi(w,a])  dfi(=,0)
dx o dx dzr

d .
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and integrating by parts yields

OF OF oF
5 () Yo

The boundary term vanishes. The fact that for J to be an extremum for arbitrary
variations ¢ f; j = 1,...,n, implies that

0J d

x1

W: y]—%(Fy;)zf) j=1...,n (2.1)
the Euler equations for “a system with n degrees of freedom". This set of equations
constitutes the necessary condition for the variational integral Jlyi,...,y,] to be an
extremum. It is evident that this condition generalizes Euler equation from a single
degree of freedom, Eq.(1.17) on page 24, to many degrees of freedom.

There is, however, one qualitatively new feature. It may happen that the vanish-
ing of the first variation of J is due to the fact that J is an mazimum with respect
to variations in, say, y;(z) but is minimum with respect to variations in, say, ya(z).

Whatever the case may be, we shall call a curve {y;(z),...,y,(z)} which solves
the set of Euler equations (2.1) an “extremal curve”, even though often an “optimal
curve” may be more descriptive.

Example (Fermat’s Principle in three dimensions).

The propagation of a beam of light or sound whose local propagation speed is
c

n(z,y,z)

v =

is governed by the extremum principle

1+y? + 2" .
Jy,z] =c¢ / Y ~— = dr = Minimum.
n(z,y,z

This principle assumes that the local propagation speed depends only on the position
(x,y,z) of the propagating beam. In that case the propagation medium in said to
be inhomogeneous but isotropic. If, however, the propagation also depends on the

direction of the beam, i.e.
c

n(z,y, 2y, 2')
then the medium is said to be inhomogeneous and anisotropic.
In that case the propagation law is given by

x2

1 /2 22

Jy, z] = c/ VIFYT TR — Minimum,
n(@.y, 2,y %)

v =
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Lecture 6

Example (Geodesic on a Sphere)

Consider the collection of all paths (6()), ¢())) joining two fixed points on
the two-sphere. The parameter A may be any variable which expresses monotonic
progress along the path. For example, A = time ¢ of a moving ship on the earth,
azimuthal angle ¢, arclength s, or any other curve parameter monotonically related
to the others.

The task is to find the A-parametrized path (6()), ¢()\)) on the two sphere which
has the property that its length

aoN® ., (do\’
J_/\/<d/\) + sin Q(d/\> d)\ = Extremum .

For this problem one must find two functions that satisfy two differential equations:

(0 d (9F\ _OF
Voo \oo )~ e

or

il = 2.2
dA (/02 +sin? 002 /02 +sin? 2 \dA 22)

(ii) The second equation is
d (0F _oF
dA \0y' ) Oy

The fact that the variational integrand F' is independent of ¢ (one says that F
is “cyclic" in @) means that

d % sin @ cos 0 <dg0>2

oF _
Do

Consequently, we have immediately an integral of motion, namely

0

F "sin? 0
oF _ v 5 = const. = P, . (2.3)

Oy \/ 02 + sin? 0’2

Equation (2.2) and Eq. (2.3) constitute the system of ordinary differential equations
which we must solve. If we let A = ¢ be the curve parameter, then Eq.(2.3) becomes
Eq.(1.33) (on page 33) and we can solve the problem. However, if the variational
integrand had been

dy \* dyz\* dy: dy,""?
F = ey @92 9q,, 291 492
[911 (dA) + 922 (d + 2012 N d\ ;
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where the g;;’s are functions which depend on the coordinates y;, and ys, then we
could not have solved the problem. Nevertheless, a crisp and simple conclusion is
possible.

What one does is to introduce the arclength as the curve parameter:

N dp\?
_ ‘12
5—/ (d)\) + sin H(d)\) d\
0
ds =1/ 02 +sin® 0’2 d\ .

This brings about a tremendous simplification. The arclength parameter is intro-
duced as follows

or

d_wd_ 1
ds N dS d)\ N 9/2+Sin29¢/2 d)\ '

(2.4)

One applies this differential operator to 8 and obtains
1 do do

Fﬁ_ﬁ'

Indicating differentiation with respect to s by a dot, % = 6, one obtains for Eq.(2.2)

: 2
\/L % = sinf cos <\1ﬁ Zf) .
Applying the above differential operator to # and to ¢ twice, one obtains
6 = ¢?sinfcosl .
Similarly, the constant of motion, Eq.(2.3) becomes
P, = ¢sin®0 .

If s is proportional to time, then in mechanics this is the “angular momentum" around
the z-axis.
The introduction of the arclength s as the curve parameter always implies that

o\, (de\?
<ds> + sin (ds) = constant

along a curve. This expression is an integral of motion even for curves which are not
extremals. The availability of this integral is guaranteed without having to integrate
the Euler equations for the variational problem. Indeed, one always has

9 2 2 2 2
N e S

ds ds
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The constancy of this quantity will be discussed and used again on page 58, but this
time in the context of a constrained variational problem.
Remarks:

1. The arclength parameter always simplifies the parametric representation in this
way.

2. Equation (2.5) constitutes an integral of motion:

doN? ., (do\®
1_<ds) + sin e<ds> .

It is a constant of motion along any curve, geodesic or non-geodesic on S,
provided s is the arclength parameter. In other words,

d doN* . (do\?
— — in“g | — =0
ds \/(ds) s (d.s)
along any curve. Thus there always is an “energy type" integral

1[7doN? ., (dp)?
3 [(ds) + sin 9((13) = constant.

The same conclusion holds in the general context as expressed by the variational
integrand given by Eq. (2.4).

The conclusion is this: For a geodesic we have

6= % sin @ cos 6

¢sin? @ = const. “angular momentum"

1 . 1

— (62 + sin? 0p?) = ~ “energy"

2 2

3. These three equations in two unknowns are not independent. Instead, any two

equations imply the third. For example, %(924—81112 0¢?) = 0 because of the two
Euler-Lagrange equations. The benefit is that one can grasp the trajectories
on a two-sphere in terms of the two simple integrable equations,

1/, )?
1 <92 N (const.)

5 SinZ0 ) = constant

and
¢sin® 0 = const. |

whose solutions are arclength-parametrized curves.
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2.2 Extremum Problem with Side Conditions.

Lecture 7

The fundamental problem of variational calculus is to maximize, minimize, or
extremize a scalar functional on the unrestricted set of admissible variants. But
variational calculus also accommodates the extremization on submanifolds, on sub-
sets of such variants, namely those which are subject to one or more constraints.

The most famous such problem is the isoperimetric problem already known to
the ancient Greeks. It consists of finding a curve such that

Area = / dxdy = j[ ydxr = J]y] = extremum

subject to the constraint that the bounding curve y(z) has fixed length

dy 2
(= 14+ | == dz = constant.
dx

An interesting generalization of this problem was the one which confronted Dido?,

T

Figure 2.2: Area having perimeter of length ¢.

the founder of ancient Carthage.

! According to legend, the mythical Queen Dido founded the ancient city of Carthage using this
problem as a trick. Dido had to flee her home to escape from her murderous brother, and eventually
ended up in the realm of King Hiarbas. She asked Hiarbas to be given as much land as could be
enclosed by a single ox hide. "Sounds fair enough," the king must have thought, and granted her
wish. But Dido was clever: rather than taking the ox hide as it was, she cut it into thin strips,
attached them at their ends, and then laid the long strip out in a circle. This gave her an area large
enough to found a kingdom on.

The fact that the circle is the shape that gives you the largest arca becomes almost obvious. Yet,
it took mathematicians a very long time to prove it. While Dido is supposed to have lived nearly
3000 years ago, a complete proof of her problem didn’t arrive until 1879.
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An important generalization of her problem was to circumscribe by means of a
curve of fized length an area which yields the largest amount of fertility. In other
words, for a given function p(x,y) (say, yield per unit area), extremize the weighted

area integral
// p(z,y)drdy

subject to the condition that the bounding curve y(z) has fixed length,

/ d
/ 1 + y = ( = fixed.

More generally, the problem is to find in the space of functions that function y(x)

for which J[y] = f F(z;y,y')dr = extremum, but which at the same time satisfies
T
the constraints

Kyl = /Gl(ﬂﬁ;y, y)dx = fixed = K,

x1

Kily] = /Gk(a:; v,y )dz = fixed = £y,

Z1

2.2.1 Heuristic Solution

Lagrange’s method of variations lends itself to solving this constrained optimization
problem. One sets up the necessary conditions the desired function y(x) must satisfy.
As usual, consider the variants,

y(x) + oy(x)

of y(z). Each variant is uniquely characterized by an infinitesimal displacement
vector dy(z), the variation of y(z) in the sspace of admissible functions,

5 - {y<m>: o) = asyles) = [ Fai(e). o (a))d is well-defned } (2.7)

xy

The extremum problem under consideration is this:
Among y € S FIND an element y* € S which extremizes

x2

Tl = [ Flasyla). @) (2.8)

1
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subject to
Kilyl = [ Gi(z;y(2), ¢/ (z))dr = k1
: fixed and given (2.9)
xr2
Kilyl = [ Gi(a:y(2),y'(x))dz = ki +
Solution:
Consider the isograms of J and those of Ky, --- , K on their common domain S of

admissible functions. The function y*(z) which extremizes the scalar functional .J

Figure 2.3: Isogram J = 17.0 osculates the isogram K = k at y*(x) € S.

while satisfying each of the constraints

Kily] = r

Kyly] = kg

is that critical point y*(z) € S where an isogram of J simultaneously osculates all k
isograms K7 = K1, , K} = K. This means that there is a plane which is tangent
to that isogram of J[y| at the point y* which isimultaneously tangent to the isograms
of Kily| = k1, -+, Kily] = ki at the same point in S.

This osculating condition, which is depicted in Figure 2.3 above, implies that the

gradient % (— “ﬁj”) is a linear combination of the gradients 5‘21(";), cee 5‘3&), ie.
there exist constants A, --- , Ay such that
0J 0K, 0K}, (2.10)

dy(a) — Tay(a) oyl
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\ B 1 PO ot I O T oy o vy I 0
!r\i{A-EK _M!‘:',“H’ "';Tc" -""1_ -! | |‘.-. ‘.itlyk\-j Hﬁ{ - R&—‘
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Figure 2.4: Two types of displacement vectors d;y(z) and d,7y(z) at the point y*(x)
in S, the space of admissible functions.

The line of reasoning leading to this conclusion is depicted in Figure 2.4 above and
is based on linear algebra in four steps.

Consider a generic variation dy(z) of y*(x) € S. This variation is an infinitesimal
displacement vector away from y*(x) € S. The corresponding variations in J and K;

de -
LG + 5{/
=3 -a::’ ’.,.'(\-- i |
- o (i \
-
~ P
"/”
'.’/‘f’ (J‘\_r 2
i Y ('j’ (X,
o
+*
P

Figure 2.5: A variation dy(z) viewed as a displacement vector in S.
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are
VY,
= d
0J / e 0y(z) dx
Ty
d
F, %Fyf
and
TSk,
5Ki=/ “y(r)dr i=1,--- .k
dy(x) v(@)
Giy_%Giy/
STEP 2.

As depicted in Figure 2.4 on page 44, there are two types of variations dy(z) away
from y*(x):

M
0K;
dy(x)

ory(x) : 5Ki:/ y(z)de =0 fori=1,--- .k

These are the “YES” variations. Their associated variants y*(z)+d,y(z) satisfy
all the constraints

Kily*(z) + 61y(2)] = Ki[y*(2)] (= k) i=1,--- k.

Figure 2.6: “YES” variation d;y(x) viewed as a vector tangent to the intersection of
those isograms of K; that contain the the point y*(x) € S.

(IT)
§K;
dy(x)

Orry(z) : 5Ki:/ dy(x)dr #0 fori=1,--- k
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These are the “NO” variations. Their associated variants y*(x) + d;;y(x) do
not satisfy all the constraints

Kily™ () + oy (2)] # Kily™(x)] i=1,--- k.

* *
Ky + 0K; K}
Comments:
J -
=t v 5 . LY
i » -
J}‘(.
- 4
Y P &
- b 1 | 2
' L e ' L L~ o T L $ e s
S S [ ] SR T e
o 1 (= v-bef 2 z.

Figure 2.7: “NO” variation 0;;y(z) displacement vector which connects two different
isograms of K; in S.

(a) The sets of “YES” variations and “NO” variations at y*(x) are jointly
exhaustive and mutually exclusive sets:

{61y} U{drry} = {oy} (vector space of displacements)
{ory} {0y} ={0}  (empty set)

(b) Thus there are precisely two classes of variations
dry is a class [ variation vector.
drry is a class 11 variation vector.

(c) {dry} is a subspace of {dy}, the vector space at y*(z).

Let y*(z) be an optimal function.

(a) Let d;y be a class I variation vector. Then

[ oo
0J = /\(sy(gj)ély(lj) de =0
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and

(b) Let d77y be a class I1 variation vector. Then

5K / 511y

for at least some i =1, --

Ydx #0

K, say

F oK,
dy(z)

Z1

0Ky = | —%y(z)dx #0

but

i=1,---

47

K

0K; = / 351y dr =0 forj# 1.

Observe that
Vi = {0y = o1y}

is a 1-d subspace at y*(z).
(c) Calculate

7 o5y
those which do not

satisfy the given constraints.

I. Those which do satisfy the contraints have variations which are perpendicular to

the gradient of the constraint surfaces K; = ¢;(i = 1,. ..

1 0K,
“Sy(x)dr = 0 Vi=1,...,k
/53/(96) )

Eal

, k), i.e. those for which

(2.11)
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Figure 2.8: “NO” variation d;;y(z) displacement vector which connects two different
isograms of K; in S.

oK

1

dy(x)

y(x)+H3y(x) y(x)

Figure 2.9: ith constraint manifold: its gradient gé;)

class T (“yes”) vector dy(x) which is tangent to that manifold, K;[y] = ;.

which is perpendicular to any

We shall call such vectors the “yes" vectors. They are tangent to all the constraint
manifolds.

I1. Those variants which do not satisfy the constraints have variations which are not
perpendicular to the constraint surfaces K; = ¢;, i.e. those for which

z2

(SKZ
y(x)

dy(x)de #0 for somei=1,....k

z1

We shall call such vectors the “no" vectors.
Thus?a variation vector dy(x) always belongs either to class T (“yes") or to class
II (“no"): If 0y belongs to class I, then

T
&]:/5 z)dr =0
55(2) y()

2Following Aristotle’s law of the excluded middle.
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because y(z) was assumed to be an optimal function which satisfies the constraint,
i.e. for which

5K

de=0 i=1,... k (for class I variants).

If, on the other hand, dy belongs to class II, i.e. such that

0K; = /

then we can, and we will, choose constants Aq, ..., A; such that

0J = MOK | + ... A K.

x)dr #0 forsomei=1,... k,

The conclusion is therefore this: all variation vectors dy(z) satisfy the equation

x2
0J 0K, 0K,
— = A —— — ... N\ oy(x)dx =0

[ 5 a6 sy(z) ] )

&1
whenever

J— MK — - — MK}, = extremum

where the constants Aq,..., Ay must be chosen appropriately. They are determined
by the values ¢y, ..., ¢, of the constraints.
Summary:

To solve the optimization problem with constraints, solve the following k + 1
equations

)
5oty = A = M) = 0
Kl[y] = K
Kilyl =k
for y(z) and Ay,..., A\g. The constants Ay, ..., \; are called “Lagrange multipliers".

2.2.2 Solution via Constraint Manifold

The “yes” and “no” vectors play a basic role in establishing necessary conditions for
the existence of an extremum subject to constraints. It is therefore appropriate to
highlight how these vectors tie into well-established theory. We shall do this by
splitting the space of tangent vectors into two orthogonal vector spaces, whose only
common vector is the zero vector.
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Review: Finite-dimensional Space

Our task is to extremize a given function f(Z) on the finite-dimensional space R"
subject to a finite number of constraints, say, gi(z) = c1,---,g9x(z) = ¢, with
k < n. More precisely, we wish to find the equations for those critical points &y of
f(Z) which lie on the constraint manifold, which is the intersection of the constraint
hypersurfaces given by the finite number of constraints.

We shall solve this problem in two steps. First, we shall develop the chain of
reasoning when there are no constraints present. Then we shall extend this reasoning
to the case where k constraints are present.

Extremum Without Constraints

Consider the trajectory ¥ = 7(t) of a particle in the conservative force field V f of a
potential f(Z). Then

df(r(t)) of dr' _ dr
dt i axiﬁ_vf dt

“(-)force x velocity” (2.12)

is the rate at which the force field does work on the particle.
Suppose there exists a point &, such that

L. dr

for the tangent vectors of all curves I = 7(t) passing through this point, or, more
generally, for all vectors ¢ such that

V1 (Z) i =0.

These vectors form the tangent space at ¥y. Observe that

implies that

V f(Zy) € “orthogonal complement” of the tangent space at Z .

Being the orthogonal complement of the space of all tangent vectors, it consists of
the zero vector only; it is zero dimensional. Thus

Vf(#) =0.

This is the necessary condition for Z, to be the location of an unconstrained extremum

of f.
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Extremum with Constraints
Next, suppose there exists a point Zy such that

dr
V(X)) —=0 2.13
[(Zo) 7 (2.13)
for the tangent vectors Z{ of only those curves ¥ = 7(t) passing through 7, which lie
in the constraint manifold

{f: gl(f) =C1, gk’(f) ZCk} ) (214)
and hence satisfy
dr dr
2. =0 ... 7)) —=0. 2.1
Vg1 (Zy) o 0, , Vgr(Zo) o 0 (2.15)

The collection of such vectors % forms a subspace of the set of all vectors at xq: any
linear combination of the subspace vectors also satisfies these k constraints. This
subspace,

W ={0:Vg (7o) -U=0,---,Vgp(Zy) - v =0} (2.16)

is called the constraint subspace at Zy. These subspace vectors are the “yes” vectors
for the infinite dimensional domain in Eq.(2.11) on page 47.

One now makes the fundamental and final observation that V f () belongs to the
the orthogonal complement of the constraint subspace W, Eq.(2.16). This orthogonal
complement consists precisely of those vectors which have the form A\;Vg; +--- +
AV gi. In particular,

V(&) =MVg +-+ MV (2.17)
for some set of coefficients Aq, -« -, Ag.

These constants must exist. This is because our focus is on a non-trivial solution
9 to Eqs.(2.13) and (2.15).

They are called the Lagrange multipliers of the constrained extremum problem.
It is evident that their values and the location of the critical point of f on the
constraint manifold are given by the following “Lagrange Multiplier” theorem

Theorem 1.

Given: Let f be a scalar function which has an extremum at Ty on the intersection of
the k constraint hypersurfaces (“the constraint manifold”), Eq.(2.14).

Conclusion: The location of the constrained critical point is determined by

VF(@0) = MV gi(F0) — - = MVgu(To) = 0} (2.18)
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where the coefficients Ay, - -+, A\ are obtained in conjunction with
91(Zo) = c1
gr(To) = ci

Remark 1: In mechanics where f(Z) is a scalar potential and V f(Z) its (conservative)
force field, the force

V(@) = MV (Zo) + - - - M Vgi(Zo)

is the constraining force which guarantees that the point particle stays in equilibrium
(“no net forces”) on the constraint manifold.

Remark 2: This theorem is easily visualized in three dimensions, R" = R®, with
two constraints, say ¢1(Z) = ¢; and go(Z) = co. There the constraint manifold is
one-dimensional, a single curve 7(t), the intersection of the two surfaces ¢;(%) = ¢;
and go(Z) = cz. Consequently,

- dr
Voo & = 0
g1 I
- dr

Pppe— frt 0
Vg

The fact that f has an extremum on this curve implies

ar

This is a system of three homogeneous equations in the three unknowns of ‘fl—’; . Such

a system has a non-trivial solution if and only if the set of vectors {ﬁf, ﬁgl, 65]2}
form a linearly dependent set. Consequently, 3 A\; and Ay such that

Vf = )\1691 + Azﬁgg.

Ezample (Function with two finite constraints):
In multivariable calculus the problem

f(z,y, z) = extremum

subject to
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is solved by considering
[r=1F=Xg—Xh
and solving
V(f=Ag—Xh) = 0

g(quvz) = O
h(%y:z) = G

for g, Y0, 20, A1 and A\o. These are 3+2 equations in 3+2 unknowns.

Infinite-dimensional Space

The Lagrange Multiplier theorem readily extends to a functional which is defined
on curves in function space, which is infinite-dimensional. The development runs
parallel to the one preceeding Theorem 1.

First of all recall that a “curve in function space" is a 1-parameter set of functions

y(x,t) a<t<b. (2.19)

Second, the rate of change of the functional J[y] along this 1-parameter set is

2

d d /
gJ[y] = 0 F(zyy(z,t),y (2, t))dx
72 OF dy(xz,t) OF oy (z,t)
_ il - dx
dy W) ot Ay u(t) ot
/ 07 Oy(z. 1) dx |
5y(x) y(m,t) at

1

where 6.J/dy(z) is the variational derivative of J as defined by Eq.(1.15) on page 23.
Third, if J[y] has an extremal value on the parametrized set of functions y(x,t)
at t = to, which is to say that its rate of change d.J[y|/dt vanishes at ¢ = (, then

T2
B / 0J
t=to oy(x)

1

y(z,t)
ot

da . (2.20)

to

d
0= —J
o [v]

y(z,to)

replaces Eq.(2.13) as the extremum condition.
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Fourth, the fact that the one-parameter family y(x,t) lies in the intersection of
the constraints, Eqs.(2.6) on page 42, implies that

dK[y] / 6Ky | Oyt
dt . 0yY(@) |ymry Ot
(2.21)
)
dK[y] :/ 0Ky Oy(x,t)dx: 0.
dt 0Y(@) | yzpy  OF

x1

At t =t these equations replace Eqs.(2.15).
Finally, Eq.(2.17) gets replaced by

5 SK, SK,
-\ I et
sy(z) — "oy(x) "oy (x)

Nota bene: A class I (“yes”) or a class II (“no”) vector dy(x) on page 48
is an infinitesimal vector (“a variation”)

Oy(z,t
dy(x) = y(;f )51?

tangent to one of the t-parametrized sets of functions (“curve in function
space”), Eq.(2.19), on page 53. A curve which satisfies the integral con-
straints has tangent vectors which obey Eq.(2.21). These tangents are
proportional to the “yes” vectors. The orthogonal complement of all such
vectors make up the vector space of “no” vectors. Each of them is some
linear combination of 0K, /dy(x),- -+, 0K /oy(x).

In spite of the fact that the domain of the functional .J[y] is infinite-dimensional,
the line of reasoning that leads to the infinite-dimensional version of the Lagrange
Multiplier Theorem 1 remains unchanged. In fact, the variational (i.e. “Euler”)
derivatives of J[y] and of the K;[y]s correspond one for one to the familar gradient
of f(Zy) and of the g;(Zy)s

6./ y]

Syle) e
§JK [y] Z
oylz) Va1 (o) (2.22)
6J K[yl < Vgi(Zo)
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The only difference between the first and the third colums is that the variational
derivatives are on an infinite dimensional background, while the gradients are on its
finite dimensional background.

The constrained optimization Theorem 2 below is the extension to an infinite
dimensional background of the constrained optimization Theorem 1 for a finite di-
mensional background

Theorem 2.

Given: Let 2
ool = [ Pl ds

be a scalar functional which has an optimal function y(x) satisfying the k con-
straint conditions (2.6) on page 42.

Conclusion: This optimal function satisfies the differeential equation

d d d
Fy — %Fy’ — /\1 (Gly — dely’> — /\k <ka - deky’> =0 ) (223)

where the coefficients Ay, -+, Ap are obtained with the help of

z2
/ Gl(mtya y/) dr = C1
1

/ Gk(l'ya y/) dr = Ck .

Ezxample (Functional with two integral constraints):
Apply Lagrange’s method to solve the variational problem

x2
Jly| = / F(x,y,y') dr = extremum

Zy
2

Kly] = G(z,y,y') dr = ¢; = fixed
2

L[y = H(x,y,y") de = ¢y = fixed

x1

This problem is a generalization to infinite dimensions of the example on page 52.
One proceeds by first constructing

J'=J—-M MK —-X\L
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and then considering

Thus

o f(or aor (G a
0J" = /(ay T ay’) 0f(z)dx Al/(@y o 8y’> df(z)dx

The problem is solved by setting
0J* =6J — MK — 0L =0 .

Thus one has the following set of equations

0 d 0
T2
/G(x;y Y =
/H(fv;y y = o

The solutions to these equations yield 4 constants:
(1) 2 integration constants
(2) 2 Lagrange multipliers
The 4 constants are determined by
(1) 2 boundary conditions on y(x)
(2) 2 constraints Ky| = ¢; and L[y] = co.

Lecture 8

Example. (Isoperimetric Problem):
Among all the curves (z(X), y(A)) of fixed length ¢,

2
/ \/ > d\ = constant = /,
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M
(X2, ¥2)

through the points (x1,y1) and (x9,y2) find that curve for which

A2
/ Y % dA = extremum
A1

i.e. extremize the arca!
Remark. Other formulations of this problem are

(i) | y dz=extremum
/ 2
/ 1+ (dy) dx = fixed
dx

subject to
(ii) [ y % ds=cxtremum
subject to
dz\? . dy 2 _1
ds ds)
Solution: Consider the variational integrand
F* — yx/ — 1 x/Z + y/2

where p is a Lagrange multiplier. The Euler equations are

d OF~ OF*

d\ 9z oz
d 9F*  OF
dx oy Oy

t 2 — implies that 9 s constant:
ox Ox

The fact that z is a cyclic coordinate, i.e. tha

= constant = C
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The second equation gives us

d y /
S =) -2 =0
d\ I/Z + y/2
The form of these equations suggests that one introduce arclength,
x/Z + y/2d>\’
as a new curve parameter. In terms of this parameter we have

1 d d

V@

We also notice that for any curve extremal or nonextremal, the use of s as a curve

parameter implies
dr\? dy 2
J(E) (Y = 220

In terms of the derivative with respect to arclength the Euler equations become

y—pi=c (2.25)

“© 7

and

i+ i =0 (2.26)

Comments about consistency: Any two of the equations (2.24), (2.25),
and (2.26) imply the third. Thus, notice that the last two equations are
consistent with the requirement that

i+ y° = const = 1.| (2.27)

This requirement was already highlighted on page 39, but we also validate
it by direct differentiation: Differentiate Eq(2.25)
ur—y = 0 (2.28)
pwy+z = 0 (2.29)
These are the unintegrated Euler equations. Insert them into the deriva-
tive of @2 + °,
d
d—(a‘;2 +9?) = 280 + 20y = 2i(—)\ij + 24AE =0 (2.30)
S
Thus 2% +¢*=constant along the curve. This is consistent with Eq.(2.24).
This constancy is a general property and we shall return to it when we
discuss the symmetries of the functional J.
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Now return to the task of solving Eqs (2.25) and (2.26). Insert Eq.(2.25) into
(2.26) and obtain

L1 c
TR
The solution is
y = Acos <S + 5> +c (2.31)
w

To obtain z(s), use Eq.(2.25),

and obtain

r = Asin (S + 5) + g (2.32)
i

Equations (2.31) and (2.32) are parametrized equations for a circular arc because
(y —c)® + (v — x9)? = A%

s=1 finish
Figure 2.10: Two intersecting circles as solutions to the isoperimetric problem.

We have five constants A, 0, u, ¢, and x¢ whose values are determined by five
conditions, namely,

At s=0: z(0) =2, (2.33)
y(0) =u (2.34)
Ats=10: z(0) =z (2.35)
y(l) = ys (2.36)

() (Y ame 29
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This integral constraint together with Eq.(2.30) imply that that
Zt2 4 yQ _ 1’

which is to say that the squared length of the tangent to the curve has unit length.
Q: What does this equation tell us about the Lagrange multiplier p? A: With the
help of the solutions x(t) and y(¢) it implies that

AQ

pr o
It follws that 1 = +A. Thus there are two solutions, one corresponding to p = A,
which gives an arc whose length increases with angle in a clockwise fashion; the other
corresponds to 1 = —A, which gives an arc whose length increases with angle in a
counter-clockwise fashion as the curve proceeds from point 1 to point 2.

The other implication is also geometrical: for both circles the Langrange multiplier
|| is the radius of their circular arcs.

1. (2.38)

Economy and Transparency

Mathematical economy and geometrical transparency are always cognitive virtues.
In the above isoperimetric problem they are achieved by the method of complex
arithmetic: Consolidate the two real degrees of freedom into a single complex degree
of freedom,

z(s) = y(s) +ix(s),
and its complex conjugate,
() = yls) = (s,
This collapses the two Euler Eqs.(2.28)-(2.29) into a single equation
pi =iz =0
whose solution is
2(s) = Ce'n
= At (2.39)
= Acos (; + 5) +i Asin (; + 5) (2.40)

y(s) z(s)
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The Lagrange multiplier u is real. Consequently, the complex conjugate equation
pz + iz = 0 yields merely the complex conjugate of Eq.(2.40). Furthermore, the
constraint Eq.(2.27) when expressed in terms of the complex solution, Eq.(2.39) and
its complex conjugate, namely

Wl

iE=1,

leads to the real result Eq.(2.38) on page 60, as it must.

2.2.3 Variational Problems with Finite Constraints

Scientiofic knowledge consists of understanding observations and facts by asking and
answering

e Why do they occur?
e What are the primciples that imply them?
o Where do they come from?

Variational calculus is the means of mathematizing many questions of this type.
Aside from isoperimetric variation problems, i.e. those having a set of integral

constraints as subsidiary conditions, another important class is exemplified by the

following;:

Find the curve {y(x), z(x)} through points (z1,y1, 21), (22, y2, 22) such that

J = / F(x,y,2,y, 2 )dx = extremum

subject to the “finite" constraint
G(z,y,2)=0.

Given that this problem has a solution, we consider the first variation of J due to
deviations 0y(z),0z(z) of the variants y + dy and z + 0z away from the functions
y(x) and z(x):

2 d d
oJ = /11 [(Fy - d$Fy/> oy(z) + (Fz — dsz/) 52(J:)] dx
+ Fy/5y|:f + FZI(SZE?

The fact that the variant {y(z) + dy(z), z(x) + dz(z)} is required to lie on the
constraint manifold G = 0, i.e., it must satisfy

G(z,y+0y,z+02) =0,
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implies that the variations dy and §z are not independent. They must satisfy

0G oG
8—y6y(m) + 552(3:) =0
so that o
bz = ——2Loy.
z c. Y

Insert this into the expression for the first variation and obtain

2 d d . G,
5<]_/I1 {(Fy_dny/)_(Fz_dsz/)Gz}(sydm

+ Fy/5y|rf — sz GZ

x

The endpoint terms are zero because all variants pass through the same pair of end
points (21, y1, 21) and (xa,ys, 22) so that dy(xy) = dy(za) = 0.

The variations

are arbitrary. Consequently, 6/ = 0 implies that for each z one has

Fy— 3Py _F.— 4 F
G, G.

Let us designate this common function by A(z). Thus one obtains two Euler equa-
tions,

d d
Fy——Fy, —Xz)G, =0and F, — %FZ{ —MNz)G, =0].

du

These equations together with

G, y(x), 2(x)) = 0]

determine the three functions
y(z), 2(x), and A(z).

Even though A = A(z) not a constant, it still is referred to a “Lagrange multiplier."

2.3 Variable End Point Problem

It is not necessary that the endpoints of a variational problem be fixed. Consider as
an example the brachistochrone problem (Figure 1.2 on page 10) in which the second
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Il
(on

(0’0) X .

y

Figure 2.11: Brachistochrone trial curves with different end points.

end point, instead of being fixed, is required to lie somewhere on the vertical line.
Which of the curves will allow a sliding bead to reach its destination in the least
amount of time?

The general problem is this: Find that curve y(x), which starts at = a and
ends at x = b, for which

J= / Flay.y)dz + 6(y(b)) — o(y(a)) = extremum, (2.41)

where F, 1, and ¢ are given.

The variational principles we have considered so far can be said to have had
Dirichelet boundary conditions. By contrast, the present variational principle can
be said to have just the opposite type, namely “natural” or “free” boundary conditions.

Having intergrated by parts, one finds that the first variation of the functional J

z=b .
oF  0p\ .
- (0y’ ’ 0y>0f(x>

is

r=a

b d OF 9\ .
5. = / [F, — —Fyléf(@)dz + (@ % @>Of(x)

The variations d f fall into two main classes:

class 1: f :0f(a) =0 6f(b) =0
class 2: 0f :0f(a) 0 6f(b) #0
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X=a x=b

y = f(x)+ 8f(x)

Figure 2.12: Trial curves with variable starting points and end points.

We know that J = extremum = §.J = 0 for all variations J f .

First we let §f be of class 1. In that case there are no endpoint terms in §.J.
Consequently, 6J =0 = F, — £ (F,) = 0.

Thus we are left with

0w z=b 099 r=a
= F,+—=— — | Fy + =
7= (8 + 5 )ar@| - (B + 52 )orw
Next we let 6 f be of class 2. Then
i aw r=b a&,ﬁ r=a
0J =0= (Fy/ + d—y> =0 and (Fy/ + d_y> = 0.

These are the optimal boundary conditions associated for the given variational prin-
ciple, Eq.(2.41), with variable endpoints as expressed by the boundary terms v and

&,

2.3.1 Extremum Principle at a Moment of Time Symmetry

The extremum principle with side conditions and with variable end points is illus-
trated by the following example.

