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VALUES OF T, AND THE CHRISTOFFEL SYMBOLS FOR A LINE
ELEMENT OF CONSIDERABLE GENERALITY

By HERBERT DINGLE
CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, AND IMPERIAL COLLEGE

OF SCIENCE AND TECHNOLOGY, ENGLAND

CommuniIated March 20, 1933

In the general theory of relativity the mechanical properties of any re-
gion of the universe are expressed by the energy-momentum tensor, T'JA
which is itself calculable from the form of the line element, ds2 = gxydxV
applicable to that region. The expressions for T' in the most general
case, in which all the g,, are arbitrary functions of the four coordinates,
x1, X2, X3, X4, are exceedingly complicated, but considerable simplification
is introduced if it is assumed that gA,^(I * v) = 0. The resulting line
element still possesses a large amount of generality, and in the applications
of the theory particular forms of it have, in fact, usually been employed.
It therefore seems desirable to publish the general expressions for the
energy-momentum tensor corresponding to this line element, and it is
the purpose of this paper to give them, together with the associated values
of the Christoffel symbols of the second kind, in the form best suited for
application. The calculations, which are somewhat long, have kindly
been checked by Mr. C. C. Steffens of the California Institute of Tech-
nology, and the proofs have been carefully read, so that the results may be
used with considerable confidence. It is hoped that their publication
will save labor for those working in this field.
The expression for the line element is taken as

ds2 = -A(dxl)2 -B(dx2)2 - C(dx3)2. + D(dx4)2,
where A, B, C and D are any functions of x1, X2, X3 and X4. Mathematically
these functions may be positive or negative, real or imaginary,*, but in
ordinary applications, in which X4 iS the time-like coordinate, they will
clearly always be positive and real. The non-vanishing components of the
metric tensor and its contravariant associate are obviously as follows:

g= -A; g2= -B; gs = -C; g44 = +D
11= 1; 22=_ 1 33 = - 44 =+jj.

and the determinant, g, is -ABCD.
Christoffel Symbols.-These are defined by the expression

{/uv a} = I g¢(xagI , + g"x 9-A9 x~+
* It is assumed that they possess first and second differential coefficients with respect

to each of the coordinates.

VOL. 19, 1933 559



560 MATHEMA TICS: H. DINGLE PRoc. N. A. S.

Their values are

- a11- - 141,1) +2lll~~2 xl }= 2A bxl2 l }=+2A bXs3 l l+ 2A 6Xa4l}

1 6A 1 I'B111,21 = -- - 121,2) + -2- 131,2) =0 141,2} -02B bX2 2B ?x1
1 6A 1 aC111,3) = C aX 121,31 0 131,3i) = + 2C 141,3) = 0

1 oA 1~111,41= + 122D1x4121,4) = 0 131,4) = 2D111,4) + - -14,4 2D bx'

112,11=+ 1--A f2211' } = - 132,1) = o 142,11 = 02A x2 ' 2A 1x'

112,2) + -- - -B12132,2) = + - - 142,21 = + 1xa2B 6x1 2,2 2B bxi 2BbX 2B 6X

112,3) =0 122,31 = - 32,3) = + 1-a 142,3) o

112,4) = 0 122,4) =
+

- 142,4) = + 2D ?x
1 6A 1 aC113,1) = + -- 123,1 2A=1x=1 143,1) = 0

1 6B 1 ?C113,2) =0 123,2) = + - T 133,2) = - - - (43,2) = O

113,4) = 0 123,4) = 0 133,4) = + 1 a- 143,4) = + 2D ax3

114,2) = 0 124,2) = + - 3- 4 =342) 144,2) = + ?BD

114,3) = 0 124,3) = 0 134,3) = + 1144,3) = + 2C ~x1 liD 1 ?D 1 1)1) 1 1ff)

114,4) = + 124,4) = + -134,4) = + 144,4) = +2D?x-
Energy-Momentum Tensor, T.- This tensor is defined by the expres-

sion
-8irT, = G,-2-g,G+gX

where G is the contracted Riemann-Christoffel tensor, G is the invariant,
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gVG,,, and X is the cosmological constant. The values of - 87rT' are
as follows:

