LECTURE 1:
FOUR fundametal
Agenda: CONCEPTS
1.) Bottom-klp vs Top-Down Approach
2.) Rapid course in Relativity
I) The Principle of Relativity

$$
\text { TH } \underbrace{3.1-3.3(1.3)}
$$

Sections in $2^{\text {nd }}$ Section ins [st edition of edition of Taylor and Wheeler Taylor \& Weer
II) Free float (" "inertial $^{\prime}$) frames ToW $2,2-2,4(1,2,1,4)$
Fig. 3 - 6 in J-W
M.T.W. Fig 1.7
III) ISotropy of Space TiN $3.12(1.3)$ 2 nd edition ${ }^{n} \rightarrow$ st editions
IV) What is an Observer?

$$
T-W 2.6+2.7
$$

Lecture 1

The purpose of Math 5756 is to mathematize, ice, put into mattematical form, the laws of physics,
(Newton's 3 laws of motion

- Lorentz's law of motion for as charge in an e, m. field
- Maxwell's laws of electrodynamics
- Thermodynamics, etc)
and do this in term of the modern mathematical method of the $2 \theta^{\text {th }}$ century.

Our approach is that of Aristotle, the bottom up approach. It starts with the validity of the senses, ie. with observations and experimontes, and then proceeds to arrive by inductive reasoning at the lanes of nature and at their applications by deductive reasoning.
For Math 5756 our edifice of knowledge is built by this botorm-up approach and thus has a mult-level structure hierarchical in abotractnes

Moving Frames:
Cartan's Structural Eq'ns
Multi-linear algebre +
Multi-variable calculus

Special Relativity

Observations $+$ Experossuentes

Aristotle's bottom-up approach
is to be contrasted werith
Plato's top-down approach which starts with an arbitrasicy hypothe sis or some intuition from a mystical Realm of Forms, and which then arrives at conclusions by parrelip cedertine reasoning.

With Plato, knowledge is not rooted in the world, not in reality. Plato's "zealety"is merely an imperfect reflection of his mystical Realm of Forms. By rejecting mysticésm we go
with Aristotle and shall see that the root -the fountaiskead-of modern differential geometry is observations \& experiment: special relativity, i, e, physics.

RELATIVITY
I) THE PRINCIPLE OF RELATIVITY (ER.)
"All laws of physics are the
(i)
same in every inertial reference frame"
(ii)

The scope ("in every inericiln frame") and the strength of its declaration ("applies te] all laws of physics") gives this principle universality and captures under its cumbralba a diversity of implicit physical measurements.
Q: Where does the P.R. come from?
$A:$ The $P \cdot R$, is arrived at via a process of inductive reasoning applied to
(a) the observational evidence from comparisons between the outcomes of experiments per-formed in different inertial frames of reference.
(b) the relevant conceptual frame work
(i) haws of physics:

- Newton's 3 Races of motion
- Maxwell's laws of electrodynamics
- Lorentz's law of motion for a charge in an e.m. field
- Thermodynamics
- etc

The observational evidence comes from comparing the results of experiments in different inertial frames of reference:

In two such frames consider two experiments with

1. Identical instructions

2-same experimental setup
3. same procedure
4. same data set
5. Same data reduction

Then, within experimental errors (1), one will observe the same result. From this particular pair of experiments, and others like it,
one infers the following generalization:

In diffent inertial frames the same experiments yield, within experimental orvor, the same observed results.

This finding is the same regardless of whether the two experiments involve

- Newton's 3 Laws of motion
- Maxwell's Laws of electrodynamics
- Lorentz's law of motion for a charge in an e.m. field
- Thermodynamics
- or any combination such laces

This finding, therefore, applies to all laws and one has

All laws of physics are the some in every inertial frame of reference
Thus
a) the form of these laws is the same in every inertial frame.
b) the numerical value of the physical constants.

$$
\left(c, \hbar, e, m, k_{B 0 L \tau z} \cdots\right)
$$

are the same w.r.t. every s inertial frame
Restated negatively one kos:
"The haws of nature do not provide a way of distinguishing one inertial frame from another"
Each of these statements is called the P.R.
II) INERTIAL FRAMES

The relativity principle is a statemont about the behaviour of things in different inertial frames.
Q: How can one tell such frames from nor-inertaial frames?
F: Within classical (ie, non-quantiom) mechanics the answer canbe given by examining the measured sharp trajectories of free particles.
Consider the following two reference frame:

Non-inertial Inertial frame frame

An inertial frame is defined by Newtons's $1^{2 t}$ law of motion. (free particles remain at rest or in astate of uniform, straight line motion)

1) De firition (inertial, a.k.a. free
float frame)
A frame is said to be inertial
(or "free float") to the extent
that all free particles ins it comply with Newtons's / st Law of motion.
2.) Move explicitly, one has the following
Definition (inertial frame, a,k.a. free float frame)
Given:(i) a region of space and an inter= val of time
(ii) a set of freely floating particles in this region of spacetime
time \uparrow

Then: An inertial (= free float) frame is that region of spacetime coordinatized by a lattice work of clocks and measuring rods

Lattice work of clocks and measuring rods
in such a way that-within some specified level of accuracy the free particles travel
a) along straight lines
b) with constant velocity
for each and every particle
ins that region of spacetime
III) ISOTROPY OF SPACE

One of the surprising manifestation of the Principle of Relativity is the isotropy of light propagation in inertial frames in relative motion.
To appreciate this manifestation compare the propagation of sound with that of light in different inertial frames

Propagating Phase fronts of sound in an isotropic medium

Propagating Phase fronts of sound in a frame moving with respect to the above iso tropic medium

Propagating phase fronts of light in empty space

Propagating phase fronts of light in a frame moving w.r.t. the above frame

In a frame moving w.r. t. its medium $(v \neq 0)$ sound waves propagate nom-isotropically (different speeds ins different directions) while e, m, waves still propagate isotropically. (same speedion all directions) Thus one has the far-reaching result

Isotropy of space is frame independent
This principle is contained Maxwell's field equations. It also expresses the negative result of the Michelson Morley experiment

Isotropy of space says nothing about the numerical value of the speed of sight. The Kennedy

- Thorndike experiment says that also the magnitude of the velocity of light is frame independent.

Q: WHAT IS AN OB SERVER?

Latticework of clocks and measuring rods. It coordinatizes the local space time domain of an inertial reference frame as depicted above. Every such frame accommodates an agent (animate or inanimate entity) whose measurements are w.r.t. to such a lattice of clocks and rods. An observer refers to (i) such an agent together with (ii) the lattice-coordinatized frame surrounding that agent. Thus an observer is an agent which resides in a local frame coordinatized by clocks and measuring rods.