Consider a vibrating string imbedded in an elastic medium and with a spring
attached to each end. The tension of the string, the coefficient of restitution of
the elastic medium, and the spring constants are properties which determine the
temporal evolution, i.e. the vibrations, of the system. These properties we assume
to be independent of time. Consequently, the system is said to be time-invariant.
One can show that for such a time-invariant system its total energy,

T.E. = Kinetic energy + Potential energy

is independent of time, i.e. the total energy of a time invariant system is conserved.
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In general the vibratory motion of the system is such that its kinetic energy is
never zero. Moreover, there exist certain types of motion, namely those in which the
vibrations are characterized by a single frequency. Such states of motions are called
normal modes. They have the property that at some instant of time the system is
momentarily stationary. At that moment the system’s velocity is zero, its kinetic
energy is zero and all of its energy is in the form of potential energy,

T.E. =0+ P.E. (at a moment of time symmetry)

We inquire as to the amplitude profile of the system at this moment of time symmetry.
The amplitude profile which nature allows is governed by a extremum principle.
Consider the total energy of the system at a moment of time symmetry (% =0)

TE. =J[y] = ;/ [T(x) (ji) +I€($)y2] dx
bk )~ )"+ gk () — )

This is the potential energy of the system. It consists of three parts:

1. The “stretch” energy

b . . b 1Y (dy\?
T — | Tde~—- [ T|-==
/a vV (dz)? + (dy) /a dx 5 /a (dx) dx
Here T'= T(z) is the (position dependent) string tension.

2. The displacement energy due to the string being displaced in an elastic medium
with a local restoration (“Hook’s") coefficient

k(z)dz
for each incremental interval dx.

3. The potential energy stored in the two springs at « = ¢ and x = b. Their spring
constants are k; and ko.

The extremum principle governing the amplitude profile at a moment of time
symmetry is given by
Jy] = extremum (2.42)

subject to

b
Kly] = ;/ p(x)y*dr = 1. (2.43)
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Here p(x) is the linear mass density of the string.
With the help of the Lagrange multiplier A, this principle reads

Jly] = AK[y] = extremum.

Nota bene. It turns out that this principle is equivalent to

Jyl

—— = extremum.

Kly]

This is Rayleigh’s variational principle and we shall consider it later.

The Euler equation for either variational principle yield the same differential

equation, namely
d dy
——T(x)=—= 4+ (K(z) — A = 2.44
g L)+ (K (2) = Ap(z))y = 0 (2.44)
This is the result of what we called “class 1" variations on page 63.

By contrast,“class 2" variations, which do not vanish at z = a yield

T(x)y' ()|" + ka(y(b) — ) =0

or
T(a) ,
@+ o) = (249
Similarly at © = b one has
T() ,
k(Q)y (0) +y() =1 (2.46)

Equations 2.45 and 2.46 are known as the inhomogeneous mixed Dirichelet Neumann
boundary conditions for the vibrating string. If we let the springs become infinitely
stiff, i.e. let k; — oo and ky — o0, then the problem reduces to a Dirichelet boundary
value problem where the end point amplitude has the fixed values

y(a) =y

y(b) = y»

We conclude that the Sturm-Liouville boundary value problem, Equations 2.44, 2.45
and 2.46 is a consequence of the variational principle,

b
1
PE. - )\/ ip(:c)y2 dxr = extremum. (2.47)

Remark 1. In vibrational problems the Lagrange multiplier A, the eigenvalue of the
S-L problem, refers to the squared vibrational angular frequency,

A = w? = (27 frequency)?,
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of the system, and the kinetic energy (K.E.) of the system vibrating at this frequency

is
1 2 ’ 2
Jw plx)yde.

Consequently, the amplitude profile of such a normal mode is governed by the vari-

ational principle
PE. — K.E. = extremum.

We shall see later that the “least action principle"

to
/ (P.E. - K.E.) dt = extremum

t1

yields not only the amplitude profile at any instant of time, but also the evolution
of this profile with time. Evidently, equation (2.47), the least energy problem with
its amplitude constraint is a specialization of the least action principle.

Remark 2. This principle can be extended to two and three dimensions where the
vibration can be those of a drum, solid, liquid sphere (vibrating sphere, vibrating
neutron star, vibrating uranium nucleus), vibrating black hole, sound in cavity, vi-
brating bridge, etc.

Lecture 9

2.4 Generic Variable Endpoint Problem

There are variable end point problems in which the endpoint lies on a curve or a
surface. For example,

1. what is the optimal curve from a point to a surface, or for that matter from
one surface to another?

Figure 2.13: Optimal curve and its variants between two surfaces.

2. How does an extremal meet a terminating surface?
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3. Given that a functional extends over two different media,
c b
I= [ Fewy)is + [ Pleyy)de.

how must an extremal in < ¢ be related to to its continuation in ¢ < z, i.e.
what are the junction conditions that prevail at the interface. For example,
what path does light take as it passes from one medium to another?

F F*

/

X=2cC

Figure 2.14: Curve crossing the boundary between two media characterized by F
and F™*.

These questions and others can be answered within the framework of the following
generic variable end point problem:
Find the curve {y1(x). ..., y,(2)} in an n+1 dimension space for which the variational
integral

z]
Ty, yn] = / F(x,y, .. Yn, Yoy - - -, Yh )dr = extremum
Zo

subject to the constraint that the starting and end points {y;(z0)} and {y;(z1)} lie
on two prescribed curves (or surfaces).

This variational principle asks us to consider changes in J not only due to variation
in the curves,

Yi = Yi + 0y,

but also due to variations in the points

Lo —xo + 0xg
r1 —x1 + dxg,

where the curves start and finish. The determination of these changes in J is a task
which one must do before the endpoint constraints are imposed.
To simplify discussion we consider the simplest case
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y
*k
Va?atign Plh(
t é _ >
TR y,g;()l }Syl—h<xl>+y 8y
P
Xo Xo+0%, X, X.1 +0x,

Figure 2.15: A curve and its generic variant.The total vertical variation dy; includes
only the principal linear part. With that stipulation one has h(x;) = h(zy + dx1).

1

J = / F(x,y,y)dr = extremum
o

and calculate the first variation 0.J allowing the endpoints to vary. Consider the

curves

starts ends
curve: y(@) Fy = (20, yo) P = (z1,y1)
its variant: y*(x) P = (xo+ 00,90 + 0yo) P = (x1+ a1, 11 + 0y1)

‘h(m) = y*(r) — y(x) = difference at fixed x‘

2.4.1 General Variations in the Functional

The total variation in the functional to be extremized is

x1+0T1 Tl
AJ = / F(:p,y+h,y’+h’)dzrz—/ F(r,y,y)dx

0+dxo zo

= [ By ) = Pyl

zo r1+0T1
+ / F(m,y+lt,y’+it’)dm+/ F(x,y+h,y + h)dx
xo+dxo 1
whose principal linear part is
T Eal
T F(zy.y)n

o o

0. = / £y — %Fy/]h(m)d:p’ + Fh(z)
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The last term is new. It is proportional to the shift in x :
5$|m0 =90z, and 5x|zl = 0x,.

Referring to Figure 2.15, we express any type of end point variation in terms of the
independent variations dy; and dx; :

h(l’o) = 0yo — y/(ﬂﬁo)fsﬂﬁo
h(r1) = 0y1 — Y (w1)07

Thus the first variation is

o6 J r=n
o = / — h(x)dx + F, 61
Sy ey
oF r=n
F—y=— 2.4
PG| (2.48)

We have two endpoint terms because in general both y and z are allowed to change
at the boundary.

This formula opens the door to a new mathematical perspective in optimizing the
integral J[y]. It is the means

a) to mathematize boundary conditions
b) to mathematize junction conditions

c) of entering into the “canonical" formulation of mechanics

(
(
(
(d) of entering into the Hamilton-Jacobi formulation of mechanics.

As we shall see in Chapter 3.5, the conceptual economy of this Hamilton-Jacobi
formulation is breath-taking. This is because a system of several ordinary differential
equations, the E-L Eqs.(2.1) on page 37, gets replaced by a single partial differential
equation, the H-J equation.

In order to get already now a general idea of the relevant line of reasoning, consider
the context of two close-by optimal curves y(x) and y*(x), both satisfying the same
E-L equation

0J d
pu— F - T
0y(x) Y dx

and each of them passing through its pairs of points

0 Fy (2.49)

Py = (!L‘o»yo) & P = (3317 yl) (2-50)



2.4. GENERIC VARIABLE ENDPOINT PROBLEM 71

and through

PJ = (.’I/‘g + 5.17(], Yo + 5?](]) & Pl* = (.’171 + (5371, Y1 + 5y1) . (251)
In light of Eq.(2.49) the expression for AJ, Eq.(2.48), becomes
T=2T1 ,aF T=T1
AJ = F, oy +(F—y 8—!//)5:1:

T=x0 T=x0

It implies that J is a well-defined function of its end points,

J = J[y](x(h Yo; L1, 91)7

whenever y(z) is an optimal curve. Because of this one has the following two partial
derivatives

a,] AQ] aF

N = 1 —_ = F . / _ /7 : / 2 2
8x>y &fﬁogxl)y (#:9:9) ' 55 (@ 9.9) (2.52)
oI _ . AT\

5‘y>m = slim, (syl> = Fy(z;9,9) (2.53)

Solving Eq.(2.53) for ¢ in terms of g—g and substituting it for ¢’ in Eq.(2.52), one
obtains the partial differential equation

oJ oJ
— 4+ H y,— ) =0.
oz + (:r,y, 3,1/) 0

Its solution is the scalar function
J=J(z,y) .

Its determination replaces the task of solving the Euler-Lagrange differential Eq.(2.49),
and hence the task of exhibiting the optimal extremals y(x) in closed form. The
physical significance, the mathematical nature of this scalar as well as the method
by which it yields the extremal curves comprize the heart of the new mathemat-
ical perspective. We shall develop these in Chapter 3.5 after the Lagrangian and
Hamiltonian mathematization of dynamics.

2.4.2 Transversality Conditions

Continuing the mathematization of optimized junction and boundary conditions, we
now subject the first variation to prescribed endpoint constraints. We require that
the paths start and terminate on the two respective given curves

y = ¢() (2.54)
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and

y = () (2.55)
or equivalently,

x = d(y) (2.56)
and

z=Y(y) (2.57)

Figure 2.16: A curve and its variant with end point constraints.

In that case the vertical and horizontal variations in the end point are related by
5y0 = QD/("L‘O)(S:EO and 5y1 = 11/(:81)5561 (258)

Consequently, the first variation in J is

A= / gh(x)d$ + [Fy'd)/(m) + (F - y/Fy’)]w=x15$1
0
—[Fy¢' (x) + (F — y' Fy)]omu, 020

If y(z) is an optimal curve, then AJ = 0 for arbitrary variations h(z) and arbitrary
variations dz; at the end points. The former implies that y(z) satisfies the Euler
equation. The latter implies

[F +(¢’—y’)Fyf] = 0

=X

|:F + (30, - y/)Fy’:| = 0,
T=x0
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which are known as the delta x transversality conditions. By contrast, the delta y
transverality conditions are

P@+W—y@oww] 0
(ﬂ”/»y):(ﬂflvyl)

[Fy, +(F—y'F,) q)/(y)] —0

(z,y)=(z0,y0)

One must use this kind of transversality condition if there are many degrees of
freedom, { y1(z),y2(x), -+ ,yan(z) }, as is the case in Section 2.5 on page 75.

2.4.3 Junction Conditions

Lecture 10

Suppose one wished to find an optimal curve between two points in adjoining re-
gions characterized by different variational integrands. Thus we consider an optimal
curve which leaves one region characterized by F' and enters another characterized
by F* so that

c b
J =/ F(x,y,y)dz +/ F*(x,y,y')dr = extremum.

The boundary between the two adjoining regions is x = c., and it is depicted in
Figure 2.14 on page 68. The extremum principle establishes a relationship between
the properties of the curve in the two regions. To determine this relation we, as
usual, consider the total first variation

©6J boJg
AJ = /a (Syéy(x)dx—i—/c ?yéy(x)dx
+FEyoylS + Fhoyll.
oF™ b
ay/ )(5$|c+ :

OF . |
+(F — ylaifl//)(stl + (F* — y/

The fact that the curve is optimal implies

oJ
— =0.
oy
The fact that the boundary between the two regions is = ¢, implies that dx(c) = 0,
i.e. it is fixed and given.
Consequently the extremal condition implies
AJ c-

ct

ETCA
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Figure 2.17: Ray refraction at the interface between two media having constant
refractive indeces n and n*.

F, The Junction Condition

_ *
ct T Fl/’

o

Example 1. (Snell’s Law).

Consider a light beam propagating from one medium where the refractive index
is n(z,y) to another where it is n*(z,y). The variational principle is

c b
J = / n(z,y) V1+y?de + / n*(z,y) v/ 1+ y?dx = extremum!

The junction condition is

/

Y Y

n(x,y) ————— =n"(x,y)—F——
(x,y) T (@) s e

which according to Figure 2.17 is geometrized by the statement

/

r=ct

nsinf = n*sin§*.

This is Snell’s law of refraction.

Example 2. (Segmented string)

Consider a string with discontinuous tension. Such a discontinuity would prevail
at the junction of two sting segments 0 < x < ¢ and ¢ < = < £ which are joined
at © = ¢ by a frictionless ring. This ring (having neglegible mass) is constrained to
slide without friction along a rod transverse to the segmented string. However, at
the same time this rod pulls with non-zero force along the longitudinal direction of
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that string. Consequently, there is a corresponding non-zero jump in the tension of
the string segments along their junction. In fact, the difference, To(¢™) — Ti(c¢™), in

the tension
T(z) = Ti(z) z<c
Th(z) c<z

on the two sides of the junction x = ¢ equals the longitudinal force provided by the
frictionless rod.
The equation for the amplitude profile of a normal mode of any string is

1@ 4 lgfa) M)y = 0 (2:59)

Q What are the junction conditions across the frictionless support rod?

A The variational principle for the amplitude profile is

1 c 1 l
PE. = 5 / T y” +qy?®] dv + 5 / [Toy” + qy°] de = extremum  (2.60)
0 c

subject to

¢
/ pyidr = 1. (2.61)
0

The Euler equationfor this “isoperimetric” problem is given by Eq.(2.59), where
A is the Lagrange multiplier for the given constraint, Eq.(2.61). The junction

condition
Fy'la::c+ - Fy'laz:c*
yields
dy dy
T: —=| =T = .
2(2) dx |, () dr| -

In other words, the transverse force on the string parallel to the boundary
T = ¢ is continuous across the boundary.

2.5 Many Degrees of Freedom

One would like to generalize the variable end point problem from extremal paths
in the plane to extremal path in a higher dimensional space. In that case the two
curves (2.56) and (2.57) generalize to the two surfaces

=y, .., Yn) (2.62)
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and
r=Y(Y1,...,Yn) (2.63)

Xg=®(Yp++Y o)
X =YYty n)

Figure 2.18: A curve and its variant between surfaces.

The corresponding generalization for the total first variation consists of replacing
the equation (2.48) with

0l 5 "
AJ = - oy (x)d F oy,
‘] LO ;Oyz(x> y('r> x+; Y Y

oF
+(F - Zyﬁ-—,)éx
=1 i

Conceptual unit economy demands that it is best not to single out one of the y;’s
over all the others. Consequently, we express the variation in dx at in terms of the
variations of all the dy;’s in the surfaces (2.62) and (2.63),

5%0 = Z gq) 5yz

x1

Zo

x1

o

i=1 v

o Y
b= == oy

i=1 v

With the help of these expressions the transversality conditions at these starting and
terminating surface are given by

ob " OF
F,+—F-— e =0, =1,...,
e a3 | IS

j=1 J
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n
and analogous condition at x = x1, where the gradient of the surface is {g;l’} .
vJ)i=1

Example 3. (Fermat’s Principle of Least Time).

Consider Fermat’s principle of least time for a light beam propagating through a
medium whose refractive index is n(z,y, z). Let the light beam start at (xq, yo. 20)
and finish at some point xq,y1, 21 on the surface

x=VY(y,2)
such that the path minimizes the time of travel. The quantity to be extemized is
1 1
Jy,z] = - / n(z,y, 2)\/d? + dy? + dz?
cJo

1™
- / n(x,y, 2)v/1+y?+ 22%dx
c

Zo

One applies the transversality conditions to the variational integrand. We have

F = n(xvyvz)vl+yl2+z/2

oF ny’ oF nz'

oy Vity2+22 07 \i+yri+2?

/2 12
F—yFy—2F = n/1+y2 22— 2~ i
V31+y?+ 2"

n

V1ty?+ 2

There are two transversality conditions at x = x;. They are

__mw Y m
/1 +y/2 +Z/2 ay 1 +y/2 _|_212
and
nz' ov n

Gt ———==0
VIty?+22 02 /14 y?+27

Thus after cancellation we obtain

P
(y7z)_( ay az)
o ov U
(‘rvy?z)z(l?_aiy:_a):€g

The left hand side is g—f, the tangent to the light beam. the right hand side is the
gradient of the function g(z,y,2) = v — ¥(y, 2). This gradient is L to the surface.
Thus the transversality condition says that the optimal light beam strikes the surface
perpendicularly.
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2.6 Parametrization Invariant Problem

A mathematical problem is said to be geometrical if it is a statement whose validity
does not depend on the coordinate system used in its enunciation.

Thus, the shortest trajectory between two point is a straight line, or the Pythagorean
theorem, are geometrical statements.

In geometrical problems where one is dealing with the determination of curves
which are optimal, it is more suitable not to single out any one coordinate over the
others as an independent variable. Instead, represent these curves parametrically.
Thus let

x=z()\)

y=y(\)

The choice of curve parameterization is optional, i.e. different parametrizations
represent the same curve provided the functions x(\) and y(\) do not satisfy

dx @_

ﬁ:O and d)\—O

simultaneously. This resttriction guarantees that A expresses non-zero progress along
the curve.

2.6.1 Parametrization Invariance via Homogeneous Function

Consider the simplest variational problem. Its variational integral has the form

o dy M dr dy
— F i — ar -4y
J /zo (:r,y, dT> dz //\0 G(:L“,y, d/\’d/\> dA

dx dy
G= aF <x,y, Zi)

dX

where

This integrand is a function which is "homogeneous" in the variables % and % and
its "degree of homogeneity" is 1. It satisfies the homogeneity relation

de  dy\ dr dy
G <$’y’kd)\’kd)\) = kG <x,y, IR d)\) (2.64)

Following Euler we differentiate this expression with respect to k, and then settig
k =1, we obtain

dy

d
¢'Gy +y'Gy = G, wherex' = a andy’ = IR (2.65)

dX
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Conversely, suppose that G is some homogeneous function of degree one in z’ and
Y, i.e G satisfies Eq.(2.64), then the variational principle

A1
Gd\ = extremum
Ao

determines a parametrization invariant path. This is so becuase the parameter

change A\ = A(\) yields

)\1 X1
/ G (m,y,dm, dy> d\ = / G (x,y,gv'dx,y’@) d\
2o d\ d\ o A\ dA

A1

d\ —
G(x,y,x,y) —=d\
L (2, ,y)dA
A1
= G(z,y, ', y")d\
Ao

We conclude that the variational problem is invariant under a change in parametriza-
tion, and that the extremal path is independent of one’s choice of parametrization
used to represent it. The extremal path satisfies the Euler equations

d d
These equations must be equivalent to the single equation

d OF

"y ()

This means that somechow the two equations (2.66) cannot be independent equations.
There must exist an identity between them. In fact, one can show with the help of
Eq. (2.65) that
PG — a1y, - La,) =0
T T T Yoy = o) =

is an identity. It holds for an any path, extremal or non-extreamal.

We shall now apply these ideas to the geometrical problem of finding the geodesics
in a space coordinatized by curvilinear coordinates.

2.7 Variational Principle for a Geodesic

Lecture 11
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Consider flat Euclidean space coordinatized by (x,y,z) = Z. Introduce curvilinear
coordinates (z!, 72, 2%) as an alternative means of labelling the points

z(xt, 2% 2?) '
y(at, a?,2°) 5 i(a’).
z(xt, 22 2?)

We would like to reexpress distance
(ds)? = da® + dy* + dz?

in terms of these curvilinear coordinates. Thus we consider

dr = 6—?(1 !
oz’
=1
dy = Zaydaz

The distance formula becomes

(ds)? = ZZd 02 0 it g 8O g 4 i 02 02 g

= gij (l‘ )d:rldx]

Remark. The last line intoduces the Einstein summation convention in which a pair
of repeated indeces implies a summation over the relevent coordinates. Also note
that the coeflicients

_or or

Y9 = 9gi " ai

arc the inner products between ¢th and jth coordinate tangent vectors. They would
not be mutually orthonormal in an oblique curvilinear coordinate system.

—¢-8 (2.67)

Q: How does one determine the optimal path between two given points A and B?

A: The optimal path is the one which extremizes the path length between A and B.
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The simplest case is a broken curve consisting of two parts:

B

v\ 2 ¥\ 2
distance = 2 (2> + (2) =Y2 L X2
= extremum for the direct (X=0) path

For broken curves consisting of several pieces, we have

B

A

Z \/ Az? + Ay? = extremum.

Among arbitrary curves beween A and B, the path length between A and B
B s minimum for a straightline
/ [g;7da"dz’ ] 2 — as compared to ,

A any of its variants

i.e. extremal length is an indicator of straightness.
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Remark. The introduction of curvilinear coordinates in Euclidean space is optional.
In such a space one can always find a global coordinate system x,y,z such that

(ds)? = da* + dy* + d2°.

In other spaces, e.g. a curved surface or more generally a Rimannian space, there
is no option. The non-Euclidean nature of the space makes the introduction of
curvilinear coordiantes mandatory. Relative to such coordinates one necessarily has

(ds)* = gnn (dxl)Z + 2g10dz"' d2® + goo (dx2)2 + e

A particularly exotic example is the interior of a star. In terms of spherical coor-
dinates (r,0,¢), the distance formula is not the expected expression (ds)? = dr® +
12(d6? + sin® 0 dp?), but instead is given by

dr?
8t G

3 c?

ds)? = + r* (df? + sin® 0dg’
2

where the constants p, G, and ¢ are

mass
p =
volume
) o 1 . .
G = Newton’s gravitational constant (= 15,000, 000 in cgs umts)

¢ = speed of light (= 3 x 10* in cgs units)

This expression is a consequence of Einstein’s law of graviation.
Introducing the spatial scale parameter

st G \ ?

the distance formula has the form

2

d
(ds)> = —Z— + 72 (d6° + sin® 0dg?) .
T a2
This suggests that one let
r=asiny

for the purpose of simplifying the distance formula. Doing so results in

(ds)? = a® (dy* + sin® x (d6” + sin® xd¢?)) .
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One can show that this is the element of distance on part of a three-sphere S3
2 +y* + 22+ =a?

of radius a, and which is coordinatized by

Tz = a sinysinfcos¢

a sin y sin @ sin ¢

z a sin y cos 6

W = a cosy

The remarkable feature of this three-sphere is that its radius a is determined by the
stars mass density® in Eq.(2.68).

2.8 Equation of Geodesic Motion

To determine the curve having extremal distance between A and B, we pick a curve
with the suspected property and deform it slightly, but arbitrarily

(M)

original curve: ' = @’
variant = deformed curve: 2° = a’()\) + da’(N).

1. Along either curve the distance is

B ! dzt dai"?
s = ds = / [gz] dX. 2.69
/A 0 TdX dX (2:69)

2. At fized A we find that

(a) the metric coefficient g;; (z°(\)) differs from one cuve to the other by

395 = gij (a" () + 80" (X)) = gij (a"(N)) = (;Zi,j&lk(/\) 7

(b) the components % of the tangent vector differ by

D)= oD a0

3For example, with a density of 1 gram/cc, that “radius” would be ~60 solar radii.

5 (da:z) _d(a* +6d’)  da* d
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(c) the application of these changes in g;; and % to the integrand of Eq.(2.69)
results in the following change in the integrated distance, Eq.(2.69),

11, d (§qa0)dal 4 1. da* d (s5.i) 4 1995 kdz" da?

55 — 29iax (00") 5 + 59 Gy ax (007) + 35,#6a" 55 0 X

’ 0 da™ da™ 1/2 i
[gmn 5 22

The first two term are equal. Integrate them by parts and omit the bound-
ary term because both paths must pass through A and B:

§a'(0) = da’(1) = 0.

Thus obtain

1 m n1/2
s [ fk(A>6a’f[ da da] i,
0

Imn” I\ "dx
where
ad 99ij dxt da?
—1 d gkj% %ogﬂg d\ dx
fk()\) fr— da™ dam 1/2 a < da™ dan 1/2 + [ danL dan] . (2-70)
[Gomn 255 5 | [gmn ‘5 Gx ] Ay dA

An extremum is achieved, and the first order change §s vanishes for every first order
deformation da* of the path a*(\), when the three quantities that multiply the da*
all vanish. Thus one obtains the n conditions

fr(h) =0 k=1,2,3,---,n
for the determination of an optimal path.
In 3-dimensional Fuclidean or Riemannian space these are three equations. In 4-

dimensional Lorentz space-time these are four equations, even though in this latter
case the space-time interval is given by

(dr)? = —=2dt* + da® + dy* + d2*,

provided gravitation is absent.

Lecture 12

2.9 Geodesics: Their Parametrization.

The equations fi(\) = 0 constitute overkilll Why?
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2.9.1 Parametrization Invariance.

It is because their number is more than enough to express the extrmal nature of
Lodatdad
§= gij————]2dA
/0 9i dX dA ]
This follows from the parametrization independence of this integral. The reparametriza-
tion
A=A = A+h()\)
0) = 0
(1) = 1=h(0)="h(1)=0

> >l

does not change the integral. It corresponds to a mere "repositioning of beads along
a string" (= reparametrization)

Loodetda? o -
5= Gij—=—=]2d\
/0 [ T d\ dA]

The change in a’()\) brought about by such a reparametrization is
a'(A) = a'(A+ h()\)) = a'(\) + da’(N)

where ot
. Ik
da'(\) = h(A
@) = Zoh)
The fact that such variations cannot change the variational integral for arbitrary

reparametrization magnitudes h(\) implies that

da®)

The remarkable feature of this equation is that it holds for any path a*()), even if
it is not optimal.

An equation which holds true whether or not the quantities obey any differential
equation is called an identity.

Thus instead of needing n independent equations, one needs only n — 1 equations
to specify an extremal path (in n dimensions).

2.9.2 Parametrization in Terms of Curve Length

This reparametrization freedom can be exploited to introduce a physically funda-
mental parameter, the length parameter itself,

da™ da™ 2
ds = | grn e 01T
y [9 X d/\]



86 CHAPTER 2. GENERALIZATIONS

Let 2° = a'(\) be the optimal path. With s as the new path parameter call this
extrmal path 2%(s). Making this replacement in the differential equation

(M) =0

one obtains _ _ o
Pa? dgyyda™dx’  10g; dat da?

0= g
Gki ds? + Ox™m ds ds  20zF ds ds
The middle term can be rewritten as

1agkj-m~' lagkj-'-m
29am” et 2 O™ v
Let m = j, j = m and then drop the bar. The result of this “index gymnastics”

is

2?1 (Ogi;  Ogi Ogm;\ da™ dx?
0= g, = ¢ = — = 2.72
ki 52 T3 (5‘xm Ox’ ozk ) ds ds Ji (272)
Introduce the inverse g'* of the matrix gy;:
Qlkgkj = 5;
The equation of the geodesic becomes
d?a! , dx™da?
el e | 2.73
ds? " ds ds 273)

where

1 agk j agkm agm j
Fl = Ik J no_ J
) (83:’” * ozl oz

is the so called “Christoffel symbol of the 2"¢ kind".

Remark. By contrast, without the ¢, the coefficients

1 <8ij 6gkm _ 8gmj>
2

oxm OxJ ok

are the so called the “Christoffel symbols of the 1" kind". As we shall see later,
both kinds characterize the differential geometric law of parallel transport. Both
kinds have at first sight a daunting appearance, but they are computationally very
powerful in obtaining this law from one’s knowledge of the inner products g;; = €;-¢€;
at each point.
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Comment. The identitiy Eq.(2.71) on page 85, or equivalently,

da*
— =0 2.74
Tr 7 (2.74)
should not come as a surprise. Recall that the Pythagorean theorem, (As)? =
gi;Az"Az?, implies
da® dax’
j——— =1, 2.75
ks ds ds ( )
even for nongeodesic curves; and, because of the arclength parametrization, the
tangent {ddij} has been normalized to unit length. It therefore is an integral of

motion of the system of differential Eqs.(2.72) or (2.73). Indeed, differentiating the
Lh.s. of Eq.(2.75) with respect to s yields

d dx® da? dx*
i (%) =5 (276)

where f, is given by the r.h.s. of Eq.(2.72). The result is therefore this:
If fr = 0 or if Eq.(2.73) holds, then gkjddi:% is a constant, an integral of motion.
Conversely, given any s-parametrized curve along which gkjdikﬂ is constant, then

ds ds
Eq.(2.74) must be satisfied, even if fi # 0.

2.10 Physical Significance of the Equation for a Geodesic

Lecture 183

Q What is the physical significance and purpose of the I'-coefficients in the equation
for a geodesic?

A These coefficients express the acceleration of a free particles relative to a given
frame of reference. There are three archetypical reference frames: (i) free
float coordinate frames, e.g. an orbiting space capsule not rotating relative to
the fixed stars, (ii) rotating coordinate frames, and (iii) linearly accelerated
coordinate frames.

2.10.1 Free float frame

Also called “inertial” frames of reference, such frames are defined by Newton’s 1st
Law of Motion:

This means that relative to a free float frame free particle move uniformly along
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straight lines, i.e. these particles obey Newton’s 1st law of motion. Mathematically
we have

i .

= (const)" < (straight line motion)

mass X acceleration—0 =
s

where the travelled distance is

s = (constant) X time < (uniform motion)

2.10.2 Rotating Frame

Consider a frame of reference which rotates with angular velocity & relative to the
fixed stars. First, consider a vector, say é, which is rigidly attached to this rotating
frame. The vector will rotate relative to the static inertial frame, which is static
relative to the stars. In fact, during a time interval dt this rotating vector G will
have changed by an amount which is given by

(dé)sta,tic —dtd x G

This expresses an infinitesimal rotation around the axis &. Second, consider the
circumstance in which the vector G is not rigidly attached to the rotating frame.
Instead, let it change by the amount (dG),e during the time interval dt, then the
total change in this vector will be

(dé)static - (dé)rot + dt o % é

relative to the inertial frame static with respect to the fixed stars. Thus

a4 _ 4 + Wx
dt static a dt rot

Finally, apply this transformation law to the postion vector ﬁ,

dR dR T
df) ‘ = dt) + W x R
static rot

and then to the velocity vector %?) - = U,. Assuming that & is constant, one

tatic
obtains that the equation of motion for a free particle is
IR

0= "

) =m[d’mt+2c3><17mt+cﬁ>< (& x R)
static
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Figure 2.19: Rigid frame rotating relative to the fixed stars with angular velocity .
Its direction as well as its magnitude || are taken to be fixed relative to the fixed
stars. Being fixed relative to the rotating frame, the vector G/(t) rotates relative to

the fixed stars with angular velocity &@. The vector \%I x Gis L todand G, but

its length

% x G ‘ is equal to that of the radius vector L to &J.

with

o
rot — dt t
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and

C_i _ dvrot)
rot —
dt rot

In terms of components one has

le.i
m
dt?

) = —2m[& X Toy]' —m[& x (& x R)]'  (88) (2.77)

Coriolis force centrifugal force

relative to the rotating coordinate frame. The two terms on the right hand side
of this equation are the Coriolis force” and the “centrifugal force” in these frames.
Suppose we try to compare these Newtonian equations of motion with those of a
geodesic,

d*a’ ;. dxd dak

ds2 — I ds ds
This is a good thing to do because both sets of equations have seond derivatives on
the left hand side. The obstacles are the independent variables, time t for Newton’s
equations, and geodesic length s for the geodesic equations. But this difference is no
problem because for each free particle path, length and time are linearly related:

s = (constant) x time
= (constant)t (2.78)

Consequently, the geodesic equations are equivalent to

d*z - da’ da®
= I —— 8.10 2.79
dt? Ikt dt (8.10) (279)
d*t
— = 0. 8.11 2.80
dt? (8.11) (2:80)
Suppose we introduce time
2 =t.
as another coordinate so that
o
dt
and -
d°x
=0. 2.81
72 0 (2.81)

We now consolidate the two equations (2.79) and (2.81) into the single four-component
equation
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APzt P dz® dzP
= — r =0,1,2.3 2.82
Z; g a  HT O (282)

dz? dx° 5 dxz® dz* 5 . da? dz*
=TIk = _ r# F“ 2.
0 gt dt ;( o+ Tho) dt dt ZZ ikt dt (2.83)

The fact that % = 1 results in

d? i > " N & . dad dx
a2 = T — Z(FOk + Fko)ﬁ - Z erkﬁﬁ

k=1 j=1 k=1

What are these I'-coeflicients? They are determined by doing a component-by-
component comparison between this four-component equation with the three-plus-
one set of Eqs.(2.77) and (2.81) and requiring that these two sets are equivalent for
all particles. For example, the first component (i = 1) of Eq.(2.77) is

d?x? dz? dx? L o=
= 2 2 -Grt — & - Rw?)

T A e @
For ;o = 0 equivalence implies
F?XBZO O[,/B:O,l,2,3,

while for ;1 =i (= 1,2,3) one finds that in the rotating frame

dz* ai\’
Ff)k ;; = <Q X R) i=1,2,3 (Coriolis acceleration)

dt
so that*
i=1— dxt/dt 0 W —w? dx' /dt
i=2— [ ; ] de?/dt | = | —w® 0  w! da?/dt
i=3— Ok da? [ dt w' —w' 0 da?[dt
Furthermore,
R [(E X (& x ]j?)]l i=1,2,3 (centrifugal acceleration) .