1 [r!5 /z2B B2C 1 1 ? 2s a2D
1 2 BC \(xB)2 + -(X2)2 BD (3(X4)2 - (X2)2

1 ( a2C a2D
CD 6\(X4)2 - (XS)2

1 Jc aB 1B\')
CB2 lx2 6x2 \ax2/ J

1 1 6B ac + Cac2
4 LBC2 X3sX2ms x22
_D1 {aB aD k3D 2
BD2 6X4 6X4 a-X2J

1 aD aB
DB2 ?bx2 bx2

1 (D ac
DC2 x3 ?x

1 ( aCD asBD sBC) 1 aB aC
BCD bx2 bx2 'x2 bx3 6x4 bx4y ABC ax' axl

1 aB aD 1 acCD
- ABD ?xl axl ACD ?xl ?xl +

2 1 [1 ( W2A WC)-87rT2 = + Z(12

__ a1A a)c ()c\
4 AC2 ZaX3 ?(x3' (-x

6a{ D ()D 2
AD2 a)X4 bX4 bxa

1 ( 2A -2D_

1 (2C Za2D
CD6i(X4)2 -(X2)2 _

)2 }+1 {CacA + (A)2}

1 (aDCA /?A\2)
4 DA2 X1 (?A\X2

1 ( acaD 1?D\2+ 1 (?D ac _ c
CD2 (x4 6x4 bx32, DC2 IJx3 aX3 \x4'J

1 (CCD aA aD aA aC 1 aA aC
A CD xax' x1 x'x'a x4 bx4y ABC bx2 bx2

1 aA aD 1 cC D1
ABD bx2 aX2 BCD bx2 x2+j

--87rT3 = 6[2A + (12)B 1 (62A - j12DT3 AB[ 1 2( a ( 1)2)-AD ((X4)2 b(xl)2)
_1 (2B 62D
BD 6\?(X4)2 -(X2)2,/

41 B ()B 2

4 LA 2 ?bX2 bX2 31

1 (BsA 1?AV2
BA 2 aX aX1 \X22

( B 2

( 4C 2

ZIX4)
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1 5 ?A D (D\2 + 1 DA _ A

AD2 (ax" bx4 ax1I DA2'xl axl x J
1 ?B aD _%D'V) 1 aD aB _ Bs2l

BD2 tax4ax4 ?ax') Ds2 bx2 Ix2 ax/
1 B aD +A aD _A aBl 1 aA aB

ABD ?xl axl ax2 ax2 bx4 ?x4) ABC bx'3x'
1 ?A AD 1 as aD

ACD ax3 bx3 BCD bx3 ax3J

-T4=2 [AB 6(aX2)2 + (xl)2) + AiC 6(aX3)2+ ())
+BC (X3)A+ (X2)

[Ar1 X aA 6B + B 2 1 ( B 6A +IA2
4 LB2 I axa2 ialAX x x a2

1 aA /C 2B\ 1 (.CBA A2
AC2 ax' ?x'\Xx1/X CA2 ?xl Jx' x/ )

1 (?BZC / bc\'2 1 (?C B 16B\'2
+ BC' {X3bx3 + ax} CB2 {x2 aX +(-X3) }

1 aB ac A ac A B 1 aA aB
ABC xl ax1 +x'2 bx2 +x'ax3 J ABD Ix' bx4

1 aA aC 1 aB aiC
ACD bxdx4 BCD ?x4xJ +4

-8trAT1 = -8wBT1 =
1 F 2a'C 1 62D 1
2 LCCxlax2 D x()Xa2

+ 1 1 ac ac + 1 aD aD + 1 aA aC + 1 aA aD
4 LC2Cxl ax' D2 ?x' Zx2 AC bx2 ax1 AD Ix' ax1

1 aB aC 1 aB ?D
*BC axl bx2 BD Ixl bx2

-8trAT3 = -&CT =
1 Fi I2B 1 ?2D 1
2 LB ax1?x' D axIbx3J
1 1 aB aB 1 aD aD 1 aA aB 1 aA aD
4 B2 ax1 ax'D'X ?x1 ax' AB +X'1x' AD 1x' ax1