4The coefficients I'*, and of T, of the quadratic form in the geodesic equation occur only in
0k kO g

the symmetric combination (I'}, + I'i)). Consequently, one may assume without loss of generality

that I'y, = T’}
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In other words,

Iy # 0 < centrifugal force # 0
Iy, # 0 <« Coriolis force # 0

This says that the “Christoffel symbols” of the equations for a geodesic are an expres-
sion of centrifugal and Coriolis accelerations, which are associated with a rotating
coordinate frame. Let us now extend these same considerations to an accelerated
frame of reference.

2.10.3 Uniformly Accelerated Frame

Recall that relative to a free float (“inertial”) frame the equation for the free particle
moving along the z-direction is
d*x
dt?
Consider the motion of such a particle relative to an accelerated frame.

=0. (2.84)

Q What is the equation of motion of this particle relative to a frame accelerating
into the positive x-direction with acceleration g?

A To find out, consider a meter rod parallel to the x-direction, but attached to the
accelerated frame.
Let £ be the coaccelerating coordinate displacement along this meter rod. Thus
a coaccelerating point on this meter stick is measured to be ¢ units from the
floor.
However, relative to the nonaccelerated inertial frame the x-coordinate of this
point on the meter stick is

L 5
:1:—5—!—597'
with
t=r1

These two equations comprise the coordinate transformation (7,&) — (t,z)
between the two frames. Let

£=¢(7)
be the particle trajectory as measured in the accelerated frame. Appling the
coordinate transformation to Newton’s Eq.(2.84) for the free particle yields
d2

T dr?

d2
€7) + 39m] = S5+
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Furthermore,
_dt
dr?’
Let 2° = t and 2! = £. The equations assume the form
d?a”
=0
dr?
d?xt
arz

Compare them to the equation for a geodesic in two dimensions:

P dede?
dr? B dr dr
d*x! dz®\* da® dzt dz'\*
pr = () 2 G- ()

Assume they apply to all possible particle trajectories, we find
Iy, = g = "inertial acceleration" (8.15) (2.85)

All the other I"’s are zero. One concludes therefore that relative to a uniformly
accelerated frame

[}y # 0 < "non-inertial force" # 0.

2.11 The Equivalence Principle and “Gravitation”="“Geometry”

Einstein directed attention to the fact that there is no way that one can tell the
difference between (i) the motion of free particles in a uniformly accelerated frame,
and (ii) the motion of particle falling freely in a uniform gravitational field.

This holds true regardless of the particle’s composition. In other words, the particle
trajectories are identical, no matter whether a particle is made of gold, aluminum,
or snakewood. The measurements were first done by Lorand von Eétvos. Thus the
inertial force is equvalent to, i.e. physically ’indistinguishable from, the gravitational
force.

This equivalence is called the equivalence principle. It implies that

"inertial force" = "gravitational force" , (2.86)

or
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@ —
AN

ACCELERATED
FRAME

EARTH

Figure 2.20: Equivalence Principle: the trajectories of particles in an accelerated
frame and in a uniform gravitational field are indistinguishable regardless of their
composition.

MasSinertiqr X inertial acceleration" — massgrquitationar X gravitational field

This equation holds regarless of whether the inertial mass and the gravitational mass
refer to particles made of gold, aluminum, etc. Thus
Min,

=1,
Mace

which expresses the fact that this ratio is independent of the composition of the
paricles. Doing the cancellation and appying Eq.(2.85) to Eq. (2.86), we find that
the Christoffel symbol T}, is to be identified with the graviational field, i.e.

i, = ("gravitational field") i=1,2,3  (8.18a) (2.87)

if we had extended our considerations to motion in three dimenssions.
Apply this result to a static gravitational field. In that case
1
Lo = Z §gw (900,0 + 9a0.0 — Joo,a)
a=0
The fact that the gravitatioal field is independent of time means that all time-
derivatives must vanish. Consequently, the expression reduces to
°.1
Lo = Z 59”(—)900,2' (2.88)

=1
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If the gravitational field is weak, then we can say that distance measurements in
three dimenssional space are governed by Euclidean geometry as expressed by the
theorem of Pythagoras,

(ds)? = (dz')? + (dz?)? + (da®)?.

This implies that the matrix, Eq. (2.67), on page 80 has the simple form

o = O

1 0
[gij] = 0 0
0 1

Consequently, its inverse [g[is also the identity matrix,

[9"] =

O O =
O = O
— o O

Applying this to the simplified Christoffell symbol, Eq.(2.88), give the result

, 10
Do =5 8‘;05’ i=1,2,3

Introduce this simplified result into Eq. (2.87) and obtain

19900
2 Ox?

= (gravitational field)’ i=1,2,3.

Recall that the gravitational field is the negative gradient of Newton’s gravitational
potential ®(x!, 2% 2?),

, 0
ravitational field)’ = ——&.
(8 ) o
Consequently,
1
Ozt 2? 2%) = 5900(351,:132,:53).
This is a new result. It says that
“gavitational potential" = “metric coefficient" .

In other words, by examing the motion of particles we find that gravitation manifests
itself by altering the properties of space (and time) as expressed by the coefficients
in the “metric”

(ds)? = gapdzdz”
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and by the concomitant Christoffel symbols

S|
Pas = 59" (Gvas + 9rpa = Gaps)  poa,5=0,1,2,3

One summarizes this result by saying that Einstein’s equivalence principle leads to
the conclusion that

“gravitation" = “geometry" .

Remark. The reasoning process that leads from (a) the equivalence between (i) tra-
jectories of free particles in an accelerated frame and (ii) the trajectories of particles
in a gravitaqtional field to (b) the identification of gravitation as a geometrical prop-
erty is an example of the scientific method, induction based on experiments and /or
observation.



Chapter 3

Variational Formulation of Mechanics

3.1 Hamilton’s Principle

Lecture 14

Recall Newton’s second law of motion applied to a force derived from a potential
U(z,y,z,t) is

d
dt
Like all differential equations, this law expresses — in mathematical form — a causal
relation in the world. Here the change in momentum is caused by a force. This law
governs the change in the particle’s momentum along every point of the particle’s
trajectory. This law is therefore a local one, it is a differential statement about the
motion of the particle. By integrating this differential equation one obtains the global
trajectory, an integral curve. This is another causal relation, this time between the
particle’s initial position and velocity on one hand and its final position and velocity
on the other. If one knows the initial velocity at point event A, then the integration
of Newton’s equation yields a unique curve which terminates at, say, point event B.
One now asks: given that there exists a unique curve through A and B, does
there exist a principle which singles out this curve over any other — a principle with
a mathematical starting point different from Newton’s local equations of motion?
The answer is given by the principle of least (more generally, stationary) action,
also called Hamilton’s Principle:

(mf"’) = —VU(z,y.2,1).

Of all possible paths along which a dynamical system may (be imagined to)
move from one point to another within a specified time interval (consistent with
any constraints), the actual path followed is that which minimizes the time inte-
gral of the difference between the kinetic and potential energies.

97
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Figure 3.1: Optimal and non-optimal paths in spacetime

3.1.1 Prologue: Why [(K.E.— P.E.)dt = minimum?

Example. In its simplest manifestations, Hamilton’s principle is a mathematical
expression of two fundamental physical aspects of nature: Newton’s First Law of
Motion and the Equivalence Principle. This can be seen from the following consid-
erations:

A. Launch a particle vertically from x; at time £, watch it reach its maximum height,
and then catch it at time ¢, at the instant it is located at .

From Galileo we learned that in its travel from (¢, z1) to (t9, 22) the particle
traces a space-time trajectory which is given by a parabola. Why so? Answer:

1. Newton’s 1st Law: Every body continues in its state of rest, or of uniform
motion in a straight line, unless it iscompelled to change that state by forces
impressed upon it.

2. The principle of equivalence.

A. Simpler case: Free Particle.
Consider the motion of a particle moving freely in a free float (“inertial”) frame. This
particle moves with constant velocity, i.e. its space-time trajectory is a straight line.

The implication of this fact is that for such a curve the integral

e, (&) ==

as compared to other curves having the same starting and termination points.
Q: Why?
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t ——

Figure 3.2: Spacetime trajectory of a particle thrown into the air.

A: All such curves have the same average velocity,

_ 1 /t2 dz 1 /tz dx
V) = ——— —dt = ——— —dt = (v) =,
(o) (ta —t1) J,, dt (to —t1) J,, dt ()

1 1

which means that the area under the curves v(t)and v(f) = v are the same.
Applying this fact to the positivity of the averaged squared deviation (away from
the average),

one has

or

[ () o [ (550)

This says that a free particle moves so that the integral of its kinetic energy is a

minimum: . . )
/ K.E.dt = / 1m dx(t) dt = min!
t 2 dt
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t ——

Figure 3.3: Spacetime trajectory of a free particle is a straight line.

B. Free particle in an accelerated frame.

Consider the motion of the same particle moving freely in a frame accelerated
uniformly with acceleration g.

1 }&(t)
X 15

/1

A point ¢ fixed in the accelerated frame will move relative to the free float frame
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—  t — =

Figure 3.4: Straight line x(¢) and its variant Z(¢) have the same average velocity:
(v) = v (= const.).
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t ——
Figure 3.5: Minimizing trajectory ¢(t) and one of its variants £(t).

according to

1
=+ -gtt.
x §+2g

It follows that, relative to the accelerated frame, the spacetime trajectory of the
particle, £(t), is given by

x(t) = £(t) + %gtz. (3.1)

Here x(t) is the linear trajectory in Figure 3.3.
The to-be-minimized integral takes the form

_ L lda(t)\ g ?
mm—/ti (dt)dt_/f,i <dt+gt> dt
vy,
— S 20t— 2,42
/ti {(dt) +gtdt+gt dt
2 dg 2 to 1 2|t2
—/t {(dt) —2¢€ p dt + 2gt€|2 + ggt t
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@ —
I\

ACCELERATED
FRAME

EARTH

Figure 3.6: Trajectories in an accelerated frame are indistinguishable from those in
a gravitational field. In particular the motion of particles of different composition
(gold, aluminum, snakewood, etc.) is independent of their composition.

The last line is the result of an integration by parts. The last two terms are the
same for all trajectories passing through the given points (¢1, z1) and (¢, ). Con-
sequently,

B (de(t))’ . = fm (de’ :
/ti 2m< 7 ) dt = min <:>/tz 2<dt) —mgé p dt = min

C. Free particle in an equivalent gravitational field.
The equivalence principle is an observation of the fact that in an accelerated frame
the laws of moving bodies are the same as those in a homogeneous gravitational field.
Recall that in a gravitational field

mgé = P.E.

represents the potential energy of a mass m at a height £. Consequently, the trajec-
tory of a particle in a gravitational field is determined by

to to
/ (K.E. —P.E.)dtz/ L(z, x, t)dt = min.
t; t;

In fact, the trajectory of a particle which satisfies this minimum condition

satisfies the Euler-Lagrange
dOoL 0L

dt i~ Ox’
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which is Newton’s second law of motion

ma = F

for the one-dimensional motion of a particle.
Nota bene:

1. The same minimum priciple hold even if ¢, and hence the potential energy
P.E., depends explicitly on time.

2. This principle is a special case of what is known as Hamilton’s principle of
least action. The difference is that the latter also accomodates motion which
are subject to constraints.

D. Extension to multi dimensions and generic potentials.

The Lagrangian formulation opens new vistas on the notion of bodies. It can be
fruitfully implemented for more general motions and potentials. These generaliza-
tions are alternate but equivalent formulations of Newtonian mechanics. They are
simply expressed by the statement that

to
/ (K.E. — P.E.)dt =min
ti

with
1< ) )
KE = 2;77%1_"1‘ . i"l

PE.=U(t, &)

on the class of all system trajectories having fixed endpoints.

The advantage of Lagrangian Mechanics becomes evident in the process of setting
up Newton’s equations of motion. In Newtonian Mechanics one must do this for each
force component separately, a task which becomes non-trivial relative to curvilinear
coordinate frames (spherical, cylindrical, etc.). By contrast, in the Lagrangian ap-
proach one merely identifies the two scalars K.F and P.FE. relative to the coordinate
frame of one’s choice. The remaining task of setting up the differential equations of
motion is done automatically by merely writing down the Euler-Lagrange equations.

In terms of the calculus of variations, the principle of stationary action is simply

A
/ (T — U)dt = extremum!
B
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Here T'(i*) is the kinetic energy ( K.E.) and U(z',t) is the potential energy ( P.E.).
The integrand T'(i") — U(z,t) = L(4%, 2%,t) is the Lagrangian of the system. Thus
the stationary action principle can be stated as

B . .
5/ Lz, @, t)dt = 0.
A

3.1.2 Hamilton’s Principle: Its Conceptual Economy in Physics
and Mathematics

Lecture 15
Hamilton’s principle lends itself to a treatment within the frame work of the calculus

of variations if one identifies the action with the variational integral

zo

By making the identificaiton

vi(7)
yi(x)
F(z,y:,y;)

L4l

one obtains the Euler-Lagrange equations,

oL d oL

or'  dtoit
These equations of motion reproduce the Newtonian equations of motion. This fact
is illustrated by means of the following example. For n particles, each with mass m;
one has relative to cartesian coordinates (x,y,z)

IQ~ (22
T:§Zmi(:r?+yi2+zf)

=1

and
U= U(t;l'l:ylyzla T ;J:n;ynyzn) .

The Euler-Lagrange equations are

ou .
— oz, = muZ;
ou .
- W = Myy;
ou

= Mz 1=1,2,3

B 3z7;
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Thus one has 3n differential equations for 3n unknown functions. These equations
are Newton’s equations of motion for a system of n particles because

ou oU oU —_— . .
———,———,——— | = Force on the ith particle .
ox; Oy 0%
The advantage of the variational formulation of mechanics via Hamilton’s principle
over Newton’s formulation is twofold:

1. From the viewpoint of physics it opens up new vistas. In particular, Hamilton’s
principle is a bridge to quantum mechanics. In fact, it is quantum mechanics
which sanctions and justifies Hamilton’s principle of least action. We shall
return to that point later.

2. From the viewpoint of mathematics this formulation of mechanics constitutes
an enormous streamlining, both in setting up and in solving the equations of
motion for complex Newtonian dynamical systems.

(a) Setting up the equations has been reduced to constructing a single scalar
function, the Lagrangian, and its derivatives.

(b) Solving the resulting system of differential equations is greatly facilitated
by the flexibility inherent in a scalar function. The function, and hence the
system of equations, can be exhibited relative to any system of coordinates
one chooses, including those relative to which the equations are so simple
that they can be readily analysed, if not solved.

The conceptual unit economy, and hence the technical advantage and the mathe-
matical power of Hamilton’s principle, arises from the fact that the Lagrangian is a
single scalar

L=KE —-PE.,

and from the fact that it may be expressed in terms of virtually any type of coordi-
nates. These “generalized coordinates”

and their time derivatives
ql(t)7 q2(t)7 o 7qs(t)

characterize the state of motion of the mechanical system. Quite often they are (but
need not be) related to, say, the cartesian coordinates, ¥ = (x,y, z) by

—

XT; = fi(qlv e 7(15:75) = f?(qj7t)
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Figure 3.7: Disk rolling down an inclined plane

and their time derivative

Ti = xi(q.j» qk1 t) .

In any case, in terms of generalized coordinates Hamilton’s principle becomes

to ) )
5/ L, d,t) = 0.
t1

The associated Euler-Lagrange equations of motion are

oL d oL

¢ dto¢
The ease with which the equations of motion can be set up is illustrated by the
following simple

Example. Consider a disk rolling down a plane of lenth ¢ inclined at an angle «
relative to the horizontal . The task of setting up the equations for the system is
archetypical:

1. The total kinetic energy breaks up into its translational and its rotational part
(around the center of mass)

1 1.
T = —Mip*+ -16°
SRR

1 1 .
— *M'2 *M 292
g My + MR

Here I = %M R? is the moment of inertia of the disc whose radius is R and
whose mass is M.
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The potential energy is
U=Mg(l—y) sin(a)
so that U=0 at the bottom (y = ¢) of the inclined plane.

The Lagrangian is
1 1 .
L=T-U-= §My2 + ZJ\JRQQQ + Mg(y — ) sin(a) .

The equation of constraint between tranlation and rotation is

Gy, 0)=y—RI=0.

Finally, the Euler-Lagrange equations are

4oL oL _, \0G
dt oy Oy dy
dOL_OL_ 06
dt g 00 00

Explicitly, they are

Mijj— Mg sina = X (3.3)
1 .
§MR26 = —)\R. (3.4)
The constraint is
y=R0. (3.5)

By differentiating the last equation, using the result to rewrite the antecedent
equation, and introducing the resultant expression for A, these three equations

yield
0 = =
R
1
. 2gsina
Yy = 3 .
Consequently,
—Mg sin«
A= ——
3
i - 2g sin « ‘

3R
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Remark. The introduction of the Lagrange multiplier A into the variational principle
reveals physical aspects of the mechanical system which would have stayed hidden
without that multiplier. In this example the right hand side of Eq.(3.3),

—Myg sin«a
A= ——
3 7
is a constraint force. On the other-hand, the right hand side of Eq.(3.4),
)R- @ ,

is a constraint torque. These constraint-induced quantities (i.e. A and -AR) are non-
zero in order to guarantee that the constraint, namely, no slippage, stays enforced.
In particular, note that A is a constraint force along the y-direction, and that AR is
a positive torque. This guarantees that the disk spins up in the positive 6 direction
at the expense of the disk not gaining velocity as rapidly as it would without the
constraint.

The fundamental challenge in one’s acquisition of knowledge is to be able to take
a concept, no matter how abstract, and be able to trace it back to its origin in reality,
l.e. to concretize it.

In the context of mathematizing a system subject to constraints, mathematizing
their existence in terms of corresponding Lagrange multipliers gives one’s knowledge
that extra vividness and extra relevance, which would have been lost had one merely
used the constraints to decrease the complexity of the system.

3.2 Hamilton-Jacobi Theory

Lecture 16

Newton created mechanics and formulated it in terms of his differential laws of
motion. Using Hamilton’s Principle, Lagrange streamlined Newton’s formulations by
giving it an innovative mathematical formulation which is based on a single scalar,
the Lagrangian. As a consequence, there is an infinite flexibility in describing the
mechanical system; in other words, the equations of motion can be exhibitied relative
to any chosen set of generalized coordinates.

Hamilton-Jacobi theory, which also springs forth from Hamilton’s principle, con-
stitutes an additional step forward in physics as well as in mathematics. The advance
in mathematics consists of the fact that H-J theory constitutes a powerful and sys-
tematic way of integrating the equations of motion of mechanics. The advance in
physics consists of the fact that H-J theory provides a bridge between classical me-
chanics and quantum mechanics, as well as between ray optics and electromagnetic
wave theory (wave optics).
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Pedigree of classical mechanics and the times its authors flourished
Newton 1672-1727 17" century

l
Systematic method of setting up Euler 1707-1783 18" century
Newton’s equations of motion Lagrange  1736-1813

i}
Streamline their mathematical Hamilton  1805-1865 19*" century
formulation

1
Systematize the process of Jacobi 1804-1851 19" century
solving Hamilton’s equations

i}

_ th

Global and geometrical Kolmogorov  1903-1987  20"" century
‘ lation (“KAM theory”) Arnold 1937-2010
ormiation oLy Moser  1928-1999

It is difficult to point to a mathematical theory which brings into our grasp a
larger and more diverse number of aspects of the physical world than H-J theory.
No wonder many physicists express their admiration and enthusaism for H-J theory
in a way which borders on the poetic. For example, Cornelius Lanczos in his book
“The Variational Principles of Mechanics” (1949), writes: “We now are in the rarified
atmosphere of theories of excessive beauty and we are nearing a high plateau on
which geometry, optics, mechanics, and wave mechanics meet on common ground.
Only concentrated thinking, and a considerable amount of re-creation, will reveal
the full beauty of our subject in which the last words have not yet been spoken.
We start with the integration theory of Jacobi and continue with Hamilton’s own
investigations in the realm of goemetrical optics and mechanics. The combination of
these two approaches leads to de Broglie’s and Schroedinger’s great discoveries, and
we come to the end our journey.”

3.3 The Dynamical Phase

The equations of motion of a dynamical system are obtained from Hamilton’s prin-
ciple, namely the require ment that the action functional

.t dx
I = L — .t dt )
L) 2

be an extremum for the actual path along which the system travels in space and in
time. This actual path we call an extremal path. Suppose we consider only extremal
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different
extremal
paths

locus of points
where S(x,t)=17.1

X

Figure 3.8: Isogram of the dynamial phase S(x,t)

paths, in particular those that have the same common starting point (2’,#') in space
and time. The termination point of each extemal path is different, and we designate
it by the variable point (z,t). For of these extremal path the action integral has a
(unique) extemal value, namely

x,t
: d
/ L (I’, i, t) dt = extremum -
't dt

For each endpoint (x,t) of an extemal path there is number I tremum (2, t). Thus we
have a real valued function which maps (z,t) into the reals:

S(QJ, t) = egctemum(x7 t) :

The level surfaces (isograms) of this scalar function are easy to construct. Suppose
we wish to construct the isogram

S(x.t) =17.1.

We consider the set of extemal paths emanating from the common point (z’,¢). At
that point S(z,t') = 0. We now move along a particular extemal path and evaluate
the action integral, Eq.(3.6), along this path. When the value of this integral is
I =17.1, we stop. This stopping point is a point on the isogram S(z,t) = 17.1.

The function defined by this construction is called the “dynamical phase”, or the
“action” of the system at (x,t). It also is called the “eikonal” in optics. This function
is easy to remember because in wave mechanics it is the phase of the system. In fact,
we assert that its relation to the wave function of the system is give by

U(z,t) = AeS@/h,
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Here h is a constant which guarantees that the exponent is dimensionless. For a
mechanical system this constant is Planck’s constant (6.1x 10 2"erg sec) divided by
2. The wave function ¥ satisfies a wave equation. Whether this wave equation is
the Schroedinger equation of the system, the scalar wave equation for a light ray, or
some other linear wave equation is of great importance, but of no concern to us at
present. For us, our present interest lies only in the dynamical phase S(x, 1),

1. in the equation for S(z,t) (Section 3.5) and

2. in the reconstruction of the extremal paths (Sections 3.6 and 3.12) from S(z, t).

The physical perspective on our reconstruction of the extremal paths is very different
from that of Newton. Whereas his focus is on the particle aspects of bodies, ours
is on their wave aspects. In spite of that difference our wave perspective started
with Newton. It grew by a well-defined process of inductive reasoning consisting of
Newton —Euler-Lagrange —Hamilton —Jacobi + experimental observations about
the dynamical behavior of matter — observations which were performed during the
first half of the twentieth century. In spite of the great conceptual distance between
the particle and the wave perspectives, the former is a correspondence (asymptotic,
shortwave length) limit of the latter. This fact is developed in Sections 3.6-3.12 and
summarized in Figure 3.14 and 3.15 on pages 129 and 133 respectively.

3.4 Momentum and the Hamiltonian

We now proceed with the process of deriving the partial differential equation which
the scalar function S(x,t) satisfies. In this process we shall repeatedly encounter two
quantities. They are (i) the generalized momentum and (ii) the Hamiltonian of the
system. Specifically we let

oL
be the ith generalized momentum. Its importance follows from the equation of
motion. If the Lagrangian is independent of the ith generalized coordinate ¢', i.c.
oL

- =0

aq

then the Euler-Lagrange equations of motion demand that

i=1,..s (3.7)

dp; 0.
dt
In other words, the ith generalized momentum of the system does not change; this
momentum is “conserved”.
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Example. Consider a system of n particles in a potential. The Lagrangian is

1 - -2 -2 22
L= QZ;mj (&5 + 9 + 2) = U (25,95 25,1) -
j=

The z-component of the jth particle momentum is

oL .
% =Mx; = Pgj -
J
The other repeatedly occuring quantity is
—~ 0L
'——-L=H, 3.8
N , (38)

=1

the Hamiltonian of the system. This quantity is conserved if the Lagrangian of the
system has no explicit time dependence. Indeed, differentiating each term of that
expression for the Hamiltonian and keeping in mind that L depends on ¢', ¢’, and ¢,
one obtains

‘LH_XS: GOL | ad (OLN 0L, OL.l 0L
a2 |Toq T Ta\ag) o T agT| " ot

Here the two middle terms cancel because of the E-L equations of motion. Conse-
quently, we are left with
dH oL
—_— = 3.9
dt ot ( )
We conclude that if % =0, then
H = constant

along the extremal path of the system.

Remark. If the system has only a single degree of freedom (s = 1) then H = q‘g—g —L,
and Eq.(3.9) is simply the "2nd form of the Euler equation", which was considered
at the end of Chapter 1.

The generalized momenta p;, j = 1,--- , s as well as the Hamiltonian A will play
the key roles in establishing the partial diffential equation which the dynamical phase
S(q*,¢% -+ ,q°,t) must satisfy. In fact, in order to obtain this equation, we shall
find that one must reexpress the Hamiltonian, Eq.(3.8), in terms of the generalized
momenta defined by Eq.(3.7) in such a way that the Hamiltonian has no functional
dependence on the generalized velocities ¢, j= 1,---,s. This goal is achieved by
solving the defining equations (3.7) for the generalized velocities

%)

i =d'(¢", p))
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in terms of the momenta, and then introducing these expressions into the Hamilto-

nian:
Ei,iaL
=" 0

To verify that H does indeed depend only on ¢* and p;, but not on ¢, we observe
that!

—L=H(¢"pj1). (3.10)

dH = d(¢'pi—1L)

. . oL . OL . OL
= di'p; + ¢'dpi — ——dq' — ——dg’ — ——dt .
pit ddps = 5 5dd = 5 i — 5

The first and the fourth term cancel with the help of Eq.(3.7). What remains is

, L L
dH = ¢'dp; — gqidqZ — %tdt.

There are two benefits. First, this shows that, with the help of the defining relation

(3.7), the Hamiltonian is functionally independent of ¢/, and depends only on ¢* and
p; instead. Second, by comparing this expression with the differential of Eq.(3.10),

0H 0H
H = —dp; :
d o, dp; + ¢

. OH

by using the E-L equations of motion (3.2),

oL d

and by taking advantage of the linear independence of the differentials {dp;, dq*, dt},
one obtains the three equations

dW_oH A _on oW _ ol
dt — 9p;’ dt  O¢’ o ot

(3.11)

These are Hamilton’s equations of motion. They govern the dynamics of the me-
chanical system. Its motion is represented by the trajectory of a moving point
{¢'(t), p:(t)}; in the 2s-dimensional space spanned by {¢’, p;}. The rate of change of

!In the interest of conceptual unit economy we are introducing the Einstein summation conven-
tion according to which a summation is implied whenever a pair of repeated (summation!) indices
occur in a product expression. For example, Zle q'pi = §'p; -
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the Hamiltonian function H(q',p;,t) along the trajectory is

dH OH . O0H . 0H
dt aqiq + 8p,ﬂpi+ﬁ
OHOH OHOH O0OH
¢ op;  Opi0g | ot
o0H

5

Thus, if ¢t is a cyclic coordinate, i.e. the Hamiltonian is manifestly independent of
time (0H /0t = 0), then H is evidently a constant of motion.

3.4.1 The Legendre Transformation

In Lagrangian mechanics the evolution of a system proceeds in the form its trajectory,
a moving point in the domain spanned by {¢’,¢’}. In Hamiltonian mechanics that
evolution proceeds along its trajectory in the dual domain?, which is spanned by
{q",p;}. These two domains are mathematically equivalent because their respective
mathematizations are related by means of Legendre’s transformation,

{¢.d'} & {d',p;},

which is one-to-one and onto. To concretize this feature,consider the graph of the
convex function

oL
and its tangent — = p as well as the graph of line parallel through the origin as

v
shown in Figure 3.9. For fixed z the relation between the v coordinate and the tilt
of the tangent,

OL(v)
ov

to the curve L(v) is one-to-one. Thus one can always find the inverse relation

p,

p~>v=uv(p)

2This duality is in the second argument:

{@} o {pi}-

Here {7} are the components of a vector in the vectorspace V{,i} attached to the base point {¢'},
while {p;} are the components of a covector in the dual space V{*q,i}, i.e. the space of linear functions
on Vigiy. Thus {¢’} refers to an element in the tangent space at {¢’}, while {p;} refers to an element
in the cotangent space at {¢’}.
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Introducing it into the difference pv — L(v), one obtains its unique value, the value
of the transformed function H(p)

at p. The convexity of L(v) guarantees that this can be done for every v. Conse-
quently, as constructed in Figure 3.9, for every function L(v) on {v} there exists a
uniquely defined function H(p) on {p}:

L:{v}—R }H{H {p} = R

v~ L(v) p~ H(p).
Here
L(v) = %UQ—U(ZU) pU
e
7 i oOH
E max{pv—L(v)}=——=0=p
> U

Figure 3.9: The Legendre transformation process is a constructive process which
maximizes the difference between (i) the linear function whose isogram through nthe
origin is parallel to the tangent to the given function at a point and (ii) the value of
that function at that point of tangency.

The Hamiltonian equations of motion are equivalent to those of Euler-Lagrange.
The important mathematical difference is that the former is a system of 2s first order
equations, while the latter is one of s second order equations.

OL

ov
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Example. (Particles in the Field of a Potential)
The Lagrangian is

n
1 -7 —
L= Z_: gMiditi — U(Zg,t) .
For each of the particles the momentum is

P = (pm'v Pyi, pzi) = mzﬂgz . (3.12)

The Hamiltonian is

H = Zq%—L

n

) . L 1 ) ) . ) ) . -
= Z(!L"imil“i + gy + Zimiz;) — 5 Z(iﬂz‘mﬂ’i + gy + Zimiz) + U(Z, t)
i=1 i=1
I~ - = B
= izmlea + U(Z, t)
i=1

= K.E.+ P.E. = Total Energy .

With the momentum defined by Eq. (3.12), the Hamilitonian assumes the form

p“lL_“ Zp@ pz 7 ,t),

and the two sets of Hamiltonian equations of motion are

dfi_p;i
dt — m
dp:; -
%:—Z‘U.’_',t
i Vi U(&y, )

If the potential energy is time-independent and hence depends only on the position
Z; of the particles, then H is cyclic in ¢:
OH
0=—.
ot
Consequently,
H =T.E. = constant .

Thus the total energy of a system of particles moving in a time independent potential
is a constant of motion, a conclusion one also infer directly from the fact that the
Lagrangian does not contain any explicit dependence on time t.
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Remark. That the Hamiltonian is the total energy of the system is true in a non-
rotating coordinate frame. However, in a rotating coordinate frame the Hamiltonian
is not equal to the system’s total energy. However, if the Lagrangian has no explicit
time dependence ("time invariant system") then the Hamiltonian is conserved never-
theless. To illustrate the issue, consider the above example of particles-in-a-potential
problem from the perspective of a rotating frame, relative to which one achieves sub-
stantial simplifcation in the analysis of charged particles circulating in a magnetic
field or of satellites in an earth-centered reference frame.

Problem. (Particle motion in a rotating frame)
Given a frame (2/,v/, 2’) which rotates with constant angular frequency w relative to
a given inertial frame (z,y,7),

x = a' coswt — vy sinwt
= a'sinwt + 1 sinwt

z = 72

determine for a single particle in a rotationally symmetric potential U (22 + y?, 2)
(i) its Lagrangian, (ii) its Hamiltonian relative the rotating frame, and then (iii)
compare the two Hamiltonians in the two frames.

Solution. The Lagrangian of a particle moving in the potential U is

L:%(:t2+y2+,z'2)—U(m2+y2, 2) .

Relative to the rotating frame this Lagrangian,

L= % (@ 4+ ¢+ %) U (2" +y> ) + %wQ (?+y*) +wm 2y — i),

has acquired an additional centrifugal potential energy, and a velocity dependent
potential energy. In the rotating frame the Hamiltonian is

/87[’ ,’/87[’ é'ai_
Cor Yoy T oy

_ %(:)’:/Q—I—Q/Q—l—zm)—l—U(:):/Q—I—y/Q, z/) _

Introducing the defining relations, Eq.(3.7) on page 112

H =

%wQ (:E/Q n y/z) .

/

Py = mil —mwy o @ =2y
m
p/

p, = my +mwr’ —y == —wr
m
/

p. = mz =3 ===
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one finds that this Hamiltonian is

/\2 /)2 /\2
x p z
H' = (]2)771 + (22’2 + (gni +U (@2 +y2% ) —w (2, — D).

The particle’s inertial Hamiltonian

_ (pa:)2 (py)2 (pz)2 2 2
= 2m + 2m + 2m +U(x +y,z)

= Kinetic Energy +Potential Energy

expresses its total energy. It is an integral of motion. By contrast the particle’s
rotational Hamiltonian,

H' = (Kinetic Energy)’ + (Potential Energy)’ — wL. ,

even though it is also an integral of motion, does not express a mere total energy, ki-
netic plus potential in the rotating frame. There is an additional energy-like quantity
—wL, which expresses a kind of interaction between (a) whatever aspect (propor-
tional to w) is responsible for the curved meniscus in Newton’s bucket experiment?
and (b) the particle’s moment of momentum (i.e. angular momentum),

L, = (x,ply - y,p,m)
(xpy — Y pa)

It is evident that this quantity is the same in the rotating and the inertial frame. It
therefore refers to a property independent of any rotational aspect of the frame. Fur-
thermore, it is an integral of motion, a fact which is implied by Hamilton’s equations
of motion. Thus there are three integrals of motion: (i) H', (ii) (K.E.)+(P.E.)’, (iii)
L, and any two imply the third.

3.5 The Hamilton-Jacobi Equation

We now return to the task of determining the equation that governs the dynamical
phase for a system with a single degree of freedom. The extension to several degrees
takes little effort by comparison.

3Newton considered a water-filled bucket rotating around its axis, as in Figure 2.19 on page 89
— rotating relative to a free float (i.e. inertial) frame — a frame relative to which all free bodies
obey Newton’s first law of motion, a frame which today we recognize as having the additional
feature of not rotating relative to the fixed stars. The rotating frame associated with this bucket
is characterized by a single distinguishing feature, its angular velocity w. In this frame the surface
of unmoving water curves upward with increasing radius. This curvature is absent in the inertial
frame, which is not rotating relative to the fixed stars.
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(x+ 0%, t+31)

X

Figure 3.10: Two nearby extremal paths.

3.5.1 Single Degree of Freedom

Consider a set of extremal paths emanating from event A, i.e. they all start at the
same time ¢’ at the same point 2’ in space. These paths being extremal, they all
satisfy the same Fuler-Lagrange equation. They also pass through the same starting
event, but they have different initial velocities. We evaluate the "action" along each
extremal path,

t
Iextrem'um(ta t/> - / L («T()\), ZU()\), )\) dX .
t/

Consider the locus of points where, on different extremals, the integral Io,treme has
the same value, say

]extrem'um = lextremum. (t* t/> .
This locus of points forms the level surfaces of a function S(z,t) where
x,t
S(x,t) = extremum value of / L(z, 2, t)dt.

! ¢

We shall now see that the partial derivatives of this scalar function are the momenta
and the negative Hamiltonian (usually, but not always, the energy), i.e.

0S = pdx — Hit

We consider two extemal paths. They have the same starting point A. But their end
points are respectively (x,t) and (x+0x,t+0t). The difference in the dynamical phase
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t
E

X

Figure 3.11: Three extremal curves

(action) of these endpoints is
08 = 5Iextremum
t+0t . t
/ L(x + h, &+ h,t)dt — / L(x,&,t)dt

A A

L 7oL oL .
L5t+/A ((,)thr(%h) dt

oL Y(OL  dOoL

We only consider extremal curves. Thus 2% —<£ 9% — 0 and the integral vanishes. The

variations dz and ot refer to the coordinate differences of arbitrarily located endpoint
of the two extremals. But the variation h(t) connects pairs of points having the same
curve parameter ¢t. Consequently, as one can see in Fig. 3.10,

h(t) = dx — &6t .
Thus

0S = a—l,/éx— (@x’—L) ot

I
]
[e9)
S
|
Sy
(o9
<+
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An inquiry as to how S(x,t) changes into the x-direction, keeping ¢ fixed, yields

rate of change of
dynamical phase = (momentum) (3.13)
with position

= lim —=— .14
tf%%d or  Ox (3.14)
OL(z,x,t)

5 p (3.15)

Similarly,

rate of change of
— | dynamical phase = (energy) (3.16)
with time

.05 oS
oL
250 (3.18)

These two equations, yield the “dispersion relation” at (x,¢). Indeed, in Eq. (3.18)
replace the i-dependence with a dependence on p by solving Eq. (3.15) for 2. The
result is

(energy) = H(z, p,t).

Finally introduce into this equation the partial derivatives calculated in Eqgs. (3.14)

and (3.17):
oS 0S

This is the Hamilton-Jacobi equation, a single first order differential equation for the
dynamical phase S(z,t). This equation is a dispersion relation because it expresses
how the time rate of change of the phase depends on its rate of change with position.
For a system with several degrees of freedom the H-J equation is

. aS 05

Lecture 17

Problem. (Particle in a potential)

Set up and solve the Hamilton-Jacoby equation for a particle in a one dimensional
potential U(x).
Solution. Setting up the H-J equation is a three step process.
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1. Exhibit the Lagrangian:

1
L= §m;i'2 —Ulx).

2. Determine the momentum and the Hamiltonian:

oL
pzi

4. Write down the H-J equation —% =H (l’, %)1

05 1 <as

2
ot om 81:) + U(x).

This a first order non-linear partial differential equation that needs to be solved for
the scalar function S(z,t).

This p.d.e. lends itself to being solved by the method of separation of variables
according to which one finds solutions of the form

S(x,t) =T(t)+ X(x). (3.19)

Introducing this form into the H-J equation, one finds

ar@t) 1 [(dX(z)\’
_dt:2m( & ) +U).

This equation says that the left hand side is independent of x, while the right hand
side is independent of ¢. Being equal, the Lh.s. is also independent of x. Being
independent of both ¢ and =z, it is a constant. Letting this “separation” constant be
equal to F, one obtains two equations

dT(t)
dt

2;(&23))24—U(1‘) - B
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These are two ordinary equations for 1" and X. Inserting these equations into Eq.
(3.19), one obtains the sought after solution to the H-J equation,

S(x,t) =—Et+ /T V2m (E —U(x'))da' + 6(E).

Here the “integration constant” §(F) is an arbitrary function of E. Furthermore,
observe that S depends on F also. This means that one has an FE-parametrized
family of solutions. Thus, properly speaking, separation of variables yields many
solutions to the H-J equation, in fact, a one-parameter family of them

S(x,t) = Sg(x,t).

3.5.2 Several Degrees of Freedom

We shall see in a subsequent section that whenever the H-J for a system with sev-
eral degrees of freedom, say {q'}, lends itself to being solved by the method of the
separation of variables, i.e.

Sdst) =T + > Qild).
i=1
the solution has the form
t S qi ) ]
S = _/ Edt+ Z/ Pi(xz§E7a1;’ o 7045—1)qu +5(E7a17' o 7as—1)
i=1

Here ¢ is an arbitrary function of £ and the other separation constants that arise in
the process of solving the H-J equation. We see that for each choice of (E, ay, -+, ais_1)
we have a different solution S. Thus, properly speaking, we have Sga, .0, ,, @
multi-parametrized family of solutions to the H-J equation.

We shall now continue our development and show that Hamilton-Jacobi Theory
is
a) A new and rapid way of integrating the E-L equations
b) The bridge to wave (also "quantum") mechanics.
The virtue of Hamilton’s principle is that once the kinetic and potential energy of
the system are known, the equations of motion can be set up with little effort. These
Euler-Lagrange equations are Newton’s equations of motion for the system. Although
setting up the equations of motion for a system is a routine process, solving them
can be a considerable challenge. This task can be facilitated considerably by using
an entirely different approach. Instead of setting up and solving the set of coupled
Newtonian ordinary differential equations, one sets up and solves a single partial
differential equation for a single scalar function. Once one has this scalar function,
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one knows everything there is to know about the dynamical system. In particular,
we shall see that by differentiating this scalar function (the dynamical phase, the
Hamilton-Jacobi function, the eikonal) one readily deduces all possible dynamical
evolutions of the system.

3.6 Hamilton-Jacobi Description of Motion

Hamilton-Jacobi theory is an example of the principle of unit economy®, according
to which one condenses a vast amount of knowledge into a smaller and smaller
number of principles. Indeed, H-J theory condenses all of classical mechanics and
all of wave mechanics (in the asymptotic high-frequency /short-wavelength (a.k.a.
W.K.B.) approximation) into two conceptual units,, (i) the H-J equation and (ii) the
principle of constructive interference. These two units are a mathematical expression
of the fact that classical mechanics is an asymptotic limit of wave mechanics.

Hamilton thinking started with his observations of numerous known analogies
between "particle world lines" of mechanics and "light rays" of geometric optics.
These observations were the driving force of his theory. With it he developed classical
mechanics as an asymptotic limit in the same way that ray optics is the asymptotic
limit of wave optics. Ray optics is a mathematically precise asymptotic limit of wave
optics. Hamilton applied this mathematical formulation to classical mechanics. He
obtained what nowadays is called the Hamilton-Jacobi formulation of mechanics.
Even though H-J theory is a mathematical limit of wave mechanics, in Hamilton’s
time there was no logical justification for attributing any wave properties to material
particles. (That justification did not come until experimental evidence to that effect
was received in the beginning of the 20th century.) The most he was able to claim
was that H-J theory is a mathematical method with more unit economy than any
other formulation of mechanics. The justification for associating a wave function
with a mechanical system did not come until observational evidence to that effect
was received in the beginning of the 20th century.

We shall take advantage of this observation (in particular by Davidson and Ger-
mer, 1925) implied association by assigning to a mechanical system a wave func-
tion. For our development of the H-J theory it is irrelevant whether it satisfies the

4The principle of unit economy, also known informally as the “crow epistemology”, is the principle
that stipulates the formation of a new concept

1. when the description of a set of elements of knowledge becomes too complex,
2. when the elements comprising the knowledge are used repeatedly, or
3. when the elements of that set require further study.

Pushing back the frontier of knowledge and successful navigation of the world demands the forma-
tion of a new concept under any one of these three circumstances.
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Figure 3.12: The spatial oscillation rate of the wave function Re Vg at t = const. is
proportional to its z-momentum, whose square is proportional to the kinetic energy
(KE=TE.-PE.).

Schroedinger, the Klein-Gordon, or some other quantum mechanical wave equation.
Furthermore, whatever the form of the wave equation governing this wave function,
our focus is only on those circumstances where the wave function has the form

Ul 1) = A, 1) X exp (;SE(:E, t)) (3.20)

slowly varying function of = and ¢ -
rapidly varying function of « and t

This circumstance is called the "high frequency" limit or the "semi-classical" ap-
proximation. It can be achieved by making the energy E of the system large enough.

In that case
SE(xa t)

h
with the consequence that the phase factor oscillates as a function of  and ¢ rapidly
indeed. The existence of such a wave function raises a non-trivial problem:
If the wave and its dynamical phase, and hence the wave intensity, is defined over all
of space-time, how is it possible that a particle traces out a sharp and well defined
path in space-time when we are left with three delemas?

1 <<

1. The large magnitude (S > A—1.05x1072"[erg sec|) of the action for a classical
particle is certainly of no help.

2. Neither is the simplicity of the H-J equation

as oS
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which governs the dynamical phase in

S
U = Aexp (Zh) ,

3. Nor is the simplicity of the solution S for a particle of energy F,
S(x,t)=—Et+ / Vem(E —U(z))dx + 6(E)

of any help in identifying a localized trajectory ("world line") of the particle
in space-time coordinatized by x and t.

What is of help is the basic implication of associating a wave function with a moving
particle, namely, it is a linear superposition of monochromatic waves, Eq. (3.20),
which gives rise to a travelling wave packet — a localized moving wave packet whose
history is the particle’s world line. To validate this claim we shall give two heuristic
arguements (i-ii), one application (iii), a more precise argument (iv) and an obser-
vation (v).

(i) The most elementary superposition monochomatic waves is given by the sum
wave trains with different wavelengths

U(z,t) = Vp(z,t) + Vppap(r,t) +--- .

(ii) In space-time one has the following system of level surfaces for Sg(x,t) and
Spyap(w.t)

Destructive interference between different waves comprising ¥(x,t) occures ev-
erywhere except where the phase of the waves agree:

Sp(z,t) = Sprar(z,t)

At the locus of events satisfying this condition, the waves interfere construc-
tively and wave packet has non-zero amplitude. The wave mechanical priciple
says that this condition of constructive interference

RT SE_;,_AE(J?,t) — SE(ZL‘,t) B 8SE(ZL‘,t)
0= lm, AE T OE

yields a Newtonian worldline, i.e. an extremal paths.
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Figure 3.13: Photographic snapshot in space of two interfering wave trains and their
resulting wave packet.
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t 16.4
16.3
Isograms of
16.2 Sk, AE(X,t)
Isograms 16.3
of
5, (30 s 16.1
) — Locus of constructive
interference
16.1 X

Figure 3.14: Constructive interference represented in space-time. The intersection
of the respective isograms of Sg(x,t) and Sgiag(z,t) locates the events (x,¢) which
make up the trajectory of the particle in x-t space — the locus of constructive inter-
ference.

(iii) Apply this condition to the action S(x,t) of a single particle. One obtains the
time the particle requires to travel to point x,

1

0 T—I—/m o = 211—|—7‘
= —t — =] dov+t
w V2 \E-Ulz) ’

85(E)

)

This condition yields the Newtonian worldline indeed. The precise argument
is on page 139 in Section 3.12

with
to

Lecture 18

3.7 Constructive Interference

Our formulation of constructive interference is based on a picture in which at each
time ¢ a superposition of wave trains

Up(x,t) + Veiap(z,t)+ - = U(x,t)
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yields a wave packet at time t. The principle of constructive interference itself,

o

is a condition which at each time t locates where the maximum amplitude of the
wave packet is.

It is possible to bring into much sharper focus the picture of superposed wave trains
and thereby not only identify the location of the resultant wave packet maximum,
but also that packet’s width and how it changes with time.

3.8 Spacetime History of a Wave Packet

The sharpened formulation of this picture consists of replacing a sum of superposed
wave amplitudes with an integral of wave amplitudes

\Il(l',t) == ”\IJE(l',t)‘F\I]EJ’_AE(:L"t)—i—...”
- / F(E)er¥=e0dE . (3.21)

A very instructive example is that of a superpostion of monochromatic ("single en-
ergy") wavetrains, each one weighted by the amplitude f(E) of a Gaussian window
in the Fourier ("energy") domain,

J(B) = Ae=(F-Fo)?/¢ (3.22)

The dominant contribution to this integral comes from within the window, which
is centered around the location of Ej of the Gaussian maximum and has width 2e,
which is small for physical reasons. Consequently, it suffices to represent the phase
function as a Taylor series around that central point Fj, namely

2 higher

Sp(at) = Smy(w.t)+ 2E@O| g gy L %(f” (E—E,)2+ order |
0F Eo 2 0F Eo terms

(3.23)

and neglect the higher order terms. Keeping only the first three terms and ignoring
the remainder allows an exact evaluation of the Gaussian superposition integral. This
evaluation is based on the following formula

o0 2
/ ety = | T e~fa (3.24)
e V —a
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Applying it to the superpostion integral, Eq. (3.21) together with Eqgs. (3.22) and
(3.23), we make the following identification

z=F—FEy; dz=dF,

L i1 0*Sp(z,t 1 :
a=-z maéz);‘ez“‘“’)’
R € 2621-1—2'0
a 1—io 1402’

2
o =% % o) %EE(? ) . e, (3.25)
ﬁ :i aZSE(.T,f)

hooOER |,

Inserting these expressions into the righthand side of the formula (3.24), one obtains

1+io (820N g\ | ssaen
e = A‘/&\/;e}(p i\ 62<1+02> o

Z-SEo("’C’t>
h

Az, t) e :
( - ) rapidly

slowl
v varying

varying
This is the rapidly oscillating function
o Sy @1)/h

modulated by a slowly varying amplitude A(z,t). For each time ¢ this product
represents a wave packet. The location of the maximum of this wave packet is given
implicitly by
BSE(ZE, t)
OE g

As t changes, the z-location of the maximum changes. Thus we have curve in z-
t space of the locus of those events where the slowly varying amplitude A has a
maximum. In other words, this wave packet maximum condition locates those events
(= points in spacetime) where constructive interference takes place.

A wave packet has finite extent in space and in time. This extent is governed by
its squared modulus, i.e. the squared magnitude of its slowly varying amplitude,

9Sg(z,t)
2 1 T O9E

1 €
- expld S
V1402 P 2 {1+ 02 h?

=0. (3.26)

|U (2, 1) = |A]? = A%re? EO> (3.27)

-~

E(z,t)
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We see that this squared amplitude has nonzero value even if the condition for
constructive interference, Eq.(3.26), is violated. This violation is responsible for
the finite width of the wave packet. More precisely, its shape is controlled by the
exponent E(x,t),

(BSE(x,t) )2
2 1 OF
E(x,t) = - Fo #0.

2 R 2 h?
€ l’,t
1+ <Qh 8%2 EO)

The spacetime evolution of this shape is exhibited in Figure 3.15. Thus the world-

line of the particle is not a sharp one, but instead has a slight spread in space and
in time. How large is this spread?
The magnitude of the wave mechanical (“non-classical”) spread in the world line is
the width of the Gaussian wave packet. This spread is Az, the amount by which one
has to move away from the maximum in order that the amplitude profile change by
the factor ez from the maximum value. Let us calculate this spread under the cir-
cumstance where the effect due to dispersion is a minimum, i.e. when o is neglegibly
small. In that case the condition that E(x + Ax,t) = —1 becomes

€0Sp(x + Aw, 1)

=1.
h OF

Ey

Expand the left hand side to first order, make use of the fact that (z,t) is a point
in spacetime where the wavepacket profile has a maximum, i.e. satisfies Eq.(3.26).
One obtains

%S
EmAIE =h
or, in light of 0Sg(x,t)/0x = p(x, t; E),
Jp
E@AL — h,

and hence

Similarly the temporal extent At, the amount by which one has to wait (at fixed
) for the wave amplitude profile to decrease by the factor e='/2 from its maximum
value, satisfies the condition

€0Sp(z,t + At)

h OF =1

Eo
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Time E(x,t)=-1
t
(9 E(x,t)=0
E(x,t)=—1
History of wave 3
packet maximum x
= particle worldline
B
®
T
*

t=fixed

Space
(x)

Figure 3.15: Spacetime particle trajectory (“the E(x,t) = 0 isogram”) and the dis-
persive wave packet amplitude histories surrounding it. The two mutually diverging
ones (both characterized by E(z,t) = —1) in this figure refer to the front and the
back end of the wave packet at each instant ¢ = fixed, or to the beginning and the
end of the wave disturbance passing by a fixed location © = fized. The particle
and the wave packet maximum are moving with a velocity given by the slope of

_n _ 90Sg(=z)
the E(z,t) = 0= =5~ .

exhibited in Figure 3.14
On the other hand, the convergence and subsequent divergence (“dispersion”) of the
wave packet is controlled (and expressed mathematically) by the behavior of the

g 9%Sg (a,t
second derivative, %f—l

0
of its first derivative characterizes the difference in the motion of particles launched
with difference initial conditions, its second derivative characterizes the intrinsically
wave mechanical aspects of each of these particles.

isogram, which is the locus of constructive interference

of the dynamical phase Sg(x,t). Whereas the behavior
E
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which become

925y

OB At =

“oor|,, | ="
OF
Al =

e( )aEEO t| =h

or

-

The two boxed equation are called the Heisenberg indeterminacy relation. Even
though we started with the dynamical phase S (see page 112) with ¥ ~ e™ to
arrive at the extremal path in spacetime, the constant A ("quantum of action")
never appeared in the final result for the spacetime trajectory. The reason is that in
the limit

g—>OO

the location of the wave packet reduces to the location of the wave crest. Once one
knows the dynamical phase S(x,t) of the system, the condition of constructive inter-
ference gives without approzimation the location of the sharply defined Newtonian
world line, the history of this wave crest, an extremal path through spacetime.

3.9 Hamilton’s Equations of Motion

Lecture 19

To validate the claim that constructive interference leads to the extremal paths
determined by the E-L equations, one must first recast them into a form that involves
only ¢' and p; instead of ¢'and ¢/. Holding off that validation until Section 3.12, we
achieve the transition from (¢’,¢’) to (¢*,p;) as follows:
The Lagrangian is a function of g'and ¢‘. Consequently,

AL =" aqui +y° O?dqi

oq' g’
which may be rewritten as

dL = Zpidq" + pr,dqi ,

where
oL

g

pi =



3.9. HAMILTON’S EQUATIONS OF MOTION 135

and
oL

Di = oq
by the E-L equations. Using the fact that

pidd' = d(pid") — ¢'dp; ,

one obtains, after a sign reversal, an expression which depends only on ¢¢ and p;:

d (Z pig’ — L) ==Y pidg' + ) d'dpi. (3.28)

H

Introduce the Hamiltonian of the system

Compare its differential

H . H .
dH = 0 ~dq" + 0 dp; + zero x dg’
aq’ Opi
with the one given above by Eq.(3.28). Recall that two differentials are equal if and
only if the coefficients of the (arbitrary) coordinate differences (i.e. d¢*,--- ,dq®, dpy,- -
) are equal. Consequently, one has
.,  OH . oH
q - 8]?1 ) pl - aqz .

These are the Hamilton’s or the canonical equations of motion. They are equivalent
to those of E-L. Comment 1: The fact that H does not depend on ¢* follows directly

from
OH oL

oF ' oq
Comment 2: a) It follows from Hamilton’s equations of motion that
dH oH ., OH. O0H
it 8qiq + (‘?pipri_a
OH
ot
In other words, if H is independent of any explicit time dependence, i.e. time then

H is a constant along the trajectory of the evolving system.
Comment 2: b.) If H is independent of the generalized coordinate ¢*, then

d k
at
dt

i.e. pg is a constant for the evolving system.

,dps
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3.10 Lagrangian vs. Hamiltonian Mechanics: An Overview

There are two closely related ways of mathematizing a system with n degrees of
freedom.

In the Lagrangian approach the state of the system at any instant of time is speci-
fied by its instantaneous generalized position (¢'(t),--- ,¢"(t)) and its corresponding
instantaneous velocity (v', -+, v") = (¢*(¢), -+ ,4"(t)). Thus a particular evolution
of the system is mathematized in terms of a particular curve, a moving point,

(@'(0), - q"(t),d' (), ,¢" (1)) (3.29)

in the 2n-dimensional continuum. This continuum is coordinatized by the base space
coordinates {¢’};~; and the velocity coordinates {v/}7_; in the tangent space at-
tached to each base point. The form of the dynamically allowed curves, Eq.(3.29),
is determined by the system’s Lagrangian

L(g" ", q" ")

In the Hamiltonian approach the dynamics of the system is controlled by the
Hamiltonian

H(qlv'“ 7qn7p17" . 7pn)

whose domain is spanned by the 2n coordinates

(qla"' ;qnaply"' 7pn) . (330)

As noted on page 115 in Section 3.4.1, the Legendre tranformation is a one-to-
one onto mapping which transforms the Lagrangian and its domain coordinatized by
Eq.(3.29) in a one-to-one manner onto the Hamiltonian and its domain coordinatized
by Eq.(3.30):

{qzvcf}?:l {qivpi}?:l
L(¢',q') H(q', pi)
d <8L) _ oL d¢ OH dp;,  OH
dt \ 0¢ oqt .~ op,’ dt  9¢
i=1,--,n i=1--n
defined on the A defined on the
disjoint union disjoint union
of the tangent of the cotangent
spaces of the spaces of the
base space {¢‘} : base space {¢'} :
T™ = {q'} x {v/ 3%} T°M = {q'} x {p;dg’}
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3.11 The Phase Space of a Hamiltonian System
The 2n-dimentional space spanned by the coordinates
{d" - d"pi- o}
is called the phase space of the system. In this space, the curve
{qi(t),pi(t)}
is an integral curve of the Hamiltonian vector field

(.21

This means that the tangents to this curve are given by

gy — (P2 o
Q7pl - 8}%7 aql

Example: For the simple harmonic oscilator the Lagarangian is:

1 1
L = §m$2 — §k$2
and the Hamiltonian is:
ol _p
H = — — =
om 2"

a) The phase space of this system is spanned by z and p.
The Hamiltonian vector field is

(G -5 = (&)

b) The area of one of the phase-path ellipses is

area = / pdx and it has the dimension of "action"

According to quantum mechanics the action of a periodic system must obey the Bohr
quantization condition

1
/pd:v=<n+2>h, n=12,--- (3.31)
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Figure 3.16: Hamiltonian vector field of a simple harmonic oscillator (s.h.o.) of mass
m and spring constant k. The ellipses are integral curves whose tangents at each

point are the vectors of that field. The major axis, 4/ %, and the minor axis, vV2m#FE,

of each ellipse are determined by the energy E of the s.h.o. The area of any particular
ellipse is 27 B 7.

Figure 3.17: The shaded difference between the areas of adjacent phase space ellipses,
Eq.(3.31), is precisely h = 6.27x10"*"erg sec, which is one quantum of action.
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Thus, as depicted in Figure 3.17, the quantum mechanically allowed phase space
ellipses differ in area from one another by precisely h = 6.27x10~%"erg sec, which is
one quantum of action.

For the simple harmonic oscilator the area of one of these ellipses is [ pdz =
mV2mE/ % =27FE \/% = 27r§. Thus the Bohr quantization condition yields

FE 1
2m— = (n+>h
w 2

or with 5= = frequency

1
E=(n+ §)h X frequency

3.12 Constructive interference = Hamilton’s Equa-
tions

The principle of constructive interference provides the bridge between particle and
wave mechanics. This fact is validatede by the following theorem.

Theorem. Constructive interference conditions imply the Hamilton’s equantions of
motion and hence determine the existence of an extremal path.

Proof: Step 1.) Consider a complete integral of the H-J equation
S = S(t7q17' o 7q87a17' o ,CYS)

i.e. a solution which has as many independent arbitrary constants as there are
independent coordinates®. The constructive interference conditions are

25

Py k=1,
80/k Y 78

5Such independence is expressed mathematically by the fact that

028
0q°0a;

det‘ #0

This condition would be violated if the dependence on two constants were of the form
S(t,q", f(ar,a2),as, -+ ,as). Under such a violation S would depend only on s — 1 independent
parameters instead of s of them.
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They determine implicitly a trajectory ¢' = ¢'(t), i =1, ,s.
Step 2.) Take the total derivative and obtain

d os %S n %S ﬁ
dt oy, OtOay,  O¢'day, dt

0 dS(t,q, ) 0% dq
_8akH (q, o’ ’t) * 0¢° Dy, dt
_GH 0%S N 025 dq’

Op; O, 0¢t  Oq¢iday, dt
o8 (dqi 8H)

0:

Oa0gt \ dt B Op;
which implies the 1st half of Hamilton’s equations,
dq  OH
dt  op;’
provided agigq, is non-singular.

Step 3.) Differentiate both sides of the H-J equation

o [0S oS
= o [+ (5]
L)) e
ot \ 9¢’ opr ), 9¢"0¢  9q' ),
()
ot \ 9¢' dt 9q* \ dq" aq' ),

d

i 0H
= —P; -
dt* o7 ),

which is the 2nd half of Hamilton’s equation’s,
dp; _ OH

QED. Thus the two Hamilton’s equations of motion are implied by the principle of
constructive interference indeed.

Lecture 20

3.13 Applications

Two of the most important applications of Hamilton-Jacobi theory are found in
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1. the motion of bodies on the astronomical scale, for example, space craft, comets,
or planets moving in a gravitational field, and in

2. the motion of bodies on the atomic scale, for example, a charged particle (elec-
tron) moving in the potential of an atomic nucleus or in th electromagnetic
field of a pulsed laser.

The mathematical procedure for these and numerous other examples is routine and
always the same:

(i) Construct the Hamiltonian for the system
(ii) Write down and solve the H-J equation

(iii) Apply the conditions of constructive interference to obtain the trajectories of
the body.

Let us describe how this three step procedure is done in practice.

3.13.1 H-J Equation Relative to Curvilinear Coordinates

In constructing the Hamiltonian one must choose some specific set of coordinates.
For a single particle it is is difficult to find an easier way of writing down the H-J
equation than the way whose starting point is the element of arclength

(ds)? = da* + dy* + d2* (Cartesian coordinates)

= g;;da'da’ (curvilinear coordinates) (3.32)

This element of arclength is the best starting point because it is related so closely to
the Lagrangian of the system. Indeed, one has

1
L=-m#Z—U
le'fL'

_1 i (de 2+ dy 2+ =\’
"I\ dt i
_ 1 didd

BTN

-U

In other words, the Lagrangian is constructed relative to curvilinear coordinates by
inspection. The steps leading to the H-J equation are now quite routine.
The momenta are
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oL
bj = 97 m gi; T .

Let g"be the inverse of g1 g*g;; = 6F so that
it=— g"p;
m

and

. 1 -
H=p;a’ —L=_"g"pip; + U
Thus the Hamilton-Jacobi equation is

05 1 ;0505
ot 2m? o 0w

in terms of the inverse metric.

+U

3.13.2 Separation of Variables

The most important way of solving the H-J equation is by the method of sep[aration
of variables. To illustrate this, consider the following

Example (Particle in a dipole potential) Consider the motion of a particle
in the potential of a combined dipole and monopole field. Relative to spherical
coordinates the metric is

(ds)? = dr® + r?d6? + r*sin® 0 do?

and that potential has the form

cosf k

r2 T

U(r,0) =pn

Its equipotential surfaces are rotationally symmetric around the z-axis. The La-
grangian is

L = Kinetic Energy — Potential Energy

= 5meud'd —U(d', ", ")
1 . . 0k
=5m (7% + r260% + r? sin® 0¢2) — uCOb +

r2 r’
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Figure 3.18: Rotationally symmetric potential as the sum a dipole potential (,LL >3 )
plus a monopole potential (—f)

The corresponding Hamilton-Jacobi equation is

aS
=22+ H
0 6t+

08 1 ,.0580S
— ij 1 2 3

s 1 [(as\ 1 (o8N 1 (os\] | stk
ot 2m |\ or r2 \ 96 r2sin® 6 \ 0¢ Koz r

This equation can be solved by the method of separation of variables. This method
is condensed into the following three definitions and propositions:

1. Definition (Separable variables). The variables ¢',¢% -+ ,¢° in the H-J equa-
tion
oS .08 oS . 08
0=— Hl|t ¢ — )= t,—.q", —
0t+ (7‘]:(:)(1]) H(?a]:_?Q?an)
are said to be separable if it has a “complete” solution of the form

S = So(t, ap) + Sl(q17a07a1) + SQ(q27a07 a1, ) + Sa(q?’,ao,ah Qg, (i3)
(3.33)
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where each S; depends only on ¢ and ¢' respectively.

2. Definition (Complete solution). A solution is said to be complete if
2

et | g

£0

Remark 1: We saw (in Section 3.12 on page 139) in the context of recon-
structing the classical trajectories of a Hamiltonian system from the principle
of constructive interference it was essential that the matrix [9%S/0a;0¢°] be
non-singular.

Remark 2: The solution, Eq.(3.33), is complete indeed, because

3 —

8%s

det Baog

* ¥ % =
¥ ¥ O N

0
0] £0
*

S N = O .

and its diagonal elements are not zero.

3. Definition (Separability condition). The Hamilton-Jacobi equation is said to
satisfy the separability criterion if its Hamiltonian is of the form

s . 08 03 05 2 95 95
()06 )0 ) 0 2)

( for s = 3 degrees of freedom ). This functional form is said satisfy the
condition of separability because the solution to this first order p.d.e. has the
separated form, Eq.(3.33). In other words, the claim is

Proposition: Definition 3 implies Definition 1.
Proof: Step 1.) According to Definition 3 the H-J equation is

fs (f2 <f1 (fo ( 6‘5) a1, gﬁ) gj) g{f) =0. (3.34)

The method of solution via separation of variables starts by solving for fy. One finds

folt 8—‘5 = an expression involving ¢', ¢%, ¢* a—S a—s and 6—S onl
0 78t - p gQ7Q7Q>aq178q27 83 y -

It follows that the solution must have the separated form

S=Tt)+ S (¢", ¢* ¢*) . (3.35)
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This is because the common value of

dT(t
fo (t, Zz(‘)> = an expression that depends only on ¢', ¢*, ¢*
at

independent of t
independent

of ¢*, %, ¢3

is independent of all variables. This common independence implies that fy is a
constant, say, aq:

. dT(t
fo (t, di )> =ap. (3.36)
Solving for T'(t), one obtains
T(t) = So(t, O(()) . (337)
and, in light of Eq(3.35),
ar  9S
T (3.38)
so that
oS
Jo (t, 81‘) = Qg - (3.39)

Step 2.) Introduce this function value into Eq.(3.34). This remove its ¢-dependence.
The simplified functional equation is

e 05’ 05’ , 05
f3 <.f2 (fl <a07qlaaql) 7(]27 aq2> 7(]37 aq3> =0

Now solve for f; and find that

! !

aS/ 2 65
1 M : : 3
Qp, s T~ 1 = an eX[)reSSlOn ln\/Ol\/ln N 5 ,and Only.
fl ( 0 q 8 1) g q q 9 2 9 3

It follows that the solution S’ has the separated form
S'=Qi(q") + 5"(¢%, ¢%). (3.40)

This is because

1
fl (Oé(],ql; d%q(lq )

) = _an expression that depends only on on ¢

- independent of '
independent

of ¢*, ¢*
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This common independence implies that f; is a constant, say, ay:

d 1
fl <a07q17 nglq(lq )> = Qg .
Solving for Q1(q"'), one obtains
Q1(q") = Si(q", en, ) - (3.41)

and, in light of Eq.(3.40),

dQ, 9s'

dgt  9q¢!

(3.42)

At this stage one has brought the solution, Eq.(3.35), to the H-J equation has the
into the separated form

S =T(t) + Qi(q") + 5" (¢, ¢*) .

Step 3.) Repeat Step 2.) two more times to obtain

d 2
f2 (04070417112» ngq(Qq )) = Qg
d 3
f3 (040704170523 q37 6(21:;(23 )> =Qas.

Notice, however, that the H-J Eq.(3.34) implies that a3 = 0, always. Consequently,
there are only three independent separation constants, («g, aq, ), while the number
of independent variables, (, ¢!, ¢%, ¢®) is four. It follows that

S =T+ Q:(q") + QQ(q2) + Qs(QB)

and hence with Eqs.(3.37), (3.41), - - -etc. The to-be-determined solution S appears
in the H-J equation only in the form of its derivatives. Consequently, S necessarily
contains an additive constant, which in general depends on the three separation
constants ag, aq,as3. Thus the dynamical phase S has indeed the separated form
whenever its H-J equation has the form (3.34):

S = So(t,Oéo) + 51(t,q1,040a 0{1)
+ Salt. % 00,01, 02) + St ", a0, 0, 02,05 = 0) + (a0, 1, ).

The purpose and the specific values of ay, a1, a3 and the form of § mathematize the
specific nature of the particular system under consideration.
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Motion in the Field of Two Unequal Bodies: Prolate Spheroidal Coordi-
nates

As an application of Hamilton-Jacobi theory, consider the problem of determining
the motion of a particle under the influence of forces toward two fixed centers.

The force due to each center is directed radially and proportional to the inverse
squared distance.