+ 1 acCB + 1 aC a'.
CB bxl bx' CD ?xl ?xs

PROC. N. A. S.562
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-87rBT32 = -87rCT3 =
1 2A 1 a2D

2 A x2.x3 D bx26x3
1 1 6A6Aa 1 aD aD 1 aA aB 1 aA aC
4L A2 bx2 6X3 D2 ax2 6x3 AB bX2 6x3 AC bx3 6x2

1 aD aB 1 aD aC
DB bx2 6x3 DC 6X3 Ox2

-8irAT4 = +81rDTi4 =
J62B + 1 I2C ]

2 [B ai6x1X4 C ?xI x4
F1r1 aB CB+ I aCac + 1 aA aB 1 aA aC
4 LB2 Ox' 6X4 C2 ax' bX4 AB OX4 ax' AC Zx4 ax'

1 OD aB 1 aD aC
DB axl 6x4 DC axl bx4j

-87rBT4 = +87rDT2 =
1iF 62A 1 ?2C 1

2 LA OX2aX4 c ax2bx4J
F1 AA A 1 aC6C 1 OA 1B+ _ A aD

4 LA2 3X2 3X4 C2 ?X2 bx4 AB bX2 6x4 AD bx4 bx2
1 cC B 1 OD 6C
CB bx2 Ix4 DC Ox2 bX4

-87rCT4 = +87rDT3 =
1 1 J2A 1 ?2B
2 A aXI bX4 'B bX3OX4
F1 OA A 1 aB aB 1 aA aC 1 OA OD

4 A2 bx3 bx4 B2 bx3 6x4 AC ax3 bx4 AD bx4 ax3
1 DB aC 1 aB D1
BC 6x3 bx4 BD ?x4 6x3
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The Flatter Regions of Newman, Unti, and 
Tamburino's Generalized Schwarzschild Space* 

CHARLES W. MISNER 

Palmer PhY8ical Laboratory, Princeton University, Princeton, New Jersey 
(Received 17 December 1962) 

The "generalized Schwarzschild" metric discovered by Newman, Unti, and Tamburino which 
is stationary and spherically symmetric, is investigated. We find that the orbit of a point under 
the group of time translations is a circle, rather than a line as in the Schwarzschild case. The time-
like r = const which are left invariant by the group of motions are topologically 
three-spheres sa, in contrast to the topology 8 2 X R (or 8 f X 8 1) for the r = const surfaces in the 
Schwarz8child case. In the Schwarzschild case, the intersection of a spacelike surface t = const 
and an r = const surface is a sphere 8 B• If IT is any spacelike hypersurface in the generalized metric 
then its (two-dimensional) intersection with an r = const surface is not any closed two-dimensional 
manifold, is: the gene.ralized metric a<;lmits no reasonable surfaces. Thns, even though all 
curvature lllvanants varush as r ....... 00, In fact "" 0(1/r8) as m the Schwarzschild case this 
metric is not asymptotically fiat in the sense that coordinates can be introduced for which; -
11". "" O(l/r). An apparent singularity in the metric at small values of r, which appears to be 
to the spurious Schwarzschild singularity at r = 2m, has not been studied. If this singularity should 
again be spurious, then the "generalized Schwarzschild" space would represent a terminal phase 
in the of an entirely nonsingular cosmological model which, in other phases, contains 
closed spacehke hypersurfaces but no matter. 

I. INTRODUCTION 

THE primary purpose of this paper is to study 
and describe geometrically the stationary, 

spherically symmetric solution of the Einstein 
equations recently discovered by Newman, Unti, 
and Tamburino1 which I shall refer to as NUT 
space. A second important purpose of this work 
is to provide an example of the recognition and 
elimination of a spurious singularity in a Riemannian 
line element with the Lorentz - + + + signature. 
No general method is known for eliminating coor-
dinate singularities in a metric, nor are there 
adequate criteria to determine that a singularity is 
not merely a coordinate singularity, and I expect that 
further examples beyond the Kruskal-Fronsda12

•
3 

elimination of the Schwarzschild singularity will 
be helpful in leading to an understanding of these 
problems. A third, minor, aim of this paper is to 
provide an example of the use of orthonormal 
frames (tetrads) in a style more economical with 
indices than is usual in the literature of physics, 
and in particular a method of computing the 
curvature tensor very rapidly (cf. Appendix A). 