Figure 3.19: Prolate coordinates ¢, ¢, and the azimuthal angle ¢ coordinatize the
geometry of two static attractive centers of strengths s and k' located at z = ¢ and
z = —c respectively. These locations are the foci of the confocal ellipsoids ¢; and
confocal hyperboloids ¢;. The ellipsoids, g; = fixed are the loci of points where the
sum 7’ + r = constant; the hyperboloids g2 = fixed are the loci where the difference
r’ — r = constant.

In light of Figure 3.19 the two body potential is therefore

kK K K

U=—+—= . 3.43
r+7“’ \/p2+(z—c)2+\/p2+(z+c)2 (3.43)

Here 2c¢ is the distance between the two centers and x; and kg are their respective
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sources of the force fields. The problem of an otherwise free particle can be solved

completely for such a potential.
This potential has various limiting forms, for which the dynamics of the particle

can therefore also be solved exactly. They are:

Dipole

L field

The sources (i) have very large equal and opposite signs,

(ii) are very closely spaced
2¢ — 0,

but (iii) the product of source strength and source separation,
k- 2c = fixed = p (“dipole moment”),
remains fixed. In that case

(“dipole potential”)

0
U
T

if
2. U?ileﬁim For this case we arrange the attractive centers so that first of all the

attractive centers are located at Z = —2¢ and z = 0 and then let —2c— —o0.

p

N

~
7

q, = const.

Figure 3.20: Shifted spheroidal coordinate system.

The result is a set of confocal parabolas whose focus is the origin, as in Fig-
ure 3.21.
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Figure 3.21: Confocal parabolas with common focus at the origin as the asymtotic
limit of prolate spheroidal coordinates, Figure 3.19.

A. Particle in the field of a dipole:

k= —k

K — 00 but m:const:g
c—0

[FIGURE]

B. Particle in the field of an isolated body immersed in a uniform field. For example,
the hydrogen atom in a uniform electric field.

[FIGURE]

For this case we arrange the attractive centers so that

[FIGURE]

c— 00 ,‘{:,
K — oo but — = const = 4F
c—0 ¢
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In that case
K

/ p2 + 22
The first task is to establish appropriate coordinates. The rotational symmetry
around the z-axis suggests that we start out with cylindrical coordinates relative to

the axis containing the sources, in which the squared element of arclength (“metric")
has the form

U— Fz

ds* = gijda'da’ = dp® + d2* + p*dg”.

It is sufficient to focus on a plane ¢ = const.

Instead of letting the coordinate surfaces be p = const and z = const, we intro-
duce elliptical and hyperbolic surfaces of revolution, with the force centers as their
common foci.

Figure 3.22: Prolate spherioidal coordinates.

Such a set of orthogonal coordinate surfaces is most easily introduced by means
of the conformal transformation

z+ip =w = f(q) = ccoshq = ccosh(q; + igz)
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Figure 3.23: complex ¢ = ¢1 + ig» plane EN complex w plane

The real and imaginary parts of this transformation are

w =z +1ip = ccosh(q +iga)
= ¢ (cosh ¢y cos gz + isinh ¢ sin g;)

z = ccosh ¢; cos ¢o (3.44)
p = csinh g sin gy (3.45)
so that the locus of constant ¢; and ¢ yields
52 Pz
ellipses =1 0< ¢ <0
P czcosh?*q;  ¢Zsinh? ¢y =0
and
52 Pz
hyperbolas. — =1 0<q <27

c2cos?qy  c2sin? gy
The coordinates ¢; and ¢y together with ¢ are called prolate spheroidal coordinates.

The squared clement of arclength (i.c. the metric) relative to these prolate ellip-
soidal coordinates is

ds* = dz* 4+ dp? + p*de?
= dw dw + p*de*
w=ia) = ['(q)["(q) (dgi + dg3) +p*d¢?.
S—

c2|sinh g|? dqdg
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Here

| (q)]* = ¢’| sinhg|* = ¢*[ sinh? ¢ cos® g2 + cosh® ¢y sin® g |
cosh? q1—1 1—cos? g2

= [cosh2 q1 — cos® q2] = c? [sinh2 q1 + sin? q2] (3.46)
Thus the metric is
(ds)? = ¢ (Sinh2 @1 + sin’® o) (dq? + dq3) + ¢* sinh? ¢, sin? g, d¢?
where p? = ¢®sinh? ¢; sin® ¢o. The Lagrangian is therefore
L= 502 [(sth @1 +sin® g2) (47 + ¢7) + sinh® ¢y sin® g ¢2] —U.

K
VA | G
freedom, z and p, in an inextricable fashion. This is because of the square root

dependencies. However, these offending square roots disappear relative to the oblate
spheroidal coordinates ¢; and ¢o defined by Eqs.(3.44)-(3.45). They disappear be-
cause relative to these coordinates

The potential U = couples the two cylindrical degrees of

p* 4 (z £ ) = Psin? gy sinh? ¢; + ¢ (cosh g cos g £1)°

c? [sin2 ¢2sinh? q; + cosh? ¢ cos? g = 2 cosh ¢; cos ¢o + 1]
& [(1 — cos? q2) (cosh2 q1 — 1) + cosh? ¢, cos? gs & 2 cosh gy cos s + 1]

& [008112 q1 + cos® g» & 2 cosh ¢y cos qz]

¢ (cosh g, £ cos g)” .

This perfect square liberates the U from those offending square roots:

K 1 K 1

Ulg1,q2) = — o
(41,92) ccoshqs —cosqa ¢ coshq + cosqo

(k + w')cosh gy + (k — k') cos qa

cosh? g1 — cos? ¢y
g

sinh? q1 +sin? q2
From the Lagrangian one finds that the generalized momenta are
p; = me? (cosh2 q — cos? qQ) i 1=1,2
= mc? (sinh2 q1 + sin? q2) i
and

pg = mc? (sinh2 1 sin® Q2) o.
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The Hamiltonian is
1 P+ P ,
H= T U (g1, q0) .
2mc? {sinh2 1+ sin? 0 sinh? @ ginZ @ Py (q1,92)

Note: t and ¢ are cyclic coordinates. Thus H is a constant, say E. Therefore the

Hamilton-Jacobi equation is, with the help of Eq.(3.46),
1
E pu— ><
2mc? (sinh2 q1 + sin? qz)

() (5[] (23
oq 0qs sinh? ¢y sin? ¢, 0¢

1(k+ &) coshqy + (k — k') cos g2

c sinh? ¢, + sin? gy
The separability of this equation becomes more evident once one multiplies it by
c? (sinh® g1 + sin® go):

1 (85’0)2 <8SO)2 [ 1 1 ] (850)2
0= (=2 ) + (o) + |5+ -
2m oq 0qa sin“ge  sinh® ¢ 0

+c(k + k') cosh q; + c(k — K) cos o

—2mEc*sinh? ¢; — 2mFEc?sin® g, .
One infers that the general solution to this equation is
S=—Et+5Si(q1) + S2(q2) + pso
where S; and S, satisfy the ordinary differential equations
S, 5

2
() —2mc*Esinh? ¢ + — p¢2 + 2me(k + k') cosh gy = oy
dq, sinh” ¢;

and

s, \? o o P} ,
—— ) —2mc°Esin® g + —5— 4 2me(k — &) cos g = —ay .
dgs sin“ ¢o

Here o is the common separation constant. It follows that the solution to the H-J
equation is
S = —Ft %—}L¢¢

2

q1 1/2
+ / dq, [(le —2mcEsin® ¢ — — pq; — 2me(k + K') cosh ql]
sinh” ¢;

2

q2 1/2
+ / dgs [—al —2mc?Esin® ¢, — _prf —2me(k — k') cos qQ]
SIm” go

+ 5(E7p<1'>7 al)'
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The orbits are determined by the constructive interference conditions

a5 oS _, 95 _

&y 2o 22 _o.
ok ’ 8p¢ ’ 8011

The intersection of these three surfaces in the 4-d space spanned by (¢, ¢, q,q2)
yields the E, pg, aq)-parametrized family of globally defined trajectories in that 4-d
spacetime. Their velocity components are

day _ OH _ h (3.47)

dt  Op1 mc2(sinh?q + sin’ g2

o _OH _ P2 (3.48)

dt  dps  mc2(sinh? q; + sin® ¢2 '

dt — 9¢  me? sinh? q1 sin’ ¢2 (3.49)
(3.50)

The method of separating variables is one that gives the momentum components

a5

i —FE (= const.)
95 _ py (= const.)
90 = py (= const.
oS

07(]1 = pl(Ql)

a5

94 = pQ(QZ)»

and the solution to the H-J equation in explicit form. Apply them to the velocity
expressions. Thereby obtain the instantancous velocities (tangents) at cach point of
a trajectory:

dgy | P 2
—_ = ap — 2mc?E sin® g, — — 2me(k + K') cosh
dt  me2(sinh® ¢, + sin? ¢ [ ! N sinh? ¢; ( ) @
1/2
dqs 1 27 2 i
. —p — 2mc*Esin® g — 2 — 2mc(k — K') cos
dt  mc2(sinh® ¢, + sin? ¢ [ ! 2 sin? go ( ) cos gy
dé 1

dt — me? sinh? ¢ sin? ¢2 Pe

These expressions furnish the boundaries between those phase space domains acces-

sible to a particle where %1 and % are real, and those where they are imaginary
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and hence inaccessible and strictly forbidden (at least “classically”). The boundary
between these phase space domains is where the velocities % and % vanish, i.e.

dt
where

2

1/2
[al —2mc®Esin® ¢ — — pq; — 2mc(k + K') cosh ql} =0
sinh® ¢

2

1/2

. p

[—al —2mc?Esin® ¢, — — ;’5 — 2mc(k — K') cos qg] =0
SIn” gs

How Spheroidal Coordinates can be Deformed into Spherical Coordinates
Consider the potential due to two attractive centers.

[FIGURE]

Consider the case k = —x'. Now let ¢ — 0, kK — oo so that
2ck = const = L.
The two prolate spheroidal coordinates ¢; and ¢, which are determined by

p = csinh ¢ sin ¢o

z = ccosh ¢ cos ¢a

become the spherical coordinates 6 and r. This is so because for fixed p and z
(“same point in space") csinh ¢; and ¢ cosh ¢; remain fixed. Thus as ¢ — 0, ¢ — 0.
Consequently

csinh q;

— same constant = r
ccosh ¢o

Thus, setting ¢; = 0, one obtains

p=rsinf

z =rcosf

[FIGURE]

In other words, the prolate spheroidal coordinates become the spherical coordi-
nates.
You can convince yourself that

K 2Kcz cos 6

K
lim _ _ _ '
BTG VArGr ez e

U
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In other words, the potential becomes

cos 6
r2 |

U=u

that of a dipole of strength ;. The H-J equation separates for this potential, and
the trajectories can therefore be determined.
The limit of the potential U is

U K K
- 2 — 2 2 2
VRt (z=eo P+ (zt0)
ﬁ[\/pz—i—zQ—l—ch—i—cZ—\/p2+22—22c+02]
\/(p2+z2+02)2—(202)2

As ¢ — 0 the difference in the brackets goes to 0. To preserve accuracy, we must
expand around p? + z2. We obtain

[1+2Z70T2+..._<1_ 220T2+...)}
U—H(p2+22)1/2 s 222p+
2 2 — Cc7z
( +Z){1 @+ }
2Kkcz cos b
lim U = n T2 =M
22?:0;1 (p2+z2) r

This is the potential of a dipole whose dipole strength is pu.

[FIGURE]

Figure 3.24: Potential of a field whose strength is y = 2xc.

One can solve exactly the problem of a particle moving in such a field. The

Lagrangian is
cos 6

1 . .
L= §m(7‘2 + 72602 + r? sin? 9¢2) BT

The Hamilton-Jacobi equation is

g 05, L (98\' (oSN 1 (oSNt ow
Ot 2m \ or r2 \ 00 r2sin?6 \ 0¢ 72 ’

This equation can be solved using the separation of variables technique:

S=—Et+ R(r,E. {,ps) +O(0,(,ps) + psd + (E, L, py).
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Here
o = E Qg = l a3 = Py

are the separation constants. The orbits are given by the constructive interference

condition
oS 5} B oS B

o8- " " ap

0.

3.14 Hamilton’s Principle for the Mechanics of a
Continuum

Lecture 21

If a principle is to be gauged by the scope of the phenomena and processes it
brings into our grasp and by the brevity of its annunciation, then the extremum
principles of physics and engineering do not have many rivals. Variational calculus
(and more generally, mathematics) highlights the potency of the unaided human
mind. It gives a person the methods for graspin g the physical world from the nooks
and crannies here on earth, on the submicroscopic through the biological scale, all
the way the farthest reaches of the universe.

Most prominent among these principles is Hamilton’s principle, which is based
on the action integral

t1
I :/ (K.E. — P.E.)dt.

to
(K.E.=Kinetic Energy, P.E.=Potential Energy)

We would like to extend its range of applicability from systems having a finite number
of degrees of freedom to systems having an infinite number.

Hamilton’s principle accommodates such an extension, provided (i) we can iden-
tify the P.E. and the K.E. of such systems and then (ii) give a mathematical formu-
lation for optimizing their performance as ascertained by their action integral.

Examples. (1) The P.E. of a string is the finite sum of the potential energy of its
atoms. However, we shall approximate this discrete and finite system by a continuum
whose state is specified by the transverse displacement v (z). If the string is under
tension T [force], then its potential energy is the energy necessary to bring it from its
unstretched to the stretched state associated with its transverse displacement ().
The stretch energy is

2
P.E.:/T 1+<dw> —1| dz
dx

1 dp\?
>~ _ T —_— d/ ; small amplitude approximation
5 / < d:c) T plit pp tion)
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Figure 3.25: Molecular structural change in a bubble due to its deformation. The
associated change in an element of area is /As.

(ii) If the string is embedded in an elastic medium whose elastic constant is x and
if the string is subjected to a given transverse force density F(z) [{2%], then the

length
potential energy of the string is
dip
PE. = =T - F
/ 2 (dx) T3 2 Wt = Fy)d
(iii) Suppose we have a soap bubble under surface tension 7' [é‘:fg&l = e

This means that the energy necessary to increase the separation between adjacent
molecules in the bubble As. This separation increase refers to the change in the
separation between two columns (both of length Ay = /) of adjacent molecules, a
change from the the old preexisting (undeformed) separation to the new separation.
This change is depicted in Figure 3.25.

As a result, the area subtended by the two adjacent columns in the bubble in-
creases by

Asl = Ax 1+(Z¢) —1{ Ay

This is the area increase when the stretch is strictly into the z-direction. The rota-
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tionally invariant generalization of this is

2 2
Asl = AxAy 1+ i + N 1
dx dy
It follows that the associated increase in potential energy is
’ 2 ’ 2
P.E.=//T 1+ 9y + o — 1| dzdy
ox y
1 opN\® o\’
=3 [[7|(5) +(5) |

(iv) Suppose we have a rod or a column of cross sectional arca A and whose Young’s
modulus is Y [2¢] The potential energy when the rod is in a compressed (or

2
P.E. = A;/Y (?) dz
T

stretched) state is
1 a\®
= — Y —_—
2/// (830) dx dy dz

(v) The kinetic energy in all these examples has the form

2 mass
KE =1 [p(2) do p =[]
or

h\ 2 mass
K.E. = %ffp(%) dxdy pP= [area]
or

p 2
KE. =1 [[[p (%) dedyds p=[2=]

(vi) The typical Lagrangian for a three-dimensional medium undergoing only small
deformations has the form

L=KE —PE. = // L dxdydz

1o\t L [(ouNT L o (ouN] k. .
e=(%) ‘zk[<ax> #(5,) +(3) | -5vere

is the Lagrangian density of the system.

where
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3.14.1 Variational Principle

Consider a general three-dimensional system whose state is characterized by the
function ¥(z,y, z,t). The dynamics of this system is governed by the extremum

principle
51
_ i 57@0 %G 17,2 3.3
I[z/)]_////ﬁ(t,m7 8t,axi)dx dx® dx® dt
to V

= extremum!

Here £, the Lagrangian density of the system, may depend on time as well as the
space coordinates z°,7 = 1,2, 3. The integration is over the spatial volume V which
is spanned by the coordinates x!, 22, and 3.

Nature dictates that the actual performance (i.e. the evolution in time) of the
system is that one which is optimal in the sense that it extremizes the variational
integral I[¢)].

This means that if 1(¢,2") is such an optimal evolution, then the variational
integral will be unchanged to first order if one evaluates this integral for a variant
evolution, say ¥(t,z%) + 6¢(t,2*). In other words

11+ 69] — I[0] = 61[] = O[5y

where O[d7)] is a quantity of second or higher order in d¢. It is, however, understood
that the optimal evolution and its variant agree initially at ¢y and finally at ¢;

w(t07 xi) = ¢(t0, xl) + 51/](t0> xl)
V(t,2") = b, @) + 09 (b, o).
In other words the variation 1) (¢, z") vanishes at the ends of the time interval,
dp(to, ') =0 1,2 3
Sty %) = 0 V(2 2% 2°) € V. (3.51)

Furthermore it is also understood that the variants v + d1) = 1 on the bound-
ary for all times to < t < ;. In other words, the variation i (t,z") satisfies the
homogeneous boundary condition that for all times

S(t,z') =0 whenever (2%, 2% 2%) € oV. (3.52)

Here 0V = boundary of V.

Equations (3.51) and (3.52) can be restated by observing that d¢(¢,z") is in
general non-zero in the interior of the four-dimensional spacetime region [to, t1] X V,
but

su(t,a") =0 (t,z',2°%2°) € O([to, 1] x V)

ie. 09 = 0 whenever (¢, 2", 22 23) lies on the boundary of the four-dimensional
spacetime cube [tg, t1] X V.
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rl

Figure 3.26: Four-dimensional spacetime cube and its boundary.

3.14.2 Euler-Lagrange Equation

Subject to these boundary conditions on the variants, the optimal evolution satisfies
then the necessary condition

ST = 0.

We now resort in our customary fashion to the familiar calculus of variations tech-
nique to obtain the Euler-Lagrange equation implied by this necessary condition.
The variation in the Lagrangian density due to the variation d¢ is

o

Hamilton’s principle therefore becomes

oot [[[f (oo ot 3 5

Make use of the same integration by parts occurring in the derivation of the ordinary
Euler-Lagrange equations:

L[ +0o¢) ] [0 (O
_[ ot c‘?t]_/ (aqp)wdt

oL 3
5L = 4—5¢4———5 }: 8¢) (2)

Bxl

}fvﬁ

2 (o)

The integral involving the spatial derivatives can be manipulated in a similar manner:

W+oy) oy, 9 k
[2]= /8 81/) [ Ok _axk /8 81/) axk o) da
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An integration by parts yields:

8

d

LSl

The integrated term vanishes because it is evaluated at the two end points of the 2*
interval, and they lie on the boundary oR.
The variation in I becomes therefore

= [ {5 5 )5 o

The optimal nature of ¢ demands that 6/ = 0 for arbitrary «, in particular those
variations 6¢» which have a “blip" function behaviour around (¢,z") € [to,t1] X V as
in Figure 1.11. Consequently the variational derivative of I,

51 9L Q0L <~ 0 oL

oth(t, ) — O Ot gy

ok a2~

Ozk

k=1

must vanish.
Note: If we let

t
ZL’I
gt p=0,1,2.3
333

8 8 8 8
w N = O
|

then the Euler-Lagrange equation can be written in the more symmetric form

oL 0 0L
S S A
oY MZ_; drr 9 (2L

Comment.
(i) These Euler-Lagrange equations have a structure that puts the time on an equal
status with the space coordinates.

Furthermore, the action integral

I[w]:/// L'

has been extremized on the set of all functions ¢)(z#) which have fixed values on the 3-
dimensional boundary of a given 4-dimensional region such as depicted in Figure 3.26
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on page 161. It turns out that the general shape can be, within certain limits, fairly
general.
(ii) If the action is a functional of several functions, so that

s ot 01,2}5)

A T

£:£<xu7¢1,... L

then the Euler equations for the functional are

oL S~ 0 oL
— T Ao :O :1,..., .

3.14.3 Examples and Applications

Example 1. The Wave Equation.

Consider the action for the wave equation,

[ - (- - () e

The E-L equation yields

P P P P
o 0z2 oy 022

the familiar wave equation.
Example 2. The (Time Independent) Helmholtz equation.

Consider the variational problem

[ 7w I (G () (52) ] aetvae = csnnn

for all those functions ¢ which are constrained by the condition

[[[ vizayaz =

This problem is solved by the method of Lagrange multipliers. Let the variational
density be
F =F — M2
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The Euler equation for this integrand is

3
d oF o o v,
W Zdy 7y =0 T g T A=V =0,

which is the Helmholtz equation.
Example 2. Helmholtz equation relative to arbitrary coordinates.

Suppose we wish to rewrite this equation in terms of the new curvilinear coordinates

Tt =zl (at, 2? 2?)
7t =7 (at, 2? 2?)
=32t 2?2

(a) In the intererst of conceptual unit-economy (a.k.a. informally as “crow episte-
mology”), instead of applying this transformation to the differential equation, apply
it to the variational principle, and then write down the Euler equation relative to
these new coordinates:

B NG AN AN A
]:_vw-vw_<8x> +<8y) + 0z
32 oF anrafiaﬂJrafiaﬁ o 0
— Jal Ozt 9x? 922 a3 03 ) 0T 0TI

= g% where g% g;j, =&

It is easy to show that
o0z 0r 0w 0w 0z 0T’ _ (6]
Bal ozl T 9r20a? | 02 0a3| VY

is the matrix inverse to [g;;], which defined the metric

(ds)2 = (dazl)Q + (dx2)2 + (dm3)2
= 5ij dLUZ dl’j
_ g Orox
= 0j; 55 97t dz" dz
= ke di‘k dfe.

In other words,

[97] [93x]) =

S O =
O = O
_— o O
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Thus relative to these new coordinates Z* one has

L 00 00
. = g¥ _
VYV =9 o o

which is easy to write down once g;; is known.

[FIGURE]

(b) The volume element relative to the new coordinates is expressed in terms of the
Jacobian determinant J:

1 2 3
oz d.’El %dml oz d.’El

ozt ozt O
a1 _ o2 _ 0.3 _ _ _ _: i
% dz® % dz® % dz?| = det J dz' dz*dz®, where J = [(%]‘] .
Azt d—3 0x? 7=3 0z% ;=3

oz oz oz

This determinant is readily available from the transformed metric coefficients:

Azt Ak
51;]‘

Gkt = Gk az¢
or

G =J' 1 J
so that

detG = (detJ)?
or

detJ = VdetG = V9 -

(¢) The transformed variational integral is

o 9y g
kt 1 -2 723 _
// / 9" 57k 854\/'6 dz" dz” dz° = extremum

and the normalization condition is

// ¢*\/g dzt dz? dz® = 1.
(d) The Euler-Lagrange equations are

0 0
9k [\/flgkea;/;] + A9 =0

or

1 0

0 ‘
i V99 | A=)
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Comparing this equation with the one in example 2, we see that
1 0 oY

VQ - - = ke~
4 Vg 0x* [\/ﬁg oz’

is the expression for the Laplacian relative to curvilinear coordinates.

Example: Find the Laplacian relative to spherical coordinates.

Step 1: Write down the metric relative to these coordinates.
(ds)? = dr® + r?d6? + r*sin® 0 do?

V9 = /det gij = Vrisin? = r?sin

Step 2:
1 0 0
¢7=10 % 0
00 r25i11129
Thus

2 — 2 == e
v 2sng |or o 0r+09 r2 09+0¢r231n290¢>

1 0 O 9 r*sinfdy I r’sinf Oy

2, 1O L00 1 0 . o0 1 0%
V= aa o trremeae 00 T rsnte 007 |




Chapter 4

DIRECT METHODS IN THE
CALCULUS OF VARIATIONS

Lecture 22

We know how to minimize the functional J[¢)] = [[[ L(2%, 4. gg’, ) d3z indirectly.
We write down the Euler equation, a differential equation for ¢ (z'). Then we solve
that equation by finding that function (‘) which satisfies the conditions at the
boundary. This can be a daunting task because what one needs to do is solve the
differential equation in the whole region enclosed by the boundary, even if one wishes
to find only an approximate solution.

The ultimate object of interest is a function which extremizes J[1] and not nec-
essarily a function which satisfies the Fuler equation. Consequently, it is appropriate
to ask:

“Can one not find this optimizing function (if not exactly, then at least
approximately) without having to bother with the intermediate expense
of having to integrate the Euler equation over a finite multidimensional
region?"

The answer to this question leads us from the indirect variational methods based
on solving partial differential equations to direct variational methods which dispense
with these equations altogether.

The direct methods have two additional attractive features:

(i) they can be used to solve differential equations and

(i) they can be used to calculate a solution to the differential equation with arbi-
trary accuracy.

167
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Thus suppose that one can show by some means that the functional J[¢] has an
extremum for a sufficiently smooth admissible function . Then this very fact proves
the existence of a solution to the corresponding Euler differential equation, and
thereby gives us a rough idea about the nature of the solution.

4.1 Minimizing Sequence.

The general idea behind the direct method is as follows.

Consider the problem of finding the minimum of a functional J[y] on the space
M of allowed (“admissible") functions. (This usually means the functions must be
sufficiently differentiable.) We assume (a) for each of these functions the functional
J is finite, i.e.

Jy] < o0

and (b) J[y| has a minimum, i.e. 3p such that

y1€n/\f/l Jly] = p > —o0.

Here inf e J]y] is the greatest lower bound (“infimum"=GLB) for the set {J[y] :
y € M}; in other words

inf J[y] = max{m : J[y] > m;y € M}.
yeM

= t?ﬁ JL%J

Figure 4.1: The greatest lower bound (“infimum”) of the functional J[y].

The existence of such a greatest lower bound implies that 3 a sequence of functions
in M (a “minimizing sequence")
Y1, Y2, - - -
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/j-‘ .:ff}rlf..it
;
i e
| I',, .l"'fl ?)l . = .
iy 2 | | 9 1 :.-!
+ © s ] g f | fin
j. I £ .-"/ ll II i Tj -
A o e 4 S
= |]“—:;‘ N (S ..
.J-II;.'-I - | f_ )
) ? | ‘}-f-:-_..x.x.;.‘ Tl M

Figure 4.2: The greatest lower bound of J and a convergent sequence {y,} implied
by it.

such that
lim J[y,] =p

n—00
If the sequence y1,ys, - - - has a limit, say g:
lim Yn = Qv
n—oo
then one can write

lim Jy,| = J[9]

n—oo
Jim Tl = 7| fm o]
or J[g] = p.

In that case ¢ is the solution to the problem and the elements of the minimizing
sequence ¥, can be considered as approximations to the problem.

4.2 Implementation via Finite-Dimensional Approx-
imation

An implementation of this idea is as follows: Consider the following sequence

MicMyC---CM,C---CM
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of spaces of functions

My = { y1=y1($l:,0z1) —o0o < a; <00 }

M,y = { Y2 =_y2(96’,oz1,a2) T < o, < 00
yQ(x/L?O‘la'O) = yl(xzval) }

Mz = { ys = ys(z' ap, e, a3)  — 00 < a, (i, (3 < 00

yg(ffli,(l/,l,()Q,O) = yl(mivalv(l/?) }

Thus each M,, is coordinatized by its n coordinates (aq,- -, ay).
The functional .J can be minimized on each subspace M,,. Thus

(1)

on the 1-dimensional space M; consider Inji\}ll Jly] = p1. This is obtained by
yeM

letting
J(on) = Jyi(on)]
requiring
aJ(Oq) -0
8041 o

and then letting py; = J(y).

on the 2-dimensional space My consider min J[y|] = pe. This is obtained by

yeMo
letting
J(ar1, a2) = Jy2(1, az)]
requiring
M -0 i=1,2,
aai

and then letting s = J(ay, ag).

on the n-dimensional space M,, consider min J[y|] = y,. This is obtained by

yeEMy,
letting
J(ag,...,0n) = Jyn(o, ..., an)]
requiring
O o) g Gy g,
80[1'

and then letting u, = J(o1, ..., an).
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This results in a non-increasing sequence of minima

L2 g 2 2 2 2 i Tl =0

because
MiCcMyC---C M, C---CM.

In other words, the minimum can never increase as we increase the size of the
function space.

4.3 Rayleigh’s Variational Principle

Let us apply the direct method to one of the most important variational problems,
namely the one governing a linear vibrating system, say, a vibrating compressible
medium enclosed in a three-dimensional volume:

/ / / (Vi) - (Vi) dV = extremum

subject to the constraint
// ¥?dV =1; 1 =0 on the boundary of the volume.

This variational problem extremizes the potential energy of the system at a mo-
ment of time symmetry (see page 65 in Section 2.3.1 ). The Euler equation

V2 + M) =0 (4.1a)
with the boundary condition
1 =0 on the boundary of the volume, (4.1b)

is what in one dimension corresponds to the Sturm-Liouville boundary value problem.
Here we have its three-dimensional version.

The interesting feature about this variational problem is that it has many (dis-
crete) solutions. In other words, we are asked to find not only a function which
minimizes the variational integral, but also those functions which correspond to
saddle points in the function space on which the integral is defined.
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4.3.1 The Rayleigh Quotient

In order to help us see the relationship between these different solution and help
us develop methods for determining them at least approximately, we shall use a
powerful device which is called the Rayleigh Quotient after the person who invented
it and made extensive use of it in analyzing vibrational problems.

The Rayleigh Quotient for our variational problem consists of

[[[(¥¢)- (V)dv N

[ffv?av  ~ D
The utility of this quotient lie in the fact that the variational problem (“Rayleigh’s
variational principle")

— = extremum
D

subject to

¥ =0 on the boundary,
is equivalent to the original variational problem, Eqs. (4.1). This is a big advantage
because Rayleigh’s variational problem permits us to consider variants of ¢ which
are arbitrary instead of being restricted by the constraint condition

[[[vav =1

The first significant property of the Rayleigh quotient lies in the fact that if ¢
satisfies the eigenvalue (“Helmholtz") equation

V2¢ = _’l{;2¢7
then
N 2
D= k.

Indeed, using Gauf’s divergence theorem and the boundary condition that ¢ = 0
on the boundary we find

N [[[(VY) - (Vy)aV
D [ffvrdv
_ V- @) =9V - Vyldv
JITv2av
— [[[ V> dV + [[4V - fidA
Jff ¢2av
[ b(=k2p)av +0
N [ ¢?av

= k>
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Remark. If 1 satisfies the homogeneous boundary condition

-V + fip =0,
then the Rayleigh quotient is

N _J[f(Ve)av + [f fy?dA
D [ ¢vzav

(4.2)

instead. But we still have the basic fact,

V2 + k% =0

implies E = k?
ﬁ'vw—’—wlboundary =0 P D o

The second significant property of the Rayleigh quotient is that extremizing it is
equivalent to the original extremum principle; in other words, if ¥ is an admissible
function (i.e. it satisfies, among others, the boundary conditions) which extremizes
the Rayleigh quotient, then this function 1 satisfies the Helmholtz equation. More
briefly, we have

N t
p ~ extremum w‘boundary

implies that
V2 + k=0
where

K =

S| =

The variational calculation leading to this conclusion is based on the Rayleigh
variational principle

N
J <D> =0. (“Rayleigh variational principle")

The details are easy to perform:

D

5<N> 6N NéD



174 CHAPTER 4. DIRECT METHODS IN THE CALCULUS OF VARIATIONS

Using the fact that di» = 0 on the boundary, one has

5N=5///w-wdv
:2// Vi - Vb dV
_2/// (00 V) = V- Vi o] av
=2 / / (V2) 6p dV + 2 / / i Vip 0y dA

_ _2// (V) 59 dV 40

5D:2// b SYdV
S OREY [ eaeare:

Inside the integration volume, the variation d1) is arbitrary. Consequently,

Thus

N
2 —_— p—
Vo + Dw 0
or

V2 + k) =0

if we set N

k2= —.

D

Remark. If the trial functions ¢ are required to satisfy the homogeneous boundary
condition

- Vl/) + f¢|boundary =

on the boundary, then Rayleigh’s variational principle still holds provided one uses
the corresponding Rayleigh quotient, Eq. (4.2).

Remark. ¢ (%) = 0 implies the original variational principle, Eqs. (4.1): d(N —
k*D) = 0. The third significant property of the Rayleigh quotient is that the vari-
ational principle based on it reveals the relationship between the various solutions
which extremize it.

1. We note that when
o JII(Ve2av
Jffv2dv
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is evaluated for all possible trial functions 1, there will exist an absolute mini-
mum, k%. Let 1)y be that optimal trial function corresponding to this minimum:

Vo +— ki

2. It is not difficult to show that: If &7 and k7 are two eigenvalues of (V*+£2) =

0, then
kf;ék?:///wiwjdV:O

2b. Thus one may obtain a variational principle for k%, where k¥ > k3 but k2 >
k% (n > 1). One simply imposes the additional constraint

Jff o

on the set of trial functions. Then

JIJ(Vy)*dv
JIJ v av

Jff o

k2 and Y1.

= minimum

subject to

yields

This process may be continued to obtain k3 and v, and other eigenfunctions and
eigenvalues:
kégk%gk%g...

¢07 77[}17 d}Za
It is therefore evident that the Rayleigh quotient reveals:

(a) the existence of an infinite sequence of eigenvalues and eigenfunctions of the
boundary value problem

V3 + k=0
(b) the sequence of eigenvalues is non-decreasing

(c) the sequence of functions which extremize the variational integral are orthogo-
nal.
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4.3.2 Rayleigh-Ritz Principle

The Rayleigh variational principle based on the Rayleigh quotient furnishes us with
a framework for an approzximate determination of the eigenvalues and their eigen-
functions. This framework is a variational method which consists of letting the trial
function (“variant")

¢ = QZ&(.T,O[]_,...,CYS)

depend on a finite number of parameters ay, . .., a;. The dependence of ¢ on «; may
be a non-linear one or a linear one.

The Rayleigh-Ritz Method is a special method. It consists of letting the trial
functions depend linearly on these parameters,

¢ = ().
=1
Let us introduce the following matrix elements:

and

/ﬁgbi Ve dV = —/¢N2¢j AV = Ay

We now take advantage of the fact that Rayleigh’s variational principle
N
ol—=1]=0
(5)

§(N — k*D) = 0.

implies
This is the condition for extremizing the expression

N —kD =Y "> (A — ¥*By)aa; = J(on,... ).

i=1 j=1

Thus we have

0J
ot 0

1=1,...,s.

This results in
S

22(141] —/{?QBZ']')O/,]' =0 1= 1,...,8

=1
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(A& = k?[B] d.

These equations have a solution if

This is the familiar secular equation for the symmetric matrices [4;;] and [B;;]. The
solutions are cigenvalues which approximate those determined by the problem

(V2 + k)¢ =0,

plus homogeneous Dirichlet or Neumann boundary conditions.
The solution consists of an approximation to the first s eigenvalues:

kégkfﬁ...gkg
and their corresponding approximate solutions

60 =3 aV%(), ..., ¢ =3 a¥ei(x)

(m)

where o, is an eigenvalue for the problem

4.3.3 Vibration of a Circular Membrane

Consider a clamped circular membrane of radius a.

The variational principle for this problem is

gy = JI(Vvpav
JIfv?av

N
ok
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The amplitude @ satisfies
Y(a) =0

with ¢ and Vv continuous inside the disc. For algebraic simplicity, consider only
circularly symmetric modes. Thus

v =(r)

is a function of r only, independent of angle.
The variational principle becomes

()r

fo P27 dr

B2 — fo (5)%rdr N
o
Comment: The differential equation corresponding to this problem is

Ld db o
k=0

whose eigenvalues k% are determined by Jy(ka) = 0. Tt is advantageous to introduce

the dimensionless independent variable

S

X

Consequently
(ka)* = fo S de = ﬁ
fo w2 xdz D

(A) Lowest eigenvalue )y and its eigenfunction (;530): Consider the possible trial
functions. The simplest one which vanishes at x = 1 and which has continuous
gradient at x = 0 is

¢§0) =1 —a? for the lowest eigenvalue in the 1% approximation.

Comment: 1 —x won’t do because its slope at z = 0 is —1, giving rise to a
cusp at the center.

Insert ¢§0) into the above variational principle and obtain \g, the lowest eigen-
value in the 1% approximation:

fo )2 xdw _ f014;1:3dx _ :1:4|(1J 6

A(] = (k(l)z 212 1
fo (1-— xz) xdx _7(1_(? ) ‘(1) 5
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The ezact value of (ka)? is determined by the first zero of J:

Lowest root Next lowest root
Jo(ka) =0 = koa =2.40483;  kia = 5.52008
(koa)? = 5.78319; (kya)? = 30.4713

Thus the error in the crude variational estimate for the lowest eigenvalue is

6 —5.78319 _ 0.21681
6 6

~ 0.036, ie. 3.6%

(B) The next approximation uses an improved trial function?

P2 = (1 — x2)+a2 (1 — x2)2 for the lowest eigenvalue in the 2" approximation.

This choice is based on the fact that any function which (a) is zero at = = 1
and (b) has zero slope at z = 0 can be expanded in a power series in (1 — z?).
It is observations like these about the (geometrical) nature of trial functions
which makes the variational principle practical.

Insert this trial function into the expression for (ka)? and obtain

ata
a’B

Q1

ol =

= (ka)* =\ =

Q1

or

Alloz% + 241500009 + Aggag = (BHO(% + 2B + ngozg) .

(Nota bene: The matrices A and B are only two-dimensional because they mathe-
matize the 2"® approximation. Higher order approximations would be mathematized
by higher dimensional matrices.)

In this context the convention is that the superscript “(0)” refers to the eigenvalue, and the
subscript “2” refers to the approximation , i.e. the dimension of the approximating subspace, which
now also accommodates the eigenfinction <;5(21) of the next eigenvalue \; in the 2" approximation.
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Here

Differentiate with respect to aq and «s and set

) (N) _kap® _

day \ D da,
9 (NN _aka) _
8012 D B 8012 B

to obtain

(A1 — AB11)ag + (A1g — ABp2)ay =0
(Agl — )\Bgl)al + (A22 — )\BQQ)O{Q =0.

This is a pair of linear equations for a; and as. It has a solution only if det [A\B—A| =
0, i.e. if

In_1 1y 2
det|A\B — A| =0 = | %=

1y _2 14 _ 2

8 3 10 3

This is a quadratic equation for A = (ka)?. There are two roots. The smaller root is
Ao = (ka)* = 5.78413 (lowest eigenvalue in the 2* approximation),
which is very close to the exact value
Nexact = (ka)?, ... = 5.78319.

The ratio g—f is, from the second equation,

2 1

(6%} 22

- = —;_ i)\ = 0.639.
1 3710
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Thus the wave function is
éo) o (1—2%)+0.639 (1 — x2)2 for the lowest eigenvalue in the 2* approximation.
One should compare the first trial function
o) =1-a?

and the second trial function

o _ 1

2 = 1639 [(1 — :1:2) + 0.639 (1 — ;1:2)2] for the lowest eigenvalue in the 2% approximation

with the exact wave function

J0(2.40483x). < exact

Jp — / i \

-—1-:.?\ = " - | -',:.: v it
T e Fr B PO fappvaximalddy
o, .'""':'rlﬁ'l_x' J,—',Df-‘f{jﬂ‘}i "J_J 4&ff—'!‘§xl1ﬁfl 9
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R
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Figure 4.3: Exact vs. 1°* and 2" approximations to the lowest radial vibrational
normal mode amplitudes.

Comment:

1. The larger second root of the secular quadratic equation is \; = (kja)? =
36.883, to be compared with the exact result (k1a)?,. = 30.471.

exact
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2. The approximate wave corresponding to this eigenvalue is orthogonal to the
wave function determined by the first root.

2 _ A
A —36.883|= 2= 38
a 5710
546103 3.9437

236883 3.0216

= —1.30516

The wave function is therefore

ot = (1 — %) — 1.30516 (1 — 22)°.

This wave function is orthogonal to @‘go):

/ 60 o 2 dy =

in the 2-d approximation subspace.
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Figure 4.4: Graphs of a vibrating drum’s lowest frequency radial amplitude profiles:
in its mathematically exact form, in its first and its second Rayleigh-Ritz approxi-
mation.
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Chapter 5
TENSOR CALCULUS

Tensor calculus unifies linear geometrical structures on a vector space with multivari-
able differential and integral calculus. It mathematizes the unification of the concept
of linearity with that of change.

A geometrical structure on a vector space is a real-valued multilinear map (or
function) which exists in numerical form relative to some standard basis but may
exist relative to any basis of the vector space. In other words, the multilinear map is
independent of the particular basis, which serves as a (contextually defined) standard
by which vectors are specified quantitatively.

The unification is not a mere juxtaposition of two items; it is an integration,
a mathematical blending of the two into a new mental entity, a tensor field on an
underlying manifold.

5.1 The Dual of a Vector Space

A multilinear map is formed from two types of fundamental building blocks, elements
of the vector space and covectors, the elements of its dual space. For finite dimensions
these two spaces always exist in pairs. The existence of one always implies the other.
It is not difficult to find a driving force conceptualizing “the dual of a given vector
space”.

Lecture 22

What facts of reality give rise to the concept “the dual of a given vector space”? Why
do we need such a concept?
I. Consider the familiar circumstance, the set of fruit inventories in a supermarket.

Designate a typical inventory of a® apples, a” bananas, o coconuts, - -- by
S — — —
# =a%apples + o’ bananas + af coconuts + - -- (5.1)

185
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or, more succinctly, by
T =a%, + a’e + a‘e, + - - - (5.2)

Fruit inventories like these form a vector space, V', closed under addition and scalar
multiplication®.
Nota bene: In this vector space there is no Pythagorean theorem, no distance func-
tion, and no angle between any pair of inventories. This is because in the present
context apples, bananas, and coconuts are in-commensurable, i.e. “one does not mix
apples and bananas”.

IT. Next consider a particular purchase price function, $;. Its values yield the
cost of any fruit inventory

$7(%) = $5(a”é + ’G + aé+ ) (5.3)
=a"$s(e) +a’ $p(a) 4+ af $p(e) e
S~ S~~~ S~
purchase purchase purchase

price/apple price/banana price/coconut

Also consider the cost of fruit inventory ¥

$7(5) = B $¢(ca) + B $5(er) + B°8p(ee) + -+ . (5.5)
We see that
$(Z + cyf) = $4() + ¢B(y) (5.6)
Thus
$f : V2R
T~ $4(Z)

is a linear function on the vector space V of fruit inventories.

II1. The set of purchase price functions forms a vector space. Indeed, consider the
purchase price functions $y, $,, $,, --- of different fruit wholesalers, and introduce
the combined purchase price function $; + $, by the requirement that

(37 +38,)(7) =$4(2) +$,(7) forall ZinV (5.7)
and ¢$;, the c-multiple of $, by
(c$7)(Z) = c(5¢(2)) -

We infer that the set of purchase price functions forms a vector space, V*, the space
dual to V.

"We are taking it for granted that the supermarket also carries inventories of (dried) cut-up
apples, (dried) fractional bananas, and shredded amounts of whole coconuts.
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5.2 Linear Functions

The space of duals is variously referred to as
the space of linear functions

the space of linear functionals

the space of covectors

the space of duals.

The concept of a dual is a new concept. It combines two concepts into one. It
is a marriage between the concept of a function and the concept of a vector. Such
a marriage is possible only for linear functions, a fact formalized by Theorem 1 on
page 189.

In the hierarchy of concepts a dual is a derived concept, it depends on the ex-
istence and knowledge of the entities that make up a vector space. A dual is an
abstraction which conceptualizes a measurable property of these entities. For ex-
ample, if one introduces a basis for the vector space, then each of the associates
coordinate functions is a dual. This fact is depicted in Figure 5.2 on page 192.
Each one is a measurable property of a vector, with the relevant basis vector serving
as the relevant measurement standard. Properties such as these, and others, are
mathematized by means of linear functions which are identified by the following

Definition 1. (Linear Function)
Let V' be a vector space. Consider a scalar-valued linear function f defined on V as
follows:
f: V=R
z~ f(x)

such that
flaz + By) = af(x) + Bf(y) where 2,y € Vi o, f € {scalars} .

Example 1: (Linear function as a row vector)
Let V.= R" = {(x1,29, -+ ,x,)} then

R — R
X1 a1
~ f(xly"'vl;'n) E[&l:"'agn]
In T,
=&y o+ G
is a linear function whose domain is V' = R", and whose form is determined by a
given row vector [£1, -+ ,&,]. See Figure 5.1.
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Figure 5.1: A lincar map f. Its isograms (= loci of point where f has constant
value) are parallel planes in its domain, R3, with the isogram defined by f = 0
passing through the origin. The image of these planes are points in IR

Example 2: (Weighted Sum of Samples) Consider V' = C[a, b], the vector space of
functions continuous on the closed interval [a, b]:

V = {4 : ¢(s)is continuous on [a,b]} = Cla,b] .
Consider the following linear scalar-valued functions on V:

1. For any point s; € [a,b] the “sj-evaluation map” (also known as the “s;-
sampling function”) f

V = Cla,] LR (reals)
U~ f(9) =1b(s1)

The function f is linear because

fle + ) = er f(¥) + c2f(9) (5.8)
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2. Let {s1,82,--,8,} C [a,b] be a specified collection of points in [a, b], and let
{k1, ko, -+ kn} = {k;}}=, be a set of scalars. Then the function g defined by

Cla,b) %R
Vo~ g() =200 ki (sy)

is a linear function on V' = Cla, b, |

3. Similarly, the map h defined by

is also a linear map on v = Cla, b].

Example 3:
Consider the vector space of infinitely differentiable functions,

V=A{¢:¢is C* on (a,b)} = C*(a,b)

on (a,b). Furthermore, let
| i
dj -
ois) = &

be the j derivative of ¢ at x = s. Then for any fized s € (a,b),the map h defined
by
V=Cla,b) SR
U~ () =300 a;d Y (s)

is a linear function on V' = C*>(a,b,)

5.3 The Vector Space V* Dual to V

Given a vector space V, the consideration of all possible linear functions defined on
V' gives rise to
V* = set of all linear functions on V .

These linear functions form a vector space in its own right, the dual space of V.
Indeed, we have the following

Theorem 3.
The set V* is a vector space.

Comment and proof:
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1. In physics the elements of the vector space V* are called covectors.

2. That V* does indeed form a vector space is verified by observing that the
collection of linear functions satisfies the familiar ten properties of a vector
space.

Thus, if f, g, h are linear functions and «, § € R, then

(a) f+ g is also a linear function defined by the formula

(f +9)(@) = f(&) +9(F) VZeV.

Consequently, the following concomitant properties are satisfied automat-

ically:
(b) f+g=9+/f
© f+(g+h)=(f+9) +h
(d) the zero element 0 (=“additive identity”) is the constant zero function
(e) the additive inverse of fis —f .

Furthermore,

(i) af is also a linear function defined by the formula
(af)(@)=af(@) VieVanda€R

In light of this formula the following properties are also satisfied automat-

ically:
(i) a(Bf) = (aB)f
(i) 1f = f

Q

)

)
(iv) a(f+g9)=af +ag
(v) (a+pB)f=af+8f

5.4 Dirac’s Bracket Notation

To emphasize the duality between the two vector spaces, one takes advantage of
Dirac’s bra-ket notation, which he originally introduced into quantum mechanics.
If f is a linear function on V' and f(x) is its value at « € V, then one also writes

f@) = (fle) = {f]7) (5.9)
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Thus the underscore under f is a reminder that f € V*, while z, or better & is an
element of V. We say that f operates on the vector x and produces

(f1z)

To emphasize that f is a linear “machine”, we write

f

(I eV (5.10)

for the covector (which Dirac called a bra) and

v =|7) (e V) (5.11)

for the vector (which Dirac called a ket). They combine to form



192 CHAPTER 5. TENSOR CALCULUS

5.5 The Duality Principle
Lecture 23

As we shall see, mathematically it is the existence and uniqueness of a vector’s scalar
coefficients relative to a chosen (or given) basis that makes the concept of duality
so important. Indeed, such a basis makes the introduction of V* inevitable. This is
because a basis determines unique scalar values for each vector, which is to say that
it determines scalar functions on V.

o' /7

Figure 5.2: Level surfaces (="isograms”) of the coordinate functions, which (i) are
linear on V' and (ii) are determined by the basis €, &, -+ ,¢,. The tip of a vector
(not shown here), say, © = alé, + a2 + o3¢, is located at the intersection of three
isograms. This is the point where w!(x) = o!, w?(x) = o2, and w3(x) = o*. Nota

bene: The upper indeces 1, 2, and 3 are not powers; they are superscripts.

The problem, therefore, is: What are these scalar functions? Are they elements
of V*?7 If so, do they form a linearly independent set? Do they span V*?
The answer to these questions gives rise to
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The Duality Principle:
For each ordered basis

{61, €o,y - )en}
of a finite dimensional vector space V', there exists a corresponding basis
1 2 n
{g y Wy, W :}
for V*, and vice versa, such that
=\ . £t =
(Ww'lej) =6 - (5.12)

Warning. The evaluation, Eq.(5.12), is not to be confused with an inner product.
The existence of the duality between V and V* by itself does not at all imply the
existence of an inner product. We shall see that the existence of an inner product
on a vector space establishes a unique basis-independent (= “natural”) isomorphic
correspondence between V and V*. In the absence of an inner product such a corre-
spondence does not exist.

The validation of the duality principle consists of the actual three-step construc-

tion of the basis dual to the given basis, which we denote by
B={eéy,éy,---,é,} CV (basis for V.)
Step 1.
For all vectors z and y one has the following unique expansions:
r=a'd, +---+a"e, (5.13)
y=pler+---+p",
r+y=(a'+ 8N+ + (" + B")e,

cxr = caléy + - -+ ca"é, (c is a scalar)
Note that
al is uniquely determined by =z
[jl " " " " Y
al + ﬁl " " " " x4+ Y
Cal " " " " cr
Step I1.
These four relations determine a linear function, call it w?,
w's VSR

Its defining properties are

wh(z) = «
wi(y) = p'
wz+y)=a + 4
w'(cz) = ca'
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which imply

W'z +y) =w!(2) +w'(y)
w(cx) = cw'(x)

In particular, using Eq.(5.13) on page 193, one has

wl(é'l) =1
wl(éé) =0
w'(&,) = 0.

We conclude that w! is a linear function, indeed. The function w' is called the
first coordinate function.

Step I11.
Similarly the j
by

th coordinate function, a.k.a. “the j* parallel projection”, is defined

wi(r)=a forj=23--,n.

By applying w’ to the it" basis vector €;, and using Eq.(5.13) on page 193 one obtains

1 j=i

ey =twiey={ g 17!

or in terms of the Kronecker delta,

(Wle) =]

This is called a duality relation or duality principle. The choice of a different vector
basis would have resulted in a correspondingly different set of coordinate functions,
but would have again resulted in a duality relation.

Being elements in V*, do these coordinate functions form a basis for V*? The
answer to this important question is answered in the affirmative by the following

Theorem 4. (Dual Basis)
Given: A basis B ={é, - ,é,} for V.

Conclusion: The set of linear functions B* = {w’ }?:1 which satisfies the duality relation

(W@ = o

(5.14)

is a basis for V*.
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The proof of the spanning property of B* hinges on the spanning property of
B as follows: Let f € V* be some linear function on V. Evaluate f(z) and use
z =73, a'€. Thus

fx)=f (Z o/‘&)
= Zfl(é'z‘) o' a'is the i coord. of z, ie. o' = W'(z);
=D _f@)w'(x) YreV
This holds for all x € V. Consequently,
f=2_f@w, (5.15)

which is an expansion of f in terms of the elements of B*, which means that B* is
a spanning set for V* indeed.
To show that B* has the linear independence property, we consider the equation

w1 + cowg + -+ cpw, =0

where 0 is the function with constant value zero on V. By evaluating both sides on
the i'" basis vector €; and using Eq.(5.14) one obtains

=0 fori=1,2,---,n
Consequently, B* does have the linear independence property. Together with its
spanning property, this validates the claim made in the Theorem that B* is a basis

for V*.
Example 1 (Column space*=Row space)

GIVEN:
Let
1 1 1
B = 51 = 0 ;52 = 1 ;€3 = 1
0 0 1

be a basis for the column space V = R3.

a) IDENTIFY V*, the space dual to V.

b) FIND the basis B* = {w;;ws; w3} dual to B, i.e. exhibit elements w’ which satisfy
Eq.(5.14).

Solution

a) The space dual to V' consists of the row space

V*={o=labc|: a,b,c € R}.
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x
Indeed, forany z = | vy | € R?
z
(olx) =0

T
Y
z
-
=labc |y | =ax+by+cz

Question:

What line of reasoning led to the fact that the answer to a) is the space of row
vectors?

Answer:

A prerequisite for the course “Linear Mathematics in Finite Dimensions” is a knowl-
edge of matrix theory (as, for example, in chapter 1 of Johnson, Riess, and Arnold).
One of the concepts in this chapter is that of a row vector. One of the constitutive
properties of a row vector is that it can be multiplied by a column vector and thereby
produces a scalar number. This property was stored in our subconscious (the “hard
disk” of our consciousness) where it has been ever since.

Now part a) of the above problem, asks for linear functions on the space of column
vectors. That is the standing order, to search our subconscious for a concept with
this requisite property. The success of this search was not immediate. In fact, we
had to “sleep on it”. However, the already-known concept “row vector” is the green
light to inferring generalizations from particular instances. In particular, a row vec-
tor, when applied to column vectors, produces scalar numbers. The generalization is
“row vectors give rise to (i.e. imply) linear functions”. This inference is mandatory
for two reasons: (i) a function is precisely the process of assigning scalar values to
elements, here column vectors in the function’s domain and (ii) the process is a linear
one.

This generalization is a causal relation between row vectors and linear functions.
Like all generalizations it is new knowledge. We arrived at it not deductively (“All
men are mortal; Socrates is a man; hence Socrates is mortal”), but by the process of
induction. This process is much more difficult and requires much more effort because
it involved all our relevant knowledge, namely matrix theory.

To state it negatively and more generally: generalizations are not obtained by
“intuition”, “inspiration”, “revelation”, or by some other kind of pseudo explanation.
Instead, the road to success is paved by hard work together with by not letting one’s

subconscious “goof oft”, but giving it a standing order(s) consisting of valid concepts.
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b) Each w’ is a row vector. They must satisfy

F 1
(whey =labd | 0 | =1
0
-
(Whéy) =Jabc | 1| =0 p =w =[1-10] (5.16)
0
-
(Whesy =labd | 1 | =0
_1_ J
F 1
WAe) =[de f]| 0 | =0
0
25
(Wéy) =ldef] | 1| =1 p=w*=[01-1] (5.17)
0
25
Wes)=(def] | 1| =0
_1_
F 1
(Wiley) =[uvw] | 01 =0
0
%
Wie) =fuvw] | 1 | =0 » =w'=[001] (5.18)
0
2%
(Wiés) =[uvw] | 1 | =1
_1_

Thus the basis of duals for V*, the space dual to V = R? is
B = (W)l = {0 -10. 01-1], [001])

Example 2
Same as Example 1 on page 195, except that
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Answer: ) )
B ={/fja={[-10, 01-5] [003]}

Comment.

Note that changing only one element of B, say, €; — é’j changes several elements

of B*, as in Figure 5.3 on page 199. This implies that there is as-yet no basis

independent correspondence between V* and V. A basis independent correspondence

would have required that changing only one of the basis vectors in Vwould have

produced a corresponding change in only one basis vector in V*.

Summary.

There does exist a unique correspondence between ordered basis sets in V' and V*
{Ei Zl:l A {w] ;’Z:l’
but not between individual vectors in V and V*:
{coordinate vectors} <» {coordinate surfaces}

More succinctly, one says that there exists no natural (i.e., basis independent) iso-
morphism between V and V*.

However, we shall see in the next lecture that if V is endowed with an inner
product, then there does exist a natural (and unique!) isomorphism between V' and
V*.

5.5.1 Multivariable Calculus and Linear Algebra: Differen-
tials as Dual Elements

Consider the Taylor series expansion of the multivariable function f(z!,---, z") =
f(z) in a neighborhood of a point (a',--- ,a") = a in an n-dimensional space,
0 , , 1 02 . o .
flz) = fla) = 8;’ (a) [ — (lZ]J 2!83:153:’? (a) [27 —d’] [2" —d'] +--- (5.19)
“Principal neglegible
Linear Part” higher order

terms

(Einstein summation convention for pairs of repeated indeces.)
Observe that {z’ — a'}?_; are the components of the column vector

zt —at 1 0

|
—~
S
—
|
IS
—
~—
+
+
—
&
3
|
Q
3
~—

=¢ (2" —a') (5.20)
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(2] é’;

Figure 5.3: Changing only one vector of a basis, for example {éi,é>, 65} —
{€}’, &, €5}, changes more than one dual element as evidenced by the tilting of their
coordinate surfaces in the vector space.

0
and that {0_xfi}?:1 are the components of the row vector

of of of of
ZL . S T o1
[8@"17 70@"”] 8351L7_\,7_0l+ * &r”LO’_\,’_l
= ﬁwj (5.21)

Ol
The €;’s and the w’’s form the bases for the column space V and its dual, the row
space V*:

(&) = (@) =, .
It follows that the multivariable Taylor series expansion of f(z) is

flx)— fla) = %(a) (w/|E)) (2" —a") + higher order terms

= %(a)wj |é(z' —a®) ) +--- (5.22)

v 9%

0 .
Thus the principal linear part of f’s Taylor series consists of the covector %fj(a)wj €

V* being evaluated on the vector e”i(xi — ai) eV.
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These observations are condensed into the following

0 . 0 _
Definition 2. The linear function afj(a) w?, also written % as 8fjdxj, or more
T 47
briefly as
df(a;-): V=R
o o Of
' df(a:en’) = L (a) o'
is an element in the vector space V*, which is attached to the point a = (a',--- ,a").

It is a function of two variables: it depends (in general) non-linearly on the first
argument a, but linearly on the second variable.

These observations compel us, at the pain of contradiction, to attach conceptually
the vector space V' and its dual V* to the point a = (a',--- ,a") in an n-dimensional
space. The resulting picture is one where the base space, which is parametrized by
a, has assigned to each of its points copies of V' and V*.

5.6 Metric as a Bilinear Function on a Vector Space
Lecture 24

The vector space arenas developed so far are in skeleton form but fundamental to
all of mathematics. In physics and engineering terminology their linearity is captured
by means of the superposition principle. In mathematics, by means of closure under
linear combination.

The bare bones attributes introduced so far are the linear (in)dependence and the
spanning property of a set of vectors. These properties are sufficient for characterizing
a vector space in terms of coordinate systems introduced via any chosen (or given)
basis. As a result every vector space V accommodates its dual space V*, the space
of linear functions®. This space is a vector space in its own right, and any basis for

. . L of s . .
2There is a marked difference between the expression ﬁ dax?, which refers to a linear combina-
2

tion of linear functions, namely, w! = dz',--- , and w™ = dz™ as compared —fl Ax', which is the

ox
0
value of d—f dz’ when it is evaluated on the vector & Az?.

Failure to recognize the distinction between a function and its possible values is a case of the
fallacy of “package dealing”; failing to discriminate crucial differences, namely, to treat together, as
a conceptual whole or “package”, elements that differ essentially in nature, truth-status, importance
or value.

3In engincering, physics, and mathematics, the space of such functions includes the space of
Fourier transforms, the space of (generalized) Fourier series, the space of X-ray crystal diffraction
patterns, the space of wavelet transforms of L? functions, and others.
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V' determines a unique corresponding basis for V*. Indeed, the dimensions of V' and
V* are the same, a fact which is a consequence of the duality principle

<£j|€j> = 5ji

In spite of this duality, there is no natural (i.e. basis-independent) correspondence
between V' and its dual space of covectors, V*.

This deficiency, as we shall see, disappears once one has identified an inner prod-
uct on the given vector space.

5.6.1 Bilinear Functional; the Metric

There is no natural isomorphism between V' and V*. However, if the vector space
has an inner product defined on it, then such an isomorphism is determined.

Definition 3. (Bilinear Form)

Given: a vector space U and a vector space V.

A bilinear functional (or “form”) on U x V (= pairs of elements, one from U and
one from V') is a function w,

w: UxV3 R
(z,y) ~ w(z,y)

with the properties

w(atzy + alry,y) = a'w(xy,y) + aPw(xy, y)
w(% /313/1 + /32y2) = 511“(3372/1) + 52w($»y2);

i other words, w s linear in each argument.

In this definition U and V can be vector spaces of different dimensions. The
concept of a metric arises if the two vector spaces are one and the same and is given
by the following definition:

Definition 4. (Metric) A metric (or inner product) is a bilinear functional g on
V XV (pairs of elements in V')

g: (z,y) ~ g(z,y)

with the property

g(z,y) = g(y, ) .
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In other words, a real-valued metric is symmetric.
Comment.
If the metric were complex-valued, then the symmetry condition get replaced by

g(ZL',’y) = g(y,(L‘)

The metric g( , ) is said to be an inner product whenever g is positive definite, i.e.
g(x,z) >0V #0.

Example (Basis Expansion of the Metric) Let

n =

r=z'e, + 2%+ + 2",

be a representation of a vector x relative to a basis {éy,---,é,} for V. Let g be a
metric on V. Then
g(z,y) = g(z'é) + 2% + - + 2"E,, y' ey +yPE + -+ Y Ep)
=z'y'g(@,e1) + (¢'y’ + 2%y g(e1, &) + 2°yPg(Er, &) + - -
=a2'y'er e + (2'y? + 2%yh)er - é + Py + -
= zlylgu + (¢'y? + 2%y )gie + 2Py g + -

= 2'y’g;; (Einstein summation convention for pairs of repeated indeces.)

The coefficients g,; = €; - €; = g(€;, €;) are the components of the metric g relative to
the given basis. They are the inner products (i.e., the “dot” products) of all pairs of
basis vectors.

Nota bene: In the Einstein summation convention the placement of super and sub-
scripts (one “up” the other “down”) provides an error correction code. That placement
insures that a particular sum of products is always invariant under any change of
bases. Thus each of the sums o

. Y e o - e g
vy + -+ ate, =a'e; =7 =a"te  + -+ 2™, = e,

i 1 n )
T+t =W = =W W = W

i
o1 I

my' oty S eyt =y 4 aly " =y

does not change upon transitioning from the unprimed to the primed basis, even
though the corresponding terms are not equal.

The Einstein summation convention is the means of mathematizing basis-independent
aspects of the world.
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5.6.2 Metric as an Isomorphism between Vector Space and
its Space of Duals

The scalar product

g: VxV — R (5.23)
(z,y) ~ g(z,y)

is a bilinear function. Consequently, it can be evaluated on only one of its arguments,
g(x, ).The result is a linear function. More precisely, a metric establishes a natural
(i.e. basis independent) isomorphism between the vector space V' and its space of
duals, V*. In order to conserve notation we shall use the same symbol g to designate

this correspondence. Its defining property is
g: V. = V¥ (5.24)

T~ gz, )=z =

Here z is that linear function which, when evaluated on y € V, yields g(z, y):

x

x=z: V > R
y ~ (zly) =z -y =g(z.y)
If g maps T to its image x, what is the image of the set of components of 7 The

answer is given by the following proposition,
Proposition

Given the vector & = z¥€, the numerical coefficients z; of the corresponding
covector x = x;w’ are given explicitly by the following computation:
z=yg(7, )

= xkg(é}cv )
Taking advantage of the spanning property of {w’}, Eq.(5.15) on page 195),
we find that the to-be-determined z; satisfy

,’L‘kg(é}“ ) = xjwj

Evaluating both side on each of the basis vectors e;, and using the duality
relation Eq.(5.14), we obtain

= ¥ gy (5.25)

k

the components of x;w’, which is the image of # = z"€), under g.
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Although the two mappings, Eq.(5.23) and 5.24) are entirely different functions (one
bilinear, the other linear) they can be represented by a single explicit formula,

The (ij)™ term in this double sum is the metric coefficient g;; multiplied by the
“tensor product” of w® and w’, namely w'®w’. The virtue of these “tensor products” is
twofold: (i) each one unites the bilinear and the linear mapping property into a single
concept, and (ii) this linearity and bilinearity is preserved under linear combinations.
The meaning of this tensor product arises from the meaning ¢(Z, 7). The bilinearity
g implies that

i
<\

Z-

)

9(,
95 w'(T) ' (7)
g @W(Z,Y)  VYI,geV. (5.26)

I
oL

7

Sea

Consequently,

g = gij wew .
Here the tensor product symbol ® establishes an ordered juxtaposition of two linear
function(al)s, thereby yielding a bilinear function(al).
On the other hand, the linearity of g = g;; w' @ w’ in each argument implies that for
a given ¥ one has

gij w' © W (Z,9) = gij' (T) w! (9)

= gij 2'w’ ()

= z,;u (7)) (as defined by Eq.(5.25) on page 203)
=z (¥) VyeVv

= (x|7) (Dirac notation)

Consequently,

75 Gij WRW(Z, )= gijwi(f) W’

= (z| (Dirac notation)

which is to say that g = ¢;;w’ ® w’ is a linear function(al) which assigns ¥ € V to
ze V™
Implicit in the metric-induced isomorphism
Vv

fwf\ﬁg
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is the existence of a vector normal to z’s isograms? in V. In fact, this normal
is precisely the preimage of x, namely & itself. Moreover, each set of isograms of
each coordinate function w’ has such a normal. This circumstance gives rise to the
basis reciprocal to the originally given basis. This reciprocal basis mathematizes the
obliqueness of the given coordinate surfaces. It is developed in the next subsection.

5.7 Mathematizing an Oblique Coordinate System

Lecture 25

Historically the “contravariant” components of a vector Z are its components relative
to a chosen/given basis. Indeed, they are “the” components relative to such a basis,
regardless of what metric the vector space V is endowed with.

If V is endowed with a specific metric then there exists a second well-defined basis,
“reciprocal” to the first one. It turns out that the components of the vector ¥ relative
to this second (metric-induced) reciprocal basis are precisely the z;’s, Eq.(5.25), and
it is these components that historically have been called the “covariant” components
of a vector. As we shall see, the reciprocal basis brings the geometry of the dual
basis into very sharp focus.

Warning:

The appellations “contravariant vector” and “covariant vector” are invalid concepts.
They are oxymorons, examples of mixing incommensurable categories, an attempt to
blend mutually exclusive ideas into a single unit. Indeed, a vector is a basis indepen-
dent concept, while “contravariant” or “covariant” are attributes of the components
of a vector and thus are relative to some basis.

The reciprocal basis and its properties arise as follows:

Start with an oblique basis {€},é>} and its coordinate system as in Fig. 5.4.
Next introduce a vector, €7, which is perpendicular to €; and is “normalized” by
being reciprocal to €] as in Figure 5.5 on page 208

&r =0

&g =1

In a similar way introduce €5 which is perpendicular to €; and reciprocal to és:

D

€
—k

€2

1

0
1

1
2

D

“Recall (from page 192) that an isogram (a.k.a. a level surface) of a function is the locus of
points where the function has the same constant value.
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Figure 5.4: Oblique basis and its oblique coordinate system.

The basis {€}, €5} = R* constructed in this manner is reciprocal to the given basis

B = {é},é>} because it satisfies

More generally, we have the following

Definition 5. (Reciprocal Basis)

Given (i) the metric g =""-", a metric on v

(i1) a basis {€1,--- ,€,} forV,

then the set of vectors

€1,€ 7,

where

€ - € = Orj,

is the basis reciprocal to {€;}}_;.