The question of singu1arities in metrics is broader 
* Supported in part by the U. S. Air Force Office of 

Scientific Research, Air Research and Development Com-
mand. 

1 E. Newman, L. Tamburino, and T. Unti, J. Math. Phys. 
4, 915 (1963). I wish to thank these authors for sending me a 
preprint of their paper. 

1M. D. Kruskal, Phys. Rev. 119, 1743 (1960). 
a O. FronsdaI, Phys. Rev. 116, 778 (1959). 

and more important than the study of one particular 
metric to which most of this paper is devoted, 
so I will briefly summarize the present state of the 
art.4 The first step is to find some clearly stated 
problems, and the clue to clarity is to refuse ever 
to speak of a singularity but instead to phrase 
everything in terms of the properties of differentiable 
metric fields on manifolds. If one is given a manifold, 
and on it a metric which does not at all points 
satisfy the necessary differentiability requirements, 
one simply throws away all the points of singularity. 
The starting point for any further discussion is 
then the largest submanifold on which the metric is 
differentiable. This is done because there is not 
known any useful way of describing the singUlarities 
of a function except by describing its behavior at 
regular points near the singularity. The first problem 
then is to select a criteria which will identify in an 
intuitively acceptable way a "nonsingular space." 
Evidently, differentiability is only a minimum 
prerequisite, since everything becomes differentiable 
when the singular points are discarded. The problem 
is rather to recognize the holes left in the space 
where singular (or even regular) points have been 
omitted. For a connected Riemannian manifold 

• I wish to Mr. L. Shepley preparing this review 
and for correctmg numerous errors m an earlier draft We 
have borrowed heavily from L. Marcus' lectures on' this 
topic at the American Mathematical Society'S 1962 Summer 
Institute at the University of Oalifornia at Santa Barbara. 
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free space-time. As yet, no example is known of a 
nonflat singularity-free cosmological solution with 
vanishing cosmological constant. The behavior we 
are led to conjecture for an extended NUT space 
would also be quite remarkable. The unequal 
expansion rates in different directions of the closed 
spacelike hypersurface r = 0 would smoothly 
develop into a situation where closed spacelike 
hypersurfaces no longer could exist, while the 
evolution in time would smoothly resolve itself 
into a state of affairs which was periodic in time. 
A difficulty which will arise in attempting to 
eliminate the Schwarz schild-like singularities at r = 0 using Kruskal's methods is the time perio-
dicity of NUT space. For instance, in the Schwarzs-
child solution for r > 2m (or for 0 < r < 2m), 
we can easily identify points to give a periodic 
time, t == t + T. In Kruskal's extended Schwarzs-
child solution,2 we may then attempt to make 
this same identification. The singularity in the 
coordinate t causes no difficulty, since it is not 
the t coordinate, but motions along the Killing 
vector field a/at which define the identifications 
we wish to make, and a/at is an analytic vector 
field, everywhere free from singularities as is 
evident from its expression in terms of Kruskal's 
nonsingular coordinates u, v: 

(57) 

What happens, then, when we identify points 
which differ by a motion of amount T, i.e. when 
we identify points P and exp f T a/at I P? In fact 
this introduces a singularity, not everywhere 
the null.3-surfaces r = 2m (or u = ± v), but only 
at the smgle 2-surface u = v = 0 where, by Eq. 
(57), a/at = 0 so the Killing motion has fixed points. 

APPENDIX A. COMPUTATION OF THE CURVATURE 

We shall compute the Riemann tensor by 
methods due to Cartan20 which, at least for metrics 
with a considerable amount of symmetry, are much 
more efficient than the methods usually employed 
by physicists. If w\ w2

, ••• wn are a set of covariant 
basis vectors, then the metric tensor is written 

(Al) 

Covariant derivatives are formed with the aid of 
the connection forms v, or their components all: 

(A2) 
20 E. Cartan [ef. reference 10, Chap. VII]i T. J. Willmore 

[cf. reference 5, Sees. VII-16 and VII-19]· H. Flanders 
Trans. Am. Math. Soc. 75, 311 (1953).' , 

The following two sets of equations determine the 
w a uniquely: 

= /\ wv. 