(5.27)
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This definition says that {€} is a vector perpendicular to the plane containing
the vectors {€1, -+, €k_1,Ckt1," " ,En}, 1€

& -&=0 j#k

Furthermore, e*j, is scaled such that

éy-é,=1 (No sum over k)‘

It is also clear that if the basis {€}}}_, is reciprocal to {€;}}_,, then {€;}}_, is
reciprocal to {&;}7_;.



XKoe'a

J{.ll'_:l | x:l'_:z J{.:ll'_"l | J{EE‘B

Figure 5.5: Oblique basis {€}, €2} and its oblique reciprocal basis {€}, €5}
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5.7.1 The Geometric Relation Between a Vector Space and
its Dual’

First of all, recall that from one’s knowledge of a given inner product on the vector
space V one identifies by inductive reasoning a unique one-to-one mapping from V'
to V*. This mapping which does not depend on one’s chosen basis {e;} for V. Thus,
if one is given or chooses a basis, then one has

V4 ove (5.28)
a ~ a=ga,-) (5.29)

= gjjw' @ wi(a,-)

V%R
:gij<wi|a><wj| }

sz~ gla,z) = [gaw'(a)w -+ gimw'(a)w™] (x)
= @ o'+t a w(x)
(5.30)

Secondly recall that the elements of the reciprocal basis {e;} are determined by the
condition

6;; €y = 5ké-
This condition implies that
eg:Zggke};, (=1---,n (5.31)
k=1
and
Jj=1
where [¢"] is the inverse of [gu):
ek gkj = (5£j . (533)

5Tn this subsection vectors are identified by Latin letters with or without subscripts, while their
components also by Latin letters but with superscripts, as, for example, in

a=de;=a'e; + - +ae, .

By contrast covectors are identified by Greek letters with or without superscripts, while their
components also by Greek letters but with subscripts, as, for example, in

i 1
a=o0jw =aw + -+ opw” .
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With either the given or the reciprocal basis at one’s disposal, a vector x has the
two corresponding expansions

r=x'e; +--+ a2, =016+ +ouel .

The matrix of metric coefficients g;; = e; - e, provides the relation between the two.
Indeed, taking the inner product with e, leads to

n
Toep=2x'e; e = E O €} - €0,

gie k=1 S
so that
Oy = wigw

and hence that the {e }-expansion is

n
7 *
T = E T Gik€y -
k=1

On the other hand, taking the inner product with e}, one finds the {e,}-expansion
coefficients ¢ = w*(z), namely

' =x-¢) =gle), ) . (5.34)

These observations lead to the following

Reciprocal Basis Principle:

In the context of an inner product space, whenever the given basis is oblique®, the
reciprocal basis is {e;} is — as shown in Eq.(5.34) — the mandatory means for finding
the components

' =w(z) . (5.35)

Compare Eq.(5.34) with (5.35). Leaving = unspecified, one arrives at the coordinate
basis elements in V*,

wé :g(e;v ) :

More generally one has

a=g(a, ).
Going into the reverse direction , the converse question is:
GIVEN:
aeV': x~alx)= [alwl + -+ anw"] () € R, (5.36)

6i.e. whenever [e; - ;] is non-orthogonal; {¢;} is not orthonormal.
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WHAT vector a € V does a correspond to geometrically?
Note thet a determines the following (n — 1)-dimensional subspace V',

Vo=Az: afz)=[aw' +--+a,w"] () =0} CV
Geometrically this is an n — 1)-dimensional plane in V' passing through its origin.

Q: What are “the” vectors that span this plane?
“using the given basis {e;}”

A: First use the reciprocal basis {e], - , e’} to construct the vector
aje] + - +aze, =acV.
Then, with 2 = 2'¢;, one has

a-x=[ae]+---+ane)]-x
=zt + -+ apa”
= aw'(z)

= a(w)
Applying this result to the subspace definition
Vo={z: 0=a(z)=a-x}

leads to the
Conclusion: The plane V,, consists of all vectors x perpendicular to a; this plane
is the zero isogram of the given covector «, Eq.(5.36), and the unique vector, a =
ae; + -+ -+ aye; constructed from the expansion coefficients of «, is perpendicular
to the isograms of «

SUMMARY:: The reciprocal basis, Eq.(5.32), induces a mapping which assigns to
« € V* that vector a € V,

{6;7"'762}
amf\.r\r\r\.r\r\m-}aj

which is perpendicular to «’s isograms in V. Together with the additional fact that
g
a~a,

one has the result that the inner product g establishes a unique isomorphism between
V and V*,

vy
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5.7.2 Mathematization of the Law of X-ray Diffraction by a
Crystal

A beam of X-rays striking the periodic lattice of a crystal gets refracted into discrete
directions according to Bragg’s Law. For a three-dimensional crystal this law is
mathematized as follows.

The crystal consists of atoms arranged periodically into a lattice. They are located
in a 3-d vector space. Its basis vectors €}, €3, and €3 are the displacements into three
different directions from the origin, the location of an arbitrarily chosen reference
atom in the crystal. These displacements are determined by the three neighboring
atoms closest to the atom at the origin.

All atoms of the crystal are located at some integral multiple linear combination
of the basis vectors. Thus a typical atom is located at

T = héy + ké; + (e (h, k,¢ € {integers})
As is the case for an isoclinic crystal, the basis
B = {¢é},é, ¢35} (5.37)

is oblique in general: the basis vectors need not be orthogonal nor of unit length.
Consider a beam of electromagnetic radiation (X-rays). For a plane wave this
disturbance is characterized by its amplitude profile

U(Z) = Ae?D; (V2 + k) = 0.
Here
o(Z) = kizt + kox? + ksz®.
is the value of the phase ¢ at location
7 =z'é) + 226, + 23
It follows that relative to the dual basis
B* = {w' W u?: (W)E) =},
the plane wave phase function is
¢ = kiw! + kow? + ksw?®.

When such a plane wave enters a crystal, it is observed’ that emerging from this
crystal there are discrete plane wave beams. Their directions relative to the incident
beam is determined entirely by the atomic crystal basis, Eq.(5.37), more precisely,
by the set of parallel crystal planes. Before expressing this deterministic relation in
mathematical terms, one must first mathematize these crystal planes.

"Observed and explained by father and son W.H. Bragg and W.L. Bragg in 1913.
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OUTGOING WAVE

Figure 5.6: Crystal lattice with incoming and outgoing phase fronts. The outgoing
wave is the result of a diffraction process. The difference between the in- and outgoing
wave front normals is the vector perpendicular to the crystal planes indicated near
the bottom. The basis vectors €, and é5 are generated by directed pairs of nearest
neighbor atoms (black circles).

Mathematized Crystal Planes
This is done by first observing that each one is one of the isograms of

[ =ho' + kw® + (w® (h, k, ¢ € {integers}) (5.38)

The integers (h, k, 1), which are understood to be relative prime (i.e. have no common
integral divisor) are the Miller indices of a given set of parallel crystal planes. Such
a linear combination of dual basis elements with relative prime integral coefficients
we shall call a Miller covector. It is an element of the dual space and each one of
its isograms passing through an integral linear combination of basis vectors has an
integral value.

There is a on-to-one correspondence between a set of parallel crystal planes and
the Miller covector corresponding to this set. The following problem illustrates this
fact.
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Problem

Find the Miller covector for the set of parallel crystal planes one of which contains
the set of linearly independent vectors S = {€] + é,,2é,, 3¢5 }.

Solution

This is a two-step process.

Step 1: Let
g= aw’ + bw? 4 cw?,

and find a, b, ¢ so that g has an isogram , say g = 1, passing through € +¢, 2¢3,

and 3é3}:
g1 +é&)=a+b+0=1
g(26) =0+26+0=1
g(363) =0+0+3c=1
Thus

1 1 1
g: §w1+§w2+§w3

Step 2: The Miller indices are mutually prime integers. Thus multiplying g by the least
common denominator yield the Miller covector,

f=3w" + 3w + 2u° (5.39)
The Miller indices of f are therefore
(h,k,€) = (3,3,2).

Mathematized Diffraction Law

Focus on two X-ray beams and their respective phase functions ¢,

77[](f)incident: Q’ch _ kinc wl + k;’nc w? + k%nc wB
w(f)diffracted : édiff — kiﬁffwl + ktZiiffWQ + kngfw3 (540)

To be diffracted by the set of crystal planes whose Miller covector is Eq.(5.38), the
phase function of the diffracted beam must satisfy

d)inc _ (ﬁdiff _ f
Akjw! + Akqw? + Akgw?® = hw' + kw? + 0w? (5.41)
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where
Aky = (k" — kJ75Y = h (5.42)
Aky = (ke — k3T = (5.43)
Aks = (ki — k§Iy = ¢ (5.44)

are the components of the difference between the incident and the diffracted phase
functions (in physics, a.k.a. “propagation covectors”) ¢™¢ and ¢“//. They also equal
the {&*, &5, & }-basis components of the normals to the set of crystal planes, Eq.(5.41).
The atoms in these planes are responsible for the particular phase fronts, Eq.(5.40).
The three conditions, Eq.(5.42)-(5.44), for Bragg diffraction are known as Laue’s
equations.

5.7.3 Sampling Theorem as a Corollary to the Duality Prin-
ciple

All observations and measurements processed by our mind into concepts and knowl-
edge are finite. Concepts such as “infinity”, “limit”, “continuity”, “derivative”; etc., are
not metaphysical® attributes of the world, but instead are mathematical methods.
They are objective in that their composite nature reflects their nature of the world
and the nature of our mind in grasping it.

One of the most ubiquitous concepts in the hierarchical network of mathematical
methods is that of functions continuous on, say, the interval [0,27]. They form an
infinite-dimensional vector space, which subsumes an unlimited number of different
kinds of finite-dimensional vector spaces. Among them are those subspaces which are
spanned by bases that reflect the particular manner of observation or measurement,
specifically those those in which a function is sampled at equal intervals, say,

B 2
TN +1

T k k=0,1,---,2N.

Recall that a chosen basis for a given vector space induces a unique set of linear
functions. They are the coordinate functions on this vector space. These functions
are also vectors. In fact, they form a basis, but for the dual vector space, which
is entirely distinct. Its dimension is the same as that of the given vector space.
The duality relation, Eq.(5.14) on page 194 mathematizes the duality principle. The
sampling theorem is an application of the dual space concept.

Example 1 (Sampling a Band-Limited Function)
GIVEN:

8in the Greek sense, pertaining to the nature of reality.
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a) The vector space of band-limited functions of period 2,

N N
V={f: flx)= Zamcosmx+ Zsinmx} = By.

This is a (2N + 1)-dimensional space with its standard trigonometric basis
Birig = {1l,cosmz,sinmz: m=1,--- N}, (5.45)
or its exponential basis

Beyp = {eimw %:—N- (5.46)

b) The values f(zy) of f at the sampling points {z = ga=5k with k=0,1,--- ,2N}

FIND:

The function f(z) for all z in terms of its known sampled values { f(z))}2Y,.

SOLUTION:

The task at hand consists of answering the following question: Can one reconstruct f
over the whole z-domain from one’s knowledge of the f-values at the 2V + 1 sample
points x only? If, yes, HOW?

COMMENT:

This question cannot be answered without specifying a particular (2N + 1)-
dimensional subspace of C'[0, 2], the infinite-dimensional subspace of functions
continuous on [0, 27].

There are many such subspaces, and V = By, the above space of band limited
2m-periodic functions of the present Example 1, is only one of them. Another
one, considered in Example 2, below, on page 220, is V' = CPL[0,2x]|, the
(2N + 1)-dimensional subspace of continuous functions piecewise linear on the
closed interval [0, 27].

In both subspaces a vector is specified by the same 2N +1 values of the sampled
function. However, inbetween its sampling points, the function is interpolated
in entirely different ways. The two subspaces are entirely different, but their
dimensions are the same.

The answer to the posed question is that for sampling purposes the bases (5.45) or
(5.46) on page 216 do not give good representations of elements in V. Instead, we
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construct xg-localized functions by means of the following linear superpositions

N
1 , 2
ér(z) = SN 1 ng_ e™@=TE) - where @y = 2N7—TF 1k' with k=0,1,--- ,2N;
(5.47)
1 N
=1 — 4
+ SN 1 mg_l cosm(x — xy) (5.48)

These are also band-limited functions, vectors in V. In fact, being mere geometrical
series, their summed values are

1 sin(N+1)(z—a)

(1) = 4
(@) 2N +1 <in (sc — sck) (5-49)
2

These functions are xy-localized. They satisfy

0 (£k

gk(Le):ékgE {1 f’:k‘

Their graphs are exhibited in Figure 5.7 and they form a basis for V/,

C = {(?07 (?17 T 7(?2]\7}-

The reason for introducing this basis is that (i) sampling a function at a particular

point
27

TOAN+1
constitutes a linear map on the space of functions f € V = By:

wi(f) = flze),

and that (ii) these linear maps, which comprise the set

{UJZ}?J:VO»

4 ¢ =01, ,2N+1

have the property that
wier) = ex(2y) = du.

This is the duality relation. Thus the set of sampling maps

(W0, Wl w? W)
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Figure 5.7: Graphs of z;-localized functions ¢, (x). The set {é;}Y, = B forms an

alternative linearly independent spanning set (basis) for V.

are precisely the basis elements dual to the constructed xg-localized basis

{607617627' te 762N}

as given by Eq.(5.49).
The reason for introducing this particular basis comes from our goal to char-

acterize an arbitrary band-limited f € V = By in terms of its sampled values at
r=ux k=0,1,--- 2N:

f (o)
f By f(x1)
T |y,

There are 2N + 1 sampled values for each and every f € V. This circumstance is
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mathematized by means of 2N +1 sample-valued maps w®, w!,--- ,w?¥ on V, namely

S (f) = F(ze)

WV (f) = f(aw).

These linear maps are precisely the coordinate functionals {w!}2Y, induced by the
vector basis C' = {é;}Y,. This claim is validated by the fact that, according to
Eq.(5.49) on page 217, the sampled values of the é;’s are

0 (#£Fk

ek(@e) = ke = {1 R

in other words,

We(gk) = <W£|é'k> = 0o

This is the duality relation: the basis C' = {&;}3Y, has as its dual the set of basis
(linear) functionals C* = {w*}2N, C V*.

1. This set has two distinguishing properties:

(a) On one hand each w’ samples any f(z) € V at x = x4, and thereby yields
Wi(f) = f(xy), the (" coordinate of f € V relative to B;

(b) on the other hand, and at the same time, each w’ is a covector which,
together with the other elements in B*, forms that basis for V* which is
dual to B.

2. The success of the sampling theorem hinges on the existence of the above two
features:

(a) The €;’s must form a basis for V. Consequently, one has

and



220 CHAPTER 5. TENSOR CALCULUS

(b) each € is a function with zero values at all equally spaced points zy,
except one, where its value does not vanish. Consequently,

2N 2N
¢ e >
w(f) = Z&kw (€k) = Zak en(@e)
k=0 k=0

fla) St oL
or
fxe) =
Consequently, f(z) is given by
2N
fle) =" fla) é,
k=0

a mathematically 100% accurate reconstruction of f(z) in terms of its sampled values.
This is the sampling theorem for band-limited functions By.

Example 2 (Piecewise Linear Function via a Sampling Sequence)
GIVEN:

1. The closed interval [zg, x,,] which is partitioned by xg < 7 < -+ < 2, into n
equally spaced subintervals.

2. The values yo,y1, -+ ,y, of a function f € C[xzg,x,] sampled at the above
equally spaced points:
Yo = f(xo)
Yo = f(x1)
5.50
ye = flzx) ( )
Yo = f(zn)

3. The set

CPL({xg,x1, - ,xn}) ={¥: ¢ € Cxy, x,] and

1 is linear on each subinterval [x_1, zx]},

which, being closed under addition and multiplication by scalars, is a subspace
of Clzo, xn).
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Figure 5.8: Graph of a C'PL-function, an element of the vector space CPL C
Clzo, ]

EXHIBIT:

1. A basis for C PL whose elements 1, (x) (like those of Eq.(5.49)) are x,-localized:

0 04k

wk(l’z)=5ke5{1 (=1

2. The dual basis {w/}_, for CPL*

3. For the given sampling sequence, Eq.(5.50) of the function f € C[xzg, x,], the
function ¢ (z) € CPL such that

¥(z0) = Yo
w(xn) = Yn

SOLUTION:
1-2:
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5.8 PROBLEMS

1. (DUAL BASIS AS A SET OF MULTIVARIABLE FUNCTIONS)
Let B = {¥}, U, U3} be a basis for R* defined by

171 = (1707 1)t
772 = (17 ]-> 1)t
773 = (27270)t

a) FIND the basis {f, g, h} of linear functions (i.e. row vectors) dual to B.
b) EXHIBIT

f(f) = f(xvyv Z)
9(%) = g(z,y, 2)
h(Z) = h(z,y, 2)



5.8. PROBLEMS 223

2. (VECTOR BASES AND THEIR DUAL BASES)
Consider 3-dimensional vector space spanned by

G =i+j+k
G=—i+]+k
63:—2—]4']{2

where 7, 7, k are the usual orthogonal basis vectors.

(a) If {71, 72,73} is the basis dual to {i,7,k}, i.c.

(i) =1 (') =0 (r'F) =0
(r*li) =0 (*lf) =1 (r2[k) =0
(*liy =0 (7)) =0 (Plk) =1

FIND the basis {w!, w? w3} dual to {€,, e, €3}

(b) Let h,k,¢ be three scalars.
FIND that linear function, call it f, which has the value 1 at each of the
€1 € €3

th ts —, —, —.
\ree points PR

Thus write down this function in terms of {11,12,13} and in terms of
{w' w? w’}.
(c) FIND the set of reciprocal basis vectors (e7, €3, €5), which satisty
6 & =0y,

[13 77

/‘\

is the familiar inner product obtained from Pei=1,1- j 0,
; k =0, etc.)

(d) What relation, if any, does there exist between these basis vectors é;, €,
and € and the level surfaces of w', w?, and w3?

(e) FIND the unit vector perpendicular to the level surface [ = 1.

(f) Write down the distance from the origin to f = 1.
REMINDER: If you get bogged down in detailed computation, you are
not making optimal use of the nature of the dual basis!

Comment: The components of f found in (b) relative to {w’} are the Miller
indices of a set of parallel planes in a crystal whose primitive translation vectors
are 51, 62, éz.;.

SEE C. KITTEL, Introduction to SOLID STATE PHYSICS.
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3. (DEFINITE INTEGRALS DUALS ON THE SPACE OF POLYNOMIALS)
Let V' = P be the vector space of all polynomial functions p from R into R
which have degree 2 or less:

p(z) = ag + ayx + axz’.

Define the following linear functionals on V' by
1
(19 = ho) = | playds
2
1) = o) = [ playis
-1
10 = i) = [ playds.

SHOW that { f1, f2, f3} is a basis for V* by exhibiting the basis for V' of which
it is the dual.

5.9 Tensor Algebra

Lecture 26
By generalizing linear and bilinear maps one arrives at the idea of a tensor. In fact, a
tensor is a multilinear map. The idea of multilinearity is illustrated by the following

Example ( The determinant)
Consider the determinant each of whose rows is the set of components of a vector:

A AL A2 An
Ay AL A2, Am . . .
re T 2 9 det(Ay, -+, A,) . (5.51)
Ao AL A2 An
This determinant
Ab oo AR
det(Ay, -+, A,) = : €R
Al AR

is a multilinear map,

det

Vx...xV=R
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because

det(--- ,ad; + BBy, -+ ) = adet(- -+ , Ay, -+ ) + Bdet(--- , By, ---) .
The most encompassing definition of a multilinear map does not stipulate the di-

mensionality of each vector, nor does it demand a choice of basis.

5.9.1 Tensor as a Multilinear Map

By generalizing bilinear maps to multilinear maps one arrives at the idea of a tensor.
In fact, a tensor is a multilinear map. We start with the concept of multilinearity.
Definition (Multilinearity)

Let Vi, Vs, -+ .V, be vector spaces. Then the map

H: VixVox---xV, =R

(,U17U27 e ,'Uq) ~ H(vthv te ,'Uq)

is said to be multilinear if it is linear in each of its arguments:

H(”lf" ,C)ZUZ""B’LUZ',"' 7Uq) :aH(Ulv'” , QUG - - - 7vq)+/8H(Ul7"' 7/8wi7"' 7vq) V1 SZSQ

Definition (Tensor)

Let
Vi= - =V, = Vx
Vn+1: oo =Voim =V
then the multilinear map
H: V"XV %  xV'xVxVx--xV3R (5.52)
= (V)" =V
n copies m copies
(gaéa' o 767uvva' o 7W) 5 H(Q»A)' te ,B,U,V,' o 7W) (552,)
n copies mvectors

is a tensor of rank (7%

“covariant rank” of H.
Comment One can add tensors of rank (

). Here n and m are called the “contravariant rank” and the

TTrLL) as well or mutiply them by a scalar.

The result is still a tensor of the same rank. Thus (%)-rank tensors form a vector

space, the tensor space of (%)—rank tensors. From Egs.(5.52) one finds that its
dimension is (dim V)" ™.

Examples of Tensors
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Name Symbol Mapping Rank
covector w V=R

Vo w(v) = (V) (1)
metric g VXV —=R

(u,v) ~g(u,v)=u-v

vector W V= R

O =

inverse metric g ! V*xV* =R

(f ;1) ~ g7 ([, h)

()
o wlo)=otw) = e (g )
(o)

[awll \V)

5.9.2 Coordinate Components of a Tensor

A vector has components relative to a given basis. So does a covector. This concept
“components relative to a basis” can be extended to tensors. The basis-dependent
coordinate components of a tensor are obtained by projecting them out with the
basis elements as follows:

Definition (Tensor Components Relative to a Given Basis)

Let {e;} be a basis for V.

Let {w’} be its dual basis for V*.

Then the numbers

H(w, W, wh ey ey Ley,) = H (5.53)

11 tm

are the components of H relative to the given basis.
Examples

1. Let a be a tensor of rank < (1) ) Then its coordinate components are

aler) = a;w(ey) = ay
——
&,

= k™ component relative to {w’}.
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2. Let u be a tensor of rank < (1) ) Then its coordinate components are

u(wh) = uley(wh)
=u'wh(e;) = uF
——
5,k

i

= k' component relative to {e;}.

9 ) Then its coordinate components

3. Let g be the metric, a tensor of rank ( 0

are
g(ek, 66) = ke

= (k0)™ component relative to {e;} .

Comment 1: It is understood, but worthwhile reemphasizing, that the tensor H is a
geometrical object, by which one means that it is a concept which unites all possible

basis representations under one roof, namely the multilinear map H of rank ) .

m
Comment 2: The result of evaluating H on some arbitrary (n+m)-tuple (o,---, 8, u,- -

is
L oL B I gt oL agime ) — FpILn IR B S Y
H(oj,w’, Biaw’ utte Jume; ) = H iy, Oy By u'm

which is an (n + m)-fold sum.
Comment 3: It is worthwhile to remind ourselves that

(a) the distinction of upper vs. lower indices is to be observed with rigid rigor.
This is because such positioning is a defense against potential logical disasters.

(b) The summation (a.k.a. “dummy”) indices appear in distinct pairs. This pre-
vents defective thinking in regard to multiple sums.

Lecture 27

5.9.3 The Tensor Product

In 3-dimensional Euclidean space consider a vector ¥ rotating with angular velocity’d
around a given axis. The vectorial change Av of this ¥ during time interval At is

9The components of &, namely the coefficients w',w?, w? in Eq.(5.54) are not to be confused
with the basis elements dual to the given basis.
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In terms of orthonormal basis vectors this cross product has the form

€1 € €3
=At| w' W WP (5.54)
TR T

o

Figure 5.11: Vectorial change A% in ¢ due to its rotation around . The tip of
¥ moves in a plane perpendicular to & and the tip’s angle of rotation during time

interval At is |J|At.

Expand Eq.(5.54) in terms of the orthonormal basis vectors and find
AT = At [—w'(E0° — é30°) + w(v® — Ev') — WP (e — ') .

Expressing the components of ¥ in terms of inner products yields

—_

= At [—W1(52®_’3—53®62)+W2(51®_’3—63®?)—w3(51®€2—52®51)] U

The bivector [---] is a linear combination of “tensor products”. There are three of
them. The difference (€, ® @3 — €3 ® €3) generates rotation in the plane spanned by @,
and ¢€3. The coeffient —Atw? is the angular amount of that rotation, and similarly
for the other pairs of spanning vectors. The sum total in [---] of Eq.(5.55) is the
rotation in the plane perpendicular to the rotation axis.

The mathematical generalization of those “tensor products” is given by the fol-
lowing
Definition ( Tensor Product'®)
Let @b, ,@ €V
and o, 8,--- ,y € V*

10910t to be confused with the Catesian Product.
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The multilinear map

VixV . . xV*xVxVx.---xV 3R

—

(gp 2, G0 0 )~ (ala)(plb) - - (z]e)(a|d) (B]7) - - - {7]))

is the tensor product &,--- ,v. It is a tensor of rank ( :] >

5.9.4 Tensors: Their Basis Representation

Having generated < m )—rank tensors by taking tensor products, one can take linear

combinations of products of basis elements and thereby decompose any tensor into
a unique linear combination of such basis products. In fact, a linear combination of
tensor products of basis elements yields a (chosen/given) basis representation of an

-rank tensor. This idea is condensed into the following

Proposition: (Basis Representation of a Tensor)
GIVEN:

(i) a basis {e;} of V, and hence also its dual basis w’ for V*.
(i) the tensor H of rank ( 77:1 )

CONCLUSION:

H=H"" .68 0 uw'® - uw™ (5.56)

i10vin

This is the representation of H in terms of the basis and its dual. The validity of this
boxed equation depends on showing that the value of the linear map on the Lh.s.
equals the value of the linear map on the r.h.s. for all (n + m)-tuples of covectors
and vectors.

To concretize this line of reasoning apply it to the archetypical case of a tensor

of rank ( } ),

H:V'xV—>R
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for which one must show that

H=Hpe ®uw (5.57)

The validation consists of showing that

H(o,7) = H'e; ®wi(o,7)
4 (5.58)
V(o,0) eV x V.

Because H is linear, it suffices to show this for (w/’, ;) € V* x V. This is a two-step
process.
(i) One observes immediately that

-/

H(w'" &) =H", (5.59)

h

which, we recall from Eq.(5.53) on page 226, is the (j',4')"* component of H.

(ii) On the other hand, one has

H(w' &) = H); & ouw (W' é)

3
=7, &(w’) w'(€) (definition of a tensor product)
=1, (W'e) (Wilen) (linear transformation)
5-7;, 8y (duality)

— H7, | (5.60)

Equations (5.59) and (5.60) hold for all basis elements, and as already mentioned,
because of the linearity of H, it holds for all pairs (¢, #) = (0w’ v" &) in Eq.(5.58).
Thus Eq.(5.57) is a valid tensorial basis expansion indeed.

5.9.5 Examples of Tensorial Basis Expansions

Metric Tensor

g= gijgi ® w’

Inverse Metric Tensor

g =gl o

Cartan’s Unit Tensor

dP = 6w’ © ¢

= WRE
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The Totally Antisymmetric (Levi-Civita) Tensor (a.k.a. the Volume Tensor in
n-Dimensions

€=6.5w' @ - Qut .
Here ¢;,..;, is the totally antisymmetric (Levi-Civita) symbol,

0 if any pair of indices are the same
€iyori, = & +€1.n  if iy ---4, is an even permutation of 1---n (5.61)
—€1.., if 41 ---14, is an odd permutation of 1---n

An equivalent but basis (“frame”) independent definition is

Ql(z‘g) QQ(I‘E) @n(f‘zl) volume of a
g T w'(4y) WAy - wW'(Ay) parallelopiped
e(dr, -, An) = det : ~ subtended by
WA WA - wh(Ay) | AL R

5.9.6 Tensor Space

Tensors of rank ( Z ) can be added and multiplied by scalars. This feature is

already implied when the tensorial basis expasions were introduced in subsections
5.9.4 and 5.9.5. More formally one has the following
Proposition (Tensor Space)

n . .
Tensors of rank m form a vector space. This space of tensors is denoted by the

tensor space V@ ---@ VeV '®. - V"

n factors m factors

5.9.7 Unit-Economy via New Tensors

The complexity of mathematics is a reflection of the causal relations that exist in
the universe. Linearity, which includes the algebra of tensors, is one of the forms
of grasping and conquering this complexity. The power of tensor algebra lies in
its conceptual nature: new tensors can be formed by addition and by (scalar and
tensorial) multiplication,as in subsections 5.9.3 and 5.9.4. However, there are other
ways of forming tensors of different rank.

Raising and Lowering Tensor Indices
Given a metric

g: V-V
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one has

—

U= u'é; ~ u = 11,ij
{u'} ~ {u;}

where

Uj = gjiui .

This causal relation'! between @ and u, as well as between the «*’s and the u;’s, is
called lowering the indices. This correspondence is generalized to tensors as follows:
Proposition (Lowering of Indices)
g lowers the indices of a tensor:

g: VR - VeV ---V* —>V®"'®V®V*®”'®Vi

TV
n factors m factors (n—1) factors (m+1) factors

tensors — tensors .
m m+1

J1Jn—1J — — — i i
H = Hhmin 60 @886, [t @ @ wn
Hjl"'jn—l

Explicitly one has

i1 @+ @81 D] O U ® - B
or in terms of the coordinate components with their n'* superscript (j,) lowered,

{Hjl"'jn—ljn il...in} ~ {Hjl'"jn—lk lemgk]n} = {Hjl"'jvz—l

jnil--~z‘m}
Contraction of a Tensor

Regardless of what the metric on V' is, one can lower the rank of a tensor by the
contraction map as follows:

Definition (Contraction of a Tensor)

The contraction map C' is an operation which equates one of the superscripts to one
of the subscripts and then sums over the dimension of the vector space:

C: ( K )tensors—> < n—1 )tensors.
m m—1

i fredn 1k
{Hjl Jn—1Jn 7',1~~-in} s {Hjl In—1 k1‘2~~z‘m}'
Lecture 28

1 Quite generally, in the relation y = f(z) in which expresses an action whose cause is x and
whose effect is y.
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5.10 Tensor Calculus

Tensor calculus integrates the algebra of multilinear maps with multivariable differ-
ential and integral calculus.

Following Aristotle’s observation that all concepts have their ultimate basis in
sense perceptions, A. Einstein in 1907 revolutionized theoretical physics by math-
ematizing an accelerated frame of reference in terms of a one-parameter family of
instantaneous inertial frames as defined by Newton’s 1% law of motion of freely float-
ing bodies.

This motivated E. Cartan, a one-sided penfriend (Cartan — Einstein) of Einstein,
to introduce a perspective which revolutionized 20" century mathematics. He did
this by assigning to each point (event) of a domain (spacetime) the vector space
of the tangents to the curves (trajectories of particles) running through this point.
The concept implied by this assignment is that of the tangent space at a point.
When distributed over the domain, it generalizes to a “tangent bundle”, to a “vector
bundle”, or most generally to a “fiber bundle” in local and global modern (post WW
I1) differential geometry!?.

We shall develop the distribution of vectors and their covector counterparts from
the post-WW II perspective. In doing so we shall take cognizance of the hierarchical
nature of the concepts to be mathematized.

First focus on entities — bodies/particles in motion — and thus on the tangents to
their trajectories in Section 5.10.1 below. Then, via differentials in Section 5.10.2,
on the change in the ambient properties (e.g. pressure, temperature, electric field,
etc.) permeating the domain that accommodates these moving particles.

5.10.1 Vector as a Derivation

Consider a scalar function f(z) and a curve ¢(t) in the neighborhood of the reference
point x = a, which we shall take as the starting point for the curve,

{0} -

12The fundamental novelty of this perspective was not recognized initially because Cartan invari-
ably presented it by implication instead of explicitly. However, after WW II C.Chevalley and S.S.
Chern made it explicit to the mathematicians, and C.W.Misner in 1963 to the physicists.

o
—

~
N

I




234 CHAPTER 5. TENSOR CALCULUS

Figure 5.12: Curve ¢(t) passing through the isograms of f.

The two Taylor series for these functions are

, _Of| O | @ —a))(@ —d)
f(I)—f((I)— O a(l —CL)+ OriOri . 91 +-- (5'62)
i ; dc d?ct| € ,
c(e)-c(O)—FEOe—f— e Oa-l--'-, i=1,---,n (5.63)

The most important part of these series is their Principal Linear Part (PLP). It
is a mathematical “green light” on the road to the unification of linear algebra and
calculus. The avievement of this goal is mediated by exhibiting two vector spaces:
(1) the vector space of tangents of preexisting curves through a point and

(i) the dual space of differentials of preexisting functions on the neighborhood of
this point.

ax C(SJ @

////

Figure 5.13: Value of f at 2 = ¢’(e) based on the Taylor series expansion of f vs
value of f at 2’ = a’ + @'e based on the Principal Linear Part (PLP) of that series.
The value difference at the two points is due to the non-linear part of the Taylor
series.

To do this highlight the PLP of the Taylor series Eq.(5.63) of ¢(t) in a neighbor-
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hood around c(t = 0) = a:

[c'(e) — d'] dcix +d26i ><621L =1
c'(e) —a'| = —| X € — ;e =1, ,n
— dt |~y dt? |, 2!
= uie
= PLP of the

Taylor series
expansion of ¢(t)

Introduce it into the series expansion, Eq.(5.62), including its PLP:

of

L ®f | AdAw
f(c(e))_f(a)_%a[c(e)_a]—’_axial‘j . 2| +
Azt

= PLP of the

Taylor series
expansion of f

(5.64)
or
. ) ‘ of , 2
f (Cﬁ(()) + ule + - - ) —f (02(0)) — alj; |:UZ€ + 52(0)% 4o :|
0% f Ax'Ax?
drowi| 2

Divide by € and go to the limit € — 0. Only the PLP of the r.h.s. gives a nonzero
contribution to the derivative W, the rate of change of f into the direction @ of

the curve ¢(t) when t = 0:

df (c(t))
dt

of

t=0 i

o () = £ 1)

e—0 €

= ui‘

(5.65)

t=0 a=c(0)

One therefore concludes that the existence of a Taylor series for smooth functions
guarantees that their respective rates of change at a point is given by Eq.(5.65).
Based on this observation one now forms a new concept by means of the following
process:

(i) In one’s mind isolate two or more functions by means of one attribute
common to them, namely the existence of their respective rates of
change, Eq.(5.65), at point a (which is their common distinguishing
feature),
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(ii) retain their existence while
(iii) omitting the particular rate of change values on the principle that

these values must have some value but may have any value'.

This line of easoning yields the following
Definition (Zangent to s Curve)
Given: A curve ¢(t) = (c!(t), -+ ,c"(t)) with ¢(0) = a and ¢/(0) = u'. The mapping

i=u-—: C°=>R (5.66)

= a(f) (5.67)

or’ a ~—~
unit-economy
notation

is called the tangent to the curve c(t) at ¢(0) = a. Its defining properties are those
of a derivation:

Ju(f+g)=u(f)+ulg); fgel™ (5.68)
2. u(\f) = \i(f); NER (5.69)
3. u(fg) =u(f)g+ fi(g); product (a.k.a. “Leibnitz”) rule (5.70)

These derivations form a vector space, the space of tangents at point = = a.
Indeed, consider the set of curves

C1, Coy +e-
through their common point

c1(0), e2(0), -+, a
and their tangents at this point

¢1(0) =y, ¢2(0) =1y, ---

This context leads to the following
Proposition (Tangent Space at a Point)
The set of derivations at a form a vector space, V, at a.

13Steps (ii) and )iii) comprise a mental integration process which blends functions that obey
Eq.(5.65) into a constellation of (interchangeable) units.
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The validity of this proposition follows from the fact that derivations are closed
under addition and scalar multiplication. Indeed, let

i =u' aii at a (5.71)
7= 0 at a (5.72)
7 Oat '

be derivations at a. Then

f (@+0)(Nl, = alf)l, + (),
— W 2L| 4O (5.73)

is also a derivation. Thus we have closure under addition. On the other hand,

b)
ol C*® — R
[ (ad)(f)l, =aulf)l, (574
— i Of .
=a (uZ ozt a)
)
= (au") aafi .
is also a derivation. Thus we have closure under scalar multiplication.
Conclusion: the set of derivations at z = a, u’ gfi, v g;‘“ -+ form a vector space, the

tangent space V, at x = a.
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Lecture 29

5.10.2 The Differential of a Function

Every vector space has a dual space.
Question: What is the space V* dual to V,? What are its clements? The answers to
these questions lie in the PLP,

-0 ) 0
uz—fi = ¢'(0) fz (5.75)
Ox a=c(0) dx a=c(0)
df (e(t
dt g
of the Taylor series expansion, Eq.(5.64) on page 235. For the vector
o,
u=u— €V,
U=uos
0
= ¢'(0)=
¢(0)57
tangent to c(t) at ¢(0) = a, apply that PLP to the following set of n+1 C*°-functions
fHz) =
fiz) =2?
fria) =ar
f(z) = f(x---,2") (an arbitrarily chosen function)
These functions yield linear functions w', -+ ,w™ and h on V, with their own distin-
guished properties:
froowi®| =w'(a;d) =u' (= Daz')
2w =wia;d) =u? (= Dgr?)
2|,
ol ‘37;? |a = w"(a;U) =u" (= Dga™)
foowgh] = hla;a) (= Daf )
From these linear functions one infers two new concepts:
1. The set {w!,--- ,w"} forms the coordinate-induced basis for V*, the space dual

to V.
This inference one obtains from the distinguishing properties of the w’s in
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two steps: (i) Evaluate each of the linear functions w!, -+ w" on each of the
elements of the coordinate-induced basis for V,,

L0 L0
B_{_am_ax}

The result is

(ii) It follows that
B* :{w17___ 7wn}

is the sought-after basis for V* dual to V, at point x = a.

2. The linear function

Of

ha; @) = u' == 5.77

(a0) =i (577)

is the differential of f, an element of in V*. Indeed, insert the distinguishing
properties of the w’s,

wWwia,i)=uw j=1,---,n
into Eq.(5.77). The result
of
h(a; ) = yiw(a, )
holds for all @ € V.

Omitting reference to the value h(a, @) for any particular value # on the prin-
ciple that h(a, %) must have been evaluated for some «, but may have been
evaluated for any u, one obtains the concept of the function

af i * V. - R

h;((],7 ) = axiw ((L, ) S ‘/a YOG e g;wi(mﬁ) (578)
This function on V, is called the differential of f(x!,--- ,2") at the point z = a.

The standard mathematical notation it is

af .

df = =——dz" % 5.79
f=tar (V) (579)

In terms of Dirac bracket notation this is

of , .
(df| = 5= (da"] .

ozt
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In this notation its value on the vector @ = v’ Ere is
O D
B of o ox' B 8fui
ozt 0:?9 or!
= Dzf (5.80)
Summary

The geometrization of calculus is characterized by the following battery of concepts
at each point a:

1.

2.

3.

{é’1 = %, I I a%n} is a vector basis for V.
{w! =da!, -+ w" = dz"} is a covector basis for V*.

These two bases are dual to one another., This is mathematized by the state-
ment

R (5.81)

5! = e =0

Given f € C, one infers from thr PLP of the Taylor series expansion,
Eq.(5.62), the existence of the covector

af _ ( “ the differential ) cvr.

i
03:¢d$ u of fatz=a"

When evaluated on the vector @ € V,, this covector yields the directional
derivative of f, Eq.(5.80).

5.10.3 Duality’s Coordinate Invariance

Any element of a (finite dimensional) vector space can be represented in terms its
componets relative to a chosen or given basis. The purpose of these representation
components is that they form primitive data from which a reasoning mind forms
higher level concepts, the building blocks of scientific knowledge, principles that
govern the lawful nature of the universe.

The mathematical principle of duality applied to V,, consists of having the parallel
isograms of a linear function on V,,, the space of derivations, become a single point
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in V¥, the space of differentials. This single point is df, and we have mathematized
this assignment in Section 5.10.2 by the statement

0 )
(dfla) = ¢ f u (5.82)

for all @ € V,. We have done this concretely'? relative to some chosen basis repre-
sentation, namely,

;0
and
_of
df = Sdr' (5.84)

This seems to make this line of reasoning vulnerable to the charge of being sub-
jective, i.e. dependent on the chosen basis. To show that this is not the case, we
change coordinates. This alters the basis for the vector space V, as well as that
for the covector space V' at each point x. Then we ask and answer the following
question:

Q: Will it also alter the dualty relations, Eq.(5.81) and (5.82), between them?
A: No.

- = " -
Tt { =t g
‘>< A "r.___ - i’\—- b g
; i ——
. —— S e .
NS = C &)
! L F3 — o
| . 7k
f \ ed— —
f i ) ; 1
-

Figure 5.14: Curve piercing the isograms of the function f and depicted relative to
the x'-2? and the #'-7? coordinate systems.

1To prevent “duality” from becoming a floating abstraction, i.e. from not having its basis in

reality.
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According to the following

Proposition

Duality is invariant under coordinate change.

The validity of this proposition follows from the effect of an explicit coordinate
change,

gt = o' (zF) (5.85)
7" = 7% (2% (5.86)

Based on the calculus chain rule, the vector @ = u! O(?cl has the alternate barred
coordinate basis expansion
.ozt 0
w2
dzrt Ox*
Introduce this alternative into the eveluation of (df|u) and obtain the following se-
quence of equalities,

U=

(5.87)

|[vo
QO
=
2
&8
S
~

Equality 0 evaluates (df|i) relative to the unbarred coordinate frame.

1 uses the above-mentioned chain rule.

2 uses the chain rule applied to the derivative of the composite function f(x(7)).

3 introduces the coordinate representative f of f relative to the barred cordinate
system.

Thus (df|@) is invariant under a change of coordinate-induced basis relative to which
(df |@) is evaluated!®.

Lecture 30

15This evaluation takes place at the same point as before, but it now has been coordinatized by

8
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5.10.4 The Graph of a Vector Field
Distributed Vector Spaces

By repeating the vector space construction at every point of the domain (a.k.a. the
base space), one arrives at a system of vector spaces Vi ,V,,,--- distributed over
the given domain and having their origins located at the points of the domain/base
space. Each vector space has its coordinate induced basis

)8

v Y
N (I
. : az

Figure 5.15: Base manifold M populated with vector spaces V, attached to each
point ay,as,as, - -.

0 0
B,, = {M, . &L} for V, (5.89)
0 0
B, = {&El’ . ’81‘"} for V,, (5.90)
(5.91)

If

M ={(z',-+ 2"} = {z}
is the coordinatized base space domain, then the system of distributed tangent vector
spaces

Uv.=1Mm
reM
is called the tangent bundle of M and
U Vi=T"M
xeM

is called the cotangent bundle of M
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Vector Field

The tangent bundle T'M accommodates the assignment of a vector

— i1 n
= e , Ve 5.92
i(e) =i, o) o € (5.92)
to each vector space. We thererfore have the
Definition (Vector Field)
The mapping
M — TM
T ~ U(l’):{IE,ﬁ(.’L')} :{xlv"' 7xn;uiv"' 7un)%}
— 1 n 1 n
={(z',--,2");(w. - u
N { )i ( b s
coordinate
representative
of u(z) e TM

is a vector field on M. It is the graph of u in the tangent bundle space T M.
We shall consider only smooth vector fields. The vector field @(x) is said to be
smooth whenever

of (', . a")
ot

ui(xl, . ’xn)

is smooth for all f € C.

Flow Field: Integral Curves of a Vector Field

A smooth vector field @(z) determines a set of curves whose tangents equal the values
of the vector field along these curves.
I. Integral Curves

GIVEN: A continuous vector field, an assignment of a vector

0
ozt

i =u'(x,- 2" EVy ze M

to each point x = (z!,--- ,z") of the base M.

QUESTION: Within the framework of geometry: Do there exist curves x(t) whose
vector €= -2 tangents to z(t) at each point equals the value of @ at that point ?
Within the framework of the mechanics of calculus: Can one find curves z(t) such

that they obey the system of o.d.e.’s equations,

@ o
dt Oxt

0
ozt

=u'(z', o am) (5.94)
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or

da? ,
dff =ui(zt, - 2") i=1,---,n? (5.95)

ANSWER: Yes, one can. The theory of o.d.e.’s informs us that one can solve this
system of n equations in n unknowns: For every chosen point zo € M there exist n
parameters to, ', -+ ,a"" ! and curves c(t)

a) which depend smoothly on these parameters,
b) each of which curves satisfies

i,
dfct =u'(c!,---,c") and the initial condition c(t = ty) = o,

¢) and which together form an n-parameter family of curves which maps each

(tg,at,- -+, a™ 1) homeomorphically into M
ct): (t—to, o, ,a" ) S 2t =t —ty,al,--- 0™
Therefore, in the space R™ spanned by ¢ and o', -+, o™ (comoving coordinates)

this family straightens out the vector field u(x)

Flow Field

The vector field @(z) = u'(27) 3%, and hence its integral curves c(t — to.a’), induce a
flow on the lab (Eulerian) coordinatized manifold.

Arrive at this flow by shifting attention from each curve indivdually to a set of
neighboring curves. In Figure 5.16 they are depicted as ¢(t), co(t), c1(t), and cy(t).
Their distinguishing characteristic is that each curve has its own starting point when
t = tg. The location of this point is mathematized by the physical attributes of the
curve. They are expressed by the constants of integration ty,al,---,a" ! depicted
in the left hand panel of Figure 5.16.

Observe that by individuating each curve in terms of its starting point at t = tq,

x=c(ty): {2'} = {c(0,a",--- "},

one finds that neighboring curves have the same distinguishing characteristic, the
mutual proximity of their starting points. This proximity is measured by their
(at, -+, a™ 'w-values which fall into the same n — 1)-dimensional neighborhood of
(al, -+, a™ Y)-values. This neighborhood is depicted in the lefthand panel of Figure
5.16.
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Figure 5.16: Integral curves of vector field @(x) relative to comoving (Lagrangian) and
lab (Eulerian) coordinates. The observed starting points of curves are mathematized
by the measured multi-parameter (al, .-+ a”~1) when t = #4 in the left hand panel.
The right hand panel depicts the action of the flow field transformation v, : N(t =
to) —)/\/‘(t > to).

Within the ¢(t)-induced context of the set of physically determined integration

constants (tg,al, - ,a" ! one arrives at the new concept, the flow-field transforma-
tion' .
b : N(t:to) —)N(t>t0)

Tlas{dt—to=0al -, a" )}~ y(a) = {d(t—to > 0;al, -, am 1)}

(5.96)

The properties of this flow transformation are

16The mental process for producing it is in essence a two-step process of “measurement omission”:
(i) Mentally isolate two or more instances of the distinguishing characteristic. (There are four
of them in the left hand panel of Figure 5.16.They are instances of measured multi-dimensional
parameter (tg,al,---,a™ 1) values that fall within the ¢ = ¢y neighborhood as well as within the
t > to neighborhood.)
(ii) Retain their characteristic while omitting their particular measurements (i.e. the values of
thje multi-dimensional parameter (a!,---,a" 1) — on the principle that these exist in some (multi-
dimensional) quantity, but may in any (such) quantity.

In light of the above-mentioned context, the product of this two-step process is the transformation
1y in the text.
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x { qf)t?; tz(}{ﬁ) }
({ v ()=l . &%)

Figure 5.17: Composite of flow transformations v, with v,. The result, 1y, o 1,,
equals Yy, 14,

a)

; M - M
wt = {wt} : _ j _ i( g
r={a’} () = {¥y (')}
where ‘ ‘
Yo(a?)=2" i=1,---,n
is the identity traransformation,

Yo =1

b) The composite of two transformations is

’d’tl 0y, = Uiy 41,

This is the mathematization of the fact that the solution to the system of o.d.e.’s is
unique This uniqueness is depicted in Figure 5.17.
b) The inverse of the transformation v, is

(W) =y
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This simplicity follows from

the identity
transformation

(Z) '(/)tolﬁ_t=1/1t_t=w0=]:(

(“) Yo (¢t)71
s ()T =,

Conclusion The above three boxed equations are summarized by the statement that
the solutions to a system of autonomous'” o.d.c.’s induce flow field transformations
which form an “commutative group” under functional composition.

Lecture 31

5.10.5 The Commutator of Two Vector Fields

Geometrized calculus is bare bones differential geometry. Its domain consists of the
vector space of tangents and its covector space of differentials attached smoothly to
each point of the base manifold. The resulting domains are the tangent bundle 7'M
and the cotangent bundle T* M of the base space manifold. The bundle perspective,
introduced by Einstein on physical grounds in 1907, and mathematized subsequently
by E. Cartan, revolutionized 20" mathematics.

Geometrized calculus is multivariable calculus on steroids. This is because its
initial formulation starts relative to a chosen set of coordinates, but once finished,
the resulting propositions are independent of one’s chosen coordinates. The means
by which this is achieved is that geometric calculus is an integration of vector space
theory with calculus. This integration glues together distinct vector spaces by the
mere requirement of continuity and differentiability. But it does so without assuming
that these vector spaces have any particular metric structure (length, inner product,
etc.), any orientation structure or even any structure of parallelism between vector
spaces adjacent to one another. There is no assumed geometrical relation between
them except that of continuity and differentiability.

The integral curves of a given vector field, Eq.(5.92), are 1-dimensional continua
parametrized by their curve parameters. For two or more vector fields this result gen-
eralizes to continua of two or more dimensions. Under this and other circumstances'®
the commutator of two vector fields plays a fundamental role.

17i.e. the coefficient in the system are independent of the independendent variable.

18Tn differential geometry and differential topology via Frobenius’s theorem; in mathematical
engineering via non-linear control theory of dynamical systems.
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Consider two vector fields

(z) = u'(x) Gii
v(x) = v'(z) &ari

and their integral curves cz(t) and cz(s)

Q: Can these curves serve as a coordinate mesh with coordinate lines ¢ and s ?

A: The existence of such a coordinate mesh depends on whether the quadrilateral
formed by pairs of equal curve segments closes or not. If the points P; and Po

Figure 5.18: Open quadrilateral formed from two pairs of equal curve segments. The
above quadrilateral is not closed because the broken paths P — P + 0P — Pi(=
point “17) and P — P + P — Po(= point “2”) do not have the same termination
pont.

coincide,
7Dl = PQ )

then their common coordinate label is

(tl, Sl) .

The criterion as to whether these two points are the same is mathematized by the
Definition

Pi=P, & f(1)=f(2) VfeC™,

i.e. for all physical properties that identify points “1” and “2”.
Use Taylor series to calculate f(1) and f(2) from f’s values and its derivatives

at P.
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a) Computing f(1) as a Taylor series along the upper broken path 1 — P +0P —
‘P, one finds to second order accuracy

2
J() = [(P+8P) + 0il([)lpygp + FA@UN)| 4+
: PP
2
= J(P) + 517Dl + HTEFN| +--
) P
2
()l + sy T@lp + o+ S (@) + -
: P
b) Similarly along the lower broken path 2 — P + dP — P one finds
2
F) = J(P)+ i)l + S (@(f)] ++
: P
2
517l + sty GEHD)p + -+ FFES)| +-
’ P

c¢) Note that f(2) and f(1) are equal except for the order of the mixed directional
derivatives 4(v(f)) = DgDsf and v(u(f)) = DzDzf. The difference between
f(2) and f(1) reduces therefore to

) - ) _

s1ty

is the commutator of the vector fields v and .

Proposition
The commutator [, ﬂ‘ is a derivation at point P and hence an element of Vp.

Exercise 1: Infer the validity of this proposition by verifying that the commutator
satisfies the three properties, Egs.(5.68)-(5.70), on page 236. Exercise 2: GIVEN:
Two vector fields

Q

£y
|
S

ozt

<L

[

<

.
|

Q
g
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Figure 5.19: The commutator of two vector fields.

FIND: The components of their commutator

Lo 0 o O
[, 7] = [u,fﬂk% = [?]k@

relative to the coordinate basis %
Problem
What is the commutator of

. .0
(i) €y @ander—g
L 10 L0
(44) %= "3 and G =5

(7i1) Draw a picture of each.

Solution:

00 00 00 _

or’ 90" oroo  90or

00 010 100

or’ pp°  Orr 90 1ol Or

1o 1P 1
r200  rordfd ro00r
10 1

_ﬁ% = —; = €hatb

These two commutators are depicted in the figure below.

Lecture 32

5.11 Geometrical Structures

The distinguishing feature of Geometrical Calculus is its bare bones structure. Recall
that at each point P of a manifold M one observes the existence of Vp, the vector
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Figure 5.20: The value of the commutator of two different vector fields (unhatted
and hatted) compared and contrasted.

space of tangents to the curves ¢(¢) running through P: ¢(t = 0) = P. Each point P
has its own tangent space Vp In this context one’s curiosity leads one to ask wether

e

; 5 '\_:;/’ %N “\
\“-.‘_ b : / Y ::? ‘."i:

|

Figure 5.21: Attached to each point P of a manifold is its tangent space Vp.

there exists a natural (i.e. a basis-independent) relation between them. Without
further observational input the answer is “NO”. However, suppose we are confronted
with a manifold in which one observes curves which are straight, meaning that betwee
a give pair of points there exists an extremal, say a shortest path.

5.11.1 Parallelism Via Schild’s Ladder

Consider a generic curve c(t) on the manifold, say the sphere S?, and a displacement
vector Py Ay at the the initial point Py of the curve. This vector is an infinitesimal
straight line segment which connects the two points Py and Ay. From some other
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nearby point, say P; also on ¢(t), draw the straight line segment m and mark off
its center C as in Figure 5.22. Next draw the line sgment 7? and extend it by bthe
same amount beyond C with its termination point A; twic_e;as far from P;. The
[Lin‘g A; together with P; form the straight line segment P;.A; which is parallell to
PoAp.

O
L |
|
e
aw—’-l——._._;.
L‘"“ ! 4 I3 TS .Y

—
Figure 5.22: Schild ladder construction of vector P;A; at P; parallel to the initial
vector Py Ag at Py.

As shown in Figure 5.23 below, this “Schild Ladder” construction can be repeated
with the result that one obtains a sequence of parallelograms with a field of parallel
vectors PoAg, PrAl, PaAs, - -- along the given curve c(t).

Remark 1:

The fact that the diagonals of a parallelogram besect each other, if not already
known to the Greeks, was undoubtedly known to Newton. Here the Schild ladder
construction is a converse of this fact: if two line sgments bisect each other, then its
vertices form a parallelogram.

Remark 2: _

a) The initial vector PyAy can be an arbitrary element of Vp,, and the Schild ladder

construction yields a unique element P;.4; € Vp, which is said to be parallel to
—
PoAy € Vpoi

— —
VPoAy € Vp, 3 a unique P1.A; € Vp,
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Figure 5.23: Sequential construction of P A; at P; parallel to PyAg, PaAy at Po
——
parallel to P1.A;, ete.

b) Thus the Schild ladder construction establishes an isomorphism'?
Vpo 4 Vpl
between adjacent vector spaces separated by the curve segment

— dc' 0
7)07)1 — At E o 8xi

= Adlp,

of curve c(t) at t = 0.

Remark 3:

The construction is natural in that it is independent of any preexisting bases for
vector spaces Vp, and Vp,.

Remark 4:

a) This isomorphism between adjacent vector spaces is the mathematical formulation
of parallel transport. Relative to a basis chosen (or given) for each vector space Vp
this transformation is expressed by means of a matrix. Thus, given such a matrix,
one has a law of parallel treansport, and given a law of parallel transport (and a
coice of basis) one has a matrix.

b) The next task is to exhibit this matrix representation explicitly.

5.11.2 Mathematization of Schild’s Ladder

Elie Cartan introduced a new way of conceptualizing a vector field. He viewed it
as a graph. The set of vector fields is multifarious. But there is one type which
stands out from all the others, namely, vector fields which are parallel. Faced with
the bewildering diversity of vector fields follow Thales of Miletus by asking,

19A one-to-one linear transformation which is onto.



5.11. GEOMETRICAL STRUCTURES 255

o~ :,’
Lq'}_. P
15, ’ P ot
J.r.'.;_}
-3 = -
"';E’ _I\: | =
L 4 | e 'K_ _r,"_ )
Up )Y o
: ’E‘I = F " —'LE:.._:
\". I e
—% = y,
N\ b - I"-'.ll‘ _._ \
}lpb_'____ e
7
\] ' F]
=l d ‘-‘*; _]_
Figure 5.24:  Graph of vector field ¢ = vk(P)%. The coordinate
representation of this graph is in terms of the 2n-tuples (P,9(P)) =
(2, Jamot(at--- 2m), oo Ju(zt - 2™). They refer to points in the tangent
bundle TM = |J Vp. Here they are depicted along the curve P(t) = ¢(t) in the
PeEM

base manifold M.

1. What is the one in the many among such vector fields?

2. Where does their commonality come from? And following Euclid and E. Cartan
ask:

3. How does one mathematize it?

Answer: Apply Schild’s ladders to Cartan’s moving frames. From the application
of this ladder construction one infers the non-parallelness of the basis elements as in
Figure 5.25 or as in Figure 5.26 of adjacent generic vectors. Parallelism via Schild
ladder is unique in that it yields adjacent parallelograms whose edges form closed
figures. However, in the physics of continuaous media there exists crystaline matter
with an imbedded distribution of dislocations or of intrinsic spins. Such media give
rise to non-closed parallelograms. Such a parallelism is characterized by Cartan’s
tortion tensor and its associated Burgers vector. They will be defined in the next
subsection. Thus, in reality there are many different types of parallel transport, but
they all lend themselves to be mathematized of appropriate isomorphisms between
adjacent vector spaces such as V and Vp. Figure 5.27 depicts such an isomorphism
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Figure 5.25: Schild ladder construction reveals the non-parallelness between
the bases {€;} and {e;} for the vector spaces V5 and Vp.
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Figure 5.26: Schild ladder construction reveals the non-parallelness between
the bases {€;} and {e;} for the vector spaces V5 and Vp.

relative to a particular given/chosen basis. Its matrix representation is

Vf — Vp
€~ e + Ae; = e; [0, + w;(A)]

(0,...’17...,0)«@<w1i(A),...’wj_1i(A),1+ w'(A) ,wj“i(A),---,w"i(A))
N——
/]\

no sum!
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Figure 5.27: Parallelism-induced isomorphism between adjacent vector spacesc V&
and Vp.

The matrix for this linear transfortmation

14 wll(A) wly(A) o w! (A)
L e e
w”lkA) 1+ w.”Z(A) . 1+ w.",,l(A)

is determined entirely by the coefficients
wji(A)

These numerical coefficients mathematize the parallelism between the vectors of V5
and those of Vp.
Remark 1:
These coeflicients depend on the basis chosen in V& and Vp. Altering the bases for
these adjacent vector spaces changes the matrix representation of the isomorphism.
This basis dependency is a seemingly fatal flaw in mathematizing parallelism in a
basis-independent way. On the contrary! As we shall see, this dependency serves
as a portal for an inductive line of reasoning that leads to a basis independent
mathematization.
Remark 2:
The matrix representation depends continuously on the separation AP = Az’ a?ci
between the two vector spaces. In moving from P to P = P+ AP dominant changes
are mathematized by their Principal Linear Parts (P.L.P.). They are the changes
along any curve, say c(t), passing smoothly through these points.

In fact, in compliance with the observed nature of things, assume that for small
separations the matrix elements depend linearly on the separation between the points
P and P =P + AP on a curve c(t) passing through them.
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Figure 5.28: Principal Linear Part [w/;(A)] = [IV,,A2*], the matrix which generates
the parallelism transformation between adjacent vector spaces V5 and Vp.

Remark 3:
The P.L.P. of the vectorial change, designated by

Ae; = ejwjz'(A)> with sz’(A) = FjikAxk

is the linear approximation of the difference between the preexisting vector and the
one parallel transported by the above-discussed isomorphism. The dominant P.L.P.
ignores the non-linear contributions due to the motion between P and P = P + AP.
Consequently, one has the following equivalent depictions of Ae;:

2.\ z
P ,(\f__,{/., —~ /’;
= - /‘LAE,: =V E7
1/\ =i il ]

L Lﬁ"t’?ﬁ = : W

— i A(ev = V‘??:'
| 1

7 -
©.00) & ’E.{(O)

Figure 5.29: Principal Linear Part of vectorial changes

Lecture 33

5.11.3 Vectorial Change: Differential vs. Directional Deriva-
tive

Parallel transport is mathematized in two different but related ways:
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I. First way: Via the differential of a vector:
Every point of a manifold has a tangent space. Compare the elements in one
space, say Vp, with those in its neighbor V5 at P and at P =P + AP

These two vector spaces are separated by the displacement vector

along the curve whose tangent is u.

There are as many forms of parallelism between them as there are isomorphism
between

Vp = span ({e;}) and Vi = span ({e;}) .

Recall that parallel transport is a relation which carries a vector €;|5 at P to
its parallel image (e; + Ae;)|,, at P:
{éi}ﬁ ~ {ei + Aei}p,

Given the preexisting bases at P = P + AP and at P, this isomorphism is
mathematized by the Principal Linear Part (P.L.P.) of the change

{Ae; = ejw’,(Atu): i=1,--- n}

away from the preexisting basis {e;}. This P.L.P. is linear in the separation
vector Atu.

By leaving it unspecified one has formed a new concept, the vectorial differen-
tial

dei=e;@w,;, i=1,---,n. (5.100)

More explicitly, expand w’ ; in terms of the coordinate basis covectors dz* with
the T, ’s, the “Christoffel symbols of the second kind”, as the expansion coef-
ficients. In these terms the vectorial differential is

dei:ej®Fiikd1:k, ’L:]., , .

This is the vectorial rate of change of e; due to motion into an as-yet-unspecified
direction. As depicted in Figure 5.29, this change is vector-valued, and it is
relative to a physically defined standard of parallelism between adjacent vector
spaces. The Schild ladder construction, Figure 5.26, is a particular example of
this parallelism.
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Figure 5.30: Principal Linear Part of vectorial changes Ae; and Av relative to the
observed, isomorphically defined standard of being parallel.

I1. Second way:

The vector field v = v'e; is a linear combination of basis vectors with scalar-
function coefficients. The differential of this vector field is a matter of identify-
ing the P.L.P. of the change in each of the products comprising that sum. The
P.L.P. follows the product rule. Consequently,
dv = d(ey’)
=e; @ dv' + vide;

a
ork
=e;® %Jﬂ'ri da® (5.101)
- ok v ik £ .
=e;® vj;k,dzvk (5.101")

=e;® dz* +v'e; ® W,

Via the directional derivative of a vector:

Mathematize the concept of parallelism by introducing the directional deriva-
tive V. Do this by actually evaluating dv, Eq.(5.101), the “rate of change —
away from being parallel — of v due to motion into an as-yet-unspecified direc-
tion”, on the the direction u. This evaluation process is governed by dv, the
vector-valued linear map

dv: Vp = Vp (5102)
u -~ (dvju) = Vyv , (5.103)
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It has the following four fundamental properties

(1) Vu(vi+va) =Vavi+ Vuve
(2) Vujus(v) = Vu, v+ Vy,v
(3) Vyuv Vv (5.104)
(4) Vu(fv) = fVuv+vVyf
Remark 1:
(1) and (2) say that V,v say that is pont-wise linear in u.
(4) is the “Leibnitz product rule” for differentiation.
Remark 2:
The directional derivative Vf of a scalar function f satisfies the same four
properties.
Definition Covariant Derivative
The mapping
Vv(=dv): Vp—=Vp (5.105)
u~ Vv (5.106)

which satisfies the above boxed four properties is called the covariant derivative
of the vector field v.

Remark:

The covariant derivative is related to the covariant differential by the fact that
the two mappings are one and the same

Vauv = (dv|u) Yu e Vp
so that
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5.11.4 Covariant Differentiation
Vector
Covector

Tensor

5.11.5 Tensor Map as Pointwise Linear: Covariant Derivative
vs. Commutator

5.12 Geometrical Structures

A geometrical structure is the assignment of a geometrical object to each point of
the manifold.

5.12.1 Torsion as a Point-wise Displacement Trait to Parallel
Transport

5.12.2 Curvature as a Point-wise Rotation Trait to Parallel
Transport

5.12.3 Torsion and Curvature as Point-wise Linear Maps
5.12.4 Equation of Geodesic Deviation

5.12.5 Metric Tensor Field

5.12.6 Elastic Media

Strain Vector

Strain Tensor

5.12.7 Metric Induced Parallel Transport
Metric Compatibility

Compatibility Via Extremal Paths
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Step 3: Parallelism and the Covariant Derivative

The Directional Derivative

The familiar directional derivative is the mathematization of change as it applies
to scalar functions on a manifold. It starts with the value of the scalar field at a
reference point of interest. The focus then shifts to the value of the scalar at an
adjacent point separated by the displacement vector connecting the reference
(1°*) point to the adjacent (2"¢) point. The difference between the values of
the scalar field at these two vector-separated points is the quantitative change
that goes into the process of defining the directional derivative at the chosen
reference point.

The Covariant Derivative

The covariant derivative follows the same process. Start with the value of the
vector field at a reference point of interest. That value is a vector in the tangent,
space at that point. Then shift attention to the value of the vector field in Lhe
tangent space at the adjacent point, the one separated from the reference point
by the displacement vector between the two.

This leads to the question: What is the change in the values of the vector
field in moving [rom the first tangent space to the second adjacent? This is a
mathematically illegitimate question because the difference between vectors in
different vector spaces is undefined.

Figure 1: Schild-Ladder-induced isomorphic alignment of vector z(t,) € V)
with z(0) € V ().

4, 1D






However, it is well defined when there exists a parallelism between tangent
spaces. Parallelism is a joint property of two tangent spaces which are separated
by a vectorial displacement: every vector in one tangent space is observed to be
tsomorphically aligned with a unique vector in the adjacent tangent space.

Because of this parallelism, a vector in the tangent space at the reference
point can be moved to its adjacent neighbor, and can therefore be compared
by subtraction with the preexisting value of the vector tield. The resulting
difference is the quantitative change that goes into the pracess of defining the
directional covariant derivative at the chosen reference point.

This covariant derivative extends the directional derivative applied to scalar
field to that applied to vector ficlds. It mathematizes the extent by which a
vector field is not constant.

Parallel Vector Field

An everywhere unchanging, i.e. parallel, vector field, say Z(z) satisfies the
diffential equations

0-vz={ZE e+ z@ruent @) . O
Except in a Buclidean space, or a manifold with a similar parallelism structure,
there does not exist a non-zero solution to this system of partial differential
equations.
However, there does exist a solution to this system if its domain is restristed
to a curve {c(t) : {c*(t}}?_,}. Its tangents

dc"(t) 7]
& 5ok =)
form a vector field on this one-dimensional domain, namely

u(e(®) = uk(c(t))% e

The existence of a vector field parallel along this curve is guaranteed by the
existence of a solution to Eq.(1) with its domain restricted to c(t), namely

0= VuZly = { % 2 | Zel)T (et 22 } L
= {8 1 orato) @

Given an initial vector
9
Zloo) = 3(0) = 3'(t = O)ﬁ

on c(t), this linear system of n o.d.e.’s has a unique solution for the parallel
veetor field

2l =300 = 4 O (3

40,1
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