(A3) 

(A4) 

In the more familiar case of a coordinate frame 
= the second equation here gives all = 

(using the property d2 = 0 of the exterior derivative 
and the antisymmetry of the exterior product /\)' 
while the first is a standard relation between 
metric derivatives and the which is solved 
to show that all is a Christoffel symbol. We will 
use these equations in a different case, that of an 
orthonormal frame, where, since = = const, 
Eq. (A3) states that the forms are anti-symmetric 

+ = o. (A5) 

With the aid of this antisymmetry, Eqs. (A4) can 
now be solved for when is given. Although 
a formula like the Christoffel relation exists also 
in this case, the computation is most efficient when 
Eqs. (A ) can be solved by inspection, as we shall 
shortly illustrate. Once the connection forms have 
been computed, the curvature forms are obtained 
from the formula 

= + a /\ w a •. (A6) 

The components of the Riemann tensor vall are 
then read out of these curvature froms: 

(A7) 

and the Ricci tensor is formed by contraction 

(AS) 

Note that in 4-space, with an orthonormal basis , 
there are only six connection forms in contrast 
to forty Christoffel symbols, and only six curvature 
forms 8P

• in contrast to twenty components 
of the Riemann tensor or ten for the Ricci tensor. 
In simple cases, such as NUT space, a savings of 
labor on a scale suggested by these numbers is 
actually attained, and the Ricci tensor can be 
computed much more rapidly by these methods 
(which provide the Riemann tensor as a bonus 
along the way) than from the usual formula in 
terms of Christoffel symbols. 

The computation begins by writing the metric 
terms of an orthonormal frame, as has been done 

III Eqs. (7) and (8). Next the curl, of each 
base vector must be computed. Let us compute 
for example, dwo where ' 

WO = f(r)[dt + 4l sin2 !8 dct>]. (A9) 
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First note that d(f[ D = df A [ J + fd[ ], and Only two terms appear in the sum because of the 
df = I'dr = f'fw 1 since WI = r 1dr. Thus dwo = antisymruetry of WI'" Substituting in this and similar 
fOOl A 00° + fd[ J. Using d2 = 0 we then find formulas from Eq. (All) yields 

d[ J = 4l sin !8 cos to dO A d¢ = 2l sin 0 d8 A d¢ 

= 2l(r2 + [2)-IW
2 A wS

• 

Proceeding in this manner we obtain 
dwo = I'w 1 A WO + 2lf(r2 + l2)-IW

2 A w3
, 

dWI = 0, 

dw2 = rl(r2 + l2)-IW' A 00
2

, 

dw3 = rl(r2 + 12)-100
1 A w3 

+ (r2 + 12)-1 cot 0 til A w3
• 

(AI 0) 

Now we must compare this set of equations with 
Eqs. (A4) and pick out the wI',. The first equation 
of (AlO), for instance, must take the form 

so we guess that WOl = +I'wo. Byantisymmetry we 
have WOl = -WOl = WIO = Wlo, and can verify that 
this choice is consistent with 0 = dw I = - '/0 A w 0 + 
. " since w 0 A w 0 = O. The remaining term in d.w 0 

of Eqs. (A1O) could arise either from 00°2 or w'\ and 
this choice can most conveniently be settled later, 
so we proceed to the dwz equation. From dw2 = 
-w2

0 A W
O 

- W
2

1 A WI - W
2

3 A w3 we guess that 
w\ = rl(r2 + l2r 1w2

, so that W20 and W23 terms must 
cancel here. In this manner, one proceeds to fill out 
the list below. As the solution w,., of Eqs. (A4) and 
(AS) is known to be unique, the proof that a guess for 
a set of wI'. is correct is simply that it satisfies these 
equations. We have then 

W01 = +W1 0 = I'wo, 
W02 = +W20 = ll(r2 + [2)-'w3

, 

WOg = +W30 = -Zf(rZ + [2)-IW
2

, (All) 
0023 = -W32 = ll(r2 + - (r2 + 12)-t cot 8 w\ 
w3

) = - W1 3 = rl(r2 + l2)-IW
3

, 

w\,l = -W
2

1 -rle + l2)-lW
2

• 

Of a possible 24 connection components rl' at!' only 
the seven non vanishing ones which appear via 
Eq. (A2) in Eqs. (All) caused us any labor. That 
the others vanish we discovered by finding no need 
for additional terms in Eqs. (All), not by explicitly 
evaluating a formula for r" afl and obtaining a zero 
result. The curvature computation is now purely 
mechanical. The first of Eqs. (A6), for instance, reads 

8°1 = dWOI + W02 A W
2

1 + WOg A w\. (A12) 

805! = +Cwo A 00
2 + Dw3 A WI, 

803 = +Cwo A 00
3 + Dw! A w2

, 

023 = +2Bwz A 003 
- 2Dwf) A WI, 

OSl = -Cw3 A WI + Dw° Aw2
, 

012 = -COOl A 00
2 + Dw° A w3

, 

where 

A = t(r)", 
B = ![ _f2 + 1 + 412r /(r2 + [2) J(r2 + n-I , 

C = [!rcr)' + tt/(r2 + l2)J(r2 + l2)-1, 

D = [!lcr)' - rW/(r2 + l2)J(r2 + l2)-1. 

CA13) 

(A14) 

The first line of Eqs. (A13), for example, tells us, 
by comparison with Eq. (A6) , that Rolol = -2A, 
R0123 = -2D, ROl02 = 0, Rom = 0, etc. The contrac-
tions necessary to form RI'P, for instance 

Ru = RIOlO + R1212 + R1
3

lS 

= -RlOI0 + R1212 + RI3I3 

= 2.4. - 2C, 

are readily performed by scanning Eqs. (A13). 
Thus we find 

R == R: == RI"I" = 4(A + B - 2C), (AlS) 

while for 

the only nonvanishing components are 

GJ! = -GOQ = 2(C - B), 

G22 = G33 == 2(C - A). 
(A16) 

The empty-space Einstein equations thus require 
A = B = C. 

Each of the quantities A, B, C, and D is effectively 
an invariaut since the basis vectors WO and WI we 
used can be characterized geometrically, while the 
form (Al3) of the curvature tensor is invariant. 
under rotatious in the 23 plane. We can characterize 
the vector WI as the unit normal to the orbits r = 
const of the group of motions; similarly, the con-
travariant vector eo from the dual basis can be 
characterized as the unit vector parallel to that 
unique Killing vector which commutes with all 
the Killing vectors. These four invariants reduce 
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CA13) 

(A14) 

The first line of Eqs. (A13), for example, tells us, 
by comparison with Eq. (A6) , that Rolol = -2A, 
R0123 = -2D, ROl02 = 0, Rom = 0, etc. The contrac-
tions necessary to form RI'P, for instance 

Ru = RIOlO + R1212 + R1
3

lS 

= -RlOI0 + R1212 + RI3I3 

= 2.4. - 2C, 

are readily performed by scanning Eqs. (A13). 
Thus we find 

R == R: == RI"I" = 4(A + B - 2C), (AlS) 

while for 

the only nonvanishing components are 

GJ! = -GOQ = 2(C - B), 

G22 = G33 == 2(C - A). 
(A16) 

The empty-space Einstein equations thus require 
A = B = C. 

Each of the quantities A, B, C, and D is effectively 
an invariaut since the basis vectors WO and WI we 
used can be characterized geometrically, while the 
form (Al3) of the curvature tensor is invariant. 
under rotatious in the 23 plane. We can characterize 
the vector WI as the unit normal to the orbits r = 
const of the group of motions; similarly, the con-
travariant vector eo from the dual basis can be 
characterized as the unit vector parallel to that 
unique Killing vector which commutes with all 
the Killing vectors. These four invariants reduce 